LSTM Home > LSTM Research > LSTM Online Archive

High Plasmodium infection and multiple insecticide resistance in a major malaria vector Anopheles coluzzii from Sahel of Niger Republic.

Downloads

Downloads per month over past year

Ibrahim, SulaimanSadi, Mukhtar, Muhammad M, Irving, Helen, Labbo, Rabiou, Kusimo, Michael O, Mahamadou, Izamné and Wondji, Charles ORCID: https://orcid.org/0000-0003-0791-3673 (2019) 'High Plasmodium infection and multiple insecticide resistance in a major malaria vector Anopheles coluzzii from Sahel of Niger Republic.'. Malaria Journal, Vol 18, Issue 1, p. 181.

[img]
Preview
Text
s12936-019-2812-0.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

BACKGROUND
Information on insecticide resistance and the mechanisms driving it in the major malaria vectors is grossly lacking in Niger Republic, thus hindering control efforts. To facilitate evidence-based malaria control, the role of Anopheles coluzzii population from southern Niger, in malaria transmission, its insecticides resistance profile and the molecular mechanisms driving the resistance were characterized.
METHODS
Blood fed female Anopheles gambiae sensu lato resting indoor were collected at Tessaoua, Niger. Source of blood was established using PCR and infection with Plasmodium determined using TaqMan assay. Resistance profile was established with the major public health insecticides, and resistance intensity determined with deltamethrin. Synergist assays were conducted with piperonyl butoxide and diethyl maleate. Presence of L1014F and L1014S knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) was investigated using TaqMan genotyping, and strength of selection pressure acting on the Anopheles populations determined by assessing the genetic diversity of a fragment spanning exon-20 of the VGSC from alive and dead females.
RESULTS
High human blood index (96%) and high Plasmodium falciparum infection (~ 13%) was observed in the An. coluzzii population. Also, a single mosquito was found infected with Plasmodium vivax. High pyrethroid and organochloride resistance was observed with mortalities of less than 20% for deltamethrin, permethrin, α-cypermethrin, and DDT. A high LD (156.65 min) was obtained for deltamethrin, with a resistance ratio of ~ 47.18 compared to the susceptible Ngoussou colony. Moderate carbamate resistance was observed, and a full susceptibility to organophosphates recorded. Synergist bioassays with piperonyl butoxide and diethyl maleate significantly recovered deltamethrin and DDT susceptibility, respectively implicating CYP450 s (mortality = 82%, χ = 84.51, p < 0.0001) and glutathione S-transferases (mortality = 58%, χ = 33.96, p < 0.001) in resistance. A high frequency of 1014F kdr mutation (82%) was established, with significant difference in genotype distribution associated with permethrin resistance [odds ratio = 7.71 (95% CI 2.43-14.53, χ = 13.67, p = 0.001]. Sequencing of intron-1 of the voltage-gated sodium channel (VGSC) revealed a low genetic diversity.
CONCLUSION
High pyrethroid resistance highlight the challenges to the effectiveness of the pyrethroids-based ITNs and indoor residual spraying (IRS) against An. coluzzii in Niger. The pyrethroids-synergists LLINs and organophosphate-based IRS maybe the alternatives for malaria control in southern Niger.

Item Type: Article
Subjects: QX Parasitology > Protozoa > QX 135 Plasmodia
QX Parasitology > Insects. Other Parasites > QX 510 Mosquitoes
QX Parasitology > Insects. Other Parasites > QX 515 Anopheles
QX Parasitology > Insects. Other Parasites > QX 600 Insect control. Tick control
WA Public Health > Preventive Medicine > WA 240 Disinfection. Disinfestation. Pesticides (including diseases caused by)
Faculty: Department: Biological Sciences > Vector Biology Department
Digital Object Identifer (DOI): https://doi.org/10.1186/s12936-019-2812-0
Depositing User: Stacy Murtagh
Date Deposited: 06 Jun 2019 14:44
Last Modified: 13 Sep 2019 15:48
URI: https://archive.lstmed.ac.uk/id/eprint/10953

Statistics

View details

Actions (login required)

Edit Item Edit Item