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Clinical signs and symptoms of cerebral malaria in children are nonspecific and are seen in other common en-
cephalopathies in malaria-endemic areas. This makes accurate diagnosis difficult in resource-poor settings.
Novel malaria-specific diagnostic and prognostic methods are needed. We have used 2 proteomic strategies to
identify differentially expressed proteins in plasma and cerebrospinal fluid from children with a diagnosis of
cerebral malaria, compared with those with a diagnosis of malaria-slide-negative acute bacterial meningitis
and other nonspecific encephalopathies. Here we report the presence of differentially expressed proteins in ce-
rebral malaria in both plasma and cerebrospinal fluid that could be used to better understand pathogenesis
and help develop more-specific diagnostic methods. In particular, we report the expression of 2 spectrin pro-
teins that have known Plasmodium falciparum–binding partners involved in the stability of the infected red
blood cell, suppressing further invasion and possibly enhancing the red blood cell’s ability to sequester in micro-
vasculature.
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Identifying characteristics that distinguish different
encephalopathies occurring in children in malaria-
endemic regions can be difficult, especially in resource-
poor settings. Plasmodium falciparum is often assumed
to be the main cause, but there are many other causes
of encephalopathy, including bacterial meningitis or
viral meningitis [1]. Frequently, no evidence of an in-
fectious agent is found [2], and between 2007 and 2011,
51% of comatose children admitted to Kilifi District
Hospital on the Kenyan coast had coma with no cause
identified. In addition, an earlier study of Kenyan
children with acute encephalopathy found that a

significant proportion who fulfilled the World Health
Organization definition of cerebral malaria had viruses
detected in the cerebrospinal fluid (CSF) [3]. Whereas
bacterial meningitis can be excluded by the examina-
tion and culture of CSF [4], exclusion of other encepha-
lopathies remains a significant challenge. This seriously
confounds studies on the pathophysiology of cerebral
malaria and also delays critical decisions on appropri-
ate clinical management. Therefore, we need better
ways of identifying children who have or may develop
cerebral malaria to facilitate early clinical decisions on
management.

We have previously demonstrated the measurable
presence of differentially expressed proteins in plasma
from a mouse model of cerebral malaria, compared with
noninfected mice [5]. To determine whether differentially
expressed proteins could be identified in body fluids
from patients with cerebral malaria, we undertook a
similar proteomic study, using CSF and plasma from
children with cerebral malaria, and compared the protein
profiles in these biological matrices with those in
samples from children with confirmed acute bacterial
meningitis and other nonspecific encephalopathies.
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MATERIALS ANDMETHODS

Subjects
The study used archived plasma and CSF samples collected
from clinically well-characterized children attending Kilifi Dis-
trict Hospital between 2001 and 2002. The Kenya Medical Re-
search Institute Ethics Review Committee approved all studies.
The children came from a geographic region described in detail
elsewhere [6]. Children were grouped according to the results
of a malaria slide, CSF leukocyte count, and microbiological
findings [6]. Cerebral malaria (n = 12) was defined according to
World Health Organization criteria: (1) a Blantyre coma score
of <3 in the presence of peripheral asexual malarial parasites on
the blood film, and (2) negative results of CSF or blood cultures
and a CSF leukocyte count of ≤10 cells/μL. In addition, we se-
lected patients with a parasitemia of >2500 parasites/µL, since
this cutoff has the most specificity in this area [6]. Acute bacte-
rial meningitis (n = 12) was defined as the absence of asexual
malaria parasites in 3 slides of blood specimens obtained over
24 hours; the presence of a CSF leukocyte count of >10 cells/μL
or a positive CSF culture result, a positive blood culture result,
or detection of bacterial antigen in CSF [1]. Nonspecific en-
cephalopathy (n = 12) was defined as impaired consciousness,
no detection of asexual-stage parasites in 3 slides of blood spec-
imens obtained over 24 hours, and no growth on CSF or blood
cultures. Matched CSF and plasma samples and complete
medical records were available from each patient.

Sample Preparation
Archived CSF samples that had been stored at −80°C for 5–6
years were thawed at 4°C and desalted using Micorocon YM-3
centrifugal units (Millipore, United States). Archived plasma
samples stored at −80°C were also thawed at 4°C. Protein con-
centrations for the plasma (1:100 v/v dilution with water) and
desalted CSF sample were determined using the Bradford
assay as previously described [5]. Before storage, CSF samples
were centrifuged at 450 ×g. All but the bottom 0.5 mL of the
supernatant was transferred to new container and stored at
−80°C. For plasma, heparinized blood was centrifuged
at 450 ×g and the plasma was removed, aliquoted, and stored
at −80°C.

2-Dimensional Gel Electrophoresis
Proteins were separated using 2-dimensional gel electrophore-
sis and analyzed as previously described [5]. Master gels were
prepared by analyzing duplicate gels of samples from 12 indi-
vidual patients. Spots matched in >75% of the gels were includ-
ed in the master gel, using PDQuest 2-dimensional software,
with semiquantitative analysis performed using Progenesis 200
software. For plasma samples, protein spots of interest were
excised from Coomassie-stained gels and digested as previously
described [5]. Because of the low protein content in CSF

samples, Coomassie-stained gels were not prepared, and spots
were cut directly from silver-stained gels and digested using a
modified method previously described by Terry et al [7]. Mass
spectra of tryptic digests were obtained using a MALDI-ToF
mass spectrometer (MS; Shimadzu CFR Plus, Manchester,
United Kingdom) as previously described [5]. When definitive
protein identification could not be formally made by MALDI-
ToF, the tryptic digests of the spots of interest were further
separated by reverse-phase–high-performance liquid chroma-
tography performed on an UltiMate 3000 LC system (Dionex,
United Kingdom). A total of 1 µL of the concentrated sample
was diluted with 4 µL of 2.5% v/v acetonitrile in water contain-
ing 0.1% formic acid and injected onto a monolithic capillary
column (200-µm internal diameter × 5 cm; Dionex). Peptides
were eluted at a flow rate of 1.5 µL/minute, using a solvent gra-
dient of solvent A (2.5% v/v acetonitrile in water with 0.1%
formic acid) and solvent B (90% v/v acetonitrile in water with
0.1% formic acid), starting at 5% solvent B, linearly ramped to
40% solvent B over 12 minutes, and then to 90% solvent B for a
further 2 minutes. Solvent B was then decreased to 5%, and this
was maintained to the end of the run at 27 minutes. Resulting
ions were eluted into a LCQ Deca XP Plus ion trap MS (Ther-
moFinnigan, United States) equipped with a nanospray source
connected to a PicoTip column. Further details of the methods
used can be found in the Supplementary Materials.

Two-Dimensional Liquid Chromatography Tandem
MS (LC-MS/MS)
The protein separation on gels was subsequently replaced by a
2-dimensional LC-MS/MS–based approach. An equivalent of
100 µg of CSF protein or 200 µg of plasma protein was injected
onto a ProSwift RP-1S monolith column (4.6 × 50 mm,
Dionex). The high-performance liquid chromatography was
performed on an UltiMate 3000 LC system (Dionex UK).
Samples were eluted with Solvent A, 2.5% acetonitrile in water
with 0.1% trifluoroacetic acid and solvent B, and 90% acetoni-
trile in water with 0.1% trifluoroacetic acid. The flow rate was
maintained at 200 µL/minute, and the separated proteins were
eluted into a 96-well plate. Forty-eight fractions per sample
were collected. The fractions were then dried down overnight
in an oven set at 50°C. A total of 25 µL of 100 mM ammonium
bicarbonate was added to the sample, followed by 5 µL of a
20-µg/mL solution of trypsin in 25 mM ammonium bicarbon-
ate. Samples were thoroughly mixed and incubated overnight at
37°C to achieve complete digestion. The resulting digest was
subjected to reverse-phase–high-performance liquid chroma-
tography MS as described above.

P. falciparum Histidine-Rich Protein 2 (HRP2) Double-Site
Antigen-Capture Enzyme-Linked Immunosorbent Assay (ELISA)
ELISA was used to determine the presence of pHRP2 in frozen
plasma and CSF samples. Plates were coated with 100 µL/well
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of 1.0 µg/mL immunoglobulin M monoclonal anti-HRP2 anti-
body (MPFM-55A, Immunology Consultants Laboratories,
Newberg, OR) diluted in phosphate-buffered saline (PBS) and
incubated overnight at 4°C. Plates were saturated for 2 hours
at room temperature with 200 µL of 3% skimmed milk
(Marvel; catalog no. UKFF 005M EC) in PBS. Plates were then
washed 3 times in PBS/Tween (Sigma; catalog no. P1379; 500
mL; 0.05%) washing solution. A total of 100 µL of diluted
plasma samples (1:64) or 100 µL of CSF samples was added to
the plates, which were sealed and incubated at room tempera-
ture in a humid chamber for 2 hours and then washed 5
times. A total of 100 µL of secondary antibody conjugated
with horseradish peroxidase (MPFG-55P, Immunology Con-
sultants Laboratories; 0.2 μg/mL diluted in 2% bovine serum
albumin, 1% Tween 20, and PBS) was added to the wells and
incubated for 1 hour at room temperature. After incubation,
substrate (Sigmafast OPD; catalog no. P9187-50SET) was
added and incubated for 30 minutes at room temperature, and
the reaction was stopped by adding 50 µL of 2N sulfuric acid.
Plates were read at an optical density of 490 nm. Standards
were made by serially diluting plasma samples of known para-
sitemia, with a high parasitemia of 0.2% and a low of
0.003125% (this gave a 0.1 absorbance value above baseline).
A cutoff of 0.025 in plasma and 0.004 in CSF had been deter-
mined to separate children with cerebral malaria from all
other children with impaired consciousness in a separate
group of children.

Data Management and Statistical Analysis
Differences in clinical characteristics of the 3 disease pheno-
types were evaluated using Stata, version 11.2. Medians were
calculated, and Kruskal–Wallis P values reported.

Spectra obtained from the MALDI-ToF were used to search
through the NCBInr database, using the Mascot Peptide Mass
Fingerprinting software [8]. Protein scores were considered sig-
nificant in accordance with cutoff scores recommended by
Mascot for Homo sapiens 65 P < .05 or for P. falciparum 55
P < .05.

MS/MS spectra were evaluated using the TurboSEQUEST al-
gorithm in BioWorks v 3.1 software provided by ThermoFinni-
gan and were searched against the human and P. falciparum
subsets of the NCBInr database and the P. falciparum database
(PlasmoDB, version 4.4) downloaded from the Sanger Institute.
All searches were performed according to search parameters
described in the Supplementary Materials. Proteins identified
were stored in Stata, version 11.2, and a heat map showing the
presence or absence of a protein in a patient was generated
using Stata, version 11.2. Proteins were included in the pheno-
type database if they were identified in samples from at least 6
of the 12 patients in the group.

Functional cataloging of proteins was performed as de-
scribed elsewhere [5]. Further protein and pathway analysis was
undertaken using tools available at the Universal Protein Re-
source [9].

RESULTS

Patient Characteristics
Samples from 36 children were used in this study. Table 1
reports clinical features of the children. As expected, children
with acute bacterial meningitis had significantly higher levels of
white blood cell counts in the CSF and lower levels of glucose
in the CSF. Children with cerebral malaria had significantly
fewer platelet counts.

Table 1. Clinical Characteristics of Patients

Characteristic Acute Bacterial Meningitis Cerebral Malaria Nonspecific Encephalopathy Pa

Age, months 32.75 (6.07–86.03) 31.83 (19.98–39.47) 25.55 (13.47–35.50) .7730

Parasite density, iRBCs ×103/μL 0 (0–0) 566 000 (22 434–1 289 500) 0 (0–56.5) .0001
Hemoglobin level, g/dL 9.7 (9.05–11.5) 6.3 (5.3–7.7) 9.6 (8–10.15) .0002

Platelet level, platelets/μL 494 (320.5–655.5) 93 (76–184) 419 (273–605) .0021

CSFWBC count, cells/μL 228 (34–1000) 1 (0–2) 2 (0–2) .0003
CSF protein level, mg/dL 1.865 (0.875–2.645) 0.24 (0.205–0.375) 0.195 (0.165–0.24) .0001

Blood glucose, mg/dL 5.9 (3.8–7.1) 4.6 (3.75–5.05) 4.5 (3.85–6.65) .4281

CSF glucose, mg/dL 0.95 (0.6–2.15) 3.4 (3–3.7) 3.3 (2.85–3.9) .0004
Ratio of CSF to blood glucose 0.19 (0.12–0.41) 0.72 (0.65–0.96) 0.70 (0.61–0.77) .0011

Plasma HRP2 level 0.0025 (0–0.006) 6.1915 (0.4845–13.3285) 0 (0–0.2235) .0001

CSF HRP2 level 0.002 (0–0.0035) 0.0265 (0.0085–0.108) 0.003 (0.001–0.01) .0002
Hospitalization duration, d 9.5 (8.5–14) 3 (2.5–3.5) 4 (2.5–6) .0003

Data are median (interquartile range).

Abbreviations: CSF, cerebrospinal fluid; HRP2, histidine-rich protein 2; iRBC, infected red blood cell; WBC, white blood cell.
a By the Kruskal-Wallis test.
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Protein Separation by 2-Dimensional Gel Electrophoresis
Reference gels for each phenotype were created using
PDQuest. For plasma, averages of 200, 194, and 71 spots were
included in the cerebral malaria, nonspecific encephalopathies,
and acute bacterial meningitis gels, respectively. For CSF, aver-
ages of 150 spots were included in the cerebral malaria and
nonspecific encephalopathies reference gels, and 80 spots were
included in the acute bacterial meningitis gel. The 2-dimen-
sional gel electrophoresis patterns of both plasma and CSF
samples showed significant differences between the 3 clinical
phenotypes studied (Figure 1). Proteins of interest that were
definitively identified using mass spectrometry are listed in
Table 2 (plasma) and Table 3 (CSF). Plasma proteins identi-
fied were mainly involved in platelet activation and aggrega-
tion, protein transport, endocytosis and cell communication,
lipid metabolism, and binding and protein/antigen/nucleotide

binding. CSF proteins of interest were mainly involved in apo-
ptosis and proteolysis.

Protein Separation by 2-Dimensional LC-MS/MS
Analysis of plasma samples using 2-dimensional LC-MS/MS
revealed a total of 339 host proteins and 573 falciparum pro-
teins. In CSF, we identified 113 host proteins and 254 falcipa-
rum proteins. Heat maps of all proteins identified in all 36
patients are shown in Figure 2.

We selected 259 host proteins of interest (Figure 3 and Sup-
plementary Table 1). Selection was based on whether the
protein was of known function and unique to the cerebral
malaria phenotype in plasma (n = 1) or CSF (n = 7) or whether
it was identified in the other 2 phenotypes but not in cerebral
malaria. Seventy-six proteins were found in CSF but not in
plasma, and 29 were found in both plasma and CSF. Of

Figure 1. Composite gel showing the differences between gels in (A ) plasma collected from children with a diagnosis of cerebral malaria (CM) and
acute bacterial meningitis (ABM; A), plasma collected from children with a diagnosis of CM and nonspecific encephalopathy (B ), cerebrospinal fluid (CSF)
collected from children with a diagnosis of CM and ABM (C ), and CSF collected from children with a diagnosis of CM and ABM (D ). Composite gel maps
were created using the comparison tool in PDQuest. The gel maps were created by analyzing duplicate gels for 12 patients’ biological replicates (2 gels per
patient sample). The extent of the correlation of protein spots between the individual gels was >0.77 (a coefficient of 1.00 indicates that the replicate gels
are perfectly similar). Red spots are spots found in the CM gel map, blue spots are unique to the comparator, and green spots depict spots found in both.
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particular interest were 3 brain-specific proteins found in
plasma namely brain-specific angiogenesis inhibitor 2,
calcium/calmodulin-dependent protein kinase IV in acute bac-
terial meningitis, and spectrin nonerythroid β chain 3 in cere-
bral malaria. In addition, we also identified 14 other proteins
that have been implicated in cerebral malaria or other brain
injury (Table 4).

In total, we compiled a list of 107 nonhypothetical P. falcipa-
rum proteins of interest (Figure 3 and Supplementary Table 2)
that were found in plasma and CSF. This list included proteins
involved in host cell modification, such as heat shock protein
40; in antigenic variation and host cell interaction, such as 17
variants of erythrocyte membrane protein 1; and 7 rifins.

We wondered whether the presence of parasite proteins in
slide-negative children could be due to a recent infection, and
we therefore measured levels of pHRP2, a parasite protein that
has been shown to have a half-life of about 2 weeks after infec-
tion [10]. All children with cerebral malaria had pHRP2 levels
in plasma and CSF that were above set cutoff levels. One child
with acute bacterial meningitis and 3 children with nonspecific
encephalopathy had high levels in plasma. The 3 children with
nonspecific encephalopathy also had levels of pHRP2 in CSF
that were equal to or above the set cutoff level. Interestingly, 3
children with acute bacterial meningitis had levels of pHRP2 in
CSF equal to or above the set cutoff level but did not have any
pHRP2 detected in the plasma.

DISCUSSION

Pathogenic states in children with impaired consciousness in
malaria-endemic areas could be reflected by changes in protein
biomarkers in both plasma and CSF. Proteomic approaches
allow for the analysis of large numbers of proteins at the same
time, and this may help elucidate pathways that can be targeted
for therapy. Additionally, proteomic platforms allow for the
measurement of low-abundance proteins in complex materials

Table 2. Host Proteins Identified as Differentially Expressed
When Gels of Plasma From Individuals With Cerebral Malaria
Were Compared to Other Phenotypes

Biological
Process,
Accession No. Description

Spot Difference

Acute
Bacterial
Meningitis

Nonspecific
Encephalopathy

Platelet activation/aggregation

P01009 Alpha-1-antitrypsin Unique Unique

P02647 Apolipoprotein A . . . Down
P02787 Serotransferrin

precursor
Unique Missing

P02787 C chain of human
serum transferrin

. . . Missing

P02679 F chain of fragment
D of fibrinogen

. . . Missing

P52735 Guanine nucleotide
exchange factor
VAV2

Unique Unique

D3DP16 Fibrinogen γ chain,
isoform CRA_a

. . . Missing

Protein transport/endocytosis/cell communication

O60493 Sorting nexin-3
(protein SDP3)

Down Down

P19652 Alpha-1-acid
glycoprotein,
type 2

Up Up

P02763 Alpha-1-acid
glycoprotein,
type 1

Up Up

P02768 Albumin, isoform
CRA_g

. . . Unique

Lipid metabolism and binding

P02647 A chain of human
apolipoprotein A-I

. . . Down

Protein/antigen/nucleotide binding

Q96Q89 M-phase
phosphoprotein 1

Up Unique

P16871 Interleukin 7
receptor, isoform
CRA_b

. . . Missing

Table 3. Host Proteins Identified as Differentially Expressed When Gels of Cerebrospinal Fluid From Individuals With Cerebral Malaria
Were Compared to Other Phenotypes

UniProt KB
Accession No. Description

Spot Difference

Gene Ontology
Acute Bacterial
Meningitis

Nonspecific
Encephalopathy

P02766 Transthyretin precursor . . . Unique Protein transport/hormone
activity and binding

P62745 ρ-related GTP-binding protein Down . . . Angiogenesis/apoptosis/cell
differentiations

P50213 Isocitrate dehydrogenase [NAD] subunit α,
mitochondrial precursor

Unique . . . Carbohydrate metabolic
processing

Q9NRR2 Tryptase γ preproprotein Down . . . Proteolysis
O60423 Probable phospholipid-transporting ATPase IK Unique . . . Cation transport

A4D1V4 39S ribosomal protein L32 Unique . . . Translation
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such as plasma. This article describes the use of proteomic plat-
forms to elucidate differences in plasma and CSF proteomes
collected from children in a malaria-endemic area presenting
with impaired consciousness. In this analysis, by use of 2 differ-
ent proteomic strategies, 259 host proteins and 107 parasite (ie,
P. falciparum) proteins were identified as differentially ex-
pressed in both plasma and CSF, and these could help elaborate
mechanistic differences in the different encephalopathies de-
scribe here. Importantly, some of the proteins could help point
to the cause of disease in the group of patients with nondefined
encephalopathy.

The first striking observation was the presence of P. falcipa-
rum proteins in both plasma and CSF of slide-negative children
with acute bacterial meningitis. This result raises 2 possibilities:
(1) the children have had a recent episode of malaria, which
could predispose them to acute bacterial meningitis; and (2)
children in malaria-endemic areas have persistently low levels
of parasite proteins in their sera, although one wonders why
fewer proteins were identified in the slide-negative children
without acute bacterial meningitis. To confirm the second
point, we would need to analyze samples from healthy

community controls. The presence of pathogen proteins in CSF
could be due to a leaky blood brain barrier. However, not all
proteins found in the CSF were found in plasma, and addition-
ally we did not always find a correlation with plasma pHRP2
levels and CSF pHRP2 levels. We therefore cannot rule out that
proteins in the CSF are there as a result of sequestration in the
brain and/or leukocyte migration into the brain.

We found 14 spots differentially regulated based on gels from
the cerebral malaria group, compared with gels from the other 2
groups. Seven of these were identified as proteins that play a role
in platelet activation and aggregation (Table 2). In addition,
using the 2-dimensional LC-MS/MS strategy, we identified 13
proteins that play a role in coagulation and that were missing in
plasma from the cerebral malaria group (Supplementary
Table 1) or were found in CSF from acute bacterial meningitis
group and not in the other groups. This is not surprising because
thrombocytopenia is associated with cerebral malaria [11, 12],
and in fact children in this study had lower levels of platelets.
Parasite platelet complexes could be a cause of reduced platelet
counts, and a proteomic study of platelet microparticles could
help clarify mechanisms leading to thrombocytopenia.

Figure 2. Heat maps showing distribution of proteins expressed using a 2-dimensional liquid chromatography tandem mass spectrometry strategy. A,
Host proteins in plasma and cerebrospinal fluid (CSF). B, Plasmodium falciparum proteins in plasma and CSF. C, Graph showing breakdown of the gene on-
tology categorization of host proteins identified in plasma.
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Differentially expressed proteins identified in this study, such
as α 1 acid glycoprotein type 1 and type 2 (orosomucoid 2), re-
ticulon 4, and retinol binding protein 2 could be markers of an
uncontrolled and harmful inflammatory response. An increase
in orosomucoid 2, differentially expressed in both plasma and
CSF of patients with cerebral malaria, together with an in-
creased production of ceruloplasmin and glutathione, would
enhance antioxidant defenses and limit the stimulatory effects
of oxidant molecules on cytokine production. This acute-phase
protein has previously been studied in connection with malaria
[13], and it has been suggested that its production may reflect
the severity of the acute phase response [14].

Spectrin β chain brain 3, a protein that belongs to a family of
spectrin proteins, was differentially expressed in both plasma
and CSF of children with cerebral malaria. In our previous
mouse study [5], this protein was differentially expressed in
plasma of mice infected with Plasmodium berghei, compared
with expression in noninfected mice. In the brain, this protein
is enriched in myelinated neurons, where it colocalizes with
ankyrin at axon initial segments and nodes of Ranvier and par-
ticipates in the clustering of voltage-gated Na+ channels and

cell-adhesion molecules at initial segments and nodes of
Ranvier [15]. Additionally, spectrin proteins have also been
identified as binding partners for various P. falciparum pro-
teins. In particular, spectrins have been shown to associate with
heat shock protein 40 [16], and in ring-stage infected red blood
cells (RBCs), ring-infected erythrocyte surface antigen associ-
ates with spectrin and stabilizes the membrane skeleton. In
mature-stage parasitized RBCs, knob-associated His-rich
protein molecules self-associate to form conical structures that
interact with spectrin. Pf332 and mature-parasite-infected
erythrocyte surface antigen bind to the junction complex, while
P. falciparum erythrocyte membrane protein 3, identified in
this study in plasma of children with cerebral malaria and acute
bacterial meningitis, binds to spectrin, further compromising
RBC membrane deformability [17]. These interactions stabilize
spectrin tetramers in the infected RBC, increasing resistance to
further parasite invasion of the cell by increasing infected RBC
rigidity, and could facilitate sequestration and inhibit splenic
clearance [18]. We hypothesize that the difference in spectrin
expression in our study could be linked to these interactions
with the infected RBC.

Figure 3. Venn diagram showing distribution of proteins of interest expressed using a 2-dimensional liquid chromatography tandem mass spectrometry
strategy. The red circles represent cerebral malaria, the green circles represent acute bacterial meningitis, and the blue circles represent nonspecific
encephalopathy. Abbreviation: CSF, cerebrospinal fluid.
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Excitotoxic cell death in CNS disorders is partly due to dys-
function of the sodium/potassium pump, resulting in an in-
creased uptake of water, which could as a consequence lead to
an increased influx of calcium. Retinal guanylyl cyclase 2 pre-
cursor is a gene that displays calcium-dependent regulation
[19]. In addition, sodium-dependent glucose transport could
also be affected, and this could result in the differential expres-
sion of sodium/glucose cotransporter 1 (SGLT1) seen in the
CSF of patients with cerebral malaria. SGLT1 has been shown
to be expressed in neurons and is upregulated during metabolic
stress when there is a decrease in D-glucose content [20]. The
sorting nexin family of proteins, which contain a Phox homolo-
gy domain, play crucial roles in regulating the intracellular
membrane trafficking of the endocytic pathway [21]. SNX3,
which was differentially expressed in this study, is associated
with the early endosome through the PX domain, which is
capable of interaction with phosphatidylinositol-3-phosphate.
Overexpression of SNX3 alters endosomal morphology and
delays transport to the lysosome.

It is important to consider potential limitations of our study
design and analysis strategy. First, proteomic studies require
careful sample collection and storage. Prolonged contact of CSF
and plasma with cellular components has been shown to affect
protein and peptide quality because of the presence of proteo-
lytic enzymes in plasma [22, 23] and CSF [24, 25]. Samples ana-
lyzed in this study were centrifuged within an hour of

collection to remove all cellular components, although protease
inhibitors, which can minimize degradation, were not added.
These inhibitors can interfere with peptide and amino acid MS
signals [26], and some studies suggest that there are no differ-
ences in CSF and plasma proteomes determined in the pres-
ence or absence of protease inhibitors [27, 28]. Second, a
“normal” control could not be established for this study
because CSF can only be ethically obtained from children with
impaired consciousness. However, future studies could include
a nonfebrile group of children with impaired consciousness,
such as those with epileptic seizures or poisoning or those who
have a lumbar puncture to rule out meningitis. Third, the
samples were obtained at admission, and therefore the effects
of antimalarial treatment and other effects of disease progres-
sion, such as the inflammatory responses that may influence
the protein levels, could not be fully assessed. Fourth, cytokines
and chemokines that have previously been identified as playing
a role in cerebral malaria were not differentially expressed in
our study. Two possible reasons for this finding are that (1)
semiquantitative 2-dimensional gel analysis may not be sensi-
tive enough to detect such low abundant proteins and that
(2) the 2-dimensional LC-MS/MS method described in this
study was not quantitative and therefore only reported the pres-
ence or absence of proteins in a patient group. Most cytokines
and chemokines implicated in malaria were present in all
3 groups.

Table 4. Host Proteins of Interest Implicated in Brain Injury Identified Using a 2-Dimensional Liquid Chromatography Tandem Mass
Spectrometry Strategy

Protein
UniProt KB

Accession No.

CSF Plasma

Reference(s)CM; NE; ABM CM; NE; ABM

Cytoplasmic protein NCK2 O43639 Yes; No; Yes No; No; Yes [29]
Brain-specific angiogenesis inhibitor 2 O60241 No; No; No No; No; Yes [30]

Spectrin beta chain, erythrocyte P11277 No; No; No No; No; Yes [31, 32]

Secretogranin-2 precursor P13521 Yes; No; No No; No; Yes [33]
Sodium/glucose cotransporter 1 P13866 Yes; No; No No; No; No [34, 35]

Vinculin P18206 No; Yes; No No; No; No [36]

Neurofibromin P21359 No; No; Yes No; No; No [37, 38]
Alanine glyoxylate aminotransferase P21549 Yes; No; No No; No; No [39]

Retinol-binding protein 2 P50120 No; No; No No; Yes; yes [5, 40]

Retinal guanylyl cyclase 2 precursor P51841 Yes; No; No Yes; No; Yes [19, 41]
Neurexophilin-1 precursor P58417 No; No; No No; No; Yes [42]

Calcium/calmodulin-dependent protein kinase IV; brain Ca Q16566 No; No; No No; No; Yes [41, 43]

phospholipase C, β 2 Q59F77 Yes; No; No No; No; No [44]
Spectrin β chain, brain 3 Q9H254 Yes; No; No Yes; No; No [15]

Reticulon 4 Q9NQC3 No; No; No No; No; Yes [45, 46]

Bromodomain adjacent to zinc finger domain protein 2B Q9UIF8 Yes; No; Yes No; No; Yes [47]
NDRG2 protein Q9UN36 No; Yes; No Yes; No; No [48, 49]

Endothelial lipase precursor Q9Y5X9 Yes; No; No No; No; No [50]

Abbreviations: ABM, acute bacterial meningitis; CM, cerebral malaria; CSF, cerebrospinal fluid; NE, nonspecific encephalopathies.
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Despite the limitations mentioned above, the results from
this study show that novel disease specific biomarkers can be
identified using proteomic strategies. In addition to providing
insight into underlying pathophysiological mechanisms, they
have the potential after thorough validation to be used as bio-
marker panels, which may be of value in the early diagnosis of
disease and in monitoring responses to therapies. In particular,
this study has shown that there are proteins uniquely expressed
in cerebral malaria. The next phase of this work will be to rigor-
ously assess and validate the diagnostic value of these differen-
tially expressed proteins before transfer to a suitable platform
that can generate an affordable point-of-care diagnostic.
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