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Abstract

Aims: Chloroquine (CQ) kills Plasmodium falciparum by binding heme, preventing its detoxification to hemozoin
in the digestive vacuole (DV) of the parasite. CQ resistance (CQR) is associated with mutations in the DV
membrane protein P. falciparum chloroquine resistance transporter (PfCRT), mediating the leakage of CQ from
the DV. However, additional factors are thought to contribute to the resistance phenotype. This study tested the
hypothesis that there is a link between glutathione (GSH) and CQR. Results: Using isogenic parasite lines
carrying wild-type or mutant pfcrt, we reveal lower levels of GSH in the mutant lines and enhanced sensitivity to
the GSH synthesis inhibitor l-buthionine sulfoximine, without any alteration in cytosolic de novo GSH synthesis.
Incubation with N-acetylcysteine resulted in increased GSH levels in all parasites, but only reduced susceptibility
to CQ in PfCRT mutant-expressing lines. In support of a heme destruction mechanism involving GSH in CQR
parasites, we also found lower hemozoin levels and reduced CQ binding in the CQR PfCRT-mutant lines. We
further demonstrate via expression in Xenopus laevis oocytes that the mutant alleles of Pfcrt in CQR parasites
selectively transport GSH. Innovation: We propose a mechanism whereby mutant pfcrt allows enhanced
transport of GSH into the parasite’s DV. The elevated levels of GSH in the DV reduce the level of free heme
available for CQ binding, which mediates the lower susceptibility to CQ in the PfCRT mutant parasites. Con-
clusion: PfCRT has a dual role in CQR, facilitating both efflux of harmful CQ from the DV and influx of
beneficial GSH into the DV. Antioxid. Redox Signal. 19, 683–695.

Introduction

Until the widespread emergence of parasite resistance,
the antimalarial chloroquine (CQ) was one of the most

important drugs ever developed. Despite its clinical impor-
tance, the molecular basis of CQ resistance (CQR) is still not
fully resolved. CQ action depends on binding to heme, a toxic
byproduct of host hemoglobin degradation by the malaria
parasite Plasmodium falciparum. This degradation occurs in the
digestive vacuole (DV) of the intraerythrocytic parasite (8),
with the heme generated not being destroyed enzymatically,

Innovation

We provide data that support a novel hypothesis for the
role of mutant Plasmodium falciparum chloroquine resis-
tance transporter (PfCRT) in the chloroquine resistance
phenotype. The data indicate that mutant PfCRT facilitates
the redistribution of glutathione (GSH) from the cytoplasm
to the digestive vacuole. This results in GSH-dependent
removal of heme-binding sites, both directly by occupying
them and indirectly through causing heme breakdown,
which is a significant contributor to the decrease in chlo-
roquine susceptibility.
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but instead being converted into a relatively inert biocrystal
called hemozoin (34). The binding of CQ to heme inhibits
hemozoin formation, thus resulting in a build-up of free heme
and CQ–heme complexes, which results in inhibition of par-
asite growth and eventually parasite death (44).

CQR correlates with reduced accumulation of drug in the
parasite due to diminished drug–heme binding in the DV,
although other interpretations have been recently suggested
(5, 7). CQR is associated with polymorphisms within the DV
transmembrane protein PfCRT (11, 17, 18, 42). A K76T mu-
tation in PfCRT is conserved in all CQR parasites and is
considered key in mediating the CQR phenotype (18). How-
ever, there is a wide variation in the response to CQ of cloned
parasite lines containing identical mutant pfcrt alleles, which
indicates the involvement of additional mechanisms contrib-
uting to CQR. The multidrug-resistant homolog gene pfmdr1
is probably one (12, 32, 37), but it is likely that other factors
also modify susceptibility to CQ.

Research reported during the last three decades has poin-
ted to glutathione (GSH), the major antioxidant thiol in the
parasite (2), playing some part in CQR (1, 13, 14). One possible
mechanism would be that GSH reduces heme-binding sites
for CQ in some way. We postulated that different concen-
trations of membrane-impermeant GSH in the DV of CQR
and chloroquine-sensitive (CQS) parasites could be the basis
of such a mechanism. To investigate this, GSH concentrations
have been compared between the CQS and CQR lines. The
data generated, however, have been difficult to interpret, as
isolates with different genetic backgrounds were used (30). It
is thought that such lines have variable transcriptional and
translational regulation of oxidative defenses and efflux
transporters such as PfMRP1, which affects GSH levels (23, 31,
36). Thus, we have now analyzed in this study isogenic par-
asite lines, which differ only in their substituted pfcrt allele
(Table 1) (42). We have confirmed that GSH is generated in the
cytoplasm and demonstrate that artificially increasing GSH
levels has little effect on CQ sensitivity unless the parasites
also harbor mutant alleles of pfcrt. Moreover, we show that
mutant PfCRT can transport GSH. This newly discovered
function facilitates GSH redistribution from the cytoplasm
into the DV selectively in the CQR lines. The data generated
have allowed us to postulate a CQ resistance mechanism in
which GSH is selectively transferred into the DV via mutant

pfcrt, where it competes with CQ for heme binding and results
in destruction of heme, and thereby protects the parasites
from the prooxidant activity of the CQ–heme complex.

Results

Localization of GSH biosynthesis enzymes

P. falciparum possesses genes encoding g-glutamylcysteine
synthetase (PfcGCS) and glutathione synthase (PfGS), re-
quired for GSH synthesis (24, 29). C-terminally tagged green
fluorescent protein (GFP) variants of each gene were trans-
fected into P. falciparum, and the resultant line expressed
proteins were both localized to the parasite cytosol (Fig. 1).

GSH levels in isogenic lines and their susceptibility
to GSH-depleting agents

Total GSH levels of isogenic parasite lines GC03, C2GC03,
C3Dd2, and C67G8 (Table 1) were determined using a validated
HPLC method (42, 51). Transfected parasites carrying the Dd2
or 7G8 pfcrt CQR alleles contained significantly less GSH than
the lines carrying the sensitive HB3 wild-type pfcrt allele (Fig.
2A). We also determined the GSH levels of the nonisogenic
untransformed CQR Dd2 standard laboratory parasite line
(see Table 1) and found no significant difference in GSH
content between this line and the isogenic CQS parasites
whose genotype is that of GC03 (see Table 1) (Dd2,
984 – 184 nmol/1010cells; C2GC03, 1152 – 93 nmol/1010cells).
These data highlight the importance of our use of the isogenic
parasite lines, because this allowed us to probe specifically the
effect of mutations in crt on GSH levels and avoided the
problems associated with the confounding effects of other
compensatory changes that would be likely to have occurred
in untransformed CQR isolates.

Table 1. Genotypes and Phenotypes of Parasites

Used in This Study

Parasite line Genetic modification Susceptibility to CQ

GC03 NONE Sensitive
Dd2 NONE Resistant
C2GC03 crt locus of GC03 replaced

by GC03 crt locus (42)
Sensitive

C3Dd2 crt locus of GC03 replaced
by Dd2 crt locus (42)

Resistant

C67G8 crt locus of GC03 replaced
by 7G8 crt locus (42)

Resistant

T76K-1Dd2 crt locus of Dd2 replaced
by Dd2 crt locus T to
K back mutant (9)

Sensitive

C-1Dd2 crt locus of Dd2 replaced
by Dd2 crt locus (18)

Resistant

CQ, chloroquine.

FIG. 1. Localization of Plasmodium falciparum c-gluta-
mylcysteine synthetase–green fluorescent protein (PfcGCS-
GFP) and glutathione synthetase-GFP (PfGS-GFP). P. falci-
parum GS and gGCS C-terminally tagged with GFP were ex-
pressed in P. falciparum D10 erythrocytic stages. Fluorescence
was analyzed using an Axioskop-2 mot plus microscope
(Zeiss) equipped with a Hamamatsu C4742-95 CCD camera
and was shown to be present throughout the cytoplasm of
both transfected parasite lines, suggesting that GSH biosyn-
thesis is cytoplasmic. No fluorescence is seen in the digestive
vacuoles (DV) of the parasites or the erythrocyte host cell (E).
E, erythrocyte; P, parasite; DV, digestive vacuole with he-
mozoin crystals.

684 PATZEWITZ ET AL.



FIG. 2. Glutathione (GSH) levels, susceptibility to l-buthionine sulfoximine (BSO) and the effect of N-acetylcysteine
(NAC) on chloroquine (CQ) susceptibility. (A) The GSH levels in C3Dd2 (388 – 29 nmol/1010 cells, n = 6) and C67G8

(754 – 61 nmol/1010 cells, n = 5) were significantly lower than those determined in C2GC03 (1152 – 93 nmol/1010 cells, n = 6) and
GC03 (968 – 12 nmol/1010 cells, n = 3) (**p < 0.01, one-way analysis of variance (ANOVA) with Newman–Keuls post-test).
Data represent means – S.E.M. (B) IC50 values for BSO (48 h assay) for the CQR parasite lines C3Dd2 (IC50: 32.9 – 3.5 lM) and
C67G8 (IC50: 36.5 – 7.7 lM) were significantly lower than that of CQS C2GC03 and GC03 (IC50: 60.3 – 8.3 lM and 59.1 – 4.1 lM)
(*p < 0.05, one-way ANOVA with Newman–Keuls post-test). Data represent means – S.E.M. (n = 9). (C) Parasite lines were
exposed to IC50 concentrations of BSO for 2 h before GSH levels were determined. GSH levels decreased significantly in all 4
parasite lines: from 968 – 12 to 97 – 17 nmol/1010 cells for GC03; from 1152 – 93 to 183 – 24 nmol/1010 cells for C2GC03; from
388 – 29 to 166 – 19 nmol/1010 cells for C3Dd2; and from 754 – 61 to 183 – 24 nmol/1010 cells for C67G8. Data represent
means – S.E.M. of two to six independent measurements (**p < 0.01, one-way ANOVA with Newman–Keuls post-test). (D)
The levels of GSH in C2GC03, C3Dd2, and C67G8 were determined after incubation without or with 5 mM NAC for 16 h. The
levels of the GSH increased significantly in all three parasite lines analyzed to from 1152 – 93 to 2800 – 600 nmol/1010 cells for
C2GC03; from 388 – 29 nmol/1010 cells to 1120 – 180 nmol/1010 cells for C3Dd2; and from 754 – 61 nmol/1010 cells to
1720 – 260 nmol/1010 cells for C67G8. Data represent means – S.E.M. of two independent experiments each done in triplicate
(**p < 0.01; one-way ANOVA with Newman–Keuls post-test). (E) The effect of 5 mM NAC on the susceptibility to CQ was
determined. In a normal medium, IC50s were 19.2 – 3.2 nM, 295 – 33 nM, and 152 – 25 nM for C2GC03, C3Dd2, and C67G8,
respectively. In the presence of 5 mM NAC, the IC50s increased significantly in C3Dd2 to 384 – 25 nM and in CQR C67G8 to
215 – 27 nM (*p < 0.05; one-way ANOVA with Newman–Keuls post-test), while the IC50 for C2GC03 (21.9 – 3.0 nM) was not
significantly different. Data represent means – S.E.M. of three to four independent experiments each done in triplicate. (F) The
effect of preincubating parasite lines with 30 lM BSO (CQR) or 60 lM BSO (CQS) on their susceptibility to CQ for 20 h was
analyzed. The IC50 values decreased from 18.3 – 0.9 nM to 11.5 – 3.7 nM in GC03; 19.3 – 1.2 nM to 13.0 – 4.1 nM in C2GC03; from
296 – 21 nM to 222 – 11 nM in C3Dd2; and from 125 – 12 nM to 93.3 – 9.3 nM in C67G8. The reduction of the CQ IC50 in C3Dd2

was significant (*p < 0.05; one-way ANOVA with Newman–Keuls post-test).
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To elucidate whether the isogenic lines were differentially
affected by the specific gGCS inhibitor l-buthionine sulfox-
imine (BSO), the IC50 values of BSO were determined (Fig.
2B). Consistent with the lower GSH levels in the CQR lines,
the IC50 values for BSO of these parasites were approximately
half those of the CQS lines (Fig. 2B). It was further verified that
the lethal effect of BSO was associated with GSH depletion.
BSO treatment at IC50 concentrations (for 2 h) resulted in
significant decreases of GSH levels in all four parasite lines
(Fig. 2C).

Susceptibility of parasite lines to CQ and the effect
of N-acetylcysteine

Incubating the isogenic parasites with 5 mM N-
acetylcysteine (NAC) for 16 h increased intracellular GSH
levels in the CQS C2GC03 line by more than twofold (Fig. 2D)
without causing a significant change in the response to CQ, the
IC50 ratio being 1.1 (Fig. 2E). In contrast, increasing GSH levels
in the CQR parasites C3Dd2and C67G8 (Fig. 2D) led to statisti-
cally significant increases of the CQ IC50 values of both lines
(Fig. 2E). These data support the case that elevated GSH levels
in the presence of the mutant crt gene mediate a further
increase in the resistance to CQ. Additional supporting
evidence for the involvement of GSH and CRT was provided
by the demonstration that a decrease in GSH levels by
preincubation of parasites with BSO resulted in a significant
reduction in CQ IC50 in C3Dd2 (Fig. 2F).

Effect of moderating intracellular GSH levels
on CQ accumulation

The C2GC03 and C3Dd2 lines were treated with 1-chloro-2,
4-dinitrobenzene (CDNB), a substrate for glutathione S-trans-
ferase (GST) that leads to the formation of 2,4-dinitrophenyl-S-
glutathione adducts, which are excreted, and thus result in a
decrease of intracellular GSH levels (22, 28), and their effect on
accumulation of CQ was measured. Increasing concentrations
of CDNB to just above the IC50 concentrations (8.5 – 4.5 lM and
9.5 – 1.1 lM for C2GC03 and C3Dd2, respectively) significantly
stimulated the accumulation of [3H]-CQ in the CQR parasite
line C3Dd2, but not in the CQS line C2GC03 (Fig. 3A). The CDNB
effect on [3H]-CQ accumulation in CQR parasites was similar
to that caused by 10 lM verapamil (VP) (Fig. 3A), which is an
L-type calcium channel blocker known to interact with
mutated forms of PfCRT (18, 26, 33, 42). In contrast, [3H]-CQ
accumulation in CQS C2GC03 was unaffected by CDNB or VP
(Fig. 3A). Qualitatively similar results were obtained compar-
ing a CQS back-mutant parasite line derived from a CQR
parent line (Dd2) called T76K-1Dd2 (Table 1) with the CQR
C-1Dd2 (Table 1) (Fig. 3B) (18). The effect of 10 lM CDNB and
VP was negligible in the CQS T76K-1Dd2, whereas the effects on
the CQR line C-1Dd2 were similar to that observed with C3Dd2

(Fig. 3B). It was confirmed that incubation with 20 lM CDNB
for 20 min (the same incubation time as in the cellular accu-
mulation ratio for chloroquine experiment described above)
resulted in significantly reduced GSH levels (Fig. 3C). These
data show that the reduced GSH levels resulting from CDNB
treatment impact on CQ accumulation, but only in parasites
carrying the K76T mutation in the pfcrt allele. An alternative
explanation could be that the 2,4-dinitrophenyl-S-glutathione
adduct generated itself interferes with CQ movement through
mutant PfCRT in a similar way to VP.

CQ equilibrium binding studies and the concentration
of hemozoin

The data detailed above suggested that cytoplasmic GSH
may have access to the DV in CQR parasites and thus be able
to interact with the free heme there to form a GSH–heme
complex, possibly with the neutral thiol serving as an axial
ligand to heme iron as suggested by Shviro and Shaklai (41).
This interaction would scavenge free heme and slow down
the rate of hemozoin formation, but as the GSH–heme com-
plex is nontoxic (41), it would not damage the parasite, and
would also compete with CQ for binding to the heme target
and so reduce the toxicity of CQ. In addition, it is possible that
some of the heme could be spontaneously destroyed by GSH,
liberating iron and GSSG (1, 41), which would also result in
reducing CQ binding and so its antimalarial effectiveness.

For these reasons, we postulated that the amount of free
heme in the DV of CQR parasite lines should be reduced. It is
difficult to measure directly the concentration of free heme in
the DV of P. falciparum, but its concentration can be reliably
estimated from analysis of the CQ equilibrium binding exper-
iments performed on intact infected erythrocytes (4, 5, 9). The
basis of this assay is that CQ readily forms a complex with free
heme and so prevents its biomineralization into hemozoin (3,
5). Our analysis of the apparent affinity of CQ binding to heme
demonstrated that it is greatly reduced in the CQR lines C3Dd2

and C67G8 compared to the C2GC03 CQS line (Fig. 3D), with
both reduced apparent affinity and also reduced heme-binding
capacity. Least-squares analysis of the CQ-binding isotherms
indicates that CQ equilibrium binding capacity is lower in
C3Dd2 and C67G8 isolates (30 – 0.8 lM and 29 – 1.7 lM, respec-
tively) compared to C2GC03 (35 – 1.1 lM). This is consistent with
free heme availability being less, although only by about 15%,
in these two CQR lines and potentially linked to mutations in
PfCRT. The decreases are also consistent with the 15%–20%
reduction in CQ-binding capacity reported in the CQR progeny
of a genetic cross [reported as Jmax in Sanchez et al. (40)].

We also determined hemozoin levels in the CQS and CQR
lines, and showed that they were significantly lower
( p < 0.001) in CQR C3Dd2 compared with CQS C2GCO3 (Fig.
3E). Consistent with the model, we propose that GSH in CQR
parasites scavenges or destroys free heme. It should be noted
that a report by Gligorijevic and colleagues (15) concluded
that there was no difference in the hemozoin content between
untransformed GC03 and transformed C3Dd2. In that study,
hemozoin quantity was determined indirectly from the vol-
ume of the malaria pigment as measured microscopically,
whereas we used a quantitative chemical assay. This may
suggest that pigment volume and hemozoin content are not
linearly correlated.

Expression of GSH biosynthesis
and GSH-dependent enzymes

To investigate whether the lower levels of GSH observed in
the untreated lines with the mutant CRT could result from
differential expression of GSH biosynthetic genes, real-time
quantitative polymerase chain reaction (RT-PCR) of pfgs and
pfggcs was undertaken. This revealed only slight variations in
the expression of these genes between parasite lines (Fig. 4A),
ruling out that the different GSH levels were a consequence of
reduced GSH biosynthesis in the CQR parasites. Moreover, the
levels of expression of pfcrt mRNA were equivalent in the four
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FIG. 3. Differential effect of 1-chloro-2,4-dinitrobenzene (CDNB) on CQ accumulation and differences in CQ binding
between CQ-sensitive (CQS) and CQ-resistant (CQR) lines. (A) The effect of a range of concentrations of CDNB on the
steady-state cellular accumulation ratio (CAR) of [3H]-CQ in the C2GC03 CQS line (open bars) and the C3Dd2 CQR line (filled
bars). Significant differences to the control are indicated by *( p < 0.05) and **( p < 0.01). Statistical analysis was performed
using one-way ANOVA with Newman–Keuls post-test. The effect of 10 lM CDNB is comparable to that of 10 lM verapamil
(VP). (B) The effect of 10 lM CDNB on CAR of [3H]-CQ in the T76K-1Dd2 back-mutant CQS line (open bars) and the C-1Dd2

CQR line (filled bars) and the comparative effect of 10 lM VP (**p < 0.01). (C) Effect of 20 lM CDNB on the levels of GSH in
the isogenic parasite lines differing in their PfCRT allele. The parasites were incubated for 20 min before GSH levels were
determined (*p < 0.05). (D) Scatchard plot of CQ equilibrium binding in the C2GC03 CQS line (filled circles), the C3Dd2 CQR
line (open squares), and the C67G8 CQR line (open circles). Data are means of single observations derived from five individual
experiments. (E) Normalized hemozoin content of the C2GC03 CQS and C3Dd2 CQR lines. Data represent means – S.D. of 10
individual preparations of hemozoin normalized to parasite protein concentration (**p < 0.01; one-way ANOVA with
Newman–Keuls post-test).
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parasite lines. In addition, PfCRT protein expression, as de-
termined by western blotting, was similar in the three isogenic
lines C2GC03, C3Dd2, and C67G8, while the parent line GC03
contained 1.5-fold to 2-fold higher levels of PfCRT protein (Fig.
4B, C), which is consistent with previous reports by Sidhu and
colleagues (42). The levels of P. falciparum glutathione-S-
transferase (PfGST) and P. falciparum glutathione reductase
(PfGR) proteins were similar in all parasite lines (Fig. 4B, C),
suggesting that the CQR parasites preserve their capacity to
maintain their redox status through the action of PfGR and to
generate conjugates with GSH through the activity of PfGST.
One caveat is that we cannot exclude the possibility that PfGST
activity might be negatively affected by the lower GSH levels in
the CQR parasite lines.

GSH transport activity of PfCRT expressed
in Xenopus oocytes

The data above demonstrate that the presence of mutant
pfcrt leads to a reduction in intracellular GSH levels in CQR

parasites without any alterations in GSH metabolism. Fur-
ther, the mutant allele is required to demonstrate an effect of
CDNB on CQ accumulation and to show an increase in CQ
IC50 values in the presence of NAC. We thus hypothesized
that these effects are mediated by selective transfer of GSH to
the DV, the site of CQ action, possibly via transport by mutant
PfCRT that is located in the DV membrane (49). This hy-
pothesis was tested using the X. laevis heterologous expres-
sion system to express mutant and wild-type forms of PfCRT.
This system has been previously validated experimentally as
being suitable for measurement of GSH uptake in a study of a
family of PfCRT-like proteins occurring in Arabidopsis thaliana
(AtCLT), which are GSH transporters (27). Further evidence
for the suitability of the assay system was provided by mea-
suring the uptake of [3H]-CQ into oocytes expressing the
PfCRTDd2 variant (26).

We expressed several PfCRT variants in Xenopus oocytes:
PfCRTHB3 as a representative of the CQS wild-type allele of
pfcrt, as carried by C2GC03; PfCRTDd2 as the predominant CQR
mutant from Southeast Asia and the PfCRT isoform found in

FIG. 4. Expression level of GSH biosynthesis genes, GSH-dependent proteins, and Plasmodium falciparum chloroquine
resistance transporter (PfCRT). (A) The expression levels of cgcs, gs, and pfcrt in GC03, C3Dd2, and C67G8 were analyzed by
real-time quantitative PCR relative to the expression levels of C2GC03 as outlined in the Materials and Methods section. The
expression was normalized using the seryl-t-RNA message, which is uniformly expressed throughout the parasite blood-stage
cycle. The data shown are means – S.E.M. of three independent experiments, each performed in triplicate. (B) Western blots of
saponin-isolated parasite lysates of CQS and CQR parasite lines were performed with 5 lg of protein per lane. The blots were
probed with rabbit anti-PfGR antibodies (1:15,000) (a-PfGR) or rabbit anti-PfGST (1:5,000) (a-PfGST) to assess the level of each
protein in the different parasite lines. The blots were reprobed with rabbit anti-PfCK2a (a-PfCK2a) diluted 1:200 to control for
equal loading. (C) The relative expression of proteins shown in B was analyzed using LabImage 1D, and the data represent
the normalized mean values obtained from three to four independent western blots – S.D. Protein expression levels showed
no significant differences.
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C3Dd2; PfCRTK76T as it carries only the single K76T mutation,
but is otherwise wild type (a form that has no corollary in
parasite isolate lines); A. thaliana CLT1 (AtCLT1) as a positive
control. Indirect immunofluorescence was performed using
anti-PfCRT as the primary antibody (11). The images dem-
onstrated that PfCRTHB3, PfCRTK76T, and PfCRTDd2 were all
expressed in the oocytes injected with the cRNA of their re-
spective genes (Fig. 5). Immunofluorescence is visible at the
plasma membrane and also in the cytoplasm at comparable
levels for all three PfCRT variants. There is no fluorescence
signal in the water-injected control group.

We confirmed previous reports that oocytes expressing
PfCRTDd2 demonstrated a two-threefold increase in [3H]-CQ
uptake compared to water-injected controls, an effect that was
time dependent (Fig. 6A) (26). The X. laevis oocytes possess a
low endogenous ability to take up GSH, which has been ob-
served in previous studies (21, 27). The expression of
PfCRTDd2, however, conferred time-dependent transport of
[3H]-GSH, which was reduced to basal levels in the presence
of CQ (Fig. 6B). PfCRTDd2 and PfCRTK76T showed six- and
twofold higher rates of GSH membrane transport than water-
injected controls. [3H]-GSH uptake into oocytes expressing
PfCRTDd2 or PfCRTK76T was specific, with transport inhibited
by saturating concentrations of unlabeled GSH, CQ, and VP
(Fig. 6D). No transport of [3H]-GSH was detected in oocytes
expressing PfCRTHB3, showing that only the CQR isoforms of

PfCRT transport GSH (Fig. 6C). Thus, these findings strongly
support the proposal that the mutant PfCRT occurring in CQR
parasites transport GSH.

Discussion

It is widely acknowledged that resistance to CQ is pri-
marily conferred by mutations in the P. falciparum transporter
gene pfcrt (11, 17, 42, 49), although other factors, including the
multidrug-resistant transporter homolog pfmdr1, also con-
tribute to the level of CQR (32, 37). This current study re-
evaluated the hypothesis that GSH plays a part in CQR (14)
and has revealed a previously unconsidered role for the CQR
alleles of pfcrt. GSH was reported previously to scavenge free
heme, forming a complex in which the thiol group is linked to
heme iron, and provides a mechanism to protect membranes
from oxidative heme damage (41). CQ also binds to heme,
inhibiting the detoxification of heme into hemozoin crystals
and causing a build-up of a drug–heme complex (4, 9, 18, 20,
50). This CQ–heme complex is toxic, in contrast to the GSH–
heme complex, promoting lipid peroxidation and destruction
of parasite membranes and mediates parasite killing by CQ
(41). Thus, it can be envisaged that GSH could interfere with
CQ action simply by competing for binding with heme. It has
also been reported that GSH degrades heme in vitro (1, 41); if
this happens in situ, then GSH would interfere with CQ action
by destroying its target. A third possibility whereby GSH
could play a role is that it may protect parasites from en-
hanced heme-induced oxidative stress (2). Our data showing
that CQR P. falciparum contains reduced levels of hemozoin
are consistent with free heme being either scavenged or de-
graded by GSH in these parasites. However, until now, it was
not clear how modulating the levels of GSH, which is syn-
thesized in the cytoplasm of the parasites, can influence the
sensitivity to CQ, which acts within the DV of the parasites
where heme is generated.

Our findings in this study resolve this issue and reveal a
new role for mutant PfCRT in transporting GSH between the
cytoplasm and the DV, presumably leading to a change in the
overall distribution of the tripeptide. We demonstrate direct
and specific transport of GSH by two CQR isoforms (K76T
and Dd2) of PfCRT expressed in X. laevis oocytes. Further
evidence for mutant PfCRT-driven GSH transport is provided
by selective inhibition of GSH uptake by both CQ and VP.
GSH transport by CQR alleles of pfcrt is in agreement with a
previous report that the CQR mutant PfCRTDd2 is capable of
transporting small peptides as well as CQ (26). In fact, we
found that a single-point mutant PfCRTK76T was sufficient to
allow uptake of [3H]-GSH, although not to the same level as
the mutant PfCRTDd2 allele. In contrast, we could not dem-
onstrate any [3H]-GSH transport activity in oocytes expres-
sing the CQS allele of pfcrt. The only other study in which pfcrt
has been expressed in oocytes is that reported by Martin and
colleagues (26) studying CQ transport. In that study, the pfcrt
sequence had to be modified extensively to achieve functional
expression of the protein in the oocyte system. This was not
necessary in the current study where we see adequate and
functionally relevant PfCRT protein in the oocyte plasma
membrane as well as the oocyte cytoplasm using the un-
modified pfcrt codon sequence. A further discrepancy be-
tween the data presented here for GSH transport and CQ
transport reported by Martin and colleagues (26) is that they

FIG. 5. Functional expression of PfCRT in Xenopus oo-
cytes. Indirect immunofluorescence images of individual X.
laevis oocytes after sectioning, fixing, and probing with the
primary anti-PfCRT (1:500) (11) and the secondary anti-rab-
bit (1:500) IgG antibodies. Images shown are phase contrast
(left panel), secondary antibody fluorescence (center panel),
and merged (right panel). Images are presented for water-
injected control oocytes and oocytes expressing the HB3,
K76T, and Dd2 variants of PfCRT (top to bottom). The
plasma membrane and cytoplasm are labeled.
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found the single-point mutant of PfCRTK76T incapable of CQ
transport. Our conclusion is that the K76T mutation in PfCRT
generates structural changes that are sufficient to allow GSH
transport, but not CQ transport. It is not clear what orientation
PfCRT takes when inserted into the oocyte membrane; our
results suggest that the majority of the protein has an orien-
tation that is equivalent to that in the DV, or alternatively, the
transporter can move GSH in either direction, depending on
the prevailing concentration gradient.

Mutant PfCRT has been postulated to act either as a
channel, permitting the mediated and fast transport of di-
protonated CQ across the DV membrane, or as an outwardly

directed slower CQ carrier (6, 26, 35, 39). The transport of GSH
is time dependent, but appears to be nonsaturable, which
could suggest that the transport is not carrier mediated. An-
other possibility is that the tripeptide is metabolized by
X. laevis oocytes, and thus a thermodynamic equilibrium
cannot be reached. In either case, the inhibition of GSH
transport by CQ and the inhibition of CQ transport by small
peptides (26) suggest that CQ and certain peptides, including
GSH, share the same translocation sites within mutant PfCRT.

The functional relevance of mutant PfCRT-mediated GSH
transport is revealed when GSH levels are elevated in both
CQR and CQS parasite lines using NAC, leading to a significant

FIG. 6. Uptake of [3H]-GSH by Xenopus oocytes expressing mutant and wild-type PfCRT and Arabidopsis thaliana
CLT1. (A) Time course of uptake of [3H]-CQ in oocytes expressing the mutant PfCRTDd2 (filled circles) in comparison to the
water control (open circle). (B) Time course of uptake of [3H]-GSH in oocytes expressing PfCRTDd2 in the absence (filled
circles) or presence (filled squares) of 0.5 mM unlabeled CQ in comparison to the water controls (open circles). Data are
means – S.E.M. from four individual experiments with oocytes from different frogs and with six or more injected oocytes at
every time point (n ‡ 24). GSH accumulation was significantly greater in PfCRTDd2 compared with water-injected controls or
PfCRTDd2 in the presence of CQ (*p < 0.01, Mann–Whitney U-test). (C) Uptake of [3H]-GSH in oocytes expressing PfCRTHB3,
PfCRTK76T, or PfCRTDd2 variants, together with the positive control from A. thaliana (AtCLT1). Data are means – S.E.M. from
five individual experiments with oocytes from different frogs and with seven or more injected oocytes per group (PfCRT
isoform or water control) (n ‡ 35). The PfCRTDd2-expressing oocytes showed significantly higher uptake of GSH than the
water control (**p < 0.001, Mann–Whitney U-test). A similar trend was observed for PfCRTK76T and AtCLT1 (*p < 0.01, Mann–
Whitney U-test). In contrast, uptake by PfCRTHB3 was not significantly different to the water-injected controls. (D) Inhibitory
effect of unlabeled GSH (0.2 mM), CQ (0.5 mM), and VP (0.2 mM) on the uptake of [3H]-GSH in oocytes expressing PfCRTDd2,
PfCRTK76T, and PfCRTHB3, compared with a water control. Data are means – S.E.M. from three individual experiments
with oocytes from different frogs and with seven or more injected oocytes per group (n ‡ 21). In the presence of either CQ
or VP, the uptake of [3H]-GSH in oocytes expressing PfCRTDd2 was significantly reduced (**p < 0.001, Mann–Whitney U-
test). A similar trend, although less pronounced, was observed for PfCRTK76T (*p < 0.05, Mann–Whitney U-test). The speci-
ficity of the uptake observed in all experimental groups is verified by the reduction of [3H]-GSH uptake to background levels
by the coincubation with 0.2 mM unlabelled GSH.
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increase of the CQ IC50 values only in CQR lines (Fig. 2).
Increased cytoplasmic GSH appears to only access the DV
compartment in the CQR parasites, which is consistent with the
data presenting GSH transport by mutant PfCRT in situ.

Conversely, the GST substrate CDNB is known to reverse
CQR, and it was suggested that this was directly caused by a
reduction in GSH (14). We show here that incubation of par-
asites with CDNB as well as reducing intracellular GSH levels
also cause CQR parasites to accumulate more CQ (Fig. 3),
indicating a clear role for GSH in modulating CQR. However,
direct competition between the DNP-SG conjugate and CQ for
PfCRT-mediated efflux cannot be completely excluded.

Substitution of mutant pfcrt alleles in otherwise isogenic
backgrounds of P. falciparum has a marked effect on the cel-
lular level of GSH, with CQR isogenic parasites having sig-
nificantly lower levels of GSH, which is also reflected in their
increased susceptibility to BSO (Fig. 2). Our data demonstrate
that this is not attributable to changes in the expression of the
enzymes involved in the synthesis, conjugation, and reduc-
tion of GSH (Fig. 4). Thus, the differences observed in GSH
levels are most readily explained as a direct result of the dif-
ferent genotypes of pfcrt. We suggest that cytoplasmic GSH is
transported into the DV in parasites expressing mutated pfcrt
and that this is an important feature of CQR.

The CQR parasites contain less GSH than CQS counter-
parts, which superficially seems strange if this is the mediator
of resistance. However, the key factor is not the level of GSH,
but its location; it is the GSH in the DV that has the protective
effect through binding to heme. This binding itself would
reduce the amount of free GSH in the parasite overall, and
also there are a multitude of peptidases in the DV, and
it seems likely that they eventually destroy much of the
DV-located GSH through proteolysis. Proteolysis of GSH and
GS-X adducts (which could include GSH–heme) by carboxy-
peptidases has previously been shown to occur in plant vac-
uoles, but a fuller investigation of this possibility in
Plasmodium was beyond the scope of this study (52).

Our findings clearly show that high GSH levels alone are
not sufficient to affect CQR; it is the location of the GSH that is
central to resistance. This is reiterated by our demonstration
that GSH levels in untransformed Dd2 were found to be
comparable with those of the CQS lines GC03 and C2GC03.
This is also supported by a previous study where two non-
related isolates, CQS 3D7 and CQR Dd2, were compared, and
higher GSH levels were reported in the resistant parasites (30).
Discovery of the crucial role of the mutant PfCRT in trans-
porting GSH will now allow fuller analyses of the part played
by the protein in other CQR lines.

Materials and Methods

Materials

P. falciparum GC03, C2GC03, C3Dd2, C67G8, T76K-1Dd2, and
C-1Dd2 were a gift from Professor D. Fidock, (New York, USA)
(18, 42) (Table 1). The plasmids PfHSP86 5¢-pENTR4/1, GFP-
pENTR2/3p, CHD-Hsp86, and pCHD-3/4 were a gift from
Professor G. I. McFadden (Melbourne). Anti-P. falciparum
glutathione S-transferase (PfGST) antiserum was obtained
from Professor E. Liebau (University of Münster, Germany).
Antiserum against P. falciparum casein kinase 2a (PfCK2a) was
provided by Professor C. Doerig (Monash University, Aus-
tralia) (16). RPMI 1640 medium and Albumax II were from
Invitrogen. All chemicals, unless otherwise stated, were from
Sigma.

Parasite culture and determination of IC50s

Parasites were cultured according to Trager and Jensen
(46), synchronized using sorbitol (19), and freed from eryth-
rocytes using saponin (47). Parasite drug susceptibility
was determined by measuring the incorporation of [3H]-
hypoxanthine (20 Ci/mmol; ARC) in the presence of
increasing drug concentrations (10) and modifiers of intra-
cellular GSH concentrations as detailed in the figure legends.

Localization studies

Expression constructs pCHD- Hsp86-gGCS-GFP and
pCHD- Hsp86-GS-GFP contained the cgcs or gs genes of
P. falciparum cloned in frame with a 3¢gfp gene to generate
C-terminal-tagged g-GCS or GS fusion proteins. The chimeric
genes were expressed under the control of the Pfhsp86 pro-
moter and were generated using the Invitrogen MultiSite
Gateway system in combination with the pCHD-3/4 desti-
nation vector (48). To generate gene entry clones, the full-
length genes for cgcs and gs were amplified using the primer
pairs, defined in Table 2, using Pfx SuperMix (Invitrogen) and
subcloned according to manufacturer’s instructions. The
Multisite Gateway LR recombination reaction was performed
according to the manufacturer’s instructions (Invitrogen).

Determination of total GSH levels

Intracellular GSH levels of saponin-isolated parasites were
determined by HPLC (51). Cells were washed once with Earle’s
balanced salt solution (EBSS) (6.8 g/l NaCl, 0.4 g/l KCl, 0.2 g/l
MgSO4 · 7 H2O, 0.158 g/l NaH2PO4 · 2 H2O, 0.264 g/l
CaCl2 · 2 H2O, 2.2 g/l NaHCO3, and 1 g/l d-glucose) before

Table 2. Primers Used in This Study

Product Forward primer 5¢ to 3¢ Reverse primer 5¢ to 3¢

ggcs ORF CACCATGGGTTTTCTAAAAATCGGAACG TGCACTCAGTTCGTACATTTTTTTTGC
gs ORF CACCATGGAAAGAAAGGTAGATGAGTT ATGTTCAGTTAAAAAAAAAGAATCC
Pfcrt cDNA ATATCTCGAGATGAAATTCGCAAG ATATCCATGGTTATTGTGTAATAATTGAATCG
ggcs RT-PCR TCCTTGCTCTTACTGCATGTACT TTCCGTTCTACAATCAACACTGT
gs RT-PCR CTTTAGAGCATTATATACACCTAACCA CGAACCAACAAGTTGATAAGGTA
pfcrt RT-PCR GGAAATATCCAATCATTTGTTCTT CAACAATAATAACTGCTCCGAGAT
seryl-tRNA synthase

RT-PCR
AAGTAGCAGGTCATCGTGGTT TTCGGCACATTCTTCCATAA

RT-PCR, real-time quantitative-polymerase chain reaction.
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lysis of red blood cells (RBC) with 0.15% saponin (5 min, 4�C).
Isolated trophozoites (2–5 · 107) were washed 3 times with
EBSS, incubated for 45 min at room temperature in 50 ll of
40 mM N-(2-hydroxyethyl)-piperazine-N¢(3-propanesulfonic
acid) and 4 mM diethylenetriamine pentaacetic acid, pH 8.0,
with 0.7 mM Tris (2-carboxyethyl)-phosphine to fully reduce
thiols before derivatisation with monobromobimane. Subse-
quently, 50 ll of 2 mM monobromobimane (dissolved in etha-
nol) was added, and samples were heated to 70�C for 3 min
before extracts were deproteinized for 30 min on ice by addi-
tion of 100 ll 4 M methane sulfonic acid, pH 1.6. Precipitated
protein was removed by centrifugation, and supernatants were
subjected to thiol analyses.

CQ uptake and equilibrium binding assays

CQ uptake by P. falciparum trophozoites was measured as
described previously (5, 18). Steady-state CQ uptake was
determined over 20 min using 5 nM of [3H]-CQ (specific ac-
tivity 4.7 Ci/mmol; from ARC) in the presence or absence of
various concentrations of CDNB. Equilibrium binding studies
were performed as described previously, using 2 nM [3H]-CQ
and a range of concentrations of unlabelled CQ (18). After
correcting for nonspecific uptake (5), the resulting binding
isotherms were fitted using nonlinear regression, and binding
parameters calculated using the Grafit single-site ligand-
binding model (Erithacus).

Determination of parasite hemozoin/heme
concentration

P. falciparum-infected RBCs were saponin-lysed, and he-
mozoin was purified as previously described (18). The protein
concentration of parasite lysates was determined using
Bradford reagent following the manufacturer’s instructions
(BioRad). Purified hemozoin was converted into heme by
dissolving in 0.5 N NaOH, and heme concentration was de-
termined using a QuantiChrom Heme Assay kit DIHM-250
according to the manufacturer’s instructions (Universal Bio-
logicals Ltd). Hemozoin concentration was normalized to
mM/mg of protein.

Expression of pfcrt in X. laevis oocytes

pfcrt cDNA products were synthesized with Thermoscript
(Invitrogen) from total RNA of P. falciparum and amplified by
PCR (primers see Table 2) with Taq High-Fidelity polymerase
(Invitrogen) following manufacturer’s recommendations.
Amplified pfcrt (MAL7P1.27) genes from P. falciparum HB3 and
Dd2 and a third gene only harboring the K76T mutation in the
HB3 background constructed using the Quikchange site-
directed mutagenesis kit (Stratagene) were directionally cloned
into the pSP64T vector (using XhoI-NcoI sites) for expression in
X. laevis. The Atclt1 (Arabidopsis thaliana chloroquine-like
transporter 1; At5g19380) gene (27) was cloned into pT7TS
(pGEM4Z-vector; Promega), between BglII-SpeI sites.

Capped complementary RNA (cRNA) was transcribed
in vitro using the SP6 or T7 Message Machine kits (Ambion)
using as templates EcoRI-linearized recombinant pSP64T or
SalI-linearized pT7TS plasmids, respectively. Oocytes were
obtained from X. laevis mature females purchased from Xeno-
pus Express (Vernassal). X. laevis were immersed in euthanasic
concentrations (0.5% w/v) of ethyl 3-aminobenzoate metha-

nesulfonate, and 5 mM Tris–HCl, pH 7.4. Ovary lobes were
removed and divided into smaller sacs. Individual oocytes
were isolated manually with a platinum loop (43). After two
washes, oocytes were left to recover at 18�C for 2 h in oocyte
Ringer’s solution (115 mM NaCl, 2 mM KCl, 1.8 mM CaCl2,
1 mM MgSO4, 1 mM Na2HPO4, 1.18 mM KH2PO4, and 5 mM
HEPES, pH 7.4; or 5 mM MES for pH 6.0; adding 1 ml/l of
10,000 U penicillin/10,000 U streptomycin solution). Stage
V–VI oocytes were selected and injected the following day with
*50 ml of DEPC-treated water or cRNA solutions at 1 lg/ll
using a semiautomatic injector (Drummond, Nanoject).

GSH uptake assays into X. laevis oocytes

Enzymatic defolliculation of oocytes was completed by 30-
min incubation in 1 mg/ml collagenase in Ringer’s solution
(pH 7.4). Radiotracer uptake studies (12 oocytes per condi-
tion) were carried out at room temperature in 1 ml Ringer’s
solution, pH 7.4, with 2 lCi/ml of [3H]-GSH (38.6 Ci/mmol;
ARC) and 5% dithiothreitol; the final concentration of GSH was
52 nM. [3H]-CQ (4.7 Ci/mmol; ARC) was used at 2 lCi/ml in
Ringer’s solution, pH 6.0; the final concentration was 425 nM.
Uptake studies were terminated by washing the oocytes in
Ringer’s solution, pH 7.4, at 4�C. Individual oocytes were
collected and immersed in 1 ml of scintillation liquid. After
overnight incubation, radioactivity was determined using a
Wallac 1450 Microbeta scintillation counter.

Indirect Immunofluorescence of X. laevis oocytes
expressing PfCRT

Individual oocytes were immersed in 1 ml of an optimal
cutting temperature medium (RA Lamb Ltd), and snap-frozen
in 2-methylbutane in liquid N2 before sections of 10 lm were
prepared on glass slides coated with Chrome Alum gelatin
solution. Sections were fixed with cold acetone for 10 min,
followed by blocking with 4% bovine serum albumin (BSA) in
phosphate-buffered saline (PBS) for 1 h, and incubation with
primary antibody (1:500 in 4% BSA) for 1 h. After three washes
with PBS, secondary anti-rabbit antibody (1:500 in 4% BSA)
was applied for 1 h followed by washes as before. Samples
were mounted using a VectaShield HardSet mounting medium
(Burlingame) and examined by confocal microscopy (Zeiss
Axiovert 200 M; L5M5 Pascal laser module).

Isolation of RNA and real-time PCR

RNA was extracted from synchronized trophozoites using
Trizol according to the manufacturer’s instructions (45). RNA
was treated with TURBO-DNA-free before synthesis of cDNA
using the RETROscript kit (both Ambion). Real-time quanti-
tative PCR was performed using QuantiTect SYBR Green
master mix (Qiagen) and primers at a final concentration of
0.3 lM in a 7500 Real-Time PCR system (Applied Biosystems).
Transcription levels of cgcs, gs, and pfcrt were examined using
specific primers (Table 2). Seryl-t-RNA synthase was used as
an endogenous control (primers see Table 2), as it is tran-
scribed uniformly throughout the parasite life cycle (25, 38).
PCR cycling conditions were 50�C for 2 min, 95�C for 15 min,
followed by 40 cycles of 95�C for 15 s, 54 for 30 s, and 68�C
for 35 s. Relative expression levels were calculated by the
DDCT method (User Bulletin 2, Applied Biosystems, www
.appliedbiosystems.com).
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Western blotting

About 5 lg of protein from four different parasite lines
were separated on a 15% SDS-PAGE and blotted onto nitro-
cellulose. The membrane was probed with the primary anti-
bodies raised against PfGST (1:5000), P. falciparum GR (PfGR)
(at 1:15,000 dilution), and an antibody raised against PfCK2a
(1:200) as a loading control. The secondary anti-rabbit anti-
body (Promega) was used at 1:10,000 dilution, and the signals
were visualized using the Immobilon Western kit (Millipore).
Relative expression was analyzed using LabImage 1D soft-
ware (Kapelan Bio-Imaging Solutions).

Statistical analysis

Statistical analyses were performed using GraphPad Prism
3.0. Parametric data were analyzed by one-way analysis of
variance followed by Newman-Keuls post-test if differences
were significant. Nonparametric data were analyzed by
Mann–Whitney U-test. The use of the term significant in the
text means a statistically significant difference p < 0.05.
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Abbreviations Used

ANOVA¼ analysis of variance
AtCLT¼PfCRT-like proteins from Arabidopsis thaliana

BSA¼ bovine serum albumin
BSO¼ l-buthionine sulfoximine
CAR¼ cellular accumulation ratio for chloroquine

CDNB¼ 1-chloro-2,4-dinitrobenzene
CQ¼ chloroquine

CQR¼CQ-resistant and CQ resistance
CQS¼CQ sensitive

DV¼digestive vacuole
EBSS¼Earle’s balanced salt solution
GFP¼ green fluorescent protein
GSH¼ glutathione
GST¼ glutathione S-transferase

NAC¼N-acetylcysteine
PBS¼phosphate-buffered saline
PCR¼polymerase chain reaction

PfCK2a¼P. falciparum casein kinase 2a
PfCRT¼Plasmodium falciparum chloroquine resistance

transporter
PfGR¼P. falciparum glutathione reductase
PfGS¼P. falciparum glutathione synthetase

PfgGCS¼P. falciparum g-glutamylcysteine synthetase
RBC¼ red blood cells

RT-PCR¼ real time quantitative polymerase chain reaction
VP¼verapamil
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