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Abstract

Background: Insecticide-treated bed nets (ITNs) reduce malaria transmission and are an important prevention tool.
However, there are still information gaps on how the reduction in malaria transmission by ITNs affects parasite
genetics population structure. This study examined the relationship between transmission reduction from ITN use
and the population genetic diversity of Plasmodium falciparum in an area of high ITN coverage in western Kenya.

Methods: Parasite genetic diversity was assessed by scoring eight single copy neutral multilocus microsatellite (MS)
markers in samples collected from P. falciparum-infected children (< five years) before introduction of ITNs (1996,
baseline, n = 69) and five years after intervention (2001, follow-up, n = 74).

Results: There were no significant changes in overall high mixed infections and unbiased expected heterozygosity
between baseline (%MA = 94% and He = 0.75) and follow up (%MA = 95% and He = 0.79) years. However, locus
specific analysis detected significant differences for some individual loci between the two time points. Pfg377 loci,
a gametocyte-specific MS marker showed significant increase in mixed infections and He in the follow up survey
(%MA = 53% and He = 0.57) compared to the baseline (%MA = 30% and He = 0.29). An opposite trend was
observed in the erythrocyte binding protein (EBP) MS marker. There was moderate genetic differentiation at the
Pfg377 and TAA60 loci (FST = 0.117 and 0.137 respectively) between the baseline and post-ITN parasite populations.
Further analysis revealed linkage disequilibrium (LD) of the microsatellites in the baseline (14 significant pair-wise
tests and ISA = 0.016) that was broken in the follow up parasite population (6 significant pairs and ISA = 0.0003).
The locus specific change in He, the moderate population differentiation and break in LD between the baseline
and follow up years suggest an underlying change in population sub-structure despite the stability in the overall
genetic diversity and multiple infection levels.

Conclusions: The results from this study suggest that although P. falciparum population maintained an overall
stability in genetic diversity after five years of high ITN coverage, there was significant locus specific change
associated with gametocytes, marking these for further investigation.
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Background
Malaria continues to be a major global public health
burden, causing 250 million clinical cases and over 1
million deaths each year. Sub-Saharan Africa accounts
for 90% of these cases [1]. To combat malaria, insecti-
cide-treated bed nets (ITNs) have emerged as an effica-
cious and cost-effective malaria prevention tool. Several
previous trials conducted in areas of different malaria
transmission patterns have demonstrated that ITNs
reduce Plasmodium falciparum malaria transmission by
70-90%. Most importantly, these trials have provided
substantial evidence that use of ITNs significantly
reduces all-cause mortality and malaria morbidity in
children less than five years of age [2]. Additionally,
ITNs have been associated with significant reduction in
the adverse effects of malaria during pregnancy [3]. The
remarkable effectiveness of ITNs has led to an up-scal-
ing of their use in malaria endemic regions in conjunc-
tion with other control and prevention measures [4].
Recently, the World Health Organization (WHO)
reported that in countries where ITNs have been effec-
tively scaled up, substantial reductions in malaria cases
and deaths have occurred [1].
Insecticide-treated bed nets work by killing mosqui-

toes on contact and also by repelling or deterring the
vectors from entering houses, thereby reducing malaria
transmission [5]. Thus, the use of ITNs or increased dis-
tribution of ITNs not only affects the mosquito popula-
tions but also changes the dynamics of parasite
dispersion in both human hosts and mosquito vectors,
which could in turn modify vector-parasite-host interac-
tions, ultimately affecting parasite populations. Several
studies have shown that significant suppression of mos-
quito populations, changes in species distribution and
vector behaviour, and changes in population genetic
structure and susceptibility of mosquitoes to insecticides
are associated with community-based ITNs intervention
[6-9]. However, there are still information gaps on how
the reduction in malaria transmission by ITNs affects
parasite population genetic structure although there
were a few earlier studies that reported no change in
the proportion of multiple infections after transmission
reduction by use of ITNs and curtains [10,11].
Human Plasmodium parasites undergo asexual multi-

plication in the human host and obligate sexual repro-
duction in the mosquito vector, each stage shaping the
parasite population genetic structure. Although the asex-
ual multiplication by haploid parasites in humans is clo-
nal, polymorphism can arise from insertion/deletion of
tandem repeats through slippage in the parasite DNA
sequences or natural mutations from various pressures
in the host-parasite relationship [12-14]. On the other
hand, transmission of malaria parasites from human to
mosquito, which is solely accomplished by a small

number of infective male and female gametocytes gener-
ated in humans, creates an opportunity for the genera-
tion of parasite diversity and the emergence of novel
genetic traits [15]. The parasite sexual reproduction
stage in mosquitoes allows for recombination and re-
assortment of genetic material between genomes of
gametes to form diploid zygotes during the development
of oocysts. The degree of inbreeding or outcrossing in
mosquitoes influences the number of clones that are
infective to human [16]. Numerous factors including
host responses can indirectly influence competitive
advantages or suppression of specific parasite clones.
However, the level of transmission intensity has a direct
effect on the number of infected hosts and number of
parasite clones per infected individual, which affects
parasite population genetic structure in different ende-
mic settings [17,18]. Therefore, it is important to evalu-
ate whether, and how, the transmission reduction (by
use of ITNs or other methods), particularly in high
transmission areas, affects the parasite population
including the extent of multiple infections, genetic
diversity, genes involved in transmission, drug resistance
and polymorphism of vaccine candidate genes.
The study of parasite population structure explores

the extent of genetic diversity, allele frequency, genotype
distribution and degree of genetic admixture among
other measures using statistical methods [19]. Common
statistical measurements include expected heterozygosity
(He) to test genetic variation, linkage disequilibrium
(LD) to assess association of alleles between loci, and
fixation index (FST) to evaluate population differentia-
tion [20-22]. Natural Plasmodium parasite populations
display extensive genetic variability within species at dif-
ferent geographic locations and different transmission
intensity levels, with no predominant overall structure.
Some studies of P. falciparum population structure
report that areas with intense malaria transmission have
higher He and higher rates of outcrossing and recombi-
nation which breaks LD, resulting in a more panmictic
population structure [17,23,24]. Such settings allow fas-
ter emergence of novel genotypes reflected as multiple
infections. The reverse is expected where transmission is
lower with consequent lower He, stronger LD, and
higher degree of selfing, resulting in a more clonal para-
site population structure [17,25,26]. Yet other studies in
areas with high malaria transmission have observed
strong LD and non-random distribution of specific gen-
otypes, implying inbreeding may be more extensive than
expected even in areas with perennial transmission
[27,28]. Although the conflicting results generated from
different geographic regions could be partially due to
the differences in genetic markers used, methods for
estimation of allele frequencies or sampling of parasites
at different life cycle stages, they underscore the need to
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study the relationship between the transmission inten-
sity and the P. falciparum population genetic structure
in same locality where changes in transmission intensity
can be monitored. Interventions which impose reduction
in transmission, such as ITNs at high coverage in
malaria-holoendemic areas, provide a field experimental
system for research on these questions. The information
from such studies is also useful in designing molecular
surveillance systems for ITNs and for other adjunct con-
trol programmes [29,30].
This study is part of a two-phase large-scale commu-

nity-based trial conducted in western Kenya and
designed to investigate the impact of ITNs on malaria
morbidity and all cause mortality. The overall goal of
these parasite population genetics studies is to assess
the effects of transmission reduction by ITNs on the
population genetic structure of P. falciparum parasites
for a sustained period. The current study employed
eight single copy multilocus neutral microsatellite mar-
kers to study the genetic diversity of P. falciparum using
blood stage parasites collected from children less than
five years old in the same area prior to and five years
after the introduction of ITNs. Genetic diversity of the
parasites between the baseline and post-ITNs was
assessed by quantifying the extent of multiple infections,
allele frequencies, He, LD, and genetic differentiation.

Methods
Study area and study samples
This study was part of a two-phase community-based
ITN trial conducted in Asembo area (Bondo District) of
western Kenya, where malaria is holoendemic. The
design and characteristics of the ITN trial have been
detailed elsewhere [31-33]. Briefly, biannual population
censuses and annual cross-sectional surveys were con-
ducted in 60 villages in the 200 km2 trial area during
the rainy season of March to May between 1996 and
2001 to determine the effects of ITNs on malaria mor-
bidity and all cause mortality in children below five
years of age. During each cross sectional survey, blood
samples were collected from children and parasitologi-
cal, clinical, and demographic information were docu-
mented. Entomological monitoring of Anopheles density
and sporozoite infection rates were conducted regularly
throughout both phases of the trial. Approximately 98%
of malaria infections were due to P. falciparum in the
trial area. Before the ITN trial, entomological inocula-
tion rate (EIR) was reported at 61.3 infective bites per
person per year [34] and prevalence of parasitaemia was
about 70% in children aged less than five years [31].
After the introduction of ITNs, it was estimated that
ITNs reduced transmission by 90% at the early stage of
the two-phase trials [6]. The EIR and prevalence of
parasitaemia in May 2001 were 1.3 infective bites per

person per year and about 34% in children less than five
years old, respectively [33]. For the study presented
here, the samples collected in the 1996 survey, just prior
to ITN introduction for baseline measurements, and the
samples from the 2001 follow-up survey, five years post-
ITN intervention were utilized. Microscopically con-
firmed malaria positive blood samples were randomly
selected in a subset of villages from the 1996 survey and
were further matched by the villages in 2001 survey.
Calculation of sample size was based on a hypothesized
significant difference in overall heterozygosity (He)
between baseline and post-ITN parasite populations
using a confidence level at 95% and margin of error at
5% [35]. Assuming a He of 0.7 observed in high trans-
mission areas [17] for baseline and a conservative
change in He to 0.5 observed in areas with medium
transmission intensity [17] for ITN post intervention, a
sample size of approximately 63 (+ 10-15%) was deemed
adequate allowing for failure in laboratory testing. In
total, a sampling frame of 69 samples from baseline and
74 samples from the post-ITN survey was achieved for
this study. Parasite genomic DNA extraction from the
stored blood samples was by the QIAamp DNA Mini
Kit (Qiagen, CA, USA). Extracted DNA was stored at
-20C until use. The study protocol was approved by the
Ethical Review Committee of the Kenya Medical
Research Institute, Nairobi, Kenya, the Institutional
Review Board of Michigan State University, and the
Institutional Review Board of Centers for Disease Con-
trol (CDC) Atlanta, Georgia.

Microsatellite markers and genotyping
Eight single copy microsatellite markers (MS) were used
for genotyping as listed in Table 1. Broadly, the microsa-
tellites included: 1) five putatively neutral MS (Poly-a,
PfPK2, ADL, TAA60, and TAA 109), 2) one MS
(Pfg377) linked to the protein gene exclusively expressed
during maturation of gametocytes transmission stage of
parasites, and 3) two MS (EBP and P195) linked to the
genes of asexual stage antigens under possible natural
immune selection [36]. Among these MS markers, Poly-
a, PfPK2 and Pfg377 are in the coding region [37]. The
selected neutral MS markers were described earlier and
have been used previously to study changes in genetic
structure of Plasmodium parasites [17,27,37]. All ampli-
fications were carried out using single reaction PCR
with thermocycling conditions described elsewhere [38].
Fluorescent-labelled primers incorporated with either
HEX (green) or FAM (Blue) dyes were used and the
PCR products read on ABI (Applied Biosystems 3100)
capillary sequencer. GeneMapper software (ABI) was
used to automate measurement of microsatellite base-
pair length and quantify peak height. Allele identity per
locus was obtained directly after allocation of all peaks
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above 200 fluorescent units. Multiple alleles were quan-
tified based on a method described previously [17] with
identification of minor alleles set at peak heights of
≥30% of the predominant allele. Where amplification
failed for any of the microsatellites, data was reported as
missing and not used for haplotype definition.

Data analysis
Since the ITN intervention is one of long-term goals for
malaria control programmes, the sampling strategy in
the current study aimed at testing changes in genetic
diversity of P. falciparum after an extended use of ITN
while minimizing any spatial effects on the population.
Potential biases were envisioned in the data analyses as
allele frequencies might change over time in finite popu-
lations [39]. However, the prediction in this study was
that the ITN-mediated transmission reduction would
precipitate changes in the parasite population from pan-
mictic (higher parasite diversity, expected for high trans-
mission intensity) to a more clonal structure (lower
parasite diversity, expected for low transmission inten-
sity). Changes in genetic diversity of the parasites
between the baseline and post-ITNs were, therefore,
assessed by quantifying and comparing multiple infec-
tions, allele frequencies, He, LD, and FST.
Initial microsatellite data checking and data conver-

sion was done using Excel Microsatellite Tool Kit, an
add-in programme used to format raw microsatellite
data in Microsoft Excel for consequent use in different
genetics softwares [40]. Analysis of multiple infections
was based on both predominant and minor alleles. Out-
come measures for this analysis were the proportion of
infections with more than one allele, the mean allele

count for individual microsatellite loci, the overall pro-
portion of infections with at least two alleles and the
overall mean of the highest number of allele count
detected by any of the microsatellites. The difference in
proportions of infections with at least two alleles and
the difference in the mean allele count between the
baseline and post-intervention parasite populations were
assessed using Pearson’s chi-square and Wilcoxon tests
respectively. Conversely, only the predominant allele
defined by the highest peak in each electropherogram
per locus was used to analyze the allele frequency and
allele richness, He, LD, and FST. There are possible
biases from using predominant allele techniques to
determine allele frequency in multiple infections [41,42].
However, the method applied here was shown to be
appropriate in previous studies using some of the micro-
satellite targets selected in this study [17,37,43,44].
The infinite allele model which is more appropriate for

analysis of the complex patterns observed in microsatellite
loci in P. falciparum was used for genetic analysis [45].
Allele number, frequency and richness per locus in each
parasite population were obtained by FSTAT2 [46]. The
measure for allele number, frequency and richness was to
illustrate the composition and distribution of alleles in the
population. Unbiased He at each locus was calculated as
He = [n/(n-1)][1-Σni = 1 p

2
i ] where n is the number of iso-

lates sampled and pi is the frequency of the ith allele while
sampling variance for He (Vs(He)) was calculated as Vs(He)

= 2(n-1)/n3[2(n-2)][Σpi3-(Σpi2)2] [17,22]. The difference in
single locus heterozygosities between the two parasite
populations was tested with standard error (SE) of the
sampling variance by the method described earlier [22]
using the z absolute values to obtain the p-values.

Table 1 List of microsatellites and PCR primers used for microsatellites amplification

MS§ name MS primer sequence 5’-3’ MS linked genes Acc. No.¥ of linked genes Chromosome

Poly-aa AAAATATAGACGAACAGA DNA polymerase alpha L18785 4

GAAATTATAACTCTACCA

Pfg377a GATCTCAACGGAAATTAT Gametocyte specific protein L04161 12

TTATCCCTACGATTAACA

PfPK2a CTTTCATCGATACTACGA Protein kinase X63648 12

AAAGAAGGAACAAGCAGA

ADL b TACAGTGTTTATATATACCG Fructose bisphosphate aldolase M28881 14

GCATAAATAATGTGAGCAGA

EBP b TTCACAAGCCAAATATCA Erythrocyte binding protein M93397 13

ATTCATAACTCCTTCAGA

P195 b GAGTTAAAATATGTTACCT Merozoite surface protein-1 X02919 9

AAATATCACTATTCCTGT

TAA60a TAGTAACGATGTTGACAA Hypothetical protein AF010556 13

AAAAAGGAGGATAAATACAT

TAA109a TAGGGAACATCATAAGGAT Hypothetical protein AF010508 6

CCTATACCAAACATGCTAAA

MS§ depicts microsatellites. Acc. No.¥ depicts Accession number. The letters in superscript depict the initial description of microsatellites as follows: (a) by [37], (b)
by [36].
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The prediction of the ITN-mediated decrease in trans-
mission intensity and consequent reduction in genetic
diversity was a possible increase in LD in the post-ITN
parasite population. LD measures the degree of associa-
tion between or among gene loci under the null hypoth-
esis of no association [47]. As such,
individual pair-wise LDs for baseline and post-ITN

parasite populations were first obtained respectively by
the Fisher’s exact test adapted for haploid data using
ARLEQUINS 3.11 programme [48]. Multilocus LDs
were further assessed from the overall index of associa-
tion (ISA) using LIAN programme [49] for both baseline
and post-ITNs respectively. The multilocus LD test
measures non-random association among all loci. The
test compares the variance of differences at LD with the
variance expected in LD derived from 10,000 simulated
data sets, H0: VD = Ve. A significant LD was when the
observed variance (VD) was greater than expected (Ve).
Index of association was expressed as ISA = (VD/Ve-1)(r-
1) where r is the number of loci tested. A 95% confi-
dence limit was determined by Monte Carlo simulation.
In order to further assess genetic diversity before and

after ITNs intervention, genetic differentiation was
tested using the FST estimator [50] implemented by
FSTAT programme [46]. FST is a comparison of the
sum of genetic variability within and between popula-
tions based on allele frequency differences in popula-
tions. Interpretation of the FST values at each locus was
based on three categories defined earlier as no differen-
tiation (0), low genetic differentiation (0 > 0.05), moder-
ate differentiation (0.05-0.15) and great differentiation
(0.15-0.25) [51].
When multiple tests were conducted, significant levels

of p-value for the comparisons were adjusted using Bon-
ferroni’s correction [52].

Results
Results in this study comprise outcomes from the analy-
sis of the eight microsatellite loci on 69 and 74 P. falci-
parum positive samples from baseline and post-ITN
surveys, respectively. Locus P195 had an overall amplifi-
cation rate of 90% for the baseline parasite population.
All other loci had amplification rates of 94-100%.

Multiple infections
The extent of multiple infections was assessed based on
the proportion of multiple alleles and mean allele counts
(Table 2). Overall, more than 90% of samples from both
baseline and post-ITN surveys had at least two or more
alleles detected by any of the microsatellites targets.
There was no significant difference in the overall pro-
portions of multiple alleles between the baseline and
post-ITN parasite populations. However, analysis of
individual loci revealed that the Pfg377 marker had a
significantly lower proportion of multiple alleles in the
baseline (30%) compared to post-ITN parasite popula-
tion (53%). All other loci showed similar proportions of
multiple alleles in the two parasite populations.
Results from the mean allele counts showed that

PfPK2 had significantly higher allele counts in the base-
line compared to that in the post-ITN survey. In con-
trast, Pfg377 had a relatively higher mean allele count
(1.62 ± 0.09) in the post-ITN survey than in the baseline
parasite population (1.36 ± 0.07) although it was not a
statistically significant difference (p = 0.0076) after Bon-
ferroni correction. There was no significant difference in
the mean allele counts for all other microsatellite mar-
kers between the two parasite populations. Overall,
mean allele count was similar in the baseline parasite
population (3.4 ± 0.15) compared to the post-ITN para-
site population (3.1 ± 0.12) (Table 2).

Table 2 Comparison of proportion of multiple alleles and mean allele counts in the baseline and post-ITN parasite
populations

Locus Baseline population (n = 69) Post-ITN population (n = 74) p-value < 0.006*

% MA MAC ± SE % MA MAC ± SE % MA* MAC*

Poly-a 64 2.12 ± 0.13 72 2.40 ± 0.14 0.289 0.264

Pfg377 30 1.36 ± 0.07 53 1.62 ± 0.09 0.002 0.008

PfPK2 85 2.94 ± 0.17 50 1.74 ± 0.11 0.021 0.001

ADL 45 1.62 ± 0.10 50 1.54 ± 0.07 0.479 0.918

EBP 57 1.75 ± 0.10 61 2.10 ± 0.14 0.566 0.128

P195 43 1.48 ± 0.08 48 1.62 ± 0.09 0.570 0.400

TAA60 51 1.77 ± 0.13 59 2.04 ± 0.12 0.044 0.046

TAA109 75 2.28 ± 0.14 76 2.23 ± 0.12 0.990 0.810

Overall 94.2† 3.4 ± 0.15‡ 95.9 † 3.1 ± 0.12‡ 0.830 0.178

% MA is the proportion of infections with more than one allele in each locus. MAC denotes the mean allele count and the respective standard error (SE) at each
locus. The † marks the overall proportion of infections with at least two alleles while ‡ marks the overall mean of the highest number of allele count detected by
any of the 8 microsatellites. The % MA* and MAC* show p-values for differences in proportion of multiple alleles and mean allele counts between the two parasite
populations. Numbers highlighted in bold show significant differences at p < 0.0063 (with Bonferroni correction) for individual loci.
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Allele frequency and heterozygosity
The allele size, number, frequency and richness for each
MS shown in Figure 1 and Table 3 illustrated the com-
position and distribution of alleles. There were no differ-
ences between the allele number and richness as sample
numbers used in the baseline and post-ITN surveys did

not differ significantly for each locus. The allele number
per locus ranged from a minimum of 4 (Pfg377) to max-
imum of 18 (Poly-a) in the baseline parasite population
and from 3 (Pfg377) to 17 (Poly-a) in the post-ITN
parasite population. This suggests marked variation
between loci in the baseline and post-ITN surveys and

Figure 1 Comparison of allele size and composition (base pairs, X-axis) and frequency distribution (Y-axis) of the eight individual
microsatellites in the baseline (blue) and post-ITN (red) surveys. The standardized Y-axis scale was used to depict the proportion of
different alleles in each locus.
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was further tested by He. Overall, He was high and simi-
lar in the baseline (0.75 ± 0.072) and post-ITN parasite
populations (0.79 ± 0.038). However, He of individual
loci showed extensive range in gene diversity (Table 3).
Poly-a locus had the highest level of He while Pfg377
locus showed the lowest in both parasite populations.
Notably, Pfg377 locus had significantly lower He in the
baseline parasite population compared to the He in the
post-ITN survey (p = 0.044).

Linkage disequilibrium and genetic differentiation
Pair-wise LD for each individual MS locus for the base-
line and post-ITN parasite populations was assessed. Of
the 28 possible pair-wise tests LD was highly significant
in a total of 14 pairs in the baseline parasite population
while only 6 pairs were significant in the post-ITN
population (p = 0.0018) as shown in Table 4. Specifi-
cally, in the baseline survey MS P195 locus (Chr9) and
TAA60 (Chr9) had strong LD with loci located on dif-
ferent chromosomes including Poly-a (Chr4), Pfg377
(Chr12), PfPK2 (Chr12), EBP (Chr13) and ADL (Chr13).
This association was however, reduced in the post-ITN
population where 6 pairs showed significant LD. Only
LD between P195 and ADL, and between TAA60 and
EBP loci were maintained while the remaining four loci
pairs were new associations in the post-ITN survey.
The multilocus analysis showed significant LD in the

baseline population with a variance in difference (VD) of
1.21 and variance expected (Ve) of 1.10 (p = 0.01) com-
pared to non-significant LD in the post-ITN population
where VD and Ve were 1.183 and 1.180 respectively (p =
0.57) as shown in Table 5. Consequently the index of
association (ISA) was significant in the baseline survey
(0.016) compared to the post-ITN survey (0.0003). The
multilocus LD results coupled with the significant pair-
wise LD observed in individual microsatellites suggest
that the existing non-random association between the
MS loci in the baseline was broken in the post-ITN
parasite population.
Results of the overall and locus specific genetic differ-

entiation between the baseline and post-ITN surveys are
shown in Table 6. Overall FST was low at 0.027. In the
single locus FST, both Pfg377 and TAA60 markers
showed moderate genetic differentiation (FST = 0.117
and 0.137) respectively while all other remaining six loci
had little differentiation. The results suggest that a mod-
erately significant genetic variability at Pfg377 and
TAA60 arose from differences between the two parasite
populations while the majority of genetic variability
remains within each population. Conversely, low genetic
differentiation in the other six markers suggested much
of the genetic variability resulted from within each para-
site population.

Discussion
The effect of five years of high coverage with ITNs on
the genetic diversity of P. falciparum parasites was
examined in this study. The overall proportion of mixed
infections and heterozygosity were high at over 90% and
0.75 respectively both before and after ITN use with no
significant reduction in these two parameters as well as
the overall mean allele counts. This indicates an exten-
sive multiplicity of circulating parasites in the area in
spite of a dramatic decline in EIR post-ITN intervention.
The results from this study are consistent with those of
an earlier study conducted in areas with EIRs ranging
from 0.4 to 31.8 in western Kenya, which also recorded
over 80% mixed infections in both low and high malaria
transmission areas [44]. This suggests the presence of a
steady mix of circulating Plasmodium parasites in wes-
tern Kenya despite reduction in EIRs.
The stable overall genetic diversity after dramatic

reduction in transmission intensity observed in the cur-
rent study was unexpected by the initial prediction. The
counter-intuitive results suggest that other factors may
be involved in offsetting the effect of transmission
reduction on parasite genetic diversity and/or stabiliza-
tion of the overall genetic diversity of malaria parasite.
Indeed, several previous studies suggest that genetic
diversity of malaria parasite measured by different mar-
kers could be shaped directly or indirectly by multiple
factors such as seasonality, geographic scale, migration,
disease severity, and host age and immunity [53-55] in
addition to transmission intensity per se and natural
selection. To minimize variation in host age, seasonality
and geographic scale between baseline and post-ITN
surveys, the current study sampled children less than
five years of age, during similar transmission seasons
and matched by villages in the two surveys. In addition,
previous studies conducted in the ITN trial area showed
that transmission reduction by use of ITNs changed
humoral immunity in children and reduced childhood
malaria morbidity and infant mortality resulting in over-
all decreased anti-malarial treatment [33,56,57]. The
clinical and immunological outcomes after ITN inter-
vention in the study area could potentially counteract
the effect of transmission reduction on parasite genetic
diversity and/or sustain overall higher genetic diversity
although what mechanisms govern such a process
within hosts is unknown. It is also possible that gene
flow due to migration of mosquitoes and humans from
surrounding non-ITN trial areas might contribute to the
overall unchanged genetic diversity. However, the cur-
rent study was not able to quantify the gene flow as the
original ITN trial was not designed to include surround-
ing non-ITN areas after five years post-ITNs for com-
parison. Considering the parasite diversity could be
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influenced by multiple factors listed above, detection of
change in parasite diversity within five years time win-
dow in the current study might not be sufficient. Cur-
rently, further studies on parasite population genetics
are ongoing, which includes analysis of samples from
approximately a decade later in the same ITN trial area
and surrounding areas as well. Taken together, the
unchanged overall genetic diversity observed in this
study suggests a strong resilience of malaria parasite in
response to dramatic transmission reduction after five
years of sustained ITN use and possible involvement of
other factors in stabilizing the overall parasite genetic
diversity.
While the overall stability in the parasite genetic

diversity show the transmission reduction by ITNs had
insignificant impact on parasite population, locus speci-
fic changes suggest there were some differences in the
parasite population sub-structure. For example, PfPK2
microsatellite marker showed a decrease in the mean
allele counts in the post-ITN survey, while Pfg377
microsatellite locus showed a significant increase in the
proportion of infections with more than one allele.
There was also a decrease in genetic diversity (He) in

the EBP marker, but an increase at the Pfg377 locus.
EBP MS locus flanks the functionally important erythro-
cyte binding protein gene expressed in the asexual stage
of the life cycle and the gene may be under selection by
human immune response [58]. It is possible that the
decrease in He for EBP MS marker observed in the
post-ITN survey could reflect an indirect effect of ITNs
on parasite genetic diversity but this will need further
investigation. Likewise, PfPK2 MS which showed a
decrease in mean allele counts flanks a putative protein
kinase gene expressed in young trophozoite although
the exact function is still not clear [59]. On the contrary,
the MS located in the coding region of Pfg377 antigen
gene specific for ‘gametocyte-producing’ parasites [60]
showed an increased diversity in the post-ITN parasite
population. Because there was either decrease or no sig-
nificant changes in genetic diversity in other MS, the
increase in genetic diversity for Pfg377 locus in the
post-ITN parasites most likely reflected selection rather
than genetic drift. Interestingly, the gametocyte carriage
in the ITN trial area was significantly lower in the base-
line survey (proportion 17% and mean density 12.4/ul)
compared to the five years post-ITN survey (proportion

Table 3 Comparisons of genetic diversity between the baseline and post-ITN parasite populations

Locus Baseline population Post-ITN population p < 0.05 (He)*

Allele Number (Allele Richness) He ± SE Allele Number (Allele Richness) He ± SE

Poly-a 18 (17.96) 0.91 ± 0.0159 17 (16.92) 0.92 ± 0.0243 0.7301

Pfg377 4 (3.99) 0.29 ± 0.0654 3 (3.00) 0.57 ± 0.0984 0.0441

PfPK2 10 (9.99) 0.82 ± 0.0235 12 (11.92) 0.83 ± 0.0497 0.8555

ADL 15 (14.99) 0.91 ± 0.0108 14 (13.96) 0.89 ± 0.0191 0.3620

EBP 17 (16.96) 0.90 ± 0.0168 11 (10.91) 0.82 ± 0.0193 0.0017

P195 5 (5.00) 0.71 ± 0.0310 6 (5.99) 0.75 ± 0.0241 0.3084

TAA60 9 (8.98) 0.79 ± 0.0323 17 (16.87) 0.85 ± 0.0322 0.1879

TAA109 10 (9.99) 0.79 ± 0.0301 11(10.91) 0.77 ± 0.0372 0.6760

Overall 0.75 ± 0.0720 0.79 ± 0.0380 0.9850

Comparisons of genetic diversity between the baseline and post-ITN parasite populations based on number of alleles at each locus, allele richness (in
parenthesis), and the unbiased heterozygosity plus the standard error (He ± SE) [17,22]. (He)* denotes the p-values for He between baseline and post-ITN parasite
populations.

Table 4 Estimates of pair-wise linkage disequilibrium (LD) in the baseline and post-ITN parasite populations

Pair-wise p-values of LD (p < 0.0018) in the baseline and post-ITN parasite populations

Poly-a Pfg377 PfPK2 ADL EBP P195 TAA60 TAA109

Poly-a 0.0050 0.0004 0.0048 0.0006 0.0092 0.1143 0.0310

Pfg377 0.0568 0.0546 0.0032 0.0007 0.0214 0.0157 0.0232

PfPK2 0.0037 0.3421 0.0471 0.0167 0.0018 0.0143 0.0658

ADL 0.0287 0.0004 0.0013 0.0867 0.0001 0.0026 0.0281

EBP 0.1107 0.0433 0.0043 0.0380 0.0255 0.0563 0.0256

P195 0.0001 0.0001 0.0001 0.0069 0.0001 0.0007 0.0223

TAA60 0.0002 0.4687 0.0001 0.0002 0.0015 0.0001 0.0102

TAA109 0.1151 0.0321 0.0050 0.0001 0.0095 0.0001 0.0001

Comparison of pair-wise p-values of LD for MS in baseline (below diagonal) and post-ITN (above diagonal). Bold numbers indicate significant LD in the baseline
and post-ITN parasite populations after Bonferroni correction.
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23%, mean density 41.2/ul) (CDC unpublished data).
Taken together, this suggests that there is a possible
relationship between the increased genetic diversity of
Pfg377 and an increase in gametocyte carriage. The
increased gametocytaemia and genetic diversity of
Pfg377 locus could be an adaptive mechanism for trans-
mission reduction to enhance the potential for parasite
transmission to mosquitoes to maintain the life cycle for
survival. This hypothesis requires testing to assess
whether this gene has been a target of selection.
Consistent with the genetic diversity data described

above, overall genetic differentiation between the base-
line and post-ITN parasite populations was low, mainly
arising from variations in the Pfg377 and TAA60 micro-
satellite markers. The differentiation observed in this
study for Pfg377 and TAA60 were higher between the
baseline and post-ITN surveys than that observed
between three geographically different areas in western
Kenya [44]. Yet FST was much lower in our study at
other remaining loci examined in the same study in
western Kenya [44]. The lower FST estimates at other

loci observed in this study are expected since the sam-
ples were from the same area for baseline and post-ITN
surveys. It is possible that the differentiation at TAA60
could represent random temporal effect/drift on the
parasite population independent of transmission reduc-
tion. However, the differentiation observed at Pfg377
most likely resulted from the decreased transmission
intensity by the use of ITNs rather than mere temporal
effect since Pfg377 locus showed consistent increases in
multiple infection and He after ITN intervention.
The inter-relationship among LD, transmission inten-

sity and genetic diversity of malaria parasites is complex
and is still far from conclusive. The stronger LD
observed in the baseline survey in our study area is con-
sistent with the trend observed in previous studies con-
ducted in the Democratic Republic of Congo, Zimbabwe
and western Kenya lowland areas where malaria trans-
mission is intense [17,27,28,44], suggesting the occur-
rence of high inbreeding in P. falciparum even in areas
with intense and perennial transmission. It would be
expected that decreasing transmission intensity by use
of ITNs increases LD level based on a generalized asser-
tion of higher LD in low transmission areas [17]. How-
ever, the results from five years post-ITN intervention
in this study were surprising and interesting. After ITN
intervention the pair-wise LDs were broken in 65% of
physically unlinked loci (Table 4) and the multilocus LD
was also not significant compared to the baseline survey
(Table 5). The LD result from post-ITN parasite popula-
tion could suggest that the overall parasite population
became more panmictic after bed net intervention,
which is contrary to earlier prediction of a more clonal
structure after an ITN mediated transmission reduction.
However, it is also possible that the unexpected decrease
in LD in the post-ITN parasite population is partially
masked by the increase in genetic diversity of Pfg377,
the ‘gametocyte specific’ MS marker, but this will
require further investigation.

Conclusion
This study suggests that although the parasite popula-
tion maintained an overall stability after ITN use, there
were locus specific changes in the P. falciparum para-
sites contributing to the observed differentiation
between the two parasite populations. Of note, the data
on Pfg377 locus showed an increase in diversity ecologi-
cally associated with reduction in transmission intensity.
Further studies are necessary to evaluate the usefulness
of this marker and other gametocyte-specific gene mar-
kers as molecular tools for monitoring how changes in
transmission reflect gametocyte population dynamics
[61]. It is also important to monitor genetic structure of

Table 5 Estimates of multilocus linkage disequilibrium
(LD) for baseline and post-ITN parasite populations

Test factor Baseline population Post-ITN population

VD 1.2089 1.1825

Ve 1.0873 1.1802

ISA 0.0160 0.0003

Testing (H0: VD = Ve)

Var (VD) 0.0021 0.002

p < 0.05 0.01 0.57

Multilocus LD for all eight microsatellites markers examined before and after
ITN intervention respectively. P-values shown are derived from Monte Carlo
simulation methods for ISA showing levels of significant departure from 0 for
each parasite population.

Table 6 Genetic differentiation index (FST) between
baseline and post-ITN parasite populations

Locus FST Levels of Differentiation

Poly-a 0.003 Low

Pfg377 0.117 Moderate

PfPK2 -0.001 Low

ADL 0.000 Low

EBP 0.005 Low

P195 0.006 Low

TAA60 0.137 Moderate

TAA109 0.008 Low

Overall 0.027 Low

Genetic differentiation index (FST) in each of the eight microsatellite loci
between baseline and post-ITN parasite populations based on the null
hypothesis that alleles are drawn from the same distribution in both parasite
populations. The levels of differentiation were defined as low, moderate and
great as described earlier [51].

P. falciparum for extended periods, and in different geo-
graphic areas and in changing ITN coverage.
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