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Abstract

Mechanism-based pharmacokinetic-pharmacodynamic (PK/PD) modelling is the standard computational technique for
simulating drug treatment of infectious diseases with the potential to enhance our understanding of drug treatment
outcomes, drug deployment strategies, and dosing regimens. Standard methodologies assume only a single drug is used, it
acts only in its unconverted form, and that oral drugs are instantaneously absorbed across the gut wall to their site of action.
For drugs with short half-lives, this absorption period accounts for a significant period of their time in the body. Treatment
of infectious diseases often uses combination therapies, so we refined and substantially extended the PK/PD methodologies
to incorporate (i) time lags and drug concentration profiles resulting from absorption across the gut wall and, if required,
conversion to another active form; (ii) multiple drugs within a treatment combination; (iii) differing modes of action of drugs
in the combination: additive, synergistic, antagonistic; (iv) drugs converted to an active metabolite with a similar mode of
action. This methodology was applied to a case study of two first-line malaria treatments based on artemisinin combination
therapies (ACTs, artemether-lumefantrine and artesunate-mefloquine) where the likelihood of increased artemisinin
tolerance/resistance has led to speculation on their continued long-term effectiveness. We note previous estimates of
artemisinin kill rate were underestimated by a factor of seven, both the unconverted and converted form of the artemisinins
kill parasites and the extended PK/PD methodology produced results consistent with field observations. The simulations
predict that a potentially rapid decline in ACT effectiveness is likely to occur as artemisinin resistance spreads, emphasising
the importance of containing the spread of artemisinin resistance before it results in widespread drug failure. We found that
PK/PD data is generally very poorly reported in the malaria literature, severely reducing its value for subsequent re-
application, and we make specific recommendations to improve this situation.
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Introduction

Most human infections are currently treatable by drugs. Clinical

trials remain the gold standard, empirical approach guiding drug

deployment policy and practical issues such as dosing regimes.

However in silico simulations based on computational predictions

of drug treatment outcome have the potential to play a vital

ancillary role in designing and guiding these deployment practices.

Accurate simulations can rapidly investigate the consequences of

putative changes in deployment practices such as changes in

regimen (dosage level, frequency and duration of treatment) and

can investigate and potentially quantify the threat posed by the

evolution of drug resistance. The methodology used to investigate

such factors in silico is mechanism-based PK/PD modelling, whose

basic methodology and range of applications was recently reviewed

by Czock and Keller [1]. In essence, this approach incorporates

existing PK and PD parameters estimates into differential equations

to calculate the decline in drug concentration after treatment, then

converts this into a pathogen killing rate to find how pathogen

number declines after treatment and whether the infection is

eventually cleared. Note the distinction between PK/PD mecha-

nism based modelling (the subject of this manuscript) which uses

existing PK estimates to simulate drug treatment, and PK

parameter estimation models (usually using non-linear analysis)

which are applied to human clinical data to actually produce the PK

estimates; a recurring theme of this manuscript is that the former

fails to fully utilise all the data produced by the latter and we

describe the computational extensions required to achieve this.

PK/PD mechanism-based modelling assumes a single drug is

instantaneously present in the patient after treatment (the drug

absorption and conversion processes often reported in PK

estimation models of human data are ignored) and that pathogens

are killed by the drug in its unaltered form [1]. In practice, drug

combinations are now mandatory for the treatment of many

infections, including the ‘big three’ infective killers HIV, TB and

malaria so the single-drug PK/PD methodology needs to be
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updated to reflect these policies. Many drugs also have short half-

lives so the time taken for their absorption (across the gut in the

case of oral regimens) may be a significant period relative to half-

life and needs to be incorporated into the methodology. Finally,

many drugs undergo conversion in the human (often in the liver)

to other active forms that also kill the pathogens. This manuscript

describes the computational extensions required to update the

standard mechanistic-based modelling approach to allow for

multiple drugs within a combination, and their absorption/

conversion phases. We then illustrate their application to the

current batch of first line antimalarial drugs, the artemisinin-based

combination therapies (ACTs).

Malaria caused by Plasmodium falciparum, is one of the top three

infective killers of humans with an estimated 0.75 to 1.5 million

deaths per annum [2]. ACTs are now the WHO recommended

first-line treatment for uncomplicated malaria [3]. The deploy-

ment of these combination therapies was designed to slow or even

prevent the evolution of drug resistance which has, historically,

been a potent threat to successful malaria treatment; delays in

changing policy led to the widespread retention of ineffective drugs

and acrimonious accusations of ‘medical malpractice’ aimed at

such august institutions as the World Health Organisation [4] and

the malaria community must prevent any similar situation arising.

However, the policy of deploying ACTs worldwide has lead to

increasing levels of artemisinin-tolerance and possibly artemisinin-

resistance in Plasmodium falciparum being reported on the Cambo-

dia-Thailand border [5,6,7,8,9] leading to intense speculation

about how this will affect the current and future effectiveness of

ACTs (e.g. [10,11]). It is not possible to directly observe the

consequences of antimalarial drug resistance until it is too late, so

the best approach is to develop the best possible in silico models to

help guide deployment policies aimed at maintaining long-term

effectiveness of these key anti-infective drugs. We therefore apply

our updated in silico PK/PD modelling methodology to explicitly

investigate two front-line ACTs and the public health conse-

quences of increasing tolerance and resistance. Accurate PK/PD

modelling has two further important applications. Firstly, it can

generate accurate simulations of field data upon which methods of

analysis can be developed and refined [12]; the underlying

parameters of interest are often unknown in field data but are easily

recovered from simulated data enabling the performance of statistical

tests to be gauged. Secondly, they can be used to investigate real-life

situation that cannot be ethically addressed in the field, an obvious

example being poor adherence to a treatment regimen.

Methods

Mathematical extensions of the basic model
We use mechanistic PK/PD modelling [1] as previously

described in Winter & Hastings [13] with the four key extensions

outlined below.

Pharmacokinetics – incorporating the absorption,
conversion and elimination of drugs

Standard PK/PD models [1] and their subsequent application

to malaria [13,14,15,16,17] have previously assumed the drugs are

instantaneously present in the serum at time t = 0, are not

converted to any other form and decay at a rate Ct = C0e-kt, where

Ct is the drug concentration at time t and k is the terminal

elimination rate. This assumption is questionable for ACTs as

their absorption and subsequent conversion to its active metabolite

dihydroartemisinin (DHA) occur over a time period of 1–2 hours,

roughly equivalent to their half-life (Figure S1). To address this

assumption we track the time course of artemisinin absorption and

conversion as illustrated in Figure 1 i.e. absorption across the gut

(component A) into the serum (component B) at rate x, its

elimination from the body at rate y or its conversion to the active

metabolite (DHA) (component C) at rate z and the subsequent

elimination of DHA from the body at rate k.

The drug-dependent killing function, f(C), was described using

the standard Michaelis-Menton equation

f Cð Þ~Vmax.
Cn

CnzIC50
n

� �
ð1Þ

where C is the drug concentration (mg/l) which decays over time,

Vmax is the maximal drug-killing rate (per day), IC50 is the

concentration at which 50% of the maximal killing rate occurs

(mg/l) and n is the slope of the dose response curve. The problem

is therefore to find how C varies over time following treatment so

that it can be incorporated into Equation 1.

We use a standard one-compartmental model (Figure 1) that

appears appropriate for constituents of current ACTs (Text S1), to

track the changes in concentration over time. To avoid confusion,

we note that ‘‘one compartment’’ is used in the standard PK sense

i.e. only one body compartment (in this case, serum) is investigated

besides the gut. The change in drug concentration occurring for

each component over time (allowing for complications caused by

the presence of the drug/metabolite from previous dosages) can be

described by three differential equations

dA

dt
~{Ax ð2Þ

dB

dt
~Ax{By{Bz ð3Þ

dC

dt
~Bz{Ck ð4Þ

To find the amount of converted and unconverted drug in the

serum at time t, Equations 3 and 4 were integrated using laplace

Author Summary

Pharmacokinetic-pharmacodynamic (PK/PD) models of
infectious diseases provide vital insights into the effective-
ness of drug treatments (including the optimal dosage
level, frequency and duration) by explicitly relating drug
concentration after treatment to a pathogen kill rate, and
ultimately the models describe whether an infection is
likely to be cleared. Furthermore, they can address issues
such as poor patient compliance and the spread of drug
resistance that are too expensive and/or unethical to
determine in the field. Despite their potential, the
methodologies used in previous PK/PD models have been
based upon the assumptions that only one drug is used in
treatment, that the drug is immediately available in its
active form at the site of action, and that the parent drug is
not further converted to active metabolites. These
assumptions severely limit the application of such models.
We therefore extend the methodology to remove these
assumptions and use this model to investigate two first-
line treatments of malaria. The model accurately replicated
field data and was then used to predict the impact of
increasing drug tolerance and resistance on treatment
outcome. We identified key PK/PD data that can, and
should, be measured and reported in future field studies to
maximise the predictive ability of mathematical models.

Improving Pharmacokinetic-Pharmacodynamic Modeling
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transformations [18] (Text S1). Integrating Equation 3 gives

B tð Þ~ x DzA’ð Þ
x{ yzzð Þð Þ e{ yzzð Þt{e{xt

� �
zB’e{ yzzð Þt ð5Þ

where B(t) is the amount (mg) of unconverted drug in the serum at

time t, A9 is the amount (mg) of drug in the gut at the immediate

end of the previous time step (time steps correspond to the time

between dosages, described in Text S1) i.e. at t = 0 (A9 = 0 if this is

the first dose of a multi-dose regimen), D is the drug dosage (mg)

given and B9 is the amount (mg) of unconverted drug in the serum

at the immediate end of the previous time period i.e. at t = 0

(B9 = 0 if it is the first dose). Inclusion of any drug left over from the

previous time step (denoted A9, B9 and C9) is essential when

including repeat dosages.

Integrating Equation 4 (Text S1) gives

C tð Þ~ zx DzA’ð Þ e{kt

yzz{kð Þ x{kð Þz
e{qt

k{ yzzð Þð Þ x{ yzzð Þð Þz
e{xt

k{xð Þ yzz{xð Þ

� ��

z
zB’

yzz{kð Þ e{kt{e{ yzzð Þt
� �

zC’e{kt

�
MC

MB

ð6Þ

where C(t) is the amount of converted drug present in the serum, k

is the elimination rate of the converted drug, C9 is the amount (mg)

of converted drug in the serum at the immediate end of the

previous time step (C9 = 0 for the first dose) and M represents the

molecular weight of both the unconverted drug (MB) and

converted drug (MC). We are tracking drugs in mg so the ratio

of the molecular weights of species B and C, MB and MC

respectively, are required to account for the changes in molecular

weight that occur during conversion.

The drug-dependent killing described in Equation 1 required

the amount of drug to be converted to a concentration (mg/l).

This was found by dividing the amount of drug by the volume of

distribution (l) which is the weight of the patient W, multiplied by

the volume of distribution Vd per kg. The value of Vd differs

between the drugs so VdB and Vdc represent volumes of distribution

for drug forms B and C respectively.

The concentration of component B at time t, CB(t), is therefore

CB tð Þ~ B tð Þ
W .VdB

ð7Þ

and the concentration of component C at time t, CC(t) is

Cc tð Þ~ C tð Þ
W .VdC

ð8Þ

The use of Laplace transformations in PK is relatively well

established [18] so it would be straightforward to extend the

calculations for increasing numbers of compartments, drug forms

and conversion elimination routes.

The existence of additional compartments in PK estimation

models can be taken as an example. To recap, PK/PD mechanism

based modelling of malaria requires drug concentrations in the

‘blood’ compartment but all PK estimation models try to include

additional compartments where drugs can go; for example a drug

may go into a ‘‘fat’’ compartment with fluxes between the blood

and fat compartments. PK estimation models decide whether

additional compartments are justified by using an information

criterion (usually AIC). The problem is that PK estimation

modelling is not straightforward and a fair amount of subjective

judgement may be required. This subjectivity, combined with

different datasets, may result in different analyses of the same drug

fitting 1 or 2-compartment models [19]. When using the model it

is important that researches maintain consistency in the PK model

structures (i.e. assuming one or two compartments). For example,

PK parameters derived from a two-compartment model should be

incorporated into a PK/PD model that also uses a two-

compartment structure. The use of Laplace transforms to

incorporate 2 compartmental models is illustrated in the Text

S1; users wishing to use a 2 compartmental model can therefore

replace equations 5 and 6 obtained above for a one compartment

model with Text S1 equations 1.20 and 1.21 obtained from a 2-

compartment model.

Pharmacodynamics – Parasite killing by multiple drugs
The PK/PD modelling now allows for artemisinin absorption

and conversion (described above), so the ability to track more than

two drug concentrations simultaneously and convert them into a

drug-killing rate is crucial. This feature is absent from previous

pharmacological models of malaria, which track only a single drug

[1] although we previously extended the methodology to track up

to two drugs [13]. Existing pharmacological models typically use a

standard differential equation [1] to find a mathematical

description for the rate of change in total parasite growth and

death rates

Figure 1. The standard one-compartment pharmacokinetic model. A standard PK one-compartment model allowing for absorption of a drug
from the gut (component A) at rate x, into the unconverted form in the serum (component B) where it is eliminated at a rate y and converted into an
active form (DHA in this example; component C) at rate z. DHA is then eliminated at rate k.
doi:10.1371/journal.pcbi.1003151.g001

ð6Þ
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dP

dt
~P a{f Ið Þ{f Cð Þð Þ ð9Þ

where P is the number of parasites in the infection, t is time after

treatment (days), a is the parasite growth rate (per day), f(C)

represents the drug-dependent rate of parasite killing which

depends on the drug concentration C, and f(I) the killing resulting

from the hosts background immunity.

As antimalarial drugs are now typically deployed as combina-

tion therapies and as each drug may affect parasites in its

unconverted and/or converted forms, predicting the changing

numbers of parasites requires an expansion of Equation 9

dP

dt
~P a{f Ið Þ{

Xr

d~1

f Cdð Þ
 !

ð10Þ

where r is the number of drugs, the drug effect f(Cd) is the effect of

each drug, d. Note that we regard each active entity as a distinct

‘‘drug’’. For example artemether-lumefantrine (AR-LF) includes

three drug forms lumefantrine (LF), artemether (AR) (unconvert-

ed) and its active metabolite DHA (dihydroartemisinin). Note that

Equation 10 assumes drugs kill independently; this is discussed

further below.

Integrating Equation 10 allows us to predict the number of

parasites at any time, t, after treatment with any number of drugs.

This was done by first integrating Equation 9 using the separation-

of-variables technique

1

P
dP~ a{f Ið Þ{f Cð Þ½ �dt ð11Þ

Integrating both sides of Equation 11 gives

ðt

0

1

P
dP~

ðt

0

a{f Ið Þ{f Cð Þ½ �dt

so

ln Pt½ �{ln P0½ �

~

ðt

0

adt{

ðt

0

f Ið Þdt{

ðt

0

f Cð Þdt

~at{a0{f Ið Þt{f Ið Þ0{

ðt

0

f Cð Þdt

Taking the exponential of both sides (and noting that a times

0 = 0) gives

Pt

P0
~e a{f Ið Þð Þt{

1

e

Ð t

0
f Cð Þdt

so

Pt~P0.e
a{f Ið Þð Þt

.
1

e

Ð
f Cdð Þ.dt

~P0e a{f Ið Þð Þte
{
Ð t

0
f Cð Þdt ð12Þ

The problem is now to integrate f(C). Assuming there are r

separate drugs/metabolites with antimalarial activity. In this case,

f(C) becomes

f Cð Þ~
Xr

d~1

f Cdð Þ ð13Þ

So for each drug/metabolite d we need to calculate its

concentration over time Cd using the compartment model

Equations (7 and 8) and the substitute Cd into the killing rate

equation

f Cdð Þ~ Vd
max

.Cd
n

Cd
nzIC50

n ð14Þ

Note in Equation 14, Vd
max is the maximum drug killing Vmax for

drug d.

Substituting Equation 13 into 12 gives

Pt~
P0e a{f Ið Þð Þt

P
r

d~1
e

Ð t

0
f Cdð Þdt

ð15Þ

or, equivalently,

Pt~P0e a{f Ið Þð Þt P
r

d~1
e
{
Ð

f Cdð Þ ð16Þ

Note that Cd may be a complicated expression (including

Equations 7 and 8) and so
Ð

f Cdð Þ has to be integrated

numerically. As before [13], if the predicted parasite number (Pt)

falls below 1 we assume the infection has been cleared and the

patient cured, immunity is currently ignored (see Winter &

Hastings [13] for further discussion).

Modelling drug killing when two or more drugs are
present

These computational extensions to the mechanistic PK/PD

modelling allow for the presence of two or more drug forms

simultaneously present in the human host, and active against the

infection. It therefore becomes necessary to consider and specify

how these drug forms interact in their effect against the parasites.

There appears to be four main computational choices.

Independent modes of action. This is the mode of action

explicitly developed above and summarised in Equation 16. Most

drug combinations are designed to contain drugs with indepen-

dent modes of action, so this is a common scenario and would be

revealed by drugs having additive action in pharmacodynamic

studies [20].

Non-independent action. The total drug action may be

greater than, or less than, that expected from the sum of the two

drugs independently. This is commonly referred to as ‘synergy’ or

‘anatogonism’ but see Chou [20] for a fuller discussion of the

dangers inherent in using these terms. It is difficult to even define

these terms [20], still less quantify them, so an empirical approach

based on data obtained from isobolograms [21] would have to be

used to convert drug concentrations into killing.

Identical modes of action. This seems plausible if there are

different, but structurally similar, forms of same drug. One

computational possibility is simply to use the sum of their

concentrations in Equation 1 i.e.

Improving Pharmacokinetic-Pharmacodynamic Modeling
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f CxzCy

� 	
~Vmax.

CxzCy

� 	n

CxzCy

� 	n
zIC50

n

 !
ð17Þ

Where x and y are the two forms. Problems arise if Vmax or IC50

differ between the two forms. The maximal killing rate may

plausibly be the same for each form but it is entirely plausible that

structural differences between the forms alter binding of the drugs

and hence their IC50 values. It is difficult to compute the joint

killing under these circumstances because it is difficult to envisage

how to weight the differing IC50 values.

Dominant form killing. This is a computational compro-

mise. The amount of killing of each related drug form over a time

period is calculated and the higher killing rate used in the

calculations. The underlying premise for this approach is that

although related drugs may differ in their IC50s due to minor

structural differences (see above), they are likely to have identical

effects once present at saturating concentrations (i.e. achieving

maximal kill rates according to the Michaelis-Menton Equation 1)

because they share the same killing mechanism. If both drugs are

present at very low concentrations then kill rate is zero, if one or

both are present at very high, saturating, concentrations then

killing is equal to their common maximal kill rate. The only

problematic situation is where both drugs are present at

concentrations resulting in intermediate kill rates. This approach

is particularly useful for rapidly eliminated drugs that are

essentially either present at full effect or absent so that periods of

time with both drug concentrations producing intermediate kill

rates can be essentially ignored (see, for example, Figure S2). This

is the approach we shall use for artemisinins in the analyses

described below. So, for example, when modelling the artemisi-

nins, the drug killing for both forms (i.e. the parent drug and the

active metabolite) were calculated during each time step and the

drug form with the higher parasite killing was used to update

parasite numbers at the end of the time step. As specific examples,

either drug killing rate could be used when simulating therapeutic

outcome in the patient described by Figure S2A, while artemether

kill rate would be used in patients described on Figure 2B, while

DHA kill rates would be used in patients whose PK characteristics

resulting in them maintaining higher levels of DHA than

artemether (example not shown).

Modelling artemisinin combination therapies
Pharmacological ‘mechanism-based’ modelling [1] has been

used previously to investigate key features of antimalarial drug

treatment either as monotherapies [14,15,16,17] or with recent

emphasis on the current generation of ACTs [13]. We have

previously touched upon the potential consequences of increasing

artemisinin resistance using standard pharmacokinetic-pharmaco-

dynamic (PK/PD) modelling techniques [13] however, as

mentioned in the paper, the model relied heavily on two main

assumptions built in to the existing methodology. First, that all

drugs are instantaneously absorbed and, if appropriate, converted

to their active metabolites. Whilst this may be reasonable for drugs

with a long half-life it is not practical for drugs like the artemisinins

where absorption and conversion times are almost equal to their

short half-lives. The second assumption, that no more than two

drugs could be present simultaneously, was reasonable when

modelling the ACTs if both drugs were instantaneously absorbed

and converted. However, conversion of the artemisinins requires

that the artemisinins be modelled as two separate component

drugs i.e. the parent drug and the DHA metabolite together with

the partner drug and so modelling the ACTs requires a minimum

of three drugs be tracked simultaneously. Here we have addressed

the methodological challenges of incorporating the absorption and

conversion phases of drugs into PK/PD modelling while

simultaneously tracking the concentration of more than two

drugs, a feature absent in previous pharmacological models

[14,15,16].

The PK/PD model parameters required to simulate treatment

are given in Table S1 and described in the Text S1. The PK

extensions for the artemisinins required additional parameters

describing the drug absorption rate across the gut, the conversion

rate to DHA and the elimination of DHA from the body (Figure 1).

These parameters and their associated distributions can be found

in Table S1 with details of model calibration and validation

included in the Text S1. Variation in model parameters was

previously [13] added assuming a coefficient of variation of 30% in

all parameters. In reality, some parameters are much more

variable [22] while others maybe less so. We now incorporate

more appropriate levels of variation into the PK/PD parameters

using drug specific distributions thus making results more

compelling for specific ACTs. To validate the model’s predictive

ability, the maximum serum concentration (Cmax) and time to

achieve Cmax (Tmax) were compared to field data (Text S1).

The methodology described above now allows for the action of

both the unconverted and converted forms of the artemisinins.

However, given that they have similar modes of action their effect

on parasite numbers is unlikely to be additive (as is assumed in

Equation 11). As such, the drug effect, f(C), for each of the

artemisinin forms was calculated each time-step but only the

dominant form (i.e. parent drug or active metabolite) with the

greater drug killing effect was used to compute the number of

parasites in the next time step. Activity, and hence killing, of

artemisinins and the partner drug were assumed to be indepen-

dent.

A major change was made to the artemisinin maximal drug kill

rate (Vmax). Previous estimates of the Vmax [13,23,24] have been

based upon the assumption that drug killing is maximal

immediately after treatment and remains so for 48 hours after

treatment. This is quantified by the parasite reduction ratio (PRR);

a ratio of the number of parasites at time of treatment scaled by

their number 48 hours after treatment. So, assuming the decline in

parasitaemia is first order, the parasite count (Pt) at any given time

(t) is given by

Pt~P0e{Vt ð18Þ

where P0 is the number of parasites present at the start of

treatment.

This appears to be reasonable for drugs given at relatively high

doses with a long half-life because the maximal killing will extend

over the 48 hours after treatment. However, it is unrealistic for the

artemisinins whose short half-lives mean parasites are typically

only exposed to high concentrations of artemisinins during the first

6–8 hours following treatment (Figures S1 and S2). The steady

decline in parasite numbers after this period presumably reflects

dead or dying parasites being cleared by host mechanisms. PK/

PD modelling of drug effect assumes deaths only occur in the

presence of the drug (i.e. 6–8 hours post-treatment) hence the

need for this increased kill rate. So, given PRR = P0/Pt [23] (where

Pt is usually assumed to be 48 hours), the relationship between

PRR and parasite killing rate Vmax is

Vmax~{
1

t
ln

1

PRR

� �
ð19Þ

Improving Pharmacokinetic-Pharmacodynamic Modeling
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Figure 2. Panels A–F, changes in drug failure rates associated with increasing drug resistance. Changes in failure rates associated with
either increasing AS/AR IC50 (panels A–B), increasing DHA IC50 (panels C–D) or simulating increasing both AS/AR and DHA IC50 (panels E–F). Left-
hand column includes AS-MQ treatment and the right-hand column AR-LF treatment. Note that failure rates for monotherapies are shown as columns
to the immediate right of the x-axis.
doi:10.1371/journal.pcbi.1003151.g002
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When t is assumed to be 48 hours and PRR is 104 then the

maximal artemisinin drug kill rate (Vmax) is 4.6 as used

previously by ourselves and others [13,23]; we now consider

that value inappropriate because a 6 hour burst acting at a kill

rate of 4.6 would achieve a PRR of well below 104 .

Consequently, we assume artemisinin maximal drug killing

occurs only during the 6 hours when the drugs are actually

present at therapeutic concentration (Figures S1 and S2), so

achieving a PRR of 1000 (White [23] gives a range of 103 to 105

for the artemisinins) requires Vmax to be 27.6. Note, if the

maximal drug killing is assumed to occur over 8 hours and the

PRR is assumed to be 10,000 (within the range reported in

White [23]) Vmax again equals 27.6. Consequently our artemi-

sinin maximum killing rate is approximately 7-fold higher than

in previous simulations.

Two treatment combinations were investigated, artesunate-

mefloquine (AS-MQ) and AR-LF, both are highly effective ACTs

currently used to treat malaria. Variation in how humans

metabolise the drug and parasite drug sensitivity was added to

the model parameters (Table S1) using parameter specific

estimates of co-efficient of variation, CV. The technical details

regarding parameter variability are included in the Text S1.

The extended pharmacokinetic-pharmacodynamic (PK/PD)

model can then be implemented to address a critical feature of

current ACT deployment: how is the observed increase in

artemisinin tolerance likely to affect the long-term effectiveness

of ACTs? The crucial operational question is whether there is

likely to be a sudden catastrophic decrease in ACT effectiveness, a

gradual decline or, a best case scenario, a margin of safety such

that we can have relatively large increases in artemisinin

tolerance/resistance before ACT failures start to increase?

The partner drugs, LF and MQ, are currently largely effective

monotherapies if administered correctly (although MQ in south

east Asia may be problematic) so increasing artemisinin resistance

would, by definition, have little or no impact on therapeutic

outcome. To avoid this trivial case, we investigated how increasing

levels of artemisinin resistance impacted treatment failure rates if

resistance to the partner drug was already present or spreading.

When modelling MQ treatments the MQ IC50 values were either

1-, 2-, 5-, 10-, 15-, 20- or 25-fold greater than the current default

value (Table S1) and when modelling LF treatments LF IC50

values were either 1-, 2-, 5-, 10-, 20-, 25- or 50-fold greater than

the current default value (Table S1). Resistance to artemisinins was

investigated in two ways. First by increasing the IC50 of the AS,

AR or DHA (the active metabolite) independently and then by

assuming the IC50s of the parent species and DHA were

completely correlated i.e. the IC50s were increased simultaneously

by the same amount. This was necessary because it is not clear

whether parasites will evolve resistance independently to the

artemisinin entities or whether there will be substantial cross-

resistance to different entities (see later discussion) The IC50 range

of both artemisinin forms included one value 10-fold smaller than

the mean and values 1-, 20-, 40-, 80- or 100-fold greater than the

mean.

Details of implementation are in the Text S1. For each of the

10,000 patients simulated the model recorded whether an

infection (with one clone) was cleared and, if so, the parasite

clearance time (PCT; defined as the time taken for an infection to

fall below the limit of microscopic detection, which was assumed to

be 108). This was done first for the partner drugs without the

artemisinin component, i.e. as monotherapies, to give a baseline

failure rate. Then, by comparing the results of the monotherapy

with those of the ACTs we were able to quantify the ability of the

artemisinin component to reduce failure rates and PCTs.

Results

The artemisinin drug concentration profiles of the model are

consistent with those measured in the field (discussed in Text S1

and Figure S1). Analysis of both ACTs showed that adding an

artemisinin to a partner drug reduced failure rates below that of

the monotherapy regardless of the initial levels of partner drug

resistance, the latter being achieved through varying the partner

drug IC50 value (Figure 2); the only exception was the trivial case

when partner drugs were fully effective as monotherapies. For

AS-MQ, the exact proportion of failures prevented by the

artemisinin component was dependent on the initial level of

resistance to the partner drug. Regardless of whether the IC50s of

the artemisinins were correlated, adding an artemisinin at its

default IC50 value to a partner drug reduced failure rates by

between 70 and 90%. This is a relative reduction, for example, a

50% reduction is equivalent to fall in failure rates from 40% to

20% or from 12% to 6% (Figure 2, panels A, C and E). This is

consistent with field observations that adding AS to MQ reduced

the absolute risk of failing treatment but did not result in a fully

effective ACT [25]; this has also been observed for other failing

monotherapies not modelled here (chloroquine, amodiaquine,

sulfadoxine-pyrimethamine) [25]. The results also show that the

addition of AR to LF monotherapies reduced failure rates to zero

when modelling the mean parameter values (Figure 2, panels B,

D and F).

Figure 2 shows the failure rates of the ACTs when the IC50s of

the two artemisinin drug forms were either varied independently

(Figure 2, panels A to D) or varied simultaneously (Figure 2, panels

E and F). When the IC50s of the artemisinin drug forms were

varied independently increasing the IC50 of either had very little

effect in the failure rates (Figure 2, panels A, B, C and D). This was

particularly clear for AR-LF treatments where increasing either

AR or DHA IC50 caused no measurable increase in drug failure

rates (Figure 2, panels B and D). This occurs because resistance to

one form is compensated by continued sensitivity to the other form

because both forms are potentially capable of high rates of parasite

killing (Figure S2). Increasing AS IC50 alone also had little effect

on the AS-MQ failure rates (Figure 2, panel A), again highlighting

the importance of its active metabolite on parasite survival. When

DHA IC50 was increased by 20-fold in AS-MQ treatment

(Figure 2, panel C), treatment failures increased by 25 to 65%

(relative increase) depending on the level of resistance to the

partner drug. This is the only time increasing either the

artemisinin drug forms alone affected treatment outcome and

further DHA IC50 increases (above 20-fold) had little further

effect on treatment outcome (Figure 2, panel C). Failure rates to

AS-MQ assuming the artemisinin drug forms were uncorrelated

(Figure 2, panels A and C) remained lower than those seen when

assuming they were correlated (Figure 2, panel E) thus implying

both artemisinin drug forms are still playing an active role in

parasite killing.

Further DHA IC50 increases above 20-fold had no discernable

effect on treatment outcome and failure rates remained lower than

those seen when the IC50’s were correlated thus implying that

while not as potent as AR and DHA it still plays an active role in

parasite killing. For both ACTs, increases in failure rate as a result

of increasing artemisinin resistance were much larger if the IC50s

of the artemisinin drug forms were simultaneously increased.

Rapid loss of protection was most noticeable for AS-MQ with

small IC50 increases (20 and 40-fold), well within the range of

natural variation [22], increasing failure rates by 65–70%

(Figure 2, panel E). Loss of protection was more gradual following

AR-LF treatments (Figure 2, panel F) but both ACTs showed
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failure approaching those of the of the monotherapies as

artemisinin IC50s increased to 100-fold greater than the mean.

The PCT appears to be determined predominantly by the level

of resistance to the artemisinin component with the initial level of

partner drug resistance being relatively unimportant (Figure 3).

This was particularly evident following AR-LF treatment where

increasing the IC50 of LF had no discernable effect on PCT

(Figure 3, panels B and D) while increasing MQ resistance only

caused the PCT to vary by up to one day (Figure 3, panels A and

C). When the IC50s of the two artemisinin species were increased

simultaneously, the addition of artemisinin to the monotherapy

reduced PCTs by approximately 2 to 3 days for both ACTs. As

seen with the treatment failures (Figure 2), increasing the IC50 of

AS/AR or DHA independently had little/no effect on PCT

(Figure 3, panels A to D) and PCT did not approach that of the

monotherapy because the other artemisinin species retained its

effectiveness. When the IC50s were increased simultaneously both

artemisinin species lost their effectiveness (Figure 3, panels E and

F) while the PCT increased almost linearly with increasing

artemisinin resistance and approached the PCTs seen with

monotherapies (Figure 3, panels E and F).

Discussion

The extended PK/PD mechanism based modelling was applied

to ACTs and produced results and predictions consistent with field

data on failure rates [25] and increasing PCT associated with

resistance. The main operational concern surrounding the

evolution of artemisinin resistance is that it will lead to clinical

failure in patients treated with ACTs [26]. Obviously, if the

partner drug is effective as a monotherapy, then the presence or

absence of artemisinin resistance has no clinical effect. Problems

arise as resistance spreads to the partner drugs, a process slowed by

the addition of an artemisinin [27]. The results clearly show that

adding AS to a failing drug (MQ) reduced the treatment failure

rates by up to 90% (relative reduction) but did not result in a fully

effective ACT (Figure 2, panel E). This observations is in line with

the findings of the International Artemisinin Study Group who

performed a meta-analysis of individual patients from 16

randomised trials (n = 5948) studying the effect of adding AS to

either CQ, AQ, SP or MQ [25]. While the total population failure

rates were reduced by 42–65% when averaged across all drug

regimens, the addition of AS to MQ monotherapy reduced failure

rates by approximately 90–95% [25]. The results for AR-LF show

that the addition of AR with default IC50 values was sufficient to

save a failing LF monotherapy by reducing failure rates to ,1%

for all levels of partner drug resistance regardless of whether the

IC50s of the AR and DHA are increased simultaneously or

independently (Figure 2, panels B, D and F). However, this

observation was much more difficult to validate than those of AS-

MQ as there is almost no published data on the in vivo efficacy of

LF monotherapy and so it is impossible to quantify the proportion

of failures averted specifically by the addition of AR. We also note

that for both ACTs, only when the IC50s were correlated did

increasing the IC50 eventually lead to failure rates approximately

equal to those of the monotherapy therefore removing any benefit

afforded to the partner drug by the artemisinin. These occurred

after 50–100 fold increases in artemisinin IC50 which is large, but

around the same magnitude as the natural variation observed in

field isolates [22]. The key question is whether the IC50s are

correlated; field data suggest they are (Text S1).

Increasing PCTs are currently being observed in the field

[7,26,28,29,30]; Dondorp et al. [31] for example, show that

parasites resistant or tolerant to artemisinins take 3 or 4 days to

parasites as compared with less than 2 days for artemisinin

sensitive parasites; this pattern was also apparent in the results

presented here (Figure 3). The simulated results showed the initial

level of resistance to the partner drug had very little effect on the

PCT and whilst this may seem strange it can be explained

relatively easily. While the partner drug is undeniably important

when determining the treatment outcome (i.e. success or failure),

the PCT is determined almost solely by the short-lived but fast-

acting artemisinin component, which causes a rapid decline in

parasite numbers but is not present long enough to completely

clear the parasite load [13]. As with dug failure rates, PCT only

approached those of the monotherapies when the IC50s were

increased simultaneously again consistent with field data that the

IC50s are correlated (Text S1). For both ACTs, PCT began to

increase after relatively small increases in artemisinin IC50 of 20-

to 40-fold (within the range of natural variation [22]).

The results shown on Figure 2 illustrate an important factor not

generally recognised when considering how resistance may arise to

artemisinins and other drugs whose converted and unconverted

forms are both active: if resistance arises to only one form, then the

other form may retain sufficient activity to compensate. This is

well illustrated by AR-LF in Figure 2 where increasing resistance

to either AR alone (Figure 2B) or DHA alone (Figure 2D) has

virtually no impact on failure rates which only start to escalate if

resistance occurs simultaneously to both forms (Figure 2F). It is

therefore essential to consider whether mutations that encode

resistance to one form are likely to simultaneously encode cross-

resistance to the other form (so that IC50s are correlated), or

whether the mutations are specific to individual drug forms (in

which case IC50s are uncorrelated). When considering the

likelihood of cross-resistance, it is important to realise that cross-

resistance and mode of drug action are related, but distinct

entities. Drugs with identical modes of action may show complete

cross-resistance if mutations occur at their site of action which

prevents both/all forms of the drug from binding therefore

blocking their activity. Alternately, resistance may emerge through

mutations that alter the drugs’ ability to reach or accumulate at

their site of action. Malaria is often characterised by the latter

where mutations in membrane transporters, notably mdr and crt,

are implicated in resistance to a range of antimalarial drugs [32].

These transporters depend more on the chemical scaffold (charge

and structure) of the drug than its active site so it is not a priori

certain that cross-resistance will inevitable occur between a parent

drug and its active metabolite. A lack of cross resistance would be

hugely beneficial as it means parasites would have to evolve

resistance to both forms of the drug but, unfortunately, our

simulations suggest a model of complete cross resistance provides

the best fit to the malaria observations that IC50s are likely to be

correlated (discussed further in SI).

Drug IC50 values are estimated either from parasites taken

from a patient’s primary infection or from laboratory isolates. The

IC50 values of the artemisinins and their active metabolite DHA

vary widely in the literature and their reported values appear to be

highly dependent on the source from which they were estimated.

For example, Brockman et al. [33] show the mean IC50 of AR was

approximately 4-fold higher than DHA (4.83 and 1.22 respective-

ly) when measured in patients from Thailand but were approx-

imately equal (3.4 and 3.6 in 1996 and 3.1 and 4.0 in 1998

respectively) when measured in K1 laboratory isolates. The 4-fold

lower DHA IC50 measured in patients may result in a higher level

of effectiveness of DHA in their patient population. What is not

generally realised is that both artemisinin components are

potentially important in determining treatment outcome; for

example Saralamba et al. [34] simply stated that in their patients
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Figure 3. Panels A–F, changes in parasite clearance times associated with increasing drug resistance. Changes in parasite clearance
times (PCT) associated with either increasing AS/AR IC50 (panels A–B), increasing DHA IC50 (panels C–D) or simultaneously increasing both AS/AR
and DHA IC50 (panels E–F). Left-hand column includes AS-MQ treatment and the right-hand column AR-LF treatment. Note that PCTs for
monotherapies are shown as columns to the immediate right of the x-axis.
doi:10.1371/journal.pcbi.1003151.g003
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‘‘the total drug exposure of AS was ,10% that of DHA’’ and so

choose to ignore the parasiticidal effect of AS. This may be true on

average, but there is huge variation in how patients metabolise

different forms of the drug so it entirely plausible that some

patients will slowly convert artesunate but rapidly clear DHA, in

which case the former would have the larger killing effect. In

particular, changing IC50 simply translates into how long the drug

is killing at near-maximal rates in the few hours following

treatment (Figure S2). Importantly, this means that artemisinin

therapy given as artesunate or artemether has an inherent

therapeutic safety margin: If one component of the artemisinin

is metabolised quickly or has a particularly high volume of

distribution, there is still a second active component present within

the patient that is likely to retain therapeutic effectiveness.

Increasing tolerance/resistance to artemisinins was modelled

using the standard assumption that it will arise through increased

IC50 values. Artemisinin resistance may be atypical in this respect

as it appears to manifest through increased clearance times of

parasites following treatment with unchanged IC50, possible due

to the drug(s) having activity against a more restricted range of

stages in the malaria cell cycle (see below). The mechanistic

approach assumes instantaneous killing of parasites irrespective of

their stage, so deceased activity against some stages would be

manifested as decreased drug maximal killing rate (Vmax in

Equation 1) in the methodology; interesting this parameter was

found to be a far more potent determinant of resistance than the

IC50 [13]. It would be possible to re-run the above simulations

altering Vmax rather than IC50 but we chose to use the more

conventional approach in the first instance as we consider this

primarily a computational paper; we shall explore this approach in

future studies applying the methodology more specifically to

malaria.

Malaria differs from many other pathogens in having a distinct

48 hour intracellular cycle that essentially consists of invasion of

red blood cells (RBC), digestion of host haemoglobin, parasite

multiplication within the RBC, cell rupture and re-invasion of new

RBCs. Drugs consequently have different stage specificity profiles

depending on what metabolic processes are occurring in each

stage (for example, many drugs target haemoglobin digestion so

are primarily active against parasites in this stage of their cycle).

Our analyses ignored these drug stage-specificities. It would

however be easy to re-compute the dynamics using one hour time

steps and using a 48 hour array to move parasites through the

48 hour development cycle as done previously [35,36,37]. We

chose not to do so for two main reasons. Firstly, stage specificity

requires that PD parameters be specified for each stage and that

the initial distribution of parasite stages in the infection be

specified. Secondly, and more importantly in our opinion, is that

the PK/PD computations assume instantaneous killing of parasites

depending on current drug concentration whereas, in reality, there

is a delay in killing. The delayed killing can be incorporated into

the methodology by postulating a hypothetical ‘metabolite’ whose

production or elimination is disrupted by the drug, and that

parasite death occurs as a function of metabolite level; the time

taken for metabolite levels to reach ‘lethal’ levels introduces a time-

lag into the killing [38,39]. This is an elegant way of incorporating

a delay but it requires further parameterisation of the metabolite’s

production and elimination, specification of a killing rate as a

function of metabolite level, and calibration against field data.

Patel and colleagues [38] estimated the delay in artemisinin killing

as around 5 hours. A recent study attempted to simulate ACT

dynamics using a stage structured approach and concluded that it

did not match well field data [36]; we are unsurprised because the

short-term dynamics will be critically dependent on stage-specific

PD parameterisation and no time lag was built into the model.

Hence, our approach was to ignore short-term dynamics and run

the enhanced PK/PD methodology, ignoring stage specify and

delayed drug action [40]; the objective was to simulate the fate of

the infection over the longer term rather than the dynamics

immediately post-treatment. Consistency of our results with field

and clinical observations suggest this is a robust approach but it is

important to recognise the alternative modelling approaches can

be designed, and that our enhanced PK/PD methodology can

easily form the basis for an improved stage-specific model run in 1-

hour time steps.

The rationale behind this paper is that combining good quality

field and clinical data into a sophisticated PK/PD model should

allow a thorough investigation of ACT effectiveness in the context

of increasing artemisinin tolerance/resistance. It therefore pro-

vides a methodological framework for clinical pharmacologists to

interpret their results. However the predictive power of mathe-

matical modelling is governed by the crucial step of model

calibration and the availability of comprehensive, good quality

PK/PD data in the literature is surprisingly scarce (Supporting

Information, part 2). This has the potential to limit the usefulness

of models as predictive tools. Given the amount of effort and

resources required to conduct PK/PD studies and that their

explicit aim is usually to improve human therapy, it seems

appropriate to consider how best to report such studies for

maximum impact. We therefore make three specific suggestions

that authors may consider to maximise their studies’ chance of

influencing policy choice. Firstly, all available population PK/PD

data, including those required purely for intermediate calculations

should be reported. For example, terminal elimination rates are

invariably reported but parameters required in their calculation,

for example volumes of distributions (often confounded with

bioavailability) are often omitted [41]. We are uncomfortable with

the rationale underlying the common assertion that DHA is the

main active species during artemisinin treatment (see above and

Figure S2); we would therefore recommend that PK parameters

for parent species such as artesunate and artemether also be

measured and reported. Secondly, the nature and extent of natural

variation in the parameters are vitally important and can result in

some patients developing low drug concentrations possibly leading

to therapeutic failures or high concentrations potentially leading to

toxicity. The distributions (normal, log-normal, etc) with their

associated coefficients of variations (CV) are therefore almost

equally important as their mean values. For example, many

authors cite CV estimates larger than the mean, which obviously

indicates a non-normal distribution: such data are much more

useful if accompanied by their distributions (herein we were forced

to assume they were log-normal). Finally, there are wide variations

in reported mean values between studies; these are generally

ascribed to sampling different populations or age groups but a

more critical appraisal in terms of any impact of different methods

of analysis would also be helpful. An excellent example is that of

Tan et al. [42] who, after describing the population PK of AS and

DHA in healthy patients, compare their results with those of other

AS and DHA PK studies and provide a detailed discussion

explaining how and why the results may differ.

We would emphasise that our choice of specific studies to

parameterise the simulation should not be regarded as prescriptive

or judgemental; as described above, the choice was often

problematic. Few, if any, PK/PD studies produce all the

parameters required to evaluate their impact on therapeutic

outcome. PK studies often focus on a single drug in a combination

and lack local estimates of parasite drug sensitivity, while PD

studies generally lack accompanying PK estimates. Consequently,
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we have focused on developing a methodology that individual

researchers can calibrate as they wish; we provide a mechanism by

which their results can be integrated with the results of other

studies to gauge their implications for drug effectiveness.

Despite the caveats mentioned above, our results and implica-

tions are clear. The kill rate of both artemisinin forms appears to

be important in determining treatment outcome and their IC50’s

are likely to be correlated. AS-MQ is more sensitive to increases in

artemisinin drug resistance than AR-LF with the number of

failures increasing quickly with relatively small increases in AS and

DHA IC50s. Both ACTs show increasing PCT associated with

increasing artemisinin IC50, an observation already seen in the

field [5,6,7,8,9]. Our results suggest this is indicative of a rapid loss

of protection provided by the artemisinins against the partner

drug(s). If, or when, resistance against the partner drug starts to

increase, most plausibly driven by mismatched half-lives

[43,44,45], then a rapid reduction in ACT clinical effectiveness

is likely to occur. We conclude that policies designed to isolate and

minimise the spread of artemisinin resistance are to be greatly

encouraged [26].

Supporting Information

Figure S1 Panels A–C, the simulated PK profiles of the
artemisinins and the relationship between drug concen-
tration and drug killing rate. The simulated PK profiles of

the artemisinin forms given as the parent drug and subsequently

converted to DHA. Given as (A) artesunate or (B) artemether;

generated using the model shown in Figure 1 mathematical

derivation described herein and using the parameters of Table S1.

The timescale and concentrations match well with those observed

in vivo (see, for example, [47,48,49]). Note that DHA is the major

component when dosing with artesunate, but the minor

component when dosing with artemether. Panel C shows the

relationship between drug concentration and killing rate as

described by the Michaelis-Menton Equation 1 in the main text.

All Figures were produced using the default parameter values

given in Table S1.

(TIF)

Figure S2 Panels A–B, the simulated parasite kill curves
of the artemisinins. The simulated parasite kill curves of the

parent artemisinin drug forms (artesunate and artemether) and

their active metabolite DHA. Treatment with (A) artesunate and

(B) artemether. Curves generated using the mathematical

derivation described herein and using the parameters of Table S1.

(TIF)

Figure S3 Panels A–B, changes in drug failure rates
associated with increasing drug resistance when pa-
rameters are varied by 30%. Change in failure rates

associated with increasing AS/AR and DHA IC50 when the

coefficient of variation in all parameters is always 30% (A) AS-MQ

treatment and (B) AR-LF treatment.

(TIF)

Figure S4 Panels A–F, changes in drug failure rates
associated with increasing drug resistance when assum-
ing independent action of the artemisinin components.
Change in failure rates associated with either increasing AS/AR

IC50 (panels A–B), increasing DHA IC50 (panels C–D) or

increasing AS/AR and DHA IC50 (panels E–F), AS-MQ

treatment (left column) and AR-LF treatment (right column)

assuming independent action of the artemisinin components. Note

that failure rates for monotherapies are shown as columns to the

immediate right of the x-axis.

(TIF)

Figure S5 Panels A–F, changes in parasite clearance
times associated with increasing drug resistance when
assuming independent action of the artemisinin compo-
nents. Change in parasite clearance times (PCT) associated with

either increasing AS/AR IC50 (panels A–B), increasing DHA

IC50 (panels C–D) or increasing AS/AR and DHA IC50 (panels

E–F), AS-MQ treatment (left column) and AR-LF treatment (right

column) assuming independent action of the artemisinin compo-

nents. Note that PCTs for monotherapies are shown as columns to

the immediate right of the x-axis.

(TIF)

Figure S6 The standard two-compartment pharmaco-
kinetic model. A standard PK two-compartment model

allowing for drug absorption from the gut (component A) to the

central compartment (component B) at a rate x. The drug is either

eliminated from the body at a rate k or exchanged with a

peripheral compartment (component C)), the drug leaves the

central compartment at a rate y and returns at a rate z.

(TIF)

Table S1 Mean antimalarial drug parameters and their
associated distributions. Mean antimalarial drug parameters

for artesunate-mefloquine and artemether-lumefantrine combina-

tion therapies. The amount of variation (i.e. CV) is given in square

brackets.

(DOCX)

Table S2 Correlations between the IC50s of five anti-
malarial drugs. Data describing the half-maximal inhibitory

concentration (IC50) of 5 different antimalarials measured in 7

different P.falciparum strains by Delves et al. [46], was used to

determine whether the IC50s of the artemisinins are correlated.

(DOCX)

Text S1 Pharmacokinetic model extensions, model
calibration and implementation. Supporting information.

(DOCX)
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