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Abstract

Real-time PCR (rt-PCR) is a widely used molecular method for detection of Neisseria meningitidis (Nm). Several rt-PCR
assays for Nm target the capsule transport gene, ctrA. However, over 16% of meningococcal carriage isolates lack ctrA,
rendering this target gene ineffective at identification of this sub-population of meningococcal isolates. The Cu-Zn
superoxide dismutase gene, sodC, is found in Nm but not in other Neisseria species. To better identify Nm, regardless of
capsule genotype or expression status, a sodC-based TaqMan rt-PCR assay was developed and validated. Standard curves
revealed an average lower limit of detection of 73 genomes per reaction at cycle threshold (Ct) value of 35, with 100%
average reaction efficiency and an average R2 of 0.9925. 99.7% (624/626) of Nm isolates tested were sodC-positive, with a
range of average Ct values from 13.0 to 29.5. The mean sodC Ct value of these Nm isolates was 17.662.2 (6SD). Of the
626 Nm tested, 178 were nongroupable (NG) ctrA-negative Nm isolates, and 98.9% (176/178) of these were detected by
sodC rt-PCR. The assay was 100% specific, with all 244 non-Nm isolates testing negative. Of 157 clinical specimens tested,
sodC detected 25/157 Nm or 4 additional specimens compared to ctrA and 24 more than culture. Among 582 carriage
specimens, sodC detected Nm in 1 more than ctrA and in 4 more than culture. This sodC rt-PCR assay is a highly sensitive
and specific method for detection of Nm, especially in carriage studies where many meningococcal isolates lack capsule
genes.
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Introduction

Neisseria meningitidis (Nm) is the etiologic agent of epidemic

bacterial meningitis and rapidly fatal sepsis throughout the world.

Many clinical, reference, and research laboratories must be able to

rapidly detect Nm either from patients with invasive disease or

from asymptomatic carriers. Bacterial isolates or clinical specimens

may be sent to the laboratory from patients with suspected

meningitis, while isolates or swab eluates may be the specimens

that come to the laboratory from possible carriers.

Common techniques employed for the identification of Nm

include biochemical tests, slide agglutination serogrouping (SASG)

[1,2], and the polymerase chain reaction (PCR) [3–6]. Chromo-

genic biochemical tests and SASG can be subjective, sometimes

complicating species identification [5,7].

Unlike biochemical tests and SASG, PCR does not require

viable bacteria and can be used to identify and characterize even

nongroupable (NG) meningococci. Additionally, it is necessary to

detect small numbers of Nm in clinical specimens; bacterial loads

in cerebrospinal fluid (CSF) of patients range from 36101 to
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46109 CFU/ml [8,9]. TaqMan rt-PCR has been shown to detect

as few as 8 meningococcal genomes per reaction [4,5] and results

are obtained within 2.5 hours.

ctrA may be the most frequently targeted gene to detect Nm

using PCR [10]. However, the capsule locus, including ctrA, is

subject to rearrangement [11–15], and 16% or more of carried

meningococci have been shown to lack ctrA altogether [11,12].

Invasive NG meningococci can undergo similar rearrangements of

the capsule region (J. Dolan Thomas, unpublished data), although

these events may be less common than in carriage isolates.

The [Cu, Zn]-cofactored superoxide dismutase gene, sodC, is

located 1.23 Mb from the capsule locus in the 2.27-Mb Nm

serogroup B strain MC58 genome [16] and encodes the virulence

factor Cu, Zn Sod. Cu, Zn Sod is a periplasmic enzyme [17],

making it theoretically less susceptible to antigenic variation due to

selective pressure than a cell-surface exposed molecule. sodC is

believed to have been acquired by Nm via horizontal transfer from

Haemophilus influenzae (Hi) [18]. There are no reports of

meningococci that lack sodC, suggesting its importance to the

survival of the organism in vivo and a strong selective pressure

for its retention. However, sodC is not found in other Neisseria

spp. [17–19].

The objective of this study was to improve detection of

meningococci, especially of carriage isolates which may be ctrA-

negative and NG, by developing a sensitive and specific rt-PCR

assay for identification of all meningococci, regardless of capsule

genotype or expression status.

Materials and Methods

Ethics statement
Ethics approval was not obtained from the CDC Institutional

Review Board (IRB) for clinical specimens reported in this study

because the specimens were sent to CDC for detection of

meningitis etiology as part of reference lab functions.

CDC IRB approval was not obtained for sodC testing of DNA

extractions from Brazil and UK carriage specimens because those

extractions were not tested by CDC researchers. DNA extrac-

tions of carriage specimens were not considered human

specimens by the CDC, Emory University, and Children’s

Hospital of Atlanta (CHOA) IRBs for this study, as they do not

meet the definition of a living human subject. IRB approval was

obtained by the institutions who collected the biological carriage

specimens from the human subjects: (1) the National Ethics

Research Committee and by the Regional Ethics Committee of

the Hospital Materno Infantil, Secretary of Health of Goias State,

Brazil; (2) the Emory University IRB; or (3) the National Health

Service Research Ethics Committee (08/H1001/52), sponsored

by the Royal Liverpool and Broadgreen University Hospitals

Trust.

Bacterial strains and culture methods
Control isolates used for assay design and optimization are

defined in Table S1.

626 cell lysates were used to determine the sensitivity of the sodC

assay (Table 1 and Table S2), including lysates prepared from a

temporally and geographically dispersed convenience sample of

isolates from the CDC Meningitis Laboratory strain collection

(received 1993–2008, n = 106) and all isolates from a US carriage

study (n = 520) [20,21] known to be Nm by SASG [1,2], rt-PCR

serogrouping [5], NH strips (bioMérieuxH sa), and Cystine

Trypticase Agar (CTA) sugars (Remel) [1,2]. To further confirm

identification, multilocus sequence typing (MLST) was performed

on all U.S. carriage study and ctrA-negative NG isolates.

The specificity of the sodC assay for detecting only meningococci

was determined using cell lysates from a total of 244 non-Nm

isolates (Table 2).

Clinical specimens
CSF specimens from pediatric meningitis patients were cultured

as soon as possible after collection. Specimens that were culture-

negative were sent to CDC on ice for detection of meningitis

etiology by the Marmara University School of Medicine in

Istanbul, Turkey, and came from patients who met the case

definition for purulent meningitis [leukocytosis (.100 cells/mm3)

and either elevated protein (.100 mg/dl) or decreased glucose

(,40 mg/dl)]. After DNA extraction and real-time PCR testing of

all specimens for ctrA of Nm [5], lytA of S. pneumoniae [22], and bexA

and/or bcs2 of Hi, the subset of specimens chosen to test the sodC

assay (n = 120) were either (1) positive for ctrA (n = 12) or (2) ctrA2

lytA2 bexA/bcs22 (n = 108).

37 U.S. clinical specimens were referred to CDC for detection

or confirmation of bacterial meningitis etiology from January to

June 2009, including CSF (n = 21), whole blood (n = 6), serum

(n = 6), and tissues (n = 4) (Table 3).

Carriage specimens
The carriage specimens were obtained from three carriage

studies. 1. In Goiania, Brazil, nasopharyngeal (NP) swabs (n = 223)

were obtained from 154 children (ranging from 2–163 months of

age) attending two daycare centers, 59 adult contacts of the

attendees, and 10 daycare workers. The specimens were placed

into skim milk-tryptone-glucose-glycerine (STGG) transport me-

dium [23] and sent immediately to the Applied Microbiology

Laboratory of Federal University of Goiás in Brazil for processing.

The vials were then kept frozen during transport to CDC, where

DNA extractions and rt-PCR were performed.

2. 291 posterior NP swab specimens were collected from a

random sample of children 6 to 59 months of age who presented to

the Emergency Department at CHOA at Egleston from March to

August, 2009 [24]. Each swab specimen was immediately placed

into 1 ml STGG [23]. Specimens were transported at room

temperature to the clinical microbiology laboratory within

12 hours of collection for storage at 280uC until processing. An

aliquot of the STGG from each specimen was transported on dry

ice to the CDC Meningitis Laboratory, where DNA extractions

and rt-PCR were performed.

3. A total of 33 NP swabs and 35 nasal washes (NWs) were taken

from 24 participants ages 21–57 years during #7 visits in a Spring

2009 study conducted in the NIHR Biomedical Research Centre

in Microbial Diseases at the Liverpool School of Tropical

Medicine, Liverpool, United Kingdom (UK). Swab specimens

were collected as previously described [25] with some modifica-

tions and placed directly into 1 ml STGG [23], then transported

to the laboratory on wet ice for culture and processing. 900 ml of

each specimen was frozen at 280uC for subsequent DNA

extraction and rt-PCR in Liverpool.

NWs were collected as previously described [26] and the nasal

fluid from both nostrils of each study participant was pooled. NWs

were collected in this manner from each participant. Once at the

lab, NW specimens were centrifuged at 15096g for seven minutes

and the pellet was re-suspended in 1 ml STGG. The processing of

the NWs from this point was the same as that for the NP

specimens.

DNA preparation and quantification
Genomic DNA was prepared for use in the various steps of

assay design and optimization using the QIAamp DNA Mini

sodC-Based rt-PCR Detection of N. meningitidis
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Kit (QIAGEN, Valencia, California) using Protocol C then

quantified for use in standard curve experiments using a

NanoDrop ND-1000 or 8000 spectrophotometer (Nanodrop

Technologies, Wilmington, Delaware). Preparation of DNA

from bacterial isolates was performed as previously described

[5].

Table 1. Summary of 626 Nm isolates used to test the sensitivity of the sodC assay.

Source of Strains Number of Strains SASG SG-PCR1 ctrA ctrA Ct
2 sodC Avg sodC Ct

3
Additional Molecular Tests
Confirming ID as Nm

Kellerman et al. [21] 25 NG not done 2 1/25 was 36.04 + 16.761.8 MLEE5 and MLST6

Carriage Panel 56 NG not done + 19.761.8 + 16.862.3 MLEE and MLST

33 B not done + 21.261.0 + 16.661.3 MLEE and MLST

2 C not done + 21.460.5 + 15.060.5 MLEE and MLST

75 Y not done + 22.161.2 + 17.761.4 MLEE and MLST

3 Z not done + 19.761.2 + 16.762.1 MLEE and MLST

Clark et al. [20] 43 NG NG 2 No Ct + 16.560.9 MLST

GA Carriage Panel 2 NG NG 2 No Ct 2 No Ct MLST

4 NG B 2 No Ct + 17.760.9 MLST

1 NG X 2 No Ct + 17.7 MLST

5 NG Y 2 No Ct + 17.660.5 MLST

37 NG NG + 17.963.1 + 16.760.8 MLST

19 NG B + 18.161.4 + 17.261.1 MLST

1 NG C + 16.7 + 17.0 MLST

9 NG Y + 17.161.0 + 17.060.9 MLST

14 B B + 16.560.9 + 15.860.6 MLST

6 Y Y + 17.861.0 + 17.760.8 MLST

1 29E n/a8 + 14.2 + 16.6 MLST

Clark et al. [20] 71 NG NG 2 No Ct + 17.061.5 MLST

MD Carriage Panel 1 NG Y 2 No Ct + 17.2 MLST

29 NG NG + 16.561.2 + 16.961.2 MLST

36 NG B + 17.662.6 + 17.761.1 MLST

3 NG C + 16.962.0 + 17.960.3 MLST

25 NG Y + 18.062.1 + 17.561.4 MLST

19 Y Y + 18.162.2 + 17.661.6 MLST

CDC Strain 26 NG NG 2 No Ct + 20.061.5 MLST

Collection 1 NG Y + 20.0 + 19.4

11 A A + 17.561.7 + 19.062.4 MLST on 1/11

10 B B + 17.861.7 + 20.561.8 MLST on 4/11; 1/11 serotyped
and serosubtyped

10 C C + 17.662.1 + 19.862.7 MLST on 5/10; 16S on 1/10

9 W135 W135 + 22.163.6 + 22.363.5 MLST on 1/9

1 W135 NG + 21.2 + 23.1

9 X X + 20.464.5 + 25.063.3 MLST on 1/9

11 Y Y + 16.462.2 + 20.561.6 MLST on 10/11

9 Z n/a7 + 16.761.8 + 19.261.1 MLST on 1/9; 3/9 serosubtyped,
1 also had 16S

9 29E n/a8 + 16.862.0 + 19.061.2 16S on 1/9

1Serogroup-specific PCR testing was performed to detect serogroups A, B, C, W135, X, and Y; isolates not positive for one of these serogroups were termed NG by PCR.
Serogroup-specific PCR was not performed on carriage study isolates that were ctrA-negative.

2All ctrA Ct values were generated at CDC except the MD carriage isolates, which were tested at the MD Department of Health and Mental Hygiene.
3All sodC results were an average of 2 Ct values except M17304, which is an average of 4 Cts.
424 ctrA-negative, sodC-positive NG Nm from this carriage study yielded No Ct for ctrA. However, one such isolate, M05046, gave a negative ctrA Ct value of 36.0.
5MLEE results for the isolates collected in the Kellerman et al. carriage study were previously reported [21].
6Where ST is given, this isolate was previously characterized [12]. Where no ST is given, MLST data is to be published elsewhere.
7There is no Z PCR serogrouping assay currently in use in the CDC Meningitis Laboratory. However, this isolate tested negative by rt-PCR for serogroup A, B, C, W135, X,
and Y genes.

8There is no 29E PCR serogrouping assay currently in use in the CDC Meningitis Laboratory. However, this isolate tested negative by rt-PCR for serogroup A, B, C, W135,
X, and Y genes.

doi:10.1371/journal.pone.0019361.t001
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For CSF specimens and the Brazilian NP swab eluates, DNA

extraction was conducted as previously described for clinical

specimens [23]. DNA extractions were performed on the CHOA

carriage study NP swab eluates using the MagNA Pure LC

instrument and the DNA Isolation Kit III (Bacteria, Fungi) per the

manufacturer’s instructions (Roche Diagnostics GmbH, Mannheim,

Germany). DNA was extracted from the UK NP and NW specimens

using the QIAsymphony SP System and the QIAsymphony Virus/

Bacteria Midi Kit (QIAGEN Inc., UK) according to the manufac-

turer’s instructions. All extracted DNA was stored at 220uC.

Gene sequencing
The sodC sequencing templates were prepared by conventional

PCR using Expand High Fidelity Enzyme Mix (Roche Diagnostics

GmbH) per the manufacturer’s instructions and primers (see

Table 4) that were designed based on a consensus of sodC from

meningococcal strains Z2491 (nts 1521721–1522258), FAM18,

and MC58 (respective GenBank accession numbers AL157959.1,

AM421808.1, and AE002098.2) [19]. DNA sequencing was

performed using the BigDye Terminator v3.1 Cycle Sequencing

Kit (Applied Biosystems, Foster City, California) and an ABI

PRISMH 3130xl Genetic Analyzer (Applied Biosystems) and a

consensus sequence was generated using Lasergene DNAStar v. 7

Program SeqMan.

rt-PCR primer and probe design
The sodC consensus sequence was entered into Primer Express

3.0 (Applied Biosystems). Primers and probes were analyzed for

homology to other known sequences using the Basic Local

Alignment Search Tool (BLAST) [27]. Primers were tested for

optimal concentration in triplicate or quadruplicate in combina-

tions of final concentrations of 100, 300, 600, and 900 nM; the

probe was tested in triplicate at final concentrations of 50, 100,

200, and 300 nM. The amplified product is located at nt 1427446

in MC58 (GenBank accession number AE002098.2).

rt-PCR
A Stratagene Mx3005P (Agilent, La Jolla, California) and

QuantiTect SYBR Green Master Mix (QIAGEN) were used to

optimize primer concentrations. Cycle parameters were 2 minutes

at 50uC, 10 minutes at 95uC, and then 506 (15 seconds at 95uC
plus 1 minute at 60uC). Product dissociation curves were

generated using one round of the following cycle parameters at

the end of the primer optimization run: one minute at 95uC,

30 seconds at 55uC, and 30 seconds at 95uC. Master mixes

contained 4.5 ml sterile PCR grade water (Roche Diagnostics),

12.5 ml TaqManH26 PCR Master Mix (Applied Biosystems),

300 nM forward primer, 600 nM reverse primer, 100 nM probe,

and 2 ml template DNA per total reaction volume of 25 ml. With

each reaction plate that was run, cell lysates from known Nm

served as positive external amplification controls, while no-

template controls (NTCs) served as negative external amplification

controls.

rt-PCR detection of ctrA in the MD isolates [20] was performed

at the Laboratory of the Maryland Department of Health and

Mental Hygiene using an Applied Biosystems 7500 or 7700 rt-

PCR System (Applied Biosystems, Inc., Foster City, CA).

A Corbett Rotor-Gene 6000 (QIAGEN) and Corbett software

24 series 1.7 were employed in the UK for rt-PCR and data

analysis on extractions of NWs and NP eluates. In every UK sodC

reaction, 2.5 ml of extracted DNA was used.

Throughout this study, Ct values#35 were considered positive;

Ct values in the range of 36–40 equivocal; and Ct values.40

negative. Extracted DNA from equivocal clinical specimens was

diluted 1:4 and 1:10 in an attempt to dilute possible inhibitors of

the reaction. Dilutions were then re-tested in duplicate. If the

average Ct of the diluted specimen fell below 35, that specimen

was considered positive. If the average Ct of the diluted specimen

remained in the 35–40 range, that specimen was considered

negative.

MLST
MLST was performed as described by Maiden et al. [28].

Sequences were assembled and alleles were determined using

Staden [29] v. 1.5.3 and Sequence Typing Analysis Retrieval

System (STARS) v. 1.2a or the Meningococcus Genome

Informatics Platform (MGIP) (http://mgip.biology.gatech.edu.)

[30]. Sequence types (STs) and clonal complexes were assigned by

Table 2. 244 non-Nm isolates were used to test the
specificity of the sodC assay.

Organism1 n sodC+

M. catarrhalis 22 0

H. aphrophilus/paraphrophilus 2 0

H. aphrophilus 1 0

H. influenzae biogroup aegyptius 1 0

H. influenzae serotype a 1 0

H. influenzae serotype b 1 0

H. influenzae serotype c 1 0

H. influenzae serotype d 1 0

H. influenzae serotype e 2 0

H. influenzae serotype f 1 0

H. influenzae nontypeable (NTHi) 80 0

H. parainfluenzae 10 0

H. haemolyticus 2 0

N. lactamica 93 0

N. spp. 3 0

N. polysaccharea 1 0

N. cinerea 2 0

N. subflava 1 0

N. sicca 2 0

N. gonorrhoeae 5 0

E. coli K1 2 0

C. neoformans 1 0

S. aureus 1 0

S. pneumoniae 1 0

L. monocytogenes 1 0

A. pleuropneumoniae 1 0

S. choleraesuis 1 0

S. agalactiae 1 0

P. aeruginosa 1 0

C. diptheriae 1 0

B. pertussis 1 0

Total 244 0

192 N. lactamica, 4 N. gonorrhoeae, 19 M. catarrhalis, and 2 H. spp. from this
panel were collected in a Georgia Nm carriage study [20]. 3 N. spp., 1 N.
polysaccharea, 2 M. catarrhalis, 9 H. parainfluenzae, 1 H. haemolyticus, 75 NTHi,
and 1 Hie were collected in a Georgia Hib carriage study [24].

doi:10.1371/journal.pone.0019361.t002
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querying http://pubmlst.org/neisseria or http://neisseria.org/

nm/typing.

Nucleotide sequence accession numbers
The GenBank accession numbers for the Nm sodC sequences

generated in this study are listed in Table S3.

Results

Primer and probe design
A consensus nucleotide sequence was built based on 26

coverage of sodC sequenced from each of 14 geographically and

temporally dispersed groupable and NG meningococci (Table S1).

Over the 439–473 out of 560 sodC nucleotides sequenced in these

isolates, these meningococcal isolates were 99–100% identical to

each other and 81% identical to an Hi sodC consensus that was

built using two sequences from GenBank (accession numbers

M84012 and AF549211). Given that sodC was likely acquired by

Nm via horizontal transfer from Hi [18], primers and a probe that

differed by at least three nucleotides per oligo between Nm and Hi

sodC were chosen (Figure S1, Table 4).

BLAST results showed that the primers had no homology over

78% nucleotide identity with any genes but meningococcal sodC.

The only notable homology found for the probe was a two-

nucleotide difference with H. parainfluenzae sodC; the primers,

however, showed no homology to this gene.

Lower limit of detection (LLD)
Standard curves were generated by testing genomic DNA from

four invasive meningococcal isolates with the sodC assay (data not

shown). LLDs at a Ct value of 35 were found to be 39, 70, 101,

and 82 genomes per reaction, yielding an average of 73 genomes

detected per reaction. The average reaction efficiency was 100%

and the average R2 value was 0.9925.

Sensitivity of the sodC assay
Invasive (i.e., isolated from CSF, blood, joint fluid, or autopsy

tissue, n = 76) and non-invasive (i.e., including carriage isolates

and those from sputum or oral swab specimens, n = 30) known Nm

isolates from the CDC Meningitis Laboratory Strain Collection

were tested with the sodC assay. All isolates were positive for sodC,

including 26 ctrA-negative NG isolates, with a median Ct value of

19.7, mean of 19.961.9, and range of 16.4 to 26.0 (Table 1 and

Table S2).

518/520 (99.6%) of meningococcal carriage isolates from two

U.S. carriage studies [20,21] were positive for sodC (median Ct

16.9, mean 17.061.5, and range 13.5 to 29.3), while ctrA detected

only 368/520 (70.8%) of these isolates (median Ct 19.0, mean

19.262.7, and range 13.5 to 34.0) (Table 1 and Table S2). The

two sodC-negative carried Nm were SASG NG, ctrA-negative but

were confirmed to be Nm ST-1117 and ST-4788, both cc1117;

both were isolated from the same study participant at different

time points. Therefore, 176/178 (98.9%) SASG NG, ctrA-negative

invasive and non-invasive Nm isolates were sodC-positive. Four

sodC-negative carriage study isolates that were identified as Nm by

conventional methods were re-investigated and shown to actually

be non-Nm.

Specificity of the sodC assay
None of 35 non-Nm from various sources and none of 209 non-

meningococcal carriage study [20,24] isolates were detected by

sodC (100% specificity) (Table 2). Interestingly, sodC identified one

isolate, M16160, as Nm when other standard carriage study tests

could not correctly resolve its species. It was originally identified as

Table 3. U.S. and Turkey clinical specimens tested for sod C and ctrA and compared to culture.

Specimen Total n n sodC+ % sodC+ 95% CI n ctrA+ % ctrA+ 95% CI1
n Nm Culture
Positive2

% Culture
Positive 95% CI

CSF 141 24 17.0 11% to 24% 20 14.2 9% to 21% 1 0.7 0% to 4%

Blood 6 1 16.7 0% to 64% 1 16.7 0% to 64% 0 0.0 0% to 46%

Serum 6 0 0.0 0% to 46% 0 0.0 0% to 46% 0 0.0 0% to 46%

Body Tissue 4 0 0.0 0% to 60% 0 0.0 0% to 60% 0 0.0 0% to 60%

Total 157 25 15.9 n/a3 21 13.4 n/a 1 0.6 n/a

1Exact binomial 95% confidence interval.
2Culture was attempted for all 120 Turkey CSF specimens. With the exception of the one ctrA-negative, sodC-positive U.S. CSF specimen that was culture-positive,
culture was either not attempted, not reported or, in one case, the isolate was nonviable two times for the other 36 U.S. clinical specimens.

3n/a, not applicable.
doi:10.1371/journal.pone.0019361.t003

Table 4. Primers and probe used in this study.

Target
Gene Oligo Designation Use 59 to39 Nucleotide Sequence

Amplicon Size
(bp)

Final Concentration
(nM)

sodC Nm sodC-Fwd PCR, sequencing CCT TAT TAG CAC TAG CGG TTA G 400, 160

Nm sodC-Rev PCR, sequencing CCG GTC ATC TTT TAT GCT CCA A 537 400, 160

sodC Nm sodC Fwd 351 rt-PCR GCA CAC TTA GGT GAT TTA CCT GCA T 300

Nm sodC Rev 478 rt-PCR CCA CCC GTG TGG ATC ATA ATA GA 127 600

Nm sodC Pb387 rt-PCR (FAM)-CAT GAT GGC ACA GCA ACA AAT CCT GTT T-(BHQ1) 100

doi:10.1371/journal.pone.0019361.t004

sodC-Based rt-PCR Detection of N. meningitidis
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N. polysaccharea/N. spp. by NH strip, but upon re-investigation, did

not grow at room temperature on chocolate agar, indicating that it

is not N. polysaccharea [1]. All 7 meningococcal housekeeping genes

were readily amplified during MLST, suggesting that M16160 is

indeed Nm (ST-7456, cc60), and again showing sodC to be a useful

tool for definitive identification of carriage isolates.

Detection of Nm in clinical specimens
The ability of sodC to detect Nm was assessed and was compared

to ctrA as the target gene [5] using extracted DNA from 120

Turkish CSF specimens and 37 U.S. clinical specimens. ctrA

detected Nm in 21/157 (13.4%) specimens (20 CSF and 1 blood),

while sodC was positive for those 21 plus four additional CSF

specimens (25/157, 15.9%) (Table 3 and Table S4). Therefore,

sodC was 100% (95% confidence interval [CI]: 84–100%) sensitive

compared to ctrA at detection of Nm from these clinical specimens,

but specificity is difficult to calculate using ctrA as a reference test.

The Ct values for the four ctrA-negative, sodC-positive CSF

extractions averaged 40.4 for ctrA while their sodC Ct values

averaged 32.0.

One ctrA-negative, sodC-positive CSF specimen was Nm culture-

positive (1/157, 0.6%); the remaining specimens were either

culture-negative (139/157) or culture was not attempted or not

reported (17/157). Therefore, sodC was 88% (95% CI: 82–93%)

specific compared to culture at detection of Nm from the clinical

specimens for which culture was attempted (Table S4), but

sensitivity is undetermined due to the low number of culture-

positives.

Detection of Nm in carriage specimens
Results from all three carriage studies are summarized in

Table 5. None (0/223, 0%) of the Brazilian NP swab eluate

extractions tested at CDC were ctrA-positive while 3 (3/223, 1.3%)

were sodC-positive, yielding Ct values of 29.1, 26.2, and 25.5. The

ctrA-negative, sodC-positive specimens were negative for serogroups

A, B, C, W135, X, and Y by rt-PCR. In the 1/3 ctrA-negative,

sodC-positive specimen that had a sufficient amount of extraction

volume remaining, MLST confirmed the presence of meningo-

coccal DNA (ST-823, cc198). All 23 Hi culture-positive Brazilian

specimens were ctrA- and sodC-negative.

All (291/291, 100%) NP swab eluate extractions from the

Georgia CHOA carriage study were ctrA-negative and sodC-

negative, as expected, since no Nm was cultured. These specimens

were, however, culture-positive for N. spp. (n = 3), N. polysaccharea

(n = 1), M. catarrhalis (n = 8), H. parainfluenzae (n = 9), H. haemolyticus

(n = 1), and Hi (n = 76), further demonstrating the specificity of

sodC.

S. aureus (n = 17), alpha-hemolytic streptococci (n = 18), M.

catarrhalis (n = 5), diptheroids (n = 10), N. polysaccharea (n = 1), N.

cinerea (n = 2), and N. meningitidis (n = 1) were cultured from the 68

UK carriage study specimens; the Nm culture-positive NW was

ctrA-positive and sodC-positive. sodC and ctrA were negative for all

of the non-Nm culture-positive specimens except 1 ctrA-positive,

sodC-positive NW that grew N. cinerea and alpha-hemolytic

streptococci. 1/33 (3%) NP swab eluate extractions from the

UK carriage study was ctrA-positive, 0/33 were sodC-positive, and

0/33 were Nm culture-positive. 3/35 (8.6%) NW extractions were

ctrA-positive, 2/35 (5.7%) were also sodC-positive; of these, one (1/

35, 2.9%) ctrA-positive, sodC-positive NW was Nm culture-positive.

The ctrA-positive, sodC-negative NP specimen (average ctrA Ct

35.060.3, average sodC Ct 37.860.8) and the ctrA-positive, sodC-

negative NW (average ctrA Ct value of 34.360.2 and an average

sodC Ct value of 35.160.2) were both from patient 8, visit 3; this

patient had the Nm-positive culture at visit 1 and the N. cinerea-

positive culture at visit 2.

Discussion

Outbreaks of meningococcal disease occur in the U.S. and

meningococcal disease continues to be a leading cause of bacterial

meningitis worldwide. Regardless of location, when outbreaks of

meningococcal disease occur or new vaccines are introduced,

carriage studies are often performed to answer epidemiologic and

biological questions (e.g., extent of the disease-causing clone

circulating in the population) or demonstrate vaccine effects on

carriage and therefore its potential impact on transmission and

herd immunity.

Culture detection of Nm is 100% specific and should be

attempted if possible, but it is limited by low sensitivity [31,32] and

24- to 72-hour incubation periods. The rapidity, sensitivity, and

specificity of rt-PCR are rendering this technique an increasingly

employed Nm detection method in clinical and reference

laboratories [33–38]. Many laboratories use ctrA as a gene target

for rt-PCR detection of Nm [3,5,10,35,38,39]. However, given

that ctrA is not present in 16% or more of carriage isolates [11,12],

it is not a suitable target gene for PCR on carriage study

specimens. The reliability of ctrA-based PCR assays in detecting

NG invasive Nm isolates [35] or specimens containing them,

although rare, is also called into question by what is now known

about the genetics of nongroupability in Nm carriage isolates

[11,12] and the well-described genome plasticity of this naturally

competent nasopharyngeal resident. Indeed, ctrA-based rt-PCR

has recently been reported to generate false-negative results due to

sequence variations in ctrA [40].

Table 5. Carriage specimens tested for sodC and ctrA and compared to culture.

Specimen Total n n sodC+ % sodC+ 95% CI1 n ctrA+ % ctrA+ 95% CI
n Nm Culture
Positive

% Culture
Positive 95% CI

NP swab eluate 547 3 0.5 0% to 2% 12 0.2 0% to 1% 0 0.0 0% to 1%

Nasal wash 35 23 5.7 1% to 19% 3 8.6 2% to 23% 14 2.9 0% to 15%

Total 582 5 0.9 n/a5 4 0.7 n/a 1 0.2 n/a

1Exact binomial 95% confidence interval.
2This ctrA-positive NP swab eluate was sodC-negative.
3Both of these sodC-positive NP swab eluates were ctrA-positive.
4This Nm culture-positive NW was ctrA-positive, sodC-positive.
5n/a, not applicable.
doi:10.1371/journal.pone.0019361.t005
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The sodC assay was designed to detect Nm, especially among

carriage isolates or specimens that lack ctrA, and it did, detecting

98.9% of carried and invasive ctrA-negative NG Nm isolates and

from four ctrA-negative clinical and three ctrA-negative carriage

specimens. sodC also surpassed culture in sensitivity by detecting

Nm in 24 culture-negative clinical specimens and in at least one

Nm culture-negative carriage specimen. The assay significantly

improves specificity over culture, but sensitivity of sodC compared

to culture is difficult to determine due to the lack of culture-

positive clinical specimens received. This limitation underscores

the benefit that the sodC real-time PCR assay will provide for the

detection of Nm, especially in developing countries. Additionally,

the specificity of sodC compared to ctrA cannot accurately be

determined; the literature does not support the idea that ctrA is the

ideal ‘‘gold standard’’ that is needed for a comparison of specificity

[11,12,40]. sodC detects 73 genomes per 25-ml rt-PCR reaction,

well within the range (#103–105 CFU/ml) that would be found in

CSF [9].

None of the 88 Hi isolates (Table 2) or the 100 Hi culture-

positive Brazilian and CHOA carriage specimens tested were

detected by this Nm sodC assay. sodC is also found in H. spp. other

than Hi [41–43], but none of the 15 non-Hi H. spp. isolates

(Table 2) and none of the 10 non-Hi H. spp. culture-positive

CHOA carriage specimens tested were detected by sodC. To our

knowledge, sodC has not been found in any other Neisseria spp.

besides the meningococcus [17,18,44]. The species specificity of

sodC was supported by the 100% specificity of the sodC assay when

tested against a panel of 244 non-Nm isolates, including 107 N.

spp. isolates, and by 100% specificity of the assay when tested on

carriage specimens, including 8 UK and CHOA specimens that

were culture-positive for non-Nm N. spp.

The Ct value interpretation cutoffs and thermocycler parame-

ters used for the sodC assay are the same as those used for detection

of Nm serogroups A, B, C, W135, X, and Y [5] and for detection

of Hi hpd [45] and S. pneumoniae lytA [23], making it convenient to

perform multiple assays on isolates or specimens in one 96-well

plate.

In summary, an extremely rapid, sensitive, and specific rt-PCR

assay was developed and validated for the detection of meningo-

coccal isolates and Nm from clinical and carriage specimens. This

new diagnostic tool will be especially useful for confirming isolate

species identification and detecting meningococci from carriage

and clinical specimens, regardless of the organism’s encapsulation

status.

Supporting Information

Figure S1 Nm sodC compared to Hi sodC and primer and probe

location. sodC was sequenced from 14 groupable and NG

meningococci and a consensus nucleotide sequence was generated.

An H. influenzae sodC consensus was built using two sequences from

GenBank (accession numbers M84012 and AF549211). Nucleo-

tide differences from the meningococcal sequence are white letters

highlighted in black in the Haemophilus sequence. The primers and

probe (highlighted in gray) were chosen at positions not only

containing at least three nucleotide differences between Nm and

Hi, but also where sodC nucleotide sequence was conserved among

the meningococcal isolates that were sequenced. The meningo-

coccal sodC open reading frame is 560 nucleotides long; the

portion of the gene depicted corresponds to nucleotides 255–513.

(DOCX)

Table S1 Nm control isolates used for sodC assay design and

optimization.

(DOCX)

Table S2 626 Nm isolates used to test the sensitivity of the sodC

assay.

(DOCX)

Table S3 Nm sodC sequences generated in this study.

(DOCX)

Table S4 Two-by-two contingency tables that were the basis for

the calculation of sodC PCR sensitivity and specificity compared to

culture and ctrA PCR. (a) Comparison of sodC PCR to culture for

140 clinical specimens. (b) Comparison of sodC PCR to ctrA PCR

for 157 clinical specimens.

(DOCX)
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