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An extensive loss of efficacy of all pyrethroid-based Insecticide-treated bednets, 

including PBO-based bednets is recorded in a highly pyrethroid resistant population 

of the malaria vector An. funestus (Mozambique) exhibiting high expression of 

cytochrome P450 genes with fixation of CYP6P9a_R allele. 

  

Summary 
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Abstract  

Background: Insecticide resistance poses a serious threat to insecticide-based 

interventions in Africa. There is a fear that resistance escalation could jeopardize 

malaria control efforts. Monitoring cases of aggravation of resistance intensity and its 

impact on the efficacy of control tools is crucial to predict consequences of resistance.  

Methods: The resistance levels of an Anopheles funestus population from Palmeira in 

southern Mozambique was characterised and its impact on the efficacy of various 

insecticide-treated nets established.  

Results: A dramatic loss of efficacy of all long lasting insecticidal nets (LLINs) 

including PBO-based nets (Olyset Plus) was observed. This An. funestus population 

consistently (2016, 2017 and 2018) exhibited high degree of pyrethroid resistance. 

Molecular analyses revealed that this resistance escalation was associated with a 

massive over-expression of duplicated cytochrome P450 genes, CYP6P9a/b and also 

the fixation of the resistance CYP6P9a_R allele in this population in 2016 (100%) in 

contrast to 2002 (5%). However, the low recovery of susceptibility after PBO 

synergist assay suggests that other resistance mechanisms could be involved. 

Conclusions: The loss of efficacy of pyrethroid-based LLINs with and without PBO 

is a concern for the effectiveness of insecticide-based intervention and action should 

be taken to prevent the spread of such super-resistance.  
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Background 

Malaria burden remains high in Africa (1) despite recent progress achieved mainly 

through insecticide-based interventions such as long lasting insecticidal nets (LLINs) 

and Indoor Residual Spraying (IRS) (2, 3). Increasing reports of resistance to major 

insecticide classes is a worrying concern for the continued effectiveness of 

insecticide-based control tools. The resistance to pyrethroids is particularly 

problematic, as it is the main insecticide class approved for LLINs impregnation, as 

well as the most common insecticide class used in IRS (4). Therefore, devastating 

consequences are predicted for malaria control if pyrethroid efficacy is lost, as 

highlighted by the World Health Organization (WHO) (5). However, there is 

currently an intense debate with opposite results often published about the impact of 

insecticide resistance on the effectiveness of insecticide-based interventions (6, 7). 

This contrast is highlighted by the difference observed between a multi-country study 

showing a lack of impact of pyrethroid resistance on malaria transmission (6) whereas 

a field trial in Tanzania supported that pyrethroid resistance was reducing the 

effectiveness of pyrethroid-only LLINs and impacting malaria transmission (7). 

Among other factors, it is possible that this discrepancy is associated with the 

variation of the strength of resistance in respective populations studied. Indeed, it is 

acknowledged that increasing resistance levels (resistance ratio) is more likely to lead 

to control failure than standard resistance levels (8, 9). This highlights the crucial 

need to monitor field populations for evidences of resistance escalation and to 

measure potential impact of resistance escalation on the efficacy of insecticide-based 

tools including LLINs. However, limited studies have been performed on the 

escalation of resistance in field populations of malaria vectors in Africa. A study in 
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Burkina Faso (West Africa) revealed that increase resistance in Anopheles gambiae 

negatively impacted the efficacy of pyrethroid-only nets (10). Similarly, a loss of 

efficacy of pyrethroid-only nets was observed in a population of Anopheles funestus 

s.s. in southern Mozambique (southern Africa) (11) previously shown to be highly 

resistant to pyrethroid (11, 12) suggesting that this population could be ideal to 

monitor the increase in resistance levels and its consequences.  

Pyrethroid resistance in An. funestus is widespread throughout Mozambique, 

notably in the south where mosquitoes have been shown to survived 3h exposure to 

pyrethroids in WHO bioassays (12-16). This resistance is driven by metabolic 

resistance mediated by over-expression of cytochrome P450s including two 

duplicated P450s, CYP6P9a and CYP6P9b (17, 18). The recent detection of a DNA-

based marker for CYP6P9a resistant allele revealed that the CYP6P9a_R frequency 

was elevated in southern Mozambique (19). In contrast, to date, no knockdown 

resistance (kdr) mutation in the voltage-gated sodium channel (VGSC) gene has been 

reported in the An. funestus s.s. Africa-wide (17, 20, 21). A new generation of LLINs, 

combining a pyrethroid with the synergist piperonyl butoxide (PBO), has been 

designed by manufacturers to overcome this growing problem of pyrethroid 

resistance. PBO inhibits the action of the cytochrome P450s (22, 23), enhancing the 

effect of pyrethroids on resistant kdr-free mosquitoes (24-26). The impact of 

increased resistance levels in southern Mozambique remains un-elucidated on the 

efficacy of PBO-based nets. It remains also unknown if the escalation of resistance is 

associated with over-expression of metabolic resistance genes such as CYP6P9a/b and 

if such increased expression of P450 genes could reduce the inhibition effect of PBO 

to reduce the efficacy of PBO-based nets.  
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To fill this gap and facilitate the design of resistance management strategies, 

we extensively investigated the resistance profile and resistance mechanisms of one, 

highly resistant population of An. funestus s.s. in Southern Mozambique (Palmeira). 

Our study reveals an extensive loss of efficacy of all pyrethroid-based LLINs tested, 

including PBO-based LLINs against this population characterised by a high 

expression of key cytochrome P450 genes coupled with a fixation of the CYP6P9a 

P450 resistance allele. 

 

Methods 

Mosquito collection 

Indoor female Anopheles mosquitoes were collected in the village of Palmeira 

(25° 15’ 19’’S; 32° 52’ 22’’E), Manhiça district, Maputo province (southern 

Mozambique) near the Incomati river. The majority of inhabitants are farmers (sugar 

cane, rice) from the Xichangana and Xironga communities. The collection were 

performed during 4-5 days in three consecutive years (August 2016, April 2017 and 

January 2018) using electric aspirators. An. funestus s.s. is the primary malaria vector 

in this area (27). An. funestus sample collected in 2002 (28) was used for comparative 

genotyping the CYP6P9a resistance allele. Most of the households have LLINs 

(Olyset and PermaNet 2.0) impregnated only with pyrethroids whereas IRS with 

dichlorodiphenyltrichloroethane (DDT) is also applied (27).  

Collected gravid, blood-fed and half-gravid Anopheles females mosquitoes 

were  morphologically identified as belonging to An. funestus group or An. gambiae 

complex according to morphological keys (29). Females An. funestus sensu lato (s.l.) 
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were kept in cages until they became fully gravid, and subsequently, forced to lay 

eggs in separate 1.5 ml microcentrifuge tubes and larvae reared to adults as previously 

described (30). Seventy An. funestus s.l. female mosquitoes collected in April 2017 

were bisected into head plus thorax and abdomen and kept individually. Genomic 

DNA (gDNA) from these mosquitoes were extracted using the Livak method (31) 

followed by a cocktail polymerase chain reaction (PCR) as previously described (32) 

for species identification with An. funestus group. The internal transcribed spacer 2 

(ITS2) was sequenced for samples that failed to amplify.  

Plasmodium infection rates 

A TaqMan assay was used to screen for Plasmodium falciparum (Pf) and P. 

ovale, P. vivax and P. malariae (Povm) in 57 heads plus thoraxes gDNA (sporozoite) 

from 2017 F0 An. funestus s.s. females as previously described (33, 34). Subsequently, 

a nested PCR (35) was also performed to validate all the Plasmodium positive 

samples.  

Insecticide-treated bed nets efficacy assays  

Following the WHO guidelines for cone bioassays (36), the effectiveness of 

the following LLINs was estimated for: Olyset® Net (permethrin 2%) and Olyset® 

Plus net roof (permethrin 2% plus PBO 1% in the roof) ; PermaNet® 2.0 

(deltamethrin 0.18%) and PermaNet® 3.0 side (deltamethrin 0.28%). An untreated 

mosquito net was used as a control. Five replicates of ten F1 2–5 days old females 

were placed in plastic cones enclosed with the mosquito net during 3 min exposure. 

Mosquitoes were then placed in small holding paper cups with cotton soaked in 10 % 

sugar solution. Mortality was determined 24 h later in 2016 and 2018, and every 24 
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hours, until five days in 2017. The efficiency of the LLINs was confirmed using the 

An. gambiae susceptible laboratory strain, Kisumu (2016 and 2017) and the An. 

funestus susceptible FANG strain (2018). 

Insecticide susceptibility assays  

The insecticide resistance profile of An. funestus s.s. were assessed using the 

WHO tube bioassays (37). An. funestus s.s. mosquitoes collected in 2016 were tested 

to the pyrethroids type I permethrin (0.75%) and type II deltamethrin (0.05%), the 

organochlorine DDT (4%), and the carbamate bendiocarb (0.1%). Mosquitoes 

collected in 2017 were additionally tested with the pyrethroid derivative, etofenprox 

(0.05 %) and the organophosphate malathion (5%). Assays were performed at 25 ± 1° 

C and 70-80% relative humidity. At least three replicates of 20-25 F1 female and male 

mosquitoes 2-5 day-old were exposed separately to insecticide-impregnated papers 

for 1h and afterwards transferred to a holding tube provided with cotton soaked in 10 

% sugar solution. Mortality was determined 24h later. Control tubes using carrier oil-

impregnated papers were performed for each bioassay. Synergist assays with 

piperonyl butoxide (PBO; inhibitor of cytochrome P450s) was performed as 

previously described (38). 

Additionally, due to the extremely high resistance to permethrin, an insecticide 

commonly used in LLINs, the intensity of resistance was assessed by exposing three 

replicates of 20-25 F1 female mosquitoes for 90, 120 and 180 minutes to permethrin 

in WHO tube bioassays as described above. 
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Total RNA was extracted from 3 batches of 10 adult 2-5 days old F1 females 

An. funestus s.s. non-exposed to insecticides and similarly from the susceptible 

laboratory strain FANG, as previously described (17). The transcription patterns of 

the duplicated cytochrome P450 genes CYP6P9a and CYP6P9b, major pyrethroid 

resistance genes in this region (17, 39), plus the DDT/permethrin resistant gene-

related glutathione-s-transferase epsilon 2 (GSTe2) (40), were assessed by a 

quantitative reverse transcription PCR (qRT-PCR), as previously described (17, 41). 

The relative expression was calculated individually according to the 2-ΔΔCT method 

(42) and compared to that previously published in southern (Malawi), West (Ghana 

and Benin), East (Uganda) and Central (Cameroon) Africa (43).  

Genotyping of the CYP6P9a_R pyrethroid resistance allele 

A PCR-RFLP assay recently designed (19) was used to genotype the 

CYP6P9a_R allele in Palmeira in 2016 and 2017 but also in 2002 to assess potential 

link between the aggravation of resistance and this allele.  

Genotyping of other resistance markers in An. funestus s.s. 

The presence of other An. funestus s.s. resistance markers was assessed 

including N485I-Ace-1 (bendiocarb), A296S-RDL (dieldrin) and L119F-GSTe2 

(DDT/permethrin) using TaqMan assays, as previously described (44, 45) (N485I-

Ace-1 and A296S-RDL) and an allele-specific PCR (AS-PCR) (L119F-GSTe2) (46). 

 

Transcription profile of resistance genes in An. funestus s.s.  
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750, 1100 and 425 F0 female mosquitoes were sampled respectively in 2016, 

2017 and 2018 with 40-50% blood fed, half or fully gravid. 243, 360 and 185 females 

laid eggs respectively in 2016, 2017 and 2018 with 120, 250 and 92 hatching. From 

96 (2016), 70 (2017) and 50 (2018) F0 females An. funestus s.l. molecularly assessed 

by PCR, 90, 57 and 50 females were identified as An. funestus s.s. respectively, while 

6 (2016) and 13 (2017) failed to amplify. Subsequently, through sequencing of the 

ITS2, the 13 samples (2017) were also identified as An. funestus s.s. 

Plasmodium sporozoite infection rate  

The Plasmodium sporozoite-infection rate in An. funestus s.s. (2017) was 5.3% 

(3/57). Two An. funestus s.s. females were infected with P. falciparum sporozoites 

(3.5%, 2/57), and one infected with ovm+ (1.8%, 1/57). A nested PCR confirmed all 

the positive infected mosquitoes and determined that the ovm+ positive sample was 

infected with P. malariae.  

Insecticide-treated bed nets efficiency 

No mortality was recorded following 3-minute exposure for all LLINs tested 

including Olyset Plus PBO-based net against F1 females collected in 2016 suggesting 

an extensive loss of efficacy of these nets. However, the same nets induced a total 

mortality against the control Kisumu susceptible An. gambiae mosquitoes (Figure 

1A). To confirm these results, a new batch of LLINs was tested against another 

sample of An. funestus s.s. collected in 2017 revealing similar loss of efficacy with 

mortalities less than 6.2% after 24 h. Due to this exceptional loss of efficiency the 

mortality was also monitored at 48, 72, 96 and 120 h after exposure in 2017 (Figure 

1B). After 120 h, similar low mortalities (between 5.7 and 7.5%) were recorded for 

Results  

Species identification 
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both LLINs impregnated with deltamethrin (PermaNet® 2.0 and 3.0 (side)) and 

control, while the two LLINs impregnated with permethrin (Olyset® Net and Olyset® 

Plus) presented a slightly higher mortality (12 and 13.6%, respectively). A similar 

loss of efficacy was observed in 2018 (Figure 1C) in contrast to the high mortality in 

FANG, the An. funestus laboratory susceptible strain. These results indicate a 

surprisingly extensive loss of action of the PBO in the PBO-based LLINs (Olyset 

Plus) against this An. funestus population. Mortality rate with the control net was 0% 

in 2016 and 2018 and 2% in 2018. 

Insecticide susceptibility assays  

F1 females from both collections exhibited an extremely high resistance to 

permethrin (pyrethroid type I; used in Olyset® nets) and deltamethrin (pyrethroid 

type II; used in PermaNet® nets), supporting the observed loss of efficiency of LLINs 

(Figure 2A and 2B). F1 females collected in 2016 showed no mortality after 24h 

exposure to both pyrethroids tested (permethrin and deltamethrin) (Figure 2A), while 

F1 females collected in 2017 showed 13.9 ± 2.4% and 12.3 ± 4.3% mortality to 

permethrin and deltamethrin, respectively (Figure 2B). F1 females collected in 2017 

also presented high resistance to the pyrethroid derivative, etofenprox (5.9 ± 0.2% 

mortality and to the carbamate bendiocarb, with mortalities of 42.3 ± 6.3% and 29.8 ± 

11.4% in 2016 and 2017, respectively (Figure 2B). However, it consistently showed a 

full susceptibility to the organochlorine, DDT and the organophosphate, malathion 

with 100% mortality rates. Male mosquitoes (2017) exhibited similar resistance 

profile (Figure 2B). 

Synergist assays performed in 2017 with PBO revealed only a moderate 

recovery of susceptibility after exposure to permethrin and deltamethrin [permethrin: 
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no PBO pre-exposure 13.9 ± 2.4% mortality versus PBO pre-exposure 29.7 ± 5.8%, 

P=0.065; deltamethrin: no PBO pre-exposure 12.3 ± 4.3% vs. PBO pre-exposure 22.3 

± 15.9%, P=0.24] (Figure 2C). Tests with bendiocarb also revealed a lack of impact 

of PBO pre-exposure with no difference in mortality [27.9 ± 4% mortality (P = 0.09) 

with PBO exposure vs. 29.8 ± 11% without exposure. No mortality was observed in 

control mosquitoes exposed to the synergist PBO only. 

Due to the high resistance observed to pyrethroids, WHO tube bioassays with 

F1 females collected in 2017 and exposure times of 90, 120 and 180 min to permethrin 

were also performed (Figure 2D). A constant increase in mortality was observed 

proportional to the time of the permethrin exposure with LT50 estimated at 1h 45min 

(95% CI 1h 37min–1h 51min).  

Transcription profile of resistance genes in An. funestus s.s.  

Transcription analysis of the duplicated P450 genes CYP6P9a and CYP6P9b, 

known to confer pyrethroid resistance in An. funestus (17, 39) reveals a high up-

regulation of CYP6P9a (fold change, FC=122.4 ± 34) and CYP6P9b (FC=106.2 ± 32) 

from Southern Mozambique compared to the susceptible FANG strain (P<0.001). 

This over-expression is higher than in Malawi (FC=85.5 ± 20.7 and 79.9±11.6 

respectively for CYP6P9a and CYP6P9b) (Figure 3A) although not statistically 

significant (P>0.05). A greater contrast is observed with other African regions where 

the over-expression of these two genes is significantly much lower (P<0.001) (Figure 

3A). In contrast GSTe2, conferring DDT/permethrin resistance in West/Central Africa 

(40), is not significantly upregulated in Mozambique (FC=1.1 ± 0.4; P=0.84).  
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Genotyping of 50 (2016) and 57 (2017) F0 females using the novel PCR-RFLP 

assay (19) revealed that this resistance allele for P450-mediated metabolic resistance 

is fixed in Palmeira with 100% of the RR genotype detected in both samples. This 

contrasts with 2002 (35 females) where the CYP6P9a_R allele was only recorded at 

5% (Fig. 3B) (χ
2
=1900; P=0.0) suggesting that, beside other factors including 

increased over-expression of P450s, the escalation of resistance could have been 

associated with the fixation of the CYP6P9a-R allele in field population. 

Frequency of other resistance alleles 

The frequency of the 119F-GSTe2 resistant allele was very low (7.4%) (1RR, 

6RS and 47SS) (Figure 3C). This is the first detection of this resistance marker in 

southern Africa as it was completely absent from samples collected in 2010 (40). 

The frequency of the A296S-RDL mutation conferring dieldrin resistance (47) 

was very low (0.9%) (0RR, 1RS and 56SS) (Figure 3C). However, this is its first 

report in southern Africa.  

The N485I mutation in the in acetylcholinesterase 1 (ace-1) gene associated 

with bendiocarb resistance (45) was detected at a frequency of 23.9% (5 RR-485I, 18 

RS-N485I and 34 SS-N485)(Figure 3C).  

Discussion 

Assessing the dynamic of resistance to insecticides in major malaria vectors 

and its impact on the effectiveness of control tools is a key prerequisite for the 

implementation of suitable strategies to manage the growing challenge from 

insecticide resistance in malaria control. 

Frequency of the CYP6P9a_R allele 
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This study revealed a complete loss in efficacy of the two most common 

commercial LLINs used across Africa, Olyset® Net and PermaNet® 2.0 against An. 

funestus s.s. from Southern Mozambique confirming the extensive loss reported for 

these nets in 2015 in the same region (11). A similar extensive lost was also reported 

Malawi (<5% mortality) (44) and in DR Congo (<35% mortality)(38). This loss in 

efficacy in Palmeira is further supported by the WHO insecticide susceptibility assays 

results, showing a high resistance of this population to permethrin and deltamethrin, 

the pyrethroid compounds used to impregnate these nets. This high pyrethroid 

resistance is in line with previous reports in this region (11, 12).   

More alarmingly, this study also reported the extensive loss in efficacy of the 

new generation of PBO-based nets, prior to the implementation of PBO-based bednets 

in the area. This is the first report of such loss of efficacy of this new generation nets 

against An. funestus as higher mortality rates (>80%) have so far been observed when 

testing PBO-based nets (Olyset Plus) against other pyrethroid resistant populations 

including in Malawi (44) and DR Congo (38). The extensive ability of mosquitoes to 

survive exposure to PBO-based nets in this population also differs significantly from 

results in An. gambiae for which highly resistant populations have shown mortality of 

around 40% such as in Burkina Faso (10) and DR Congo (38). However, the 

PermaNet 3.0 Top (containing PBO) was not analysed. Nevertheless, the low 

mortality with PermaNet 3.0 (side) here contrary to the higher mortality rate (88%) 

observed in DRC suggests also a loss of efficacy of PermaNet 3.0. In this study, we 

did not analyse the chemical content of the nets (using HPLC) to confirm that the 

quantity of PBO or pyrethroids on the nets tested are those stipulated by the 

manufacturers. Such work will need to be done in the future as one cannot rule out 
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some loss of the active ingredients in the nets. However, when checking these same 

nets against the susceptible lab strains (Kisumu and FANG), we observed a total 

mortality supporting the loss of efficacy against the field resistant An. funestus 

populations.  

The low mortality against PBO-based nets of the An. funestus population of 

southern Mozambique is further remarkable as this population does not possess the 

knockdown resistance (kdr) (21, 28) contrary to the An. gambiae VK7 population 

from Burkina Faso. The lack of kdr in this Mozambican population is further 

supported by a total susceptibility of this population to DDT, a chemical which also 

targets the sodium channel gene. Previous studies and the qRT-PCR performed here 

indicate a predominant role of metabolic resistance in this An. funestus population 

primarily driven by the duplicated P450s CYP6P9a and CYP6P9b (17). It is possible 

that the reduced efficacy of all bed nets including PBO-based is partly due to a 

dramatic over-expression of these P450s that could allow mosquitoes to withstand 

exposure to pyrethroids even with the amount of PBO present in the nets. This is 

supported by the highest level of expression observed in this study in Mozambique for 

CYP6P9a and CYP6P9b compared even to another southern African population in 

Malawi but even more when compared to other regions in East, Central and West 

Africa. The role of CYP6P9a/b is further supported by the observation that the 

resistant allele of CYP6P9a, which has been demonstrated to have a higher catalytic 

efficiency in metabolising pyrethroids than other alleles (39), has now been driven to 

fixation in this population whereas it was only present at 5% back in 2002. Such 

selection was recently shown to be driven by scale-up of insecticide-based 

interventions in the region including pyrethroid-based IRS and LLINs (28). Therefore, 
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it is possible that the concentration of PBO in the LLINs is no more enough to inhibit 

the action of the highly over-expressed and metabolically efficient 

CYP6P9a/CYP6P9b alleles in resistant mosquitoes from Palmeira.  

However, the low recovery of mortality observed here after exposure to PBO 

during synergist assay, besides massive over-expression of P450s such as CYP6P9a/b, 

could also be due to other mechanisms that are present in this An. funestus population. 

A potential role of the reduced penetration due to thickening of the mosquito’s cuticle 

was previously suggested in the laboratory strain FUMOZ-R originated from southern 

Mozambique (48). Such mechanism could also be acting in field population of 

southern Mozambique contributing to the high resistance to pyrethroids and the loss 

of efficacy observed in combination with high over-expression of highly efficient 

P450 enzymes. However, future studies are needed to elucidate the molecular basis of 

this resistance escalation that is inducing such loss of efficacy of all LLINs including 

PBO-based nets. 

The results of this study support the IRS interventions in Southern 

Mozambique particularly based on organophosphates. Furthermore, the full 

susceptibility to DDT supports the lack of over-expression of the glutathione-S 

transferase GSTe2 gene in this population contrary to those in West and central Africa 

(19, 40). However, this study detected for the first time in Southern Africa the 

resistant allele, 119F-GSTe2, frequently present in West and Central Africa (40). The 

increase frequency of this allele in southern Africa in combination to high over-

expression of cytochrome P450 genes could lead to super resistance to pyrethroids 

and also DDT.  
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The loss in efficiency of new generation PBO-based LLINs against An. 

funestus s.s. reported here represents a serious challenge for its future implementation 

in southern Mozambique. The spread of the molecular mechanisms that confer this 

“resistance” to the synergistic effects of PBO to other vector populations is an even a 

more worrying concern. This study highlights the urgent need to investigate the 

causes of the loss in efficacy of PBO-based nets and to monitor the spread of such 

operationally significant resistance in other mosquito populations and assess its 

impact on malaria transmission. Furthermore, efficacy of PBO-based nets should be 

assessed prior to the rolling out of these nets in Mozambique. 

  

Conclusions 
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Figure legends 

Figure 1: Bio-efficacy of different commercial LLINs against An. funestus s.s. in 

Palmeira. A) is for 2016, B) for 2017 and C) for 2018.  Error bars represent 

standard error of the mean.   

Figure 2: Susceptibility profile of An. funestus population from Palmeira, 

southern Mozambique: A) susceptibility profile in 2016 for females only; B) 

Susceptibility profile in 2017 for both males and females. C) Synergist assay with 

piperonyl butoxide (PBO) (n=4); D) Time-point mortality rates for permethrin with 

estimation of LT50 at 1h 45min. Error bars represent standard error of the mean.  

Figure 3: Exploration of the molecular basis of the escalation of pyrethroid 

resistance in An. funestus: A) Comparative gene expression of the P450 genes 

CYP6P9a and CYP6P9b in Mozambique comparatively to other African regions; 

Error bars represent standard error of the mean. B) Allele frequency of the CYP6P9a 

pyrethroid resistance marker in southern Mozambique populations from 2002, 2016 

and 2017 showing a fixation of the CYP6P9a_R allele. C) Distribution of the 

genotypes of resistance markers in Palmeira including CYP6P9a_R, L119F-GSTe2, 

N485I-Ace-1 and A296S-RDL.  
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Figure 1 

 
  

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article-abstract/doi/10.1093/infdis/jiz139/5421735 by guest on 16 April 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

27 

 

Figure 2 
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Figure 3 
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