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The Alveolar Microenvironment of Patients Infected with Human
Immunodeficiency Virus Does Not Modify Alveolar Macrophage
Interactions with Streptococcus pneumoniae

Stephen B. Gordon,a,c R. Thomas Jagoe,b Elizabeth R. Jarman,c James C. North,a Alison Pridmore,d Janelisa Musaya,c Neil French,c,e

Eduard E. Zijlstra,f Malcolm E. Molyneux,a,c Robert C. Readd,g

Pulmonary Immunology, Liverpool School of Tropical Medicine, Liverpool, United Kingdoma; Department of Respiratory Medicine, University of Liverpool, Clinical
Sciences, University Hospital Aintree, Liverpool, United Kingdomb; Wellcome Trust Research Laboratory, Malawi-Liverpool-Wellcome Programme of Clinical Tropical
Research, Chichiri, Blantyre, Malawic; Infection and Immunity, University of Sheffield Medical School, Sheffield, United Kingdomd; Karonga Prevention Study, Malawi and
London School of Hygiene and Tropical Medicine, London, United Kingdome; Department of Medicine, College of Medicine, University of Malawi, Blantyre, Malawif;
Department of Clinical and Experimental Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdomg

We tested the hypothesis that HIV infection results in activation of alveolar macrophages and that this might be associated with
impaired defense against pneumococcus. We compared alveolar macrophages and lymphocytes in 131 bronchoalveolar lavage
samples from HIV-infected and healthy controls using inflammatory gene microarrays, flow cytometry, real-time PCR, and en-
zyme-linked immunosorbent assay (ELISA) to determine the pattern of macrophage activation associated with HIV infection
and the effect of this activation on defense against pneumococcus. We used gamma interferon (IFN-�) priming to mimic the
cellular milieu in HIV-infected lungs. InnateDB and BioLayout 3D were used to analyze the interactions of the upregulated
genes. Alveolar macrophages from HIV-infected adults showed increased gene expression and cytokine production in a classical
pattern. Bronchoalveolar lavage from HIV-infected subjects showed excess CD8� lymphocytes with activated phenotype. Toll-
like receptor 4 (TLR4) expression was increased in macrophages from HIV-infected subjects, but function was similar between
the groups; lung lavage fluid did not inhibit TLR function in transfected HeLa cells. Alveolar macrophages from HIV-infected
subjects showed normal binding and internalization of opsonized pneumococci, with or without IFN-� priming. Alveolar mac-
rophages from HIV-infected subjects showed classical activation compared to that of healthy controls, but this does not alter
macrophage interactions with pneumococci.

Acute respiratory infections are a leading infectious cause of
death in both children and adults worldwide. Streptococcus

pneumoniae is the most common isolate in these infections and
also has a unique association with HIV infection, resulting in a 20-
to 100-fold increase in the incidence of pneumococcal infections
in regions of high HIV seroprevalence (1). Increased pneumococ-
cal carriage (2), decreased CD4� lymphocyte function in the res-
piratory mucosa (3), impaired immunoglobulin function (4), and
altered immunoglobulin responses to pneumococcal antigens
have all been shown to play a role in the increased susceptibility to
pneumococcal infection among HIV-infected subjects, but the
importance of alveolar macrophage dysfunction remains unclear.
Phagocytosis of pneumococci by alveolar macrophages was unim-
paired in HIV-infected subjects (5), but limited studies of macro-
phage cytokine responses showed abnormalities potentially sig-
nificant in neutrophil recruitment (6).

Alveolar macrophages (AM) play an important role in respira-
tory tract homeostasis (7), including the early clearance of bacte-
rial pathogens from the airspaces (8). Macrophage activation is
normally reversible, plastic, and classified in 4 distinct patterns of
activation (Fig. 1), termed innate, classical, alternative, and deac-
tivated states (9). Innate and classical activation of macrophages
are appropriate responses to pneumococcal infection (10). Innate
activation of macrophages occurs following pathogen-associated
molecular pattern interaction with Toll-like receptors (TLR) or
stimulation from NK cells (11) and is characterized by an increase
in reactive oxygen species. This has been demonstrated in pneu-
mococcal responses using pneumolysin interactions with both

TLR2 and TLR4 (12). Classical activation of macrophages occurs
following activated cognate CD4� lymphocyte interactions with
macrophages and is mediated by gamma interferon (IFN-�) re-
leased by CD4� lymphocytes (13). Classical activation results in
an augmented set of responses compared to innate activation,
including increased expression of major histocompatibility com-
plex class II (MHC-II), phagocytosis, antigen presentation, and
microbicidal functions (9). Studies of human and murine CD4�

lymphocytes provide indirect evidence that this mode of activa-
tion is important in pulmonary defense against pneumococci
(14). Alternative activation or deactivation of alveolar macro-
phages could be expected to be detrimental to host defense against
pneumococci (15). Alternative activation is mediated by interleu-
kin 4 (IL-4) released by T-helper cells and is characterized by
increased endocytosis and parasite killing (16). Macrophage acti-
vation states are also regulated by T-regulatory lymphocytes, with
published data to support both deactivation (9) and alternative
activation induced by T-regulatory cells (17).

Alveolar macrophages are vulnerable to HIV infection via CD4
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and chemokine receptors (18). HIV infection of alveolar macro-
phages is noncytopathic, but virus-derived gene products, such as
Nef, Tat, and the gp120 envelope glycoprotein, alter gene tran-
scription and translation, resulting in macrophage activation (19).
In addition, bystander uninfected macrophages in HIV-infected
subjects may be activated by either the action of cytokines released
by virus-targeted CD8� cells (20) or by the effect of high levels of
circulating bacterial products, including lipopolysaccharide
(LPS), which result from a failure of mucosal defense in the gut
(21) or by Treg depletion at certain stages of disease (22). The
pattern of HIV-related alveolar macrophage activation and the
effect of this activation on defense against pneumococcus have not
been described.

Our first hypothesis was that the effect of HIV infection on the
activation state of macrophages in the lung would fall into one of
the typical patterns, both as a result of direct infection and the
HIV-induced alterations in the alveolar milieu. In order to cate-
gorize the predominant activation state of alveolar macrophages
in HIV-infected subjects as the innate, classical, or alternative ac-
tivation pattern, we used flow cytometry, microarray, and real-
time PCR (RT-PCR) to determine the phenotype of alveolar mac-
rophages from HIV-infected subjects and healthy controls. Our
second hypothesis was that the observed activation pattern in
macrophages from HIV-infected subjects would be associated
with an alteration in pulmonary defense against pneumococcus.

We have previously observed normal opsonophagocytosis and
killing of S. pneumoniae by alveolar macrophages obtained from
patients with HIV infection (5). In this study, we extended that
observation with new subjects and with the addition of a gamma
interferon priming step. We then observed the association of HIV
infection with cytokine responses to pneumococcal challenge in
vitro and measured binding, internalization, and killing of op-
sonized pneumococci by human alveolar macrophages with and
without gamma interferon priming. We also used InnateDB (23)
in order to view the interactions that the upregulated genes have
with one another. This gave us the ability to plot clear interaction
pathways for any of the upregulated genes, which allowed us to
gain a better understanding of how and why the regulation varied
over time.

MATERIALS AND METHODS
Recruitment, consent, and bronchoalveolar lavage. Volunteers re-
cruited by advertisement gave written, informed consent to an ongoing
program of research on lung defense against infection. Consent to partic-
ipation included chest X ray, HIV test, CD4 testing, and bronchoalveolar
lavage. Inclusion criteria were asymptomatic adults (17 years or older,
current nonsmokers) with a normal chest X ray. Bronchoscopy was car-
ried out as previously described (24). Briefly, hand suction of 200 ml of
warm saline lavage fluid resulted in a median return of 110 ml containing
1 � 107 cells from a subsegmental bronchus of the middle lobe.

Alveolar macrophage culture, microarrays, and microarray analy-
sis. Alveolar macrophages were isolated (24) and cultured at a density of
1 � 106/well in 24-well plates for 48 h. Supernatant lavage fluid was stored
at �80°C for later analysis. Macrophages were washed 3 times at the end
of 48 h of culture to remove nonadherent cells (predominantly lympho-
cytes). Preparations of this type have been previously demonstrated to
contain 98% viable alveolar macrophages (24). RNA extraction and sam-
ple preparation were performed according to the manufacturer’s instruc-
tions (PowerScript reverse transcriptase; BD Biosciences), and the fluo-
rescent cyanine dyes Cy3 and Cy5 (Amersham Biosciences) were
incorporated into the modified aminoallyl UTP-cRNA.The hybridization
mixture (50 �l) was pipetted onto the array slides (human inflammation
arrays; MWG-Biotech AG, Ebersberg, Germany) and incubated for 18 h.
Arrays were scanned on an Affymetrix 428 array scanner, and the image
was analyzed using the ImaGene software.

The microarrays contained duplicate spots for 19 housekeeping genes
and 136 inflammation-related genes. Using stringent criteria for image
quality and hybridization success, mean log2 Cy3/Cy5 ratios were calcu-
lated for each gene. The signal from housekeeping genes was used for
normalization. Three analyses were performed comparing samples from
HIV-infected subjects and healthy controls: (i) time zero, to identify dif-
ferences in basal gene expression levels; (ii) time 4 h after pneumococcal
challenge, to compare gene expression after stimulation; (iii) using time
zero and 4 h, the change in expression for each gene, within each individ-
ual, induced by pneumococcal challenge was calculated. Both a t test with
an adjusted P value (P � 1/n, where n is the number of genes involved in
the analysis) and a nonparametric method (25), with the false discovery
rate set as less than one gene, were used. Only genes which were found to
be significantly different using both methods were adjudged to be
differentially expressed. Further analysis was performed on the mi-
croarray data using InnateDB, Cytoscape, and BioLayout 3D, which are
all open-source software packages. InnateDB (23) was used to find the
interactions, and Cytoscape and BioLayout 3D (26) were used to view
these interactions first as a two-dimensional (2-D) model and then as a
three-dimensional (3-D) web.

Bacterial challenge experiments. Type 1 S. pneumoniae cells, WHO
reference laboratory strain SSISP 1/1 (Statens Seruminstitut, Copenha-
gen, Denmark) grown to mid-log phase in brain heart infusion (Oxoid,
Unipath Ltd., Basingstoke, United Kingdom) with 10% fetal calf serum

FIG 1 Macrophage activation states. Macrophages are activated in several
patterns dependent on the antigenic stimulus, the receptor activated, corecep-
tor stimulation, and the cytokine milieu. (A) Innate activation results when
pattern recognition, typically by Toll-like receptors (TLR), results in increased
production of reactive nitrogen species by inducible nitric oxide synthase
(iNOS) and reactive oxygen species (ROS). (B) Classical activation results
when activated CD4� lymphocytes (T-helper 1 type) producing gamma inter-
feron (IFN-�) interact with macrophages. This interaction results in increased
antigen presentation, increased coreceptor expression (including CD86), and
increased microbicidal activity in addition to the features of innate activation.
(C) Alternative activation results from T-helper 2-type activation of macro-
phages by CD4 lymphocytes. This alternative activation pattern results in par-
asite killing as well as increased endocytosis, mannose receptor (MR) expres-
sion, fibrosis, and tissue repair. Deactivation (D) results from the effect of
regulatory T cells (Treg). Inhibitory factors, including interleukin 10 (IL-10)
and transforming growth factor beta (TGF-�), result in downregulation of
proinflammatory cytokines by the macrophage, prostaglandin E2 (PGE2) pro-
duction, and decreased antigen expression, finally leading to apoptosis.
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(Bioclear Ltd.,Wiltshire, United Kingdom) and opsonized with pooled
human serum as previously described (25), were added to alveolar mac-
rophages at a multiplicity of infection of 10:1 for 15 min, after which
nonadherent bacteria were washed off. Interaction of bound bacteria with
the cells was then allowed to proceed for 24 h. RNA was extracted at 0 h
(control well) and 4 h for real-time PCR and microarray analysis. Super-
natants were collected at 0, 4, 8, and 24 h of stimulation for cytokine
analysis and measurement of bacterial concentration.

RT-PCR, ELISA, and cytokine bead array assays. To validate gene
expression, RNA was reverse transcribed (ImProm-II reverse transcrip-
tion system; Promega) and used for quantitative real-time PCR (RT-PCR;
Carbett Research Rotor-Gene 2000 real-time cycler) using the QuantiTect
multiplex PCR mix (Qiagen) and QuantiTect gene-specific primer-probe
combinations for human IL-8, TLR2, and NF-�B. Levels of the proinflam-
matory cytokines tumor necrosis factor alpha (TNF-	), IL-1�, IL-6, and
the chemokine IL-8 in culture supernatants were determined by cytomet-
ric bead array (BD Pharmingen, Oxford, United Kingdom) and con-
firmed by enzyme-linked immunosorbent assays (ELISA; R&D Systems,
Abingdon, United Kingdom), in accordance with the manufacturer’s in-
structions.

Flow cytometry for lymphocyte phenotype in lavage. Flow cytomet-
ric analysis of lavage cells was carried out in order to determine the HIV-
associated changes in macrophage and T and B lymphocyte phenotypes.
Alveolar macrophages were determined by forward and side scatter mor-
phology and staining with CD206. Alveolar macrophages were costained
with CD14, HLA-DR, CD69, CD80, CD86, CD40, CD49d, CD54, CD11b,
and CD11c. T cell surface markers associated with activation (CD25,
CD69) and adhesion (CD11b, CD62L, CD54, CD11a) were costained
with CD3, CD4, and CD8. B cell surface markers associated with T cell
interaction and immunoglobulin production (CD80, CD86, CD40) were
costained with CD19 as a B cell marker.

TLR expression in macrophages and effect of bronchoalveolar la-
vage on TLR function in transfected HeLa cells. TLR4 expression is a
characteristic of both innate and classical macrophage activation. We de-
signed three experiments to test the effect of HIV on TLR function in the
HIV-infected alveolar milieu: (i) TLR4/MD2 expression was measured
using real-time PCR on unstimulated alveolar macrophages from HIV-
infected subjects and healthy controls using standard methods, (ii) alve-
olar macrophages from HIV-infected and healthy controls were stimu-
lated with ultrapure LPS (Alexis), and (iii) TLR4- and MD2-transfected
HeLa cells were challenged with ultrapure LPS (Alexis) as an agonist in the
presence of BAL supernatant fluid from HIV-infected subjects and
healthy controls. Reporter levels were measured using a dual-Luciferase
system (Promega), and we compared the effect of replacing media with
whole BAL fluid (from HIV and healthy controls) diluted 1:2 in medium
for the agonist and control assays.

IFN-� stimulation experiments. Alveolar macrophages were col-
lected as described above. On day 1 and day 3, cells were primed for 72 h
and 24 h, respectively, using antibiotic-free RPMI containing 100 ng/ml
(1,000 IU/ml) recombinant human IFN-� (Pharmingen, San Diego, CA).
Control cells were mock primed with medium alone. Primed and mock-
primed cells were challenged with opsonized type 1 S. pneumoniae on day
4. Immunofluorescence microscopy and killing assays were carried out as
previously described (5).

Statistical analyses and ethical review. Categorical variables were
compared using the 
2 test. Gene expression data were considered statis-
tically significant only when two statistical criteria were met: (i) the simple
parametric (t test) test with adjusted P value and (ii) nonparametric sam-
pling method (SAM) to compared difference in expression, with the false
discovery rate set to zero. In laboratory experiments, parametric tests (t
test) were used when data fulfilled criteria for a normal distribution (Sha-
piro-Wilks test), and nonparametric tests (rank sum) were used for non-
normally distributed data. All statistical tests were carried out using Stata
version 9 (Statacorp, Texas).

The studies described were reviewed by the South Sheffield Research

Ethics Committee, the Liverpool School of Tropical Medicine Research
Ethics Committee, and the College of Medicine Research Ethics Commit-
tee of the University of Malawi.

RESULTS
Recruitment of subjects, consent, and determination of HIV
status. A cohort of 37 HIV-infected subjects but otherwise healthy
adults and 41 healthy controls were recruited with written in-
formed consent to participate in bronchoscopy-based studies of
lung immunity. Subject details from this cohort are summarized
in Table 1.

A total of 131 bronchoalveolar lavage procedures were carried
out. There were no serious adverse events. Subjects consenting to
more than one procedure had a minimum of 6 months between
the procedures. The subsets of BAL fluid samples were used in
each specific experiment.

Inflammatory gene expression in alveolar macrophages
from HIV-1-infected subjects compared to healthy controls
showed a classical pattern of activation. RNA extracted from al-
veolar macrophages 48 h after isolation from bronchoalveolar la-
vage fluid was analyzed using an inflammation array. There was
robust data to compare the expression of 53 genes between pooled
data from HIV-infected subjects and healthy controls. As shown
in Table 2, 35 of the 53 genes were categorized a priori as being
typical of classical activation. The remaining genes were catego-
rized as being typical of alternative or deactivation pathways based
on a review of the available literature for each gene. When the
literature provided evidence that was contradictory, the genes
were not categorized. When HIV-infected subjects and healthy
controls were compared, there was found to be significant upregu-
lation (minimum change of 1.88-fold) of 10 of the 35 classical
activation signals in HIV-infected subjects compared to that of
healthy controls (range, 1.88 to 4.93) but none of the 18 innate,
alternative, or deactivation signals (P � 0.0001), as shown in Fig. 2A.

Using InnateDB, the 10 upregulated genes were further ex-
plored. These 10 genes upregulated prechallenge with pneumo-
coccus linked to 242 other genes. In addition, a further 5 genes
upregulated postchallenge with pneumococcus linked to 84 genes,
creating a much smaller interaction web with more separation, as
shown in Fig. 3. These interaction webs could then be used to
follow the interaction pathways of specific genes, as demonstrated
by Fig. 4.

TABLE 1 Subject details

Characteristic

Value

HIV positive
(n � 37 subjects)

HIV negative
(n � 41 subjects)

Gender, male:female 24:13 30:11
Mean age in yrs (SD) 32.7 (7.73) 30.7 (10.5)
Median CD4 count in cells/�l

(range)
276 (7–997) 715 (236–1240)

Median plasma viral load in
copies/ml (range)

140,000 (0–850,000) NAa

Median bronchoalveolar lavage
fluid viral load in copies/ml
(range)

130 (0–250,000) NA

No. of current cigarette smokers 1 3
No. of former cigarette smokers 5 5
a NA, not applicable.
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Inflammatory cytokine production is increased in HIV-in-
fected compared to normal alveolar macrophages as deter-
mined by ELISA and real-time PCR. Cytokine levels were mea-
sured in supernatant culture fluid obtained from alveolar
macrophages after 24 h in culture (Fig. 2B). Consistent with the
microarray data, concentrations of IL-1 and IL-6 were raised in
HIV-infected subjects compared to normal (P � 0.01 and P �

0.05, respectively), but concentrations of IL-8 were not signifi-
cantly different. Real-time PCR showed that IL-1, IL-6, and IL-8
mRNA and Rip-k2 signal were significantly increased in HIV-
infected subjects compared to in healthy controls (data not
shown).

Higher levels of interleukin 1 and 6 were found in samples from
HIV-infected subjects compared to healthy controls, as shown in

TABLE 2 Microarray analysis

Name(s) of gene Pattern Fold increase in HIV

Intercellular adhesion molecule 1 precursor; icam1 Classical
Interleukin 1, alpha proprotein; il1a Classical 2.73
Interleukin 1, beta proprotein; il1b Classical 2.16
Interleukin 8 precursor; il8 Classical 2.78
cd14 antigen precursor; cd14 Classical
Interleukin 6 (interferon, beta 2); il6 Classical 2.27
Superoxide dismutase 2, mitochondrial; sod2 Classical 2.0
Vascular cell adhesion molecule 1 isoform A precursor; vcam1 Classical
Tumor necrosis factor receptor superfamily, member 5 isoform 1 precursor; tnfrsf5 Classical
Guanylate binding protein 1, interferon-inducible, 67 kd; gbp1 Classical
Matrix metalloproteinase 12 preproprotein; mmp12 Classical 4.0
Myxovirus resistance protein 1; mx1 Classical
Small inducible cytokine a2 precursor; ccl2 Classical
Small inducible cytokine a3; scya3 Classical
Chemokine (CC motif) ligand 4 precursor; ccl4 Classical
Small inducible cytokine a5 precursor; ccl5 Classical 3.47
Toll-like receptor 2; tlr2 Classical
Receptor-interacting serine-threonine kinase 2; ripk2 Classical 3.13
Nuclear factor of kappa light polypeptide gene enhancer in B cells 1 (p105); nfkb1 Classical
bcl2-related protein a1; bcl2a1 Classical
Guanylate binding protein 2, interferon-inducible; gbp2 Classical
Small inducible cytokine a15 precursor; ccl15 Classical 1.8
Baculoviral iap repeat-containing 1; birc1 Classical
Chemokine (CC motif) ligand 20; ccl20 Classical
Triggering receptor expressed on myeloid cells 1; trem1 Classical
Melanoma differentiation associated protein-5; mda5 Classical
Molecule possessing ankyrin repeats induced by lipopolysaccharide; mail Classical
Leukotriene a4 hydrolase; lta4h Classical
Interferon gamma-induced precursor; cxcl10 Classical
Complement factor b preproprotein; bf Classical
Serine (or cysteine) proteinase inhibitor, clade b (ovalbumin), member 2; serpinb2 Classical
Prostaglandin-endoperoxide synthase 2 precursor; ptgs2 Classical 4.93
Interleukin 7 receptor precursor; il7r Classical
v-Jun avian sarcoma virus 17 oncogene homolog; jun Classical
Jun b proto-oncogene; junb Classical
Matrix metalloproteinase 9 preproprotein; mmp9 Alternative
Ferritin, heavy polypeptide 1; fth1 Alternative
Proteoglycan 1; PRG1 Alternative
Interleukin 16 isoform 1 proprotein; il16 Alternative
Homo sapiens immunoglobulin superfamily, member 6 (igsf6); mrna Alternative
Heme oxygenase (decyclizing) 1; hmox1 Alternative
Interleukin 11 precursor; il11 Deactivation
Plasminogen activator, urokinase receptor; plaur Deactivation
Tumor necrosis factor (ligand) superfamily, member 13b; tnfsf13b Deactivation
Nuclear factor of kappa light polypeptide gene enhancer in B cell inhibitor alpha; nfkbia Deactivation
Integrin, beta 8; itgb8 Not categorized
Interleukin 1 receptor antagonist isoform 1 precursor; il1rn Not categorized
Alpha 1 type vii collagen precursor; col7a1 Not categorized
Chemokine (CXC motif) ligand 3; cxcl3 Not categorized
Chemokine (CXC motif) ligand 5; cxcl5 Not categorized
Traf-interacting protein tank isoform a; tank Not categorized
Homo sapiens growth arrest and DNA-damage-inducible, beta (gadd45b); mrna Not categorized
Tyrosine 3/tryptophan 5 monooxygenase activation protein, zeta polypeptide; ywhaz Not categorized
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Fig. 2B. Levels of IL-8 were also measured, and the increase seen in
HIV-infected subjects was not found to be statistically significant.

Alveolar macrophages from HIV-infected subjects exist in
an altered cellular milieu compared to healthy controls but have
normal surface marker expression. Flow cytometry was used to
determine the phenotype and relative numbers of CD4� and
CD8� lymphocytes in BAL fluid as well as to categorize surface
activation markers on alveolar macrophages. As shown in Fig. 5A,
there were significantly fewer CD4� lymphocytes in BAL fluid
obtained from HIV-infected subjects than from healthy controls.
The CD4� lymphocytes present in each group showed identical
activation marker and adhesion molecule expressions, however,
as shown in Fig. 5B. BAL fluid samples from HIV-infected subjects
had a significantly increased number of CD8� lymphocytes com-

pared to that of samples from healthy controls, as shown in Fig.
5A. The CD8� lymphocytes from HIV-infected subjects showed a
significant reduction in CD69 and CD25 expression, suggesting
decreased activation, as well as a decrease in L-selectin (CD62L)
expression, as shown in Fig. 5C. Alveolar macrophages obtained
from HIV-infected subjects showed no difference in the percent-
ages of cells expressing surface markers measured using flow cy-
tometry, as shown in Fig. 5D. Mean fluorescent intensity was not
recorded.

Alveolar macrophages from HIV-infected subjects show in-
creased TLR4 and MD2 expression but normal TNF production
in response to LPS. TLR4 and MD2 gene expression was mea-
sured using real-time PCR (data not shown). Alveolar macro-
phages from HIV-infected subjects showed increased TLR4 and
MD2 gene expression, consistent with an activated phenotype.
Using ELISA and real-time PCR, the TNF signals produced in
response to ultrapure LPS stimulation were similar for alveolar
macrophages obtained from HIV-positive and HIV-negative do-
nors, indicating that the increased TLR4 gene expression did not
lead to increased cytokine production.

BAL supernatant fluid from HIV-infected subjects and
healthy controls does not inhibit TLR4 function in TLR4/MD2-
transfected HeLa cells. In order to determine if BAL fluid from
HIV-infected subjects might inhibit the function of TLR4/MD2
on alveolar macrophages, we developed a model system using
TLR4/MD2-transfected HeLa cells. Transfected cells stimulated
with ultrapure E. coli LPS produced a luciferase signal (IL-8 pro-
moter) in a reproducible and dose-dependent manner that was
significantly different from cells stimulated with phosphate-buff-
ered saline (PBS). Incubation with BAL fluid did not alter the
signal in either the LPS- or PBS-stimulated limbs of these experi-
ments (data not shown).

Alveolar macrophage cytokine mRNA response to in vitro
challenge with opsonized S. pneumoniae is altered in HIV-in-
fected subjects compared to that in normal controls, but there is
no evidence of significant immunoparesis. Microarray analysis
was performed on RNA obtained from alveolar macrophages that
had been challenged in vitro with S. pneumoniae for 4 h. Using the
same panel of inflammation-related genes as described for un-
stimulated macrophages described above, samples from HIV-in-

FIG 2 Alveolar macrophages from HIV-infected subjects show classical acti-
vation pattern gene expression and cytokine production. Alveolar macro-
phages freshly obtained from HIV-infected (n � 16) and normal (n � 14)
subjects were cultured for 24 h. RNA was then extracted for proinflammatory
array analysis, and cytokine concentration was measured in the culture super-
natant. Panel A shows the analysis plan and results for the microarray data. A
total of 53 genes from an inflammation array generated robust data after ap-
propriate data normalization. A total of 35 of the 53 genes were defined a priori
as being indicative of classical pattern activation or responses, and 18 of the 53
genes were indicative of either alternative, deactivation states, including tissue
repair or nonspecific to any state. Ten of the 53 genes were differentially up-
regulated in HIV-infected subjects; all of these were in the classical pattern, and
none were in a nonclassical pattern (
2 test; P � 0.0001). Real-time PCR
showed that IL-1, IL-6, IL-8 precursor, and Rip-k2 signal were significantly
increased in HIV-infected subjects compared to in normal subjects (data not
shown). Panel B shows cytokine concentration in alveolar macrophage culture
supernatant after 48 h in unstimulated culture. Concentrations of IL-1 and
IL-6 were raised in HIV-infected subjects compared to normal subjects (P �
0.01 and P � 0.05, respectively), but concentrations of IL-8 were not signifi-
cantly different, as discussed in the text.

FIG 3 Gene interaction web after pneumococcal challenge. Shown are the
interactions of the 5 upregulated genes after pneumococcal challenge. The
pink nodes represent the 5 unregulated genes and their corresponding pro-
teins, the blue nodes are other genes that the unregulated ones interact with,
and the green lines represent an interaction of some kind; for example,
MMP12 cleaves CXCL2.
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fected subjects and healthy controls were compared. Five genes
showed differential upregulation between HIV-infected subjects
and healthy controls, but 4 of these genes (shown in Table 3) were
also differentially upregulated at baseline. Only chemokine ligand
3, which was not categorized in the a priori categorization, showed
differential upregulation after pneumococcal challenge in HIV-
infected subjects.

In order to take the differential gene expression at baseline into
consideration, a ratio was calculated to express the fold increase in
gene expression between baseline (t � 0) and 4 h incubation (t �
4). Data from 42 genes were sufficiently complete to allow this
ratio (t � 4/t � 0) to be compared between HIV-infected subjects
and healthy controls. All of the fold changes in response to bacte-
rial challenge were small, and only one gene was found to be sig-
nificantly different by HIV status. HIV-infected subjects (fold
change � 0.8) showed half of the fold change seen in expression of
receptor-interacting serine-threonine kinase 2 (Ripk2) in samples
from healthy controls (fold change � 1.6).

Alveolar macrophage cytokine response to in vitro challenge
with opsonized S. pneumoniae is altered in HIV-infected sub-
jects compared to that in healthy controls. Cytokine levels in
alveolar macrophage supernatant were measured after 4, 14, and
24 h of challenge with opsonized S. pneumoniae. Levels of IL-1,
IL-6, IL-8, and TNF-	 in pg/ml are shown plotted as box plots for
each time point by HIV status in Fig. 6. Using area under the curve
as a summary statistic representing total cytokine production in each
experiment, there was a greater production of IL-1 and TNF-	 in
HIV-infected subjects than in healthy controls. The total production
of IL-6 and IL-8 was not significantly different using the area under
the curve (statistics are in the figure legend), but levels of IL-6 were
increased and IL-8 levels decreased in HIV-infected subjects com-
pared to those in healthy controls at later time points.

Priming of alveolar macrophages with IFN-� prior to in
vitro challenge does not alter alveolar macrophage binding, in-
ternalization, or killing of S. pneumoniae. In view of the CD8�

lymphocytosis seen in BAL fluid from HIV-infected subjects, we
hypothesized that IFN-� priming of alveolar macrophages in vivo
by resident lung CD8� lymphocytes might be important in un-
derstanding the effect of HIV-associated macrophage activation
on defense against pneumococcus. We therefore examined the
effect of IFN-� priming for 24 h before in vitro challenge with S.
pneumoniae. As illustrated in Fig. 7, IFN-� priming made no dif-
ference to the binding (upper panel), internalization (middle
panel), or killing (lower panel) of opsonized pneumococci in ei-
ther HIV-infected subjects’ or healthy controls’ alveolar macro-
phages.

DISCUSSION

Streptococcus pneumoniae is an important cause of recurrent
pneumonia in HIV-1-infected individuals, with rates of pneu-
mococcal lung disease correlating with increasing viral load
and a decline in CD4� T cell counts in the periphery (28, 29.
Alveolar macrophages are sentinel phagocytes in the lung that
have defective function against some pathogens when infected
by HIV (30–32).

We have shown here that HIV infection in untreated subjects
(predominantly male) results in a classical pattern of activation in
alveolar macrophages. Associated with this classical activation was
increased TLR4/MD2 expression but no increase in TLR4-depen-
dent TNF production. There was increased production of NF-�B-
dependent cytokines in response to pneumococcus but no differ-
ence in the binding, internalization, or killing of opsonized
bacteria. Unopsonized bacteria were not studied, as we have pre-
viously shown the critical importance of opsonization in the alve-
olar compartment (25), and most BAL fluid samples did not yield
enough cells for experiments of this type to be carried out on both
opsonized and unopsonized bacteria.

The first observation regarding classical activation is novel and
consistent with the published literature on HIV infection in the
lung (33) and in macrophages (34). In particular, classical activa-

FIG 4 Nature of interaction pathway between MMP12 and CCL5. Shows the interaction pathway for MMP12 linking it to CCL5, and both were found to be
upregulated in HIV-positive macrophages after pneumococcal challenge. The yellow nodes are the genes, and the red lines represent interactions and are labeled
with the type of interaction occurring.
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tion is consistent with published measurements of raised cytokine
levels in bronchoalveolar lavage fluid (35) and also with upregu-
lation of receptors critical in phagocytosis of Mycobacterium tu-
berculosis (36). Several cell functions characteristic of activation
(reactive oxygen species, reactive nitrogen species) have not been
measured, but the functions described are representative of im-
portant macrophage capacity in defense against pneumococcal
infection. We have not shown a difference in macrophage surface
marker expression in this study. This may have been because of
methodological issues, particularly that (i) there were high levels
of autofluorescence in these cells, making use of the fluorescein
isothiocyanate (FITC) channel problematic; and (ii) we did not
compare fluorescent intensity using a continuous variable.

Classical activation of macrophages is consistent with the up-
regulation of Toll-like receptors (TLR) that we have shown in this
study, as this form of activation augments the innate response and
there is cellular plasticity between the two states (13). The lack of
TNF release in response to ultrapure LPS stimulation is also con-
sistent with two published mechanisms. First, Tachado and others
have shown that HIV inhibits TLR4 release of TNF by an extracel-
lular signal-regulated kinase (ERK)-dependent mechanism (37).
Second, TLR desensitization following viral infection has been
shown to be an important mechanism linking viral infection and
subsequent bacterial pneumonia (38). Macrophages have also
been shown to be important in the regulation of endotoxin-re-
lated inflammation in a rat model, where macrophage depletion
resulted in excess inflammation (39).

Does alveolar macrophage activation in HIV infection matter?
Classical activation of alveolar macrophages does not result in
protracted pneumonitis in HIV-infected patients; regulatory
mechanisms, such as IKK�, have been shown to be anti-inflam-
matory and to regulate macrophage responses in this context (40,
41). It is possible, however, that delayed apoptosis of alveolar mac-
rophages may result in impaired defense against resolving pneu-
mococcal infection (42). The raised BAL fluid cytokine levels ob-
served by others (20) and the altered cytokine profile
demonstrated here may result in altered neutrophil recruitment
(6, 43) but are more likely to contribute to the altered lymphocyte
profile seen in BAL fluid from HIV-infected subjects discussed
below.

HIV infection of the lung results in alveolar lymphocytosis
(20). In this study, we showed that the CD8� cells causing this
alveolitis have an activated phenotype. This observation and the
observations of others (34) led us to test the hypothesis that dif-
ferential alveolar macrophage function against pneumococcus
might be seen in the context of gamma interferon priming. We
have confirmed our previous published observations without
IFN-� priming (5) and have now extended that observation to

FIG 5 Alveolar macrophages from HIV-infected subjects are found in an
altered cellular milieu and show increased TLR4 gene expression. Fresh bron-
choalveolar lavage (BAL) samples obtained from HIV-infected (n � 19) and
normal (n � 23) subjects were analyzed using a flow cytometric panel to
describe cell type and surface marker phenotype. BAL fluid from HIV-infected
subjects had a greater percentage of lymphocytes than normal subjects (20.4%
versus 10.7%; P � 0.009; data not shown), and BAL fluid from HIV-infected
subjects had a reduced percentage of CD4 lymphocytes (11.2% versus 50% of
CD3 cells; P � 10), with an increased percentage of CD8 lymphocytes (65.3%
versus 25.6% of CD3 cells; P � 10 compared to normal subjects [panel A]).
The phenotype of CD8 cells showed reduced activation in HIV-infected sub-
jects compared to that in normal subjects (C), but the phenotypes of CD4
lymphocytes (B) and alveolar macrophages (D) were the same in HIV-infected
and normal subjects. Surface TLR expression could not be detected by flow
cytometry, but using real-time PCR, there was increased TLR4 and MD2 gene
expression in AM from HIV-infected (n � 11) compared to normal (n � 12)
subjects (data not shown). Phenotype marker percentages on flow cytometry
and RT-PCR-normalized copy number data were not normally distributed.
Data are shown as geometric means with standard error and statistical signif-
icance tested using Wilcoxon rank sum tests (*, P � 0.05; **, P � 0.01).

TABLE 3 Genes differentially expressed in alveolar macrophages from
HIV-positive subjects relative to controls 4 h after exposure to
pneumococcal challenge

Mean fold
change Gene symbol Gene name

2.6 cxcl3 Chemokine (CXC motif) ligand 3
5.5 ccl5 Small inducible cytokine a5 precursor
3.7 il6 Interleukin 6 (interferon, beta 2)
2.0 il1b Interleukin 1, beta proprotein
4.5 mmp12 Matrix metalloproteinase 12 preproprotein
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show no difference in alveolar macrophage function against pneu-
mococcus using IFN-�-primed alveolar macrophages from either
HIV-infected subjects or healthy controls. These data are consis-
tent with observations using Salmonella spp. (44) and suggest that
IFN-� levels in the alveolar milieu are sufficient for optimal alve-
olar macrophage function. It is likely that the major immunode-
ficiency in the lung specific to pneumococcus following HIV in-
fection is CD4 depletion and, in particular, a loss of Th17 cells (3).
The cytokine production is altered in HIV, but the functional
significance of this is unclear, as there is a surprising lack of cor-
relation with mycobacterial load (45).

A major difficulty in interpreting the findings in this study is
the fact that a minority of alveolar macrophages will be actively

infected with HIV. We have previously shown that BAL fluid viral
loads are very low, and others have published that the percentage
of cells showing active infection is low (�20%) (20). The study
design used here has obtained pooled data regarding macro-
phage gene expression, cytokine production, and bacterial op-
sonophagocytosis. Individual cell effects were not measured. The
overall defense of the lung and the alveolar milieu in particular is
a product of the combined effect of lymphocyte, macrophage, and
epithelial influences on innate and acquired immune functions.
This study suggests that the classical activation of macrophages
seen in HIV-infected adults does not have important functional
significance with regard to pneumococcal disease and supports
the opinion that the focus of attention in HIV-related disease

FIG 6 Alveolar macrophages from HIV-infected subjects show altered cytokine production in response to S. pneumoniae compared to that of normal subjects.
Alveolar macrophages were challenged in vitro at a multiplicity of infection of 10 using opsonized type 1 S. pneumoniae and cytokine concentrations measured
by ELISA in culture supernatants over a 24-h time course. The production of cytokine over the whole time course was estimated using the area under the
concentration-time curve and shown to be greater in macrophage supernatants from HIV-infected subjects than from normal subjects for IL-1 (P � 0.04) and
TNF-	 (P � 0.05). Measured IL-6 concentrations were also higher at most time points in HIV-infected supernatants, but the areas under the curves were not
significantly different (P � 0.13). The change in IL-8 concentration over time following bacterial challenge showed a blunted response in macrophages from
HIV-infected subjects, but the area under the curve was not significantly different from that of normal subjects (P � 0.98).
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should be toward restoring competent mucosal immunity (46). It
is encouraging that HAART does result in some mucosal immune
reconstitution, but concern remains that once CD4 populations
are severely depleted, full reconstitution does not occur (3).
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