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Abstract

Background: In line with the Global trend to improve malaria control efforts a major campaign of insecticide treated net
distribution was initiated in 1999 and indoor residual spraying with DDT or pyrethroids was reintroduced in 2000 in Zambia.
In 2006, these efforts were strengthened by the President’s Malaria Initiative. This manuscript reports on the monitoring and
evaluation of these activities and the potential impact of emerging insecticide resistance on disease transmission.

Methods: Mosquitoes were captured daily through a series of 108 window exit traps located at 18 sentinel sites. Specimens
were identified to species and analyzed for sporozoites. Adult Anopheles mosquitoes were collected resting indoors and
larva collected in breeding sites were reared to F1 and F0 generations in the lab and tested for insecticide resistance
following the standard WHO susceptibility assay protocol. Annual cross sectional household parasite surveys were carried
out to monitor the impact of the control programme on prevalence of Plasmodium falciparum in children aged 1 to 14
years.

Results: A total of 619 Anopheles gambiae s.l. and 228 Anopheles funestus s.l. were captured from window exit traps
throughout the period, of which 203 were An. gambiae malaria vectors and 14 An. funestus s.s.. In 2010 resistance to DDT
and the pyrethroids deltamethrin, lambda-cyhalothrin and permethrin was detected in both An. gambiae s.s. and An.
funestus s.s.. No sporozoites were detected in either species. Prevalence of P. falciparum in the sentinel sites remained below
10% throughout the study period.

Conclusion: Both An. gambiae s.s. and An. funestus s.s. were controlled effectively with the ITN and IRS programme in
Zambia, maintaining a reduced disease transmission and burden. However, the discovery of DDT and pyrethroid resistance
in the country threatens the sustainability of the vector control programme.
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Introduction

Malaria vector control activities are substantially increasing in

many malaria endemic countries [1], with some countries

considering elimination [2]. Indoor Residual Spraying (IRS) and

Insecticide Treated Nets (ITNs) form the backbone of these

activities and both have been proven as excellent vector control

strategies [3]. However, the number of insecticides recommended

for both methods is severely restricted, hence monitoring and

management of insecticide resistance within the control pro-

gramme is essential if control is to be maintained [4].

Zambia first initiated IRS with DDT in the 1950s, at the same

time malaria became a notifiable disease [5]. IRS coverage was

reduced by 30% by 1973 due to economic constraints and

environmental concerns about the use of DDT. The IRS

programme stopped completely in the mid 1980s. With reduced

vector control and the development of parasite resistance to anti-

malarial drugs [6], malaria cases increased from 121.5 per 1000 in

1976 to 394 cases per 1000 in 2002[5].

In 2000, Konkola Copper Mines, a private company,

reintroduced IRS with pyrethroids and DDT in two districts in

Zambia [7] The success of these IRS programmes led the National

Malaria Control Programme (NMCP) to again implement an IRS

programme alongside the distribution of Long Lasting Insecticide

Treated Nets (LLINs) [8]. As these malaria vector control

interventions are being scaled up their impact has been monitored

[9].

In areas of hyper and holoendemic malaria, vector control is

critical in reducing human malaria transmission and the related

morbidity and mortality. Evidence-based deployment and optimal
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assessment of vector control interventions is needed to formulate

operational control policies. This requires the collation and

assessment of a number of different data systems. To facilitate

data handling the Zambian NMCP evaluated the Malaria

Decision Support System (MDSS) developed by the Innovative

Vector Control Consortium (IVCC) [10].

Materials and Methods

Ethics clearance
Ethical clearance for this study was obtained from the

University of Zambia Biomedical Ethical Committee (Assurance

No. FWA00000338, IRB00001131 of IOR G0000774 reference

code 002-07-07). Written informed consent was obtained from all

participants in this study.

Study sites and interventions
Zambia is situated in the Southern African region with a

population of approximately 13 million, 45% of whom are below

the age of fifteen [11]. Data were collected from 18 sentinel sites,

distributed amongst nine districts within a 350 km radius of the

capital, Lusaka (Figure 1). Sites were selected to assist in

monitoring the expanding vector control programme. At each

site annual household surveys were carried out to measure

Plasmodium falciparum prevalence in children aged 1 to 14. Relative

mosquito abundance and infectivity were measured as a proxy for

transmission and insecticide resistance status was monitored.

Indoor residual spraying was carried out in October each year

from 2003 to 2010 with DDT at 2 g/m2 (Avima, South Africa) in

5 sites only (Chimoto, Kabulongo, Kafue Estates, Mufweshya and

Mukobeko). Perma NetH, (Verstargaard) and OlysetH (Sumitomo),

LLINs were distributed to all areas (Figure 1). Countrywide mass

distribution of ITNs commenced in 2005, prior to this ITN

distribution was through the antenatal clinics and commercial

outlets. Over 5 million ITNs, enough to cover 96% of Zambia

population, had been distributed by 2008 [8,9]. All vector control

was carried out by the NMCP as part of their ongoing operational

control activities.

Plasmodium falciparum prevalence surveys
Prevalence surveys were conducted at the end of the malaria

transmission season in April/May in 2008, 2009 and 2010.

Households were selected from strata formed by dividing sentinel

sites into quadrants. In each quadrant a starting house was selected

and all children aged 1 to 14 tested for P. falciparum infection using

ICTTM malaria combo rapid diagnostic tests (R&R, Cape Town,

South Africa). The investigator then proceeded to the next nearest

house and tested all children until a total of 35 children per

quadrant had been tested. Children testing positive for P. falciparum

were offered treatment with CoartemH (artemether-lumefantrine)

according to the National Malaria Control Programme (NMCP)

guidelines. Any complicated malaria case was referred to the

Figure 1. Map showing the spatial distribution of sentinel sites in Zambia.
doi:10.1371/journal.pone.0024336.g001
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nearest health centre. The sentinel site specific sample size was

calculated to provide evidence at the 5% significance level of an

absolute reduction in P. falciparum prevalence of 20%. Prevalence

of P. falciparum infection and 95% confidence intervals (CI) for

each sentinel site were estimated taking account of clustering by

sentinel site using the statistical software package STATA

(StataCorp LP. Stata Statistical Software: Release 10. College

Station, TX, USA.).

Sentinel sites were considered as the primary sampling unit.

Logistic regression, allowing for complex survey designs, was

performed to estimate the mean effect of the vector control

intervention on prevalence compared to 2008 data.

Mosquito Species Abundance and Infectivity
Window exit traps were fitted to six houses in each sentinel site

with the homeowners consent in April 2008 and operated until

May 2010. Houses were selected to cover the whole of a sentinel

site. Each house was constructed in traditional style and in good

repair with a window in the bedroom for the exit trap to be fitted.

The Chunga sentinel site was not used for exit window trap

collections, as houses were constructed from concrete blocks with

corrugated metal roofs. Mosquito collections were made daily by

homeowners trained to empty the contents of the window trap

into pre-labelled specimen jars containing isopropanol. Checklists

were completed specifying nights for which traps were not

operating.

Mosquito species identification
Anopheline mosquitoes were identified morphologically as

Anopheles gambiae Giles complex, An. funestus Giles group or An.

nili Theobald group [12,13]. Sibling species were identified and

An. gambiae s.s were identified as M or S molecular form using PCR

[14–18].

Malaria transmission
DNA was extracted from the head and thorax of mosquitoes

and tested for the presence of P. falciparum sporozoites [19].

Numbers of mosquitoes per trap per night were calculated for each

vector species. Using the species specific estimated sporozoite

prevalence the number of infectious mosquitoes per species per

trap per night was calculated. The relative transmission index,

defined as the ratio of infective numbers of mosquitoes per trap per

night, relative to the baseline year of 2008, could not be computed

because none of the specimens collected contained sporozoites

[20].

Insecticide Resistance
Mosquitoes were collected during the rainy seasons of 2009 and

2010 from 17 localities. Anopheles mosquitoes were collected

between 06.00 and 08.00 either by larval collections from breeding

sites, or as blood fed adult females resting inside homes. Collected

mosquitoes were transported to the laboratory, and reared to

adults or transferred to individual oviposition tubes and females

Table 1. Prevalence of infection with Plasmodium falciparum in children 1 to - 14 years of age, by sentinel site, observed during
household surveys in 2008, 2009 and 2010 in Zambia.

April/May 2008 April/May 2009 April/May 2010

Sentinel site PI (n) 95% CI PI (n) 95% CI PI (n) 95% CI P(08-09) P(09-10)

IRS Sites

Chimoto 3.2 (93) [0.8–12.8] 0.7 (141) [0.1–5] 3.4 (145) [1.1–9.9] 0.206 0.182

Kabulongo 11.4 (158) [10.9–36.5] 0 (84) - 4.6 (130) [1.6–12] 0.0007 0.032*

Mukobeko 7 (157) [3.3–14.1] 6.7 (134) [3.1–13.8] 6.2 (130) [3.2–11.4] 0.933 0.89

Kafue estate 2.3 (128) [0.8–6.6] 0 (116) - 3.7 (137) [1.4–9.1] 0.129 0.054

Mufweshya 4.3 (69) [1–17.1] 0 (73) - 1.8(113) [0.5–6.6] 0.038 0.18

ITN sites

Chiawa 2 (148) [0.5–8.1] 3.7 (134) [1.4–9.5] 5.1 (136) [2.3–11.2] 0.476 0.637

Chibombo 21.2 (146) [12.7–33.3] 9.3 (161) [4.5–18.2] 3 (132) [1.3–7.1] 0.0311 0.072

Chikankata 1.1 (93) [0.2–7.2] 0.7 (147) [0.1–4.9] 0.7 (136) [0.1–4.7] 0.765 1

Chipepo 11 (73) [6.2–18.6] 4.1 (123) [1.5–10.7] 5 (120) [2.3–10.3] 0.076 0.766

Chisamba 0.9 (109) [0.1–6.3] 0.7 (139) [0.1–5.1] 2 (150) [0.7–5.9] 0.874 0.429

Chobana 8.9 (79) [3.5–20.5] 3.2 (124) [0.7–13.2] 1 (97) [0.1–7] 0.101 0.283

Chunga 3.6 (83) [0.5–20.7] 4.2 (95) [1.5–11.6] 1.9 (104) [0.3–12.1] 0.83 0.352

Mwanachingwala 1.2 (86) [0.2–7] 0 (152) - 1.5 (131) [0.2–10.6] 0.273 0.221

Mulungushi 15.2(46) [7.8–27.5] 4.6 (131) [1.5–13.2] 8.1 (123) [3.8–16.5] 0.0172 0.326

Munenga 1.5 (134) [0.4–5] 0 (138) - 0 (134) - 0.22 0

Myooye 0 (117) - 0 (140) - 3 (133) [0.9–9.2] - 0.083

Rufunsa 23.1 (104) [11.6–40.6] 40.7 (135) [30.1–52.4] 58.2 (141) [46.5–69] 0.0275 0.078

All 6.9 (1823) [3.9–12.1] 4.9 (2167) [1.7–13.4] 6.8 (2192) [2.2–18.9] 0.036 0.031

IRS 6.3 (605) [3.4–11.5] 1.8 (548) [0.4–8.4] 4.0 (655) [2.9–5.5] 0.10 0.22

ITN 7.2 (1218) [3.3–15.2] 5.9 (1619) [1.9–17.3] 7.9 (1537) [2.0–26.3] 0.60 0.11

PI = Prevalence of infection,% 95% CI = 95% Confidence interval Bold = Change since 2008 was statistically significant.
doi:10.1371/journal.pone.0024336.t001
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allowed to lay eggs that were reared to adults at 2662uC and 70–

80% relative humidity.

Insecticide susceptibility assays were carried out on a random

sample of 1-3 day old, sugar fed F1 and F0 adults following the

procedure described by the World Health Organization (WHO

1998). Insecticides tested included bendiocarb (0.01%), DDT

(4%), deltamethrin (0.05%), lambda-cyhalothrin (0.05%), mala-

thion (5%), permethrin (0.75%), propoxur (0.1%).

Both Leu-Phe (west) and Leu-Ser (east) kdr mutations were

investigated [21,22] using the taqman PCR [23].

Results

Malaria Prevalence in Children 1 to 14 years old
A total of 1,823 children aged between 1 to 14 years were tested

for P. falciparum parasitaemia in all sentinel sites except Manueli

and Nyamankalo in April/May 2008. Follow-up surveys were

carried out in all sites in 2009 and 2010 with 2,176 children and

2,192 children respectively. The combined prevalence of infection

with P. falciparum across all sites was 6.9% (95% CI = 3.9–12.1) in

2008, 4.9% in 2009 (95% CI 1.7–13.4) and 6.8% in 2010

(CI = 2.2–18.9) (Table 1).

No significant change in prevalence was observed in all ITN

sites between years 2008, 7.2 (95% CI = 3.3–15.2), 2009, 5.9 (CI

95% = 1.9–17.3) to 2010, 7.9 (95% CI = 2–26.3). In IRS sites

there was a significant overall decline in prevalence of infection

between 2008 and 2009 from 6.3 (95% CI = 3.4–11.5) to 1.8

(95% CI = 0.4–8.4) (OR = 0..28, 95% CI = 0.05–1.44,

P = 0.036). However, prevalence increased again in 2010 to 4.0

(95% CI = 2.47–5.47) (OR = 2.22, 95% CI = 0.57–8.65,

P = 0.031) (Table 1).

Mosquito Species Abundance, sporozoite rate and
transmission

A total of 619 An. gambiae s.l. and 228 An. funestus s.l. were

collected and morphologically identified from 108 window exit

traps operating continuously from April 2008 to May 2010. Five

hundred and twenty five An. gambiae s.l. were subsequently

identified to species level. There were four An. gambiae s.s, 199

An. arabiensis and 322 An. quadriannulatus. Two hundred and four An.

funestus s.l were identified to species, these were 14 An. funestus s.s,

98 An. parensis, 20 An. rivulorum, 18 An. leesoni, 16 An. vaneedeni, 14

were identified as the recently described An. funestus-like, 1 An.nili

s.s and 23 unidentified. Culicine mosquitoes were recorded in the

absence of Anopheles to demonstrate that the traps were being

operated correctly.

At 217, the numbers of actual vectors, An. gambiae s.s., An.

arabiensis and An. funestus s.s. trapped was extremely low. All of

these were tested for sporozoites and all were negative. Due to zero

sporozoites a transmission index could not be calculated (Table 2).

Insecticide susceptibility
A total of 1,742 An. gambiae s.s. and 796 An. funestus s.s., from 17

localities, 11 of which were sentinel sites were assayed for

insecticide susceptibility using the WHO protocol [24]. Prior to

2009, no resistance had been detected to any insecticide in An.

gambiae s.l. or An. funestus in Zambia (Table 3 and Table 4).

Between 2009 and 2010 resistance to pyrethroids (deltamethrin,

Table 2. Vector Abundance, Infectivity by period of time and intervention type.

All sites All ITN sites All IRS sites

Year 04/08-4/09 05/09-5/10 04/08-4/09 05/09-5/10 04/08-4/09 05/09-5/10

An. gambiae s.l

No. caught 409 210 395 195 14 15

No. analyzed for species id 360 167 354 157 6 10

An. arabiensis propn (%) 24.0 32.9 23.8 34.4 28.6 13.3

An. gambiae s.s propn (%) 0.49 0.95 0.51 1.03 0.00 0.00

An. gambiae s.s

No. Estimated 2 2 2 2 0 0

No per trap per 100 nights 0.03 0.03 0.03 0.03 0.00 0.00

No. Sporozoite positive 0(n = 2) 0(n = 2) 0(n = 2) 0(n = 2) 0(n = 0) 0(n = 0)

An. arabiensis

No. Estimated 113 86 104 83 9 3

No per trap per 100 nights 1.59 1.21 1.46 1.17 0.13 0.04

No. Sporozoite positive 0(n = 125) 0(n = 98) 0(n = 104) 0(n = 92) 0(n = 9) 0(n = 6)

An. funestus s.l

No. caught 105 123 94 113 11 10

No. analyzed for species id 99 105 91 95 8 10

No. An. funestus s.s 8 5 8 4 0 1

An. funestus s.s propn (%) 7.62 4.07 8.51 3.54 0.00 10.00

An. funestus s.s

No. Estimated 8 6 8 5 0 1

No per trap per 100 nights 0.12 0.08 0.12 0.07 0.00 0.01

No. Sporozoite positive 0(n = 8) 0(n = 9) 0(n = 8) 0(n = 6) 0(n = 0) 0(n = 1)

doi:10.1371/journal.pone.0024336.t002

Insecticide Resistance Impact on Malaria Control

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e24336



lambda-cyhalothrin and permethrin) and DDT was detected in

both An. gambaie s.s.and An. funestus s.s. No resistance was detected

to the carbamate (bendiocarb) or the organophosphate (malathion)

in either species. Limited numbers of mosquitoes were found at all

sites, which correlates with the species abundance calculated from

the window trap collections.

Prior to interventions mosquitoes from tested from 8 locations in

Zambia were fully susceptible to the WHO discriminating dosage

of deltamethrin, lambda-cyhalothrin, DDT, propoxur and mala-

thion in 1999. Three of these locations, Chipulukusu, Mukobeko

and Mushili had IRS introduced in 2003. In 2010, significant

(P,0.001) resistance was detected in An. gambiae s.s.in Chipulukusu

to deltamethrin (13.5%), permethrin (61%) and DDT (43%) and

Mushili to DDT (55%). In Mukobeko no resistance was detected

in An. gambiae s.s. to deltamethrin but a slight increase in resistance

was detected in An. funestus s.s. (96% P,0.1). In Chibombo where

only ITNs have been distributed resistance to deltamethrin was

detected in An. funestus s.s. (88.9% P,0.001) in 2010 (Table 3 & 4

and Figure 2).

In 2010 new sites were surveyed for resistance. In the IRS sites

An. funestus s.s. was susceptible to deltamethrin and DDT in

Kabulongo, Katete and Mufweshya, but had low level resistance

to deltamethrin (95.6%) and DDT (98%) in Kafue. Resistance to

DDT was (3.8%) and deltamethrin (95.2%) was detected in An.

gambiae s.s. from Kizingezinge.

Similarly in 2010 nine new sites that had only received ITNs as

interventions were surveyed for insecticide resistance. In An.

gambiae s.s. resistance to deltamethrin ranged from 41.8–100% in

these sites with resistance to lambda-cyhalothrin being detected in

Nyamankalo (83.3%) and DDT in Myooye (69%). Similarly a

range of resistance was detected to deltamethrin in An. funestus s.s.

(66.6–100%), permethrin resistance was also detected in Nanga

Farms (90.9%) and to DDT in Myooye (94%) and Nyamankalo

(88%) (Table 3 &4).

Table 3. WHO susceptibility test results on 1–3 dayold An. gambiae s.s of 17 localities in Zambia.

1999

Location deltamethrin (0.05%) permethrin (0.75%) l-cyhalothrin (0.05%) DDT (4%)

n % n % n % n %

ITN only sites
81

Chibombo* 100 - - - - 11 100

Chingola* 15 100 - - - - 5 100

Chipulukusu* 46 100b 121 100b

Livingstone# 17 100 - - 13 100 32 100

Lusaka# 7 100 - - 6 100

Mukobeko# 19 100a - - 11 100 9 100

Mushili - - - - - - 73 100b

Samfya# 8 100 5 100 7 100

2009-2010

Location deltamethrin (0.05%) permethrin (0.75%) l-cyhalothrin (0.05%) DDT (4%) Malathion (5%) Bendiocarb (0.01%)

n % n % n % n % n % n %

ITN only sites

Chiawa 3 100 - - - - - - - - - -

Chipepo 43 41.8 - - - - - - - - - -

Mwanachingwala 4 75 - - - - - - - - - -

Myooye 74 93.2 - - - - 73 69 - - - -

Nanga Farms 8 100 - - - - 5 100 - - - -

Nyamankalo 11 90.9 4 100 6 83.3 8 100 10 100

IRS sites

Chipulukusu* 96 13.5 19 61 - - 428 43 - - - -

Kafue - - - - - - 8 100 - - - -

Kizingezinge 105 95.2 - - - - 157 3.8 - - - -

Mukobeko# 16 100 - - - - - - - - - -

Mushili 60 41 31 55 - - 100 11 47 100 - -

% = percentage mortality.

a = p.0.1,

b = p,0.001,
* = 1999 Unpublished baseline data collected by TDRC,
# = 1999 Unpublished data collected by NMCP.
doi:10.1371/journal.pone.0024336.t003
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Molecular forms and kdr mutations
In four localities with pyrethroid and DDT resistant An. gambiae

and one (Chipepo) with high pyrethroid resistance, PCR assays, to

check for the presence of east (leu-ser) (Ranson et al. 2000) and

west (leu-phe) (Martinez-Torres et al. 1998) kdr mutations were

carried out on a random sample. All 159 An. gambiae s.s were

identified as the molecular S-form and all were negative for east

kdr. In four of the sites, Chipepo, Chipulkusu, Kizhingezhinge and

Mushili all samples carried the west kdr mutation. In Myooye, only

one sample was homozygous for west kdr (Table 5).

Discussion

The Roll Back Malaria, United Nations Millennium Develop-

ment Goals and World Health Assembly universal access and

coverage targets for malaria prevention and treatment have been

established to stimulate the reduction in disease transmission. To

meet these targets malaria control interventions are now being

scaled up [25,26]. In order to obtain and maintain these goals

there is a need for continuous surveillance, monitoring and

evaluation of malaria control programmes to make informed

decisions and guide control efforts.

In Zambia, the initial re-deployment of vector control

interventions, ITN (1999) and IRS (2000), was based on minimal

empirical evidence. Subsequent monitoring and evaluation has

allowed more informed decisions to be made on targeting these

interventions. Zambia has achieved high coverage of IRS (20% of

households) and ITNs (60% plus of households) as of 2008 [9], and

now needs to sustain these efforts.

Prevalence of parasites in children has been frequently used as a

surrogate measure for malaria transmission intensity [27].

Previous studies conducted in Zambia, prior to or early into the

re-introduction of interventions, as population based surveys, or

from hospital based routine surveillance show widely heteroge-

neous results [7,28,29]. In this study, the overall average P.

falciparum prevalence in children between the ages of 1 and 14

Table 4. WHO susceptibility test results on 1-3-d-old An. funestus s.s of 17 localities in Zambia.

Location 1999

deltamethrin (0.05%) l-cyhalothrin (0.05%) DDT (4%) Propoxur (0.01%) Malathion (5%)

n % n % n % n % n %

ITN only sites

Chibombo* 72 100b - - - - 19 100 - -

Chingola* - - - - - - 3 100 16 100

Livingstone# 5 100 7 100 6 100 - - - -

Mukobeko# 25 100a 15 100 25 100 - - - -

Mushili* 4 100 - - - - - - 4 100

2009-2010

Location deltamethrin (0.05%) permethrin (0.75%)
l-cyhalothrin
(0.05%) DDT (4%) Bendiocarb (0.01%)

n % n % n % n % n %

ITN only sites

Chibombo* 9 88.9 - - - - - - - -

Chipepo 4 100 - - - - - - - -

Manueli 11 72.7 - - - - - - - -

Mulungushi - - - - 4 100 - - 7 100

Mwanachingwala 22 81.8 - - - - - - - -

Myooye 27 96.2 - - - - 62 94 - -

Nanga Farms 30 100 11 90.9 - - 10 100 - -

Nyamankalo 87 80.5 - - - - 33 88 - -

Rufunsa 66 66.6 - - - - - - - -

IRS sites

Kabulongo 15 80 - - - - 14 100 - -

Kafue 23 95.6 - - - - 90 98 - -

Katete - - - - - - 5 100 - -

Mufweshya 18 100 - - - - 21 100 - -

Mukobeko# 26 96 - - - - - - - -

% = percentage mortality.

a = p.0.1

b = p,0.001,
* = 1999 Unpublished baseline data collected by TDRC,
# = 1999 Unpublished data collected by NMCP.
doi:10.1371/journal.pone.0024336.t004
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years was below 10% implying low transmission. This low

prevalence has been achieved in part due to effective vector

control interventions. Between 2003 and 2008 approximately 5.9

million ITNs (since 2007 all have been LLINs) have been

distributed and IRS expanded from 5 to 36 districts, increasing

the number of structures sprayed from less than 100,000 to over 1

million [9]. At the same time Zambia expanded clinical control of

malaria through improved diagnostics (microscopy and RDTs),

introducing ACTs into all clinics and expanding the network of

community health workers.

Species density and infectivity measures are important indica-

tors of malaria transmission [20,30]. The endophilic nature of An.

funestus s.s. and An. gambiae s.s makes these species susceptible to

both IRS and ITNs, which reduce abundance and sporozoite rates

[20,31]. Anopheles arabiensis on the other hand is generally exophilic

and may be the cause of underlying transmission in Zambia, a

topic that warrants further investigation. In this study, both IRS

and ITNs are associated with a lower abundance of An. gambiae s.s,

and An. funestus s.s. than An. arabiensis. However, IRS is associated

with lower abundance than ITNs, with no An. gambiae s.s collected

from window traps in IRS areas. This may account for the greater

impact of IRS on prevalence. Similar results of IRS having a more

prompt and powerful impact than ITNs on species abundance has

been observed [32,33]. The apparent elimination of An. gambiae s.s

in IRS areas and suppression of An. funestus s.s. and An. arabiensis to

minimal levels, coupled with the absence of vector infectivity in

both IRS and ITNs settings is striking. This effect of reducing

abundance and infectivity of malaria vectors results in community

wide protection [34,35].

In contrast to the current study, where no infected mosquitoes

were collected, previous studies before and early into vector

control in Zambia found P. falciparum sporozoites in all three major

vectors (An. gambaie s.s., An. arabiensis and An. funestus s.s.) [36–38],

although this may in part be a function of the different collection

methods employed. The identification of An. nili and An. funestus-

like species in Zambia, as well as the presence of An. rivulorum

increases our knowledge of the range of these species. Further

work to assess their transmission potential in Zambia is necessary.

Indoor interventions have been shown to significantly reduce

transmission in neighboring Tanzania. However, a residual

transmission of disease remained through outdoor biting of An.

gambiae s.l. [39]. This may account in part for the transmission that

is still observed here, which will not have been detected in the

methods used. This requires further investigation if the control

programme is to reduce prevalence further.

The evidence of pyrethroid resistance spreading in Africa is

mounting [20,40,41] and in some cases has resulted in policy

changes in vector control interventions [20,41,42]. High levels of

Figure 2. Comparison of insecticide resistance in An. gambiae s.s. and An. funestus s.s. from 1999 and 2010.
doi:10.1371/journal.pone.0024336.g002

Table 5. Detection of Leu-Phe (West) kdr in survivors populations of An. gambiae s.s. tested for DDT and pyrethroid resistance.

Location Homozygous Leu-Phe mutation Heterozygous Leu-Phe mutation Homozygous wild type

ITN only sites

Chipepo 21 0 0

Myooye 1 0 10

IRS sites

Chipulukusu 45 1 0

Kizhingezhinge 20 0 0

Mushili 58 3 0

doi:10.1371/journal.pone.0024336.t005
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pyrethroid and DDT resistance were detected for the first time in

both the An. gambiae s.s and An. funestus s.s in Zambia during this

study, and these findings were subsequently confirmed by other

groups. There was significant variation in the frequency of

resistance detected between IRS and ITN localities, with higher

levels of resistance (P,0.0001) being detected in IRS areas

compared to ITNs areas.

Pyrethroid-DDT cross resistance from a common kdr mecha-

nism, has been reported in An. gambiae s.s in Africa [21,40,43].

Samples of An. gambiae s.s that were pyrethroid and DDT resistant

were tested for east and west kdr mutations. The west kdr mutation

was found in all sites tested. This is the most southerly documented

detection of this mutation. It is not yet clear whether this resistance

has arisen de novo in Zambia or whether it has spread from other

locations in Africa, but analysis of introns within the kdr gene

would clarify the origin of the resistance. Anopheles funestus was also

resistant to pyrethroids and DDT at a high frequency. To date

there have been no reports of sodium channel mutations in An.

funestus. The DDT and pyrethroid resistance detected here could

arise from two separate metabolic resistance mechanisms, GST

and P450 [44] respectively, or may be the first instance of kdr-type

resistance in this species documented. Sequencing of the relevant

areas of the sodium channel gene in resistant specimens of An.

funestus is needed to clarify this. However it is notable that the

pyrethroid resistant An. funestus found in Mozambique is not

accompanied by resistance to DDT [41,45]. The detection of

multiple resistance in both major vectors of malaria in Zambia

may have grave implications for the malaria control programme.

It may compromise the efficacy of interventions and potentially

lead to the failure of IRS and ITNs based vector control. While

this data serves to highlight the threats more information is

required on all the underlying mechanisms of insecticide resistance

so that a suitable insecticide resistance management plan may be

put in place to sustain vector control.

Monitoring malaria cases in Kwa-Zulu Natal, South Africa,

picked up the failure of pyrethroids in the IRS programme in the

1990s due to P450 mediated pyrethroid-resistance selection in An.

funestus, resulting in DDT being successfully reintroduced [46],

The resulting decline in malaria was reinforced by a change in

drug treatment policy [47]. In Bioko Island, Equatorial Guinea,

IRS with pyrethroids had a significant impact on the abundance of

An. funestus but not on An. gambiae. However, a reduced sporozoite

level in An. gambiae was observed that will have lowered

transmission. With the detection of high frequencies of kdr in An.

gambiae on the island a policy change to carbamate was made

which appeared to significantly reduce the abundance of An.

gambiae and maintained the low levels of An. funestus [20].

In 2008 the percentage of children aged 1–5 years positive for

parasites fell from 25% to ,15% in Zambia due to increased

malaria control efforts (Chizema-Kawesha, 2010).The monitoring,

evaluation and surveillance carried out over a three year period

demonstrates the success of Zambia’s control programme in

reducing the burden of malaria further as signified by reduced

prevalence of malarial infection to 6.8%. However, the recent

detection of high insecticide resistance to pyrethroids and DDT in

An. gambiae and An. funestus along with kdr detection in An. gambiae

threatens the sustainability of this programme. While the lack of

sporozoite positive mosquitoes in the window traps is consistent

with reduced levels of transmission the rebound in prevalence of P.

falciparum in IRS areas may be due to the increased levels of

insecticide resistance and the beginning of control programme

failure.

Acknowledgments

We would like to thank the Ministry of Health Zambia, and all the staff at

the National Malaria Control Centre whose assistance was essential to this

study. We would like to acknowledge John Miller (MACEPA) for all his

assistance with the surveys in Zambia.

Author Contributions

Conceived and designed the experiments: MC IK EC-K. Performed the

experiments: MC IK EC-K AMR VR FNP MK VM. Analyzed the data:

MC IK JH EC-K AMR. Contributed reagents/materials/analysis tools:

MC SC. Wrote the paper: EC-K IK JH MC. Managed the project in

Zambia: EC KSB. Completed field collection: DM EC MC MK.

References

1. Feachem R, Sabot O (2008) A new global malaria eradication strategy. Lancet
371: 1633–1635.

2. W.H.O (2009) World Malaria Report 2009.

3. Kleinschmidt I, Schwabe C, Shiva M, Segura JL, Sima V, et al. (2009)

Combining indoor residual spraying and insecticide-treated net interventions.
Am J Trop Med Hyg 81: 519–524.

4. World Health Organization (2006) Pesticides and their Application.

5. Ministry of Health (2000) Malaria Situation Analysis, National Malaria Control
Programme, Lusaka, Zambia.

6. Ekue JM, Ulrich AM, Njelesani EK (1983) Plasmodium malaria resistant to
chloroquine in a Zambian living in Zambia. Br Med J (Clin Res Ed) 286:

1315–1316.

7. Sharp B, van WP, Sikasote JB, Banda P, Kleinschmidt I (2002) Malaria control

by residual insecticide spraying in Chingola and Chililabombwe, Copperbelt

Province, Zambia. Trop Med Int Health 7: 732–736.

8. Chanda E, Masaninga F, Coleman M, Sikaala C, Katebe C, et al. (2008)

Integrated vector management: the Zambian experience. Malar J 7(164): 164.

9. Chizema-Kawesha E, Miller JM, Steketee RW, Mukonka VM, Mukuka C, et al.

(2010) Scaling up malaria control in Zambia: progress and impact 2005-2008.
Am J Trop Med Hyg 83: 480–488.

10. [Anon ymous] Innovative Vector Control Consortium: www.ivcc.com/projects/
mdss.htm.

11. Curtis C (1994) The case for malaria control by genetic manipulation of its

vectors. Parasitol Today 10: 371–374.

12. Gillies MT, DeMeillon B (1968) The Anophelinae of Africa South of the Sahara.

The South African Institute for Medical Research. 111111 p.

13. Gillies MT, Coetzee M (1987) A supplement to: The Anophelinae of Africa

South of the Sahara. The South African Institute for Medical Research.

14. Koekemoer LL, Kamau L, Hunt RH, Coetzee M (2002) A cocktail polymerase

chain reaction assay to identify members of the Anopheles funestus (Diptera:

Culicidae) group. Am J Trop Med Hyg 66: 804–811.

15. Scott JA, Brogdon WG, Collins FH (1993) Identification of single specimens of

the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med
Hyg 49: 520–529.

16. Kengne P, Trung HD, Baimai V, Coosemans M, Manguin S (2001) A multiplex
PCR-based method derived from random amplified polymorphic DNA (RAPD)

markers for the identification of species of the Anopheles minimus group in
Southeast Asia. Insect Mol Biol 2001 Oct 10(5): 427–35 10:427-435.

17. Spillings BL, Brooke BD, Koekemoer LL, Chiphwanya J, Coetzee M, et al.
(2009) A new species concealed by Anopheles funestus Giles, a major malaria

vector in Africa. Am J Trop Med Hyg 81: 510–515.

18. Favia G, Della TA, Bagayoko M, Lanfrancotti A, Sagnon N, et al. (1997)

Molecular identification of sympatric chromosomal forms of Anopheles gambiae

and further evidence of their reproductive isolation. Insect Mol Biol 6: 377–383.

19. Bass C, Nikou D, Blagborough AM, Vontas J, Sinden RE, et al. (2008) PCR-
based detection of Plasmodium in Anopheles mosquitoes: a comparison of a new

high-throughput assay with existing methods. Malar J 7(177.): 177.

20. Sharp BL, Ridl FC, Govender D, Kuklinski J, Kleinschmidt I (2007) Malaria

vector control by indoor residual insecticide spraying on the tropical island of
Bioko, Equatorial Guinea. Malar J 6(52.): 52.

21. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, et al.
(1998) Molecular characterization of pyrethroid knockdown resistance (kdr) in

the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 7: 179–184.

22. Janeira F, Vicente JL, Kanganje Y, Moreno M, Do Rosario VE, et al. (2008) A

primer-introduced restriction analysis-polymerase chain reaction method to
detect knockdown resistance mutations in Anopheles gambiae. J Med Entomol

45: 237–241.

23. Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, et al. (2007) Detection

of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two

new high-throughput assays with existing methods. Malar J 6(111.): 111.

24. W.H.O (1998) Test Procedures for Insecticide Resistance Monitoring in Malaria

Vectors, Bio-Efficacy and Persistence of Insecticides on Treated Surfaces.

Insecticide Resistance Impact on Malaria Control

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e24336



Report of the WHO informal Consultation, 28-30 September WHO/CDS/

CPC/MAL/98.12.

25. Fegan GW, Noor AM, Akhwale WS, Cousens S, Snow RW (2007) Effect of

expanded insecticide-treated bednet coverage on child survival in rural Kenya: a

longitudinal study. Lancet 370: 1035–1039.

26. Komatsu R, Low-Beer D, Schwartlander B (2007) Global Fund-supported

programmes contribution to international targets and the Millennium

Development Goals: an initial analysis. Bull World Health Organ 85: 805–811.

27. Beier JC, Killeen GF, Githure JI (1999) Short report: entomologic inoculation

rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med

Hyg 61: 109–113.

28. McClean KL, Senthilselvan A (2002) Mosquito bed nets: implementation in

rural villages in Zambia and the effect on subclinical parasitaemia and

haemoglobin. Trop Doct 32: 139–142.

29. Chanda P, Hamainza B, Mulenga S, Chalwe V, Msiska C, et al. (2009) Early

results of integrated malaria control and implications for the management of

fever in under-five children at a peripheral health facility: a case study of

Chongwe rural health centre in Zambia. Malar J 8(49.): 49.

30. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, et al. (2000) A

simplified model for predicting malaria entomologic inoculation rates based on

entomologic and parasitologic parameters relevant to control. Am J Trop Med

Hyg 62: 535–544.

31. Protopopoff N, Van BW, Marcotty T, Van HM, Maes P, et al. (2007) Spatial

targeted vector control in the highlands of Burundi and its impact on malaria

transmission. Malar J 6(158.): 158.

32. Roberts JM (1964) The Control of Epidemic Malaria in the Highlands of

Western Kenya. II. The Campaign. J Trop Med Hyg 67: 191–9 CONTD.:191-

199.

33. Guyatt HL, Kinnear J, Burini M, Snow RW (2002) A comparative cost analysis

of insecticide-treated nets and indoor residual spraying in highland Kenya.

Health Policy Plan 17: 144–153.

34. Lengeler C (2004) Insecticide-treated nets for malaria control: real gains. Bull

World Health Organ 82: 84.

35. Lengeler C (2000) Insecticide-treated bednets and curtains for preventing

malaria. Cochrane Database Syst Rev CD000363.

36. Kent RJ, Thuma PE, Mharakurwa S, Norris DE (2007) Seasonality, blood

feeding behavior, and transmission of Plasmodium falciparum by Anopheles
arabiensis after an extended drought in southern Zambia. Am J Trop Med Hyg

76: 267–274.

37. Shelly AJ (1973) Observations on the behaviour of Anopheles gambiae sp. B in the
Kambole village in the Zambezi valley, Zambia. Ann Trop Med Hyg 67:

237–248.
38. Bransby-Williams WR (1979) House catches of adult Anopheles gambiae species

B in two areas of Zambia. East Afr Med J 56: 557–561.

39. Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, et al. (2011) Increased
proportions of outdoor feeding among residual malaria vector populations

following increased use of insecticide-treated nets in rural Tanzania. Malar J
10(80.): 80.

40. Coleman M, Sharp B, Seocharan I, Hemingway J (2006) Developing an
evidence-based decision support system for rational insecticide choice in the

control of African malaria vectors. J Med Entomol 43: 663–668.

41. Casimiro SL, Hemingway J, Sharp BL, Coleman M (2007) Monitoring the
operational impact of insecticide usage for malaria control on Anopheles funestus

from Mozambique. Malar J 6: 142.
42. N’Guessan R, Corbel V, Akogbeto M, Rowland M (2007) Reduced efficacy of

insecticide-treated nets and indoor residual spraying for malaria control in

pyrethroid resistance area, Benin. Emerg Infect Dis 13: 199–206.
43. Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, et al. (2000)

Identification of a point mutation in the voltage-gated sodium channel gene of
Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids.

Insect Mol Biol 9: 491–497.
44. Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis

of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34: 653–665.

45. Cuamba N, Morgan JC, Irving H, Steven A, Wondji CS (2010) High level of
pyrethroid resistance in an Anopheles funestus population of the Chokwe District in

Mozambique. PLoS One 5: e11010.
46. Maharaj R, Mthembu DJ, Sharp BL (2005) Impact of DDT re-introduction on

malaria transmission in KwaZulu-Natal. S Afr Med J 95: 871–874.

47. Barnes KI, Durrheim DN, Little F, Jackson A, Mehta U, et al. (2005) Effect of
Artemether-Lumefantrine Policy and Improved Vector Control on Malaria

Burden in KwaZulu-Natal, South Africa. PLoS Med 2: e330.

Insecticide Resistance Impact on Malaria Control

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e24336


