LSTM Home > LSTM Research > LSTM Online Archive

Parasite histones are toxic to brain endothelium and link blood barrier breakdown and thrombosis in cerebral malaria

Downloads

Downloads per month over past year

Moxon, Christopher, Alhamdi, Yasser, Storm, Janet ORCID: https://orcid.org/0000-0001-7812-4220, Hoh, Julien, McGuinness, Dagmara, Ko, Joo Yeon, Murphy, George, Lane, Stephen, Taylor, Terrie, Seydel, Karl B, Kampondeni, Sam, Potchen, Michael, O’Donnell, James, O’Regan, Niamh, Wang, Guozheng, GarcíaCardeña, Guillermo, Molyneux, Malcolm, Craig, Alister ORCID: https://orcid.org/0000-0003-0914-6164, Abrams, Simon T and Toh, Cheng-Hock (2020) 'Parasite histones are toxic to brain endothelium and link blood barrier breakdown and thrombosis in cerebral malaria'. Blood Advances, Vol 4, Issue 13, pp. 2851-2864.

[img] Text
Hist in CM.pdf - Accepted Version
Restricted to Repository staff only

Download (6MB)
[img]
Preview
Text
advancesadv2019001258.pdf - Published Version

Download (1MB) | Preview

Abstract

Microvascular thrombosis and blood–brain barrier (BBB) breakdown are key components of cerebral malaria (CM) pathogenesis in African children and are implicated in fatal brain swelling. How Plasmodium falciparum infection causes this endothelial disruption and why this occurs, particularly in the brain, is not fully understood. In this study, we have demonstrated that circulating extracellular histones, equally of host and parasite origin, are significantly elevated in CM patients. Higher histone levels are associated with brain swelling on magnetic resonance imaging. On postmortem brain sections of CM patients, we found that histones are colocalized with P falciparum–infected erythrocytes sequestered inside small blood vessels, suggesting that histones might be expelled locally during parasite schizont rupture. Histone staining on the luminal vascular surface colocalized with thrombosis and leakage, indicating a possible link between endothelial surface accumulation of histones and coagulation activation and BBB breakdown. Supporting this, patient sera or purified P falciparum histones caused disruption of barrier function and were toxic to cultured human brain endothelial cells, which were abrogated with antihistone antibody and nonanticoagulant heparin. Overall, our data support a role for histones of parasite and host origin in thrombosis, BBB breakdown, and brain swelling in CM, processes implicated in the causal pathway to death. Neutralizing histones with agents such as nonanticoagulant heparin warrant exploration to prevent brain swelling in the development or progression of CM and thereby to improve outcomes.

Item Type: Article
Subjects: QX Parasitology > Protozoa > QX 135 Plasmodia
QZ Pathology > Manifestations of Disease > QZ 140 General manifestations of disease
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 750 Malaria
WL Nervous System > WL 200 Meninges. Blood-brain barrier
Faculty: Department: Biological Sciences > Department of Tropical Disease Biology
Digital Object Identifer (DOI): https://doi.org/10.1182/bloodadvances.2019001258
Depositing User: Stacy Murtagh
Date Deposited: 25 Jun 2020 10:54
Last Modified: 25 Jun 2020 10:54
URI: https://archive.lstmed.ac.uk/id/eprint/14488

Statistics

View details

Actions (login required)

Edit Item Edit Item