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Genetic mapping identifies a major locus spanning P450
clusters associated with pyrethroid resistance in kdr-free
Anopheles arabiensis from Chad

C Witzig1, M Parry1, JC Morgan1, H Irving1, A Steven1, N Cuamba2, C Kerah-Hinzoumbé3, H Ranson1

and CS Wondji1

Prevention of malaria transmission throughout much of Africa is dependent on bednets that are impregnated with pyrethroid
insecticides. Anopheles arabiensis is the major malaria vector in Chad and efforts to control this vector are threatened by the
emergence of pyrethroid resistance. WHO bioassays revealed that An. arabiensis from Ndjamena is resistant to pyrethroids and
dichlorodiphenyltrichloroethane (DDT) but fully susceptible to carbamates and organophosphates. No 1014F or 1014S kdr
alleles were detected in this population. To determine the mechanisms that are responsible for resistance, genetic crosses were
established between the Ndja strain and an insecticide susceptible population from Mozambique. Resistance was inherited as
an autosomal trait and quantitative trait locus (QTL) mapping identified a single major locus on chromosome 2R, which
explained 24.4% of the variance in resistance. This QTL is enriched in P450 genes including 25 cytochrome P450s in total.
One of these, Cyp6p4 is 22-fold upregulated in the Ndja strain compared with the susceptible. Piperonyl butoxide (PBO)
synergist and biochemical assays further support a role for P450s in conferring pyrethroid resistance in this population.
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INTRODUCTION

Malaria is endemic in the Chad republic (Central Africa) affecting
495% of the overall population and is the main cause of morbidity
and mortality (Kerah-Hinzoumbe et al., 2009).

Anopheles arabiensis is the main malaria vector in this region and
a recent study in the Southwest of Chad estimated the annual
entomological inoculation rate at 311, of which An. arabiensis
accounted for 84.5% (Kerah-Hinzoumbe et al., 2009).

The National Malaria Control Programme in Chad is currently
promoting the use of long-lasting insecticide nets in order to reduce
the burden of the disease. However, in 2008 pyrethroid resistance was
reported in four sites in the Southwest of the country (Ranson et al.,
2009). Full susceptibility to bendiocarb and fenitrothion was observed
in all populations, with resistance to DDT in only one population
(from a cotton growing site). A similar resistance profile was reported
previously in An. arabiensis from Bongor and Guelendeng, (Kerah-
Hinzoumbe et al., 2008). In this study, genotyping for the known
target-site mutations found in An. gambiae s.l, L1014F and L1014S,
indicated the absence of these ‘kdr’ mutations in this population.

Pyrethroid resistance has been reported in An. arabiensis popula-
tions in West Africa (Diabate et al., 2004), East Africa (Matambo
et al., 2007), Southern Africa (Hargreaves et al., 2003; Casimiro et al.,
2006) and Central Africa (Wondji et al., 2005; Müller et al., 2008a). In
Sudan and Ethiopia, this resistance has been associated with the
1014F kdr allele (Abdalla et al., 2008; Yewhalaw et al., 2010). Other

studies, however, reported reduced susceptibility and resistance to
pyrethroids in An. arabiensis populations from Cameroon and South
Africa in the absence of the kdr allele (Chouaı̈bou et al., 2008;
Mouatcho et al., 2009).

Elevated activity of three enzyme families, the cytochrome P450s,
esterases and glutathione S-transferases, have been associated with
metabolic resistance to insecticides (Hemingway and Ranson, 2000)
and, more recently, several cytochrome P450 enzymes, with proven
ability to bind and/or metabolise pyrethroids have been found to be
upregulated in pyrethroid-resistant populations of An. gambiae
(Müller et al., 2008b; Stevenson et al., 2011). As much less is known
about pyrethroid resistance mechanisms in An. arabiensis, we used a
combination of genetic mapping, bioassays and biochemical and
molecular assays to characterise the causes of this resistance in a strain
colonised from Ndjamena in Chad.

MATERIALS AND METHODS
Field collection
Gravid or blood fed An. gambiae s.l. adult females resting indoors were

collected in houses between 0600 and 0000 hours in Ndjamena (121 60 470 0

North, 151 20 570 0 East), capital city of Chad, in September 2009 using

aspirators and torches. They were transferred to cages and left to lay eggs,

which were transported to the Liverpool School of Tropical Medicine (LSTM),

UK. The eggs were hatched and larvae fed with Tetramin baby fish food (Tetra,

Melle, Germany) and a colony, named Ndja, was established. In addition, a
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similar sampling of females of An. gambiae s.l. was carried out from Chokwe

(241 330 370 0 S, 331 10 200 0 E) in southern Mozambique in July 2009. Eggs were

also transported to LSTM for rearing and establishment of a colony named

Moz.

All field-collected females used to establish the laboratory colony were

morphologically identified as belonging to the An. gambiae species complex

according to the key of (Gillies and Coetzee, 1987) and identified as An.

arabiensis by PCR (Scott et al., 1993).

Insecticide susceptibility assays
Insecticide susceptibility assays were carried out using 2- to 5-day-old F1 adults

from both colonies following the WHO protocol (WHO, 1998). Approxi-

mately 20–25 mosquitoes per tube were exposed to insecticide-impregnated

filter paper for 1 h and then transferred to a clean holding tube supplied with

10% sugar solution. Mortality was determined after 24 h. After phenotyping,

surviving, resistant mosquitoes were stored at �80 1C for subsequent DNA

and RNA extraction, and dead mosquitoes were stored dried on silica gel. The

following insecticides were tested: the pyrethroids permethrin (0.75%), and

deltamethrin (0.05%); the carbamate bendiocarb (0.1%); the organophosphate

malathion (5%); and the organochlorines DDT (4%) and dieldrin (4%).

For permethrin and DDT, the effect of a 1-h exposure with the synergist

piperonyl butoxide (4%), immediately before 1-h insecticide exposure was also

assessed.

Biochemical assays
Biochemical assays were carried out using 2- to 3-day-old adults (25 females

and 25 males) from both strains. Glutathione transferase, acetylcholinesterase,

cytochrome P450 and general esterase activity (with substrates p-nitrophenyl

acetate; a- and b-napthyl acetate) were assayed using methods described by

(Penilla et al., 1998). A two-sample t-test was used to compare the results

between the two strains following an adjustment for total protein content.

Kdr and ace-1 genotyping using pyrosequencing method
The 1014L, 1014F and 1014S kdr alleles were genotyped in a set of permethrin,

deltamethrin and DDT-resistant mosquitoes from the Ndja strain (n¼ 82)

using the pyrosequencing method (Wondji et al., 2007). In addition, all the

mosquitoes alive after bioassays with the organophosphate malathion (n¼ 25)

were screened for the presence of the acetylcholinesterase target-site mutation

G119S (ace-1) associated with carbamate and organophosphate resistance

using the pyrosequencing method.

Pyrosequencing reactions were performed as described by (Wondji et al.,

2007) according to the manufacturer’s instructions using the PSQ 96 SNP

Reagent Kit (Biotage AB, Uppsala, Sweden). The genotype was determined

using the SNP Software (Biotage AB). Ambiguous kdr genotypes after

pyrosequencing were confirmed by sequence analysis.

Software provided by Pyrosequencing AB (Biotage, Uppsala, Sweden) was

used to design three sequence-specific primers for kdr (L1014F and L1014S

mutations are detected in the same assay) and ace-1 mutations. The primer

sequences and sequences to analyse for the genotyping of both mutations are

found in the Supplementary material in Supplementary Table S1.

Mosquito crosses
Reciprocal crosses were established between virgin Ndja and Moz females with

males from the alternative strain. Mosquitoes were allowed to mate for 4 days

after which they were blood fed, and females were left to oviposit singly. Eggs

from each crossing were collected and reared separately to adults. A subset of

the F1 offspring was left to intercross to generate F2 progeny to produce

isofemale lines. Further subsets were backcrossed to the resistant or susceptible

parental strains.

The F2 progeny (3- to 5-day-old adults) from the isofemale lines were

phenotyped for resistance to permethrin using the standard WHO bioassay

method (1-h exposure to 0.75% permethrin). In addition, the remaining F1, F2

and backcross progeny were also phenotyped to investigate the mode of

inheritance of the trait. Surviving and dead mosquitoes were preserved on

silica gel for later DNA extraction and genotype determination.

Genotyping of molecular markers
F2 progeny of two families were used for genetic mapping; family 2 originated

from a Ndja female � Moz male cross and family 3 from the reciprocal Moz

female � Ndja male cross. Only female progeny were used for genotyping,

and these were sampled equally from alive and dead progeny (24 susceptible

and 24 permethrin resistant for each family). DNA was extracted using the

LIVAK method (Collins et al., 1987) and microsatellite genotyping performed

using the Beckman CEQ8000 (Beckman Coulter, Inc., Brea, CA, USA).

Informative microsatellite markers were selected after genotyping the parental

female F0 and three randomly selected F1 individuals. Microsatellite loci were

initially screened using a tailed primer system. Primer pairs for informative

markers were re-synthesised to directly incorporate a fluorescent dye. The

majority of markers used have been described previously (Zheng et al, 1996).

Microsatellites not previously described are listed in the Supplementary

material in Supplementary Table S2.

In addition to the microsatellite markers, four single-nucleotide polymorph-

ism markers were identified de novo by sequence analysis of PCR products of

the parental female F0 and three F1 individuals. These single-nucleotide

polymorphisms included a synonymous substitution in exon 27 of the sodium

channel gene. The single-nucleotide polymorphism markers were genotyped

by pyrosequencing (Supplementary Table S1).

Quantitative trait locus (QTL) mapping
The JoinMap 2.0 software package (Stam and van Ooijen, 1996) was used to

build genetic linkage maps for each individual family and for the combined

genotyping data from both families. Genotype data for each marker were

tested for conformity to Mendelian ratios (Hardy–Weinberg equilibrium) with

a w2 goodness-of-fit analysis using the JoinMap JMSLA procedure and a w2 test

for genotype–phenotype association was performed using Haploview 4.2

(Barrett et al., 2005). Loci were separated into linkage groups with JMGRP

and JMSPL procedures with minimum and maximum logarithm of the odds

(LOD) thresholds of 1.0 and 4.0, respectively and LOD increments of 0.1. The

JoinMap JMREC was used to estimate pairwise cM distances between all pairs

of informative loci in each linkage group and JMMAP to find the maximum

likelihood map using the Kosambi distances. Genetic maps were plotted with

MapChart 2.1 software (Voorrips, 2002).

The JoinMap linkage positions along with the genotype–phenotype data

were entered into Windows QTL Cartographer 2.5 (Wang et al., 2005). Interval

mapping (IM; Lander and Botstein, 1989), composite IM (CIM; Zeng, 1993)

and multiple IM (MIM; Zeng et al., 1999) procedures were performed for each

family separately and for the combined data. The MapChart 2.1 software

(Voorrips, 2002) was used to plot the LOD graphs next to the respective

linkage maps. MIM analyzes multiple marker intervals simultaneously to fit

multiple putative QTLs. An initial MIM model was estimated by forward and

backward marker selection with a probability of a partial r2 set to 0.01. The

model was refined by optimising QTL positions, searching for new and testing

for existing QTLs.

Gene expression analysis
For quantitative reverse transcriptase-PCR RNA was extracted from three pools

of 10 three-day-old unmated, female mosquitoes from Ndja resistant to

permethrin (survivors after 1-h exposure to 0.75% permethrin) and from the

susceptible Moz strain (un-exposed) (snap-frozen and stored at �80 1C). The

PicoPure RNA Isolation Kit (Arcturus, Applied Biosystems, Mountain View,

CA, USA) was used and single-stranded complementary DNA was synthesised

using Superscript III (Invitrogen, Carlsbad, CA, USA) with oligo-dT20 and

RNase H (New England Biolabs, Ipswich, MA, USA), according to the

manufacturer’s instructions.

Real-time quantitative reverse transcriptase-PCR was performed on a set of

nine candidate genes using the Stratagene Mx3005P qPCR system (Agilent

Technologies, Inc., Santa Clara, CA, USA) and analysed using Agilent’s qPCR

software, MxPro. A serial dilution of complementary DNA was used to

establish standard curves for each gene in order to assess PCR efficiency and

quantitative differences between samples. The real-time quantitative PCR

reaction mixture was prepared using the Agilent Ultra-Fast SYBR Green qPCR

Master Mix (Agilent Technologies, Inc.) according to manufacturer’s
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instructions using 1ml template complementary DNA (diluted to 10mM). The

thermal cycling protocol was as follows: initial denaturation for 3 min at 95 1C

followed by 40 cycles of 10 s at 95 1C, 10 s at 60 1C and 30 s at 72 1C. The

fluorescence signal was measured at the end of each extension step at 72 1C.

For each sample, three biological replicates were run alongside three technical

replicates of the standard curves. Fold change was calculated through the delta-

delta Ct method (Pfaffl, 2001) using the geometric means of two control genes

RSP7 (AGAP010592) and Elongation Factor gene (AGAP005128). Primer

details are listed in Supplementary Table S3.

RESULTS

Insecticide susceptibility assays
The An. arabiensis population from Ndjamena was resistant to
permethrin with a mortality rate of 54.3% for females and 75.6%
for males (Table 1). Females exhibit reduced susceptibility to
deltamethrin (90.6% mortality) although the males were susceptible
to this insecticide. The An. arabiensis population from Chokwe,
Mozambique, was fully susceptible to both pyrethroids.

Both strains showed some survival after DDT exposure (69.1% in
Ndja and 89.5% in Moz for females but the difference between strains
was not significant (P¼ 0.33)). There were also some indications of
reduced susceptibility to malathion (95% mortality) and dieldrin
(90.1% mortality) in the Ndja strain but only in the females. Both
strains are susceptible to bendiocarb.

The synergist PBO fully restored permethrin susceptibility in the
Ndja strain but did not significantly (P¼ 0.35) affect DDT mortality
(84% mortality after PBO exposure).

Target-site mutations
Sixty-two mosquitoes from the Ndja strain that had survived DDT or
pyrethroid exposure and 30 susceptible individuals (20 from Ndja, 10

from Moz strain) were genotyped for mutations at codon 1014 of the
sodium channel. Pyrosequencing unambiguously assigned 90 of these
individuals as wild type (that is, 1014 codon TTA). The remaining
two gave ambiguous results but sequencing confirmed that these
individuals were also homozygote for the wild type.

The four mosquitoes from the Ndja strain that survived malathion
exposure and 21 non-exposed mosquitoes were genotyped for the
ace-1 mutation. All 25 individuals were homozygous for the wild-type
allele and the 119S ace-1 mutation was not detected. Pyrograms for
the kdr and ace-1 assay are shown in Supplementary material Figure S1.

Biochemical assays
A significant difference in esterase activity was observed between
females of the Ndja and Moz strain with the substrates p-nitrophenyl
acetate (1.86-fold higher in Ndja, Po0.0038) and a-napthyl acetate
(2.71-fold higher, Po0.0011) but no difference was observed between
the strains when using b-napthyl acetate substrate (Figure 1, Table 2).

AChE inhibition rates by propoxur are close to identical between
the two strains, ranging from 88 to 100% for the females. This, plus
the ace-1 genotyping results and the bioassay data all support absence
of any carbamate resistance.

A significant increase in the level of glutathione S-transferase
activity as measured with CDNB (1-chloro-2,4-dinitrobenzene) was
observed in the Ndja strain compared with the susceptible Moz strain
with mean CDNB levels 3.09-fold higher in Ndja females (Po0.001;
Figure 1, Table 2). Similarly, cytochrome P450 levels were elevated in
the Ndja females compared with the Moz strain (2.57-fold, Po0.003;
Figure 1, Table 2).

Inheritance mode of permethrin resistance
There was no significant difference (two samples t-test; P¼ 0.47)
between the F1 progeny resulting from the reciprocal crosses between
Ndja and Moz (Table 3) indicating that the resistance to permethrin
was inherited autosomally in the Ndja strain of An. arabiensis. Both
F1 hybrid populations showed intermediate resistance between the
parental strains. To test whether permethrin resistance in
An. arabiensis was controlled by a single gene (monogenically
inherited), expected mortalities from F2 backcrosses and intercrosses
were calculated and compared with observed mortalities (Table 3).
The expected mortality ratio was estimated for the backcross to
resistant as equal to ½ RSþ½ RR mortalities while for the backcross
to susceptible, the mortality ratio was estimated as being ½ RSþ½
SS. One sample t-test carried out either under the assumption of
complete dominance or complete recessivity, showed that most
observed mortalities were significantly different from the expected
mortalities rejecting the hypothesis of monogenic mode of
inheritance.

Under the assumption of a dominant resistance gene, the backcross
progeny to Ndja (resistant) and to Moz (susceptible) are expected to
show mortalities of 61% and 80.5%, respectively, and assuming
complete recessiveness, expected mortalities would be 80.5% and
100%, respectively. Actual observed mortality means for the backcross
to the resistant Ndja were 27.0% (B1þB5) (dominance: P¼ 0.0102,
recessiveness P¼ 0.0042) and 56.4% (B3þB7) (dominance P¼ 0.18,
recessiveness P¼ 0.0082) 24-h post exposure. For the backcross to the
susceptible parent, observed mortality means were 56.0% (B2þB6)
(dominance: P¼ 0.07 and recessiveness P¼ 0.0032) and 18.4%
(B4þB8) (dominance: P¼ 0.021 and recessiveness P¼ 0.0008) 24-h
post exposure. In both cases, both crosses differ significantly from the
recessive model whereas only one cross differs from the dominant one
(B3þB7 and B4þB8; Table 3).

Table 1 WHO susceptibility test results for 2- to 5-day-old

An. arabiensis from Ndja, Chad and Moz, Mozambique

Insecticide

(concentration/%) Females Males Total

n %

Mortality

n %

Mortality

n %

Mortality

Ndja

Permethrin (0.75%) 81 54.3 131 75.6 212 64.9

Deltamethrin (0.05%) 85 90.6 120 98.3 204 95.5

DDT (4.0%) 97 69.1 114 91.2 211 81.0

Bendiocarb (0.1%) 83 100 72 100 155 100

Malathion (5.0%) 80 95.0 73 100 153 97.4

Dieldrin (4.0%) 81 90.1 67 100 148 94.6

PBO (4.0%) followed by

permethrin (0.75%)

80 100 80 100

PBO (4.0%) followed by

DDT (4.0%)

76 84.0 — 76 84.0

Moz

Permethrin (0.75%) 109 100 70 100 179 100

Deltamethrin (0.05%) 93 100 77 100 170 100

DDT (4.0%) 114 89.5 81 95.1 195 91.7

Bendiocarb (0.1%) 87 100 55 100 142 100

Malathion (5.0%) 81 100 62 100 143 100

Dieldrin (4.0%) 65 100 58 100 123 100

Abbreviations: DDT, dichlorodiphenyltrichloroethane; PBO, piperonyl butoxide; WHO, World
Health Organisation.
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Figure 1 Range of enzyme activity for An. arabiensis females from Ndja (left) and Moz (right) for (a) P450s; (b) glutathione S-transferase (GST); and

esterases with the substrate (c) p-nitrophenyl acetate (pNPA); (d) a-napthyl acetate (units as in legend to Table 2).

Table 2 Biochemical assay results for Ndja and Moz

Enzyme Females and males (n¼20þ20) Females only (n¼20) Males only (n¼20)

Ndja Moz Ndja Moz Ndja Moz

P450
Mean 1.45�10�3 0.72�10�3 1.8�10�3 0.7�10�3 1.1�10�3 0.75�10�3

Fold change 1.93 2.57 1.46
P 0.0051 0.0030 0.029

GST
Mean 0.26 0.10 0.34 0.11 0.18 0.095
Fold change 2.6 3.09 1.89
P 0.015 0.0066 0.20

pNPA
Mean 0.12 0.092 0.14 0.075 0.11 0.11
Fold change 1.3 1.86 1
P 0.064 0.0038 0.88

a-Napthyl acetate
Mean 1.6�10�3 0.99�10�3 1.6�10�3 0.59�10�3 1.6�10�3 1.4�10�3

Fold change 1.61 2.71 1.14
P 0.010 0.0011 0.53

b-Napthyl acetate
Mean 1.6�10�3 1.2�10�3 1.6�10�3 1.0�10�3 1.7�10�3 1.4�10�3

Fold change 1.33 1.6 1.21
P 0.083 0.11 0.38

Inhibition of AChE by propoxur/%
Mean 92.8 92.6 96.5 96.9 89.2 88.2
P 0.83 0.75 0.58

Abbreviations: AChE, average percentage of inhibition of AChE by propoxur; GST, glutathione S-transferase activity; P450, equivalent units of cytochrome P450; pNPA, esterase activity with
p-nitrophenyl acetate; a-/b-napthyl acetate, micromoles of a-/b-napthol produced per minute per milligram of protein.
P-values in bold show significant difference (o0.05) between Ndja and Moz.
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The observed mortalities for the F2 intercrosses for family 3 and
family 2 of 72.1% and 77.4% (Table 3) do not significantly differ
from each other (two sample t-test, P¼ 0.413). They do not differ
significantly from the dominant model (one sample t-test, P¼ 0.51
for family 3 and P¼ 0.06 for family 2) but the recessive model can be
rejected (one sample t-test, P¼ 0.0006 for family 3 and P¼ 0.0034 for
family 2; Table 3).

Overall, these results indicate that permethrin resistance in the
Ndja-resistant strain is not monogenically inherited but is expressed
as an incompletely dominant trait.

Linkage mapping
Linkage maps were established for the two individual isofemale
families. Three linkage groups were resolved each corresponding to
one of the three chromosomes (not shown). Overall map sizes and
resolutions are similar for both families with 7.1 cM per marker for
family 2 and 5.3 cM per marker for family 3.

Data from the two families were used to build combined genetic
linkage maps (Figure 2), which consisted of genotypes of 98
individuals at 31 loci. For the combined data, the average resolution
for each chromosome is 12.4, 5.8 and 4.5 cM per marker, respectively,
for chromosome X, 2 and 3. The total length of the current map is
198.1 cM with an average resolution of 6.4 cM per marker. The
marker order on the combined map for chromosome 2 correlates
with the optimal physical order according to Vectorbase. The small

number of exceptions on the X chromosome and chromosome 3 are
indicated on Figure 2.

A LOD significance threshold of 2.5 (a¼ 0.05) was calculated based
on the size of the linkage maps for the combined data using the
criteria described in (van Ooijen, 1999).

QTL mapping
A w2 goodness-of fit test was used to identify markers statistically
(Pp0.05) associated with pyrethroid resistance in each family, the
null hypothesis being that likelihood of survival or death after
permethrin exposure is equal for each genotype class.

For family 3, significant associations were found between ten
markers and permethrin resistance, eight markers on chromosome
2R, one on 2L and one on the X chromosome. The eight markers on
chromosome 2R are arranged sequentially but only five of these are
fully informative (Supplementary Table S4).

For family 2, only marker 590 is significantly (Pp0.05) associated
with permethrin resistance and four flanking, semi-informative
markers show a similar trend (Supplementary Table S4).

All four markers are found sequentially on chromosome 2R and
overlap with the set found significant in family 3.

These results give an important indication that a locus responsible
for resistance is located within this region. The complete non-
association of marker 786 in both families indicates this marker lies
outside the boundaries of association. Plotting resistance, measured as
mortality, against genotypes suggests that the alleles in these loci are
additive in their effect on resistance (Figure 3).

IM and CIM were used to predict the location of this QTL. The
two families were analysed individually and combined.

No QTL were identified in family 2. However, significant LOD
scores were observed on chromosome 2R in family 3 and this QTL
was further strengthened in the combined family analysis (Figure 4a).
In the combined data, a single QTL was identified on chromosome 2R
with a maximum LOD of 4.6 (CIM) and 3.8 (IM). This QTL was
named rp1 for resistance to permethrin 1. The most closely associated
markers with this QTL are indicated in Figure 4b where the
chromosome 2 LOD scores of CIM are plotted alongside the genetic
map. The boundaries of the rp1 QTL are B10 cM with the flanking
markers 757 and 590 spanning chromosomal divisions 10–13 and a
genome region of B14 Mb.

Multiple interval mapping (MIM) confirms the presence of a single
QTL on chromosome 2R, rp1, in both families and estimates its
genetic variance (dg2) as 14.4% and 18.9% of the phenotypic variance
(dp2) of permethrin resistance for family 2 and family 3, respectively.
For the combined data, this QTL explains 24.4% of the phenotypic
variance (resulting from 0.5% for additive and 23.9% for dominance
effect). No additional QTLs were detected using MIM.

Analysis of the expression pattern of candidate genes spanning
the rp1 QTL
The QTL detected on the 2R chromosome spans several clusters of
P450s (Supplementary Table S5). Real-time quantitative reverse
transcriptase-PCR was performed on a subset of these genes (Cyp6p1,
Cyp6p2, Cyp6p3, Cyp6p4, Cyp6p5, Cyp6aa1, Cyp6ad1 and Cyp6z4).
These genes were selected as members of the same subclass have
previously been associated with insecticide resistance in other
Anopheles species (Müller et al., 2008b; Wondji et al., 2009;
Duangkaew et al., 2011). In addition, the expression profile of
Cyp6m2 was also investigated. This gene is located on chromosome
3R and hence not linked to resistance in this An. arabiensis population
but the gene was included as Cyp6m2 is strongly associated with

Table 3 Comparison of mean observed and expected survival of

progeny resulting from crosses and backcrosses to the resistant

(Ndja) and susceptible (Moz) parental strains

Cross Number

tested

(n)

Mean

percentage

mortality

observed

Percentage

mortality

expected

(completely

dominant)

Percentage

mortality

expected

(completely

recessive)

Ndja (RR) 213 61.0±10.2

Moz (SS) 270 100±0.0

F1 intercross

G1 ( SS ~ � RR #) 168 75.0±6.3

G2 ( SS # � RR ~) 129 78.3±5.5

Backcross to RR

B1 (G1 (~) � RR (#))

B5 (G2 (~) � RR (#)) 148 27.0±6.0 61a 80.5a

B3 (G1 (#) � RR (~))

B7 (G1’ (#) � RR (~)) 78 56.4±3.8 61 80.5a

Backcross to SS

B2 (G1 (~) � SS (#))

B6 (G2 (~) � SS (#)) 50 56.0±4.3 80.5 100a

B4 (G1 (#) � SS (~))

B8 (G1 (#) � SS (~)) 38 18.4±4.0 80.5a 100a

F2 from F1 hybrid intercross

Family 3: G1F2 (G1 (~)

� G1 (#))

534 72.1±11.0 70.75 90.25a

Family 2: G2F2 (G2 (~)

� G2 (#))

168 77.4±8.4 70.75 90.25a

Results are expressed 24-h post exposure following exposure to 0.75% permethrin for 1 h.
aExpected survival significantly different from observed mean survival at Po0.05 using one
sample t-test.
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pyrethroid resistance in the sister species, An. gambiae (Müller et al.,
2008b). Despite extensive attempts at optimisation, reproducible
standard curves could not be obtained for Cyp6p5, Cyp6ad1 and
Cyp6z4 and these three genes were removed from subsequent analysis.

A significant upregulation was observed for the Cyp6p4 gene
(Po0.01) with 22.2 fold-change in the Ndja-resistant strain compared
with the Moz susceptible strain (Figure 5). No significant difference in
transcription levels was observed between these strains for other genes
including Cyp6m2 gene on 3R chromosome (Figure 5).

DISCUSSION

In this study, we provide an assessment of the susceptibility status of
an An. arabiensis strain from Chad against different insecticides and

investigate the underlying mechanisms involved in conferring the
observed permethrin resistance. QTL mapping of permethrin resis-
tance was performed on F2 progeny resulting from crossing the Chad
population with a susceptible strain from Mozambique to provide
the first insight into the genetic architecture of resistance in
An. arabiensis.

The Ndja strain is resistant to type I pyrethroids (permethrin) and
a low prevalence of resistance to the type II pyrethroid, deltamethrin
was observed in females of this strain.

An. arabiensis is the major malaria vector in Chad and, although
the source of the selection pressure that has led to the pyrethroid
resistance in this vector is unknown, the potential impact of this
pyrethroid resistance on the efficacy of malaria control in Chad
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should be monitored to ensure their continuous efficacy. The
resistance profile described here for the Ndja strain is comparable
to that described for samples of An. arabiensis in Ndjamena in 2008
(Ranson et al., 2009). Given that the level of gene flow between
An. arabiensis populations in Central Africa is relatively high (Simard
et al., 2000; Wondji et al., 2005), this resistance may spread rapidly
throughout the region.

In contrast, the Moz strain was found completely susceptible to
both type I and II pyrethroids. This result is in line with a previous
study on An. arabiensis in Mozambique (Casimiro et al., 2006) where
populations of this species from Chokwe, the same location where the
Moz strain was collected, was found to be fully susceptible to all
pyrethroids.

The pyrethroid resistance in the Ndja strain is not caused by
target-site mutations as no kdr mutation was detected in this
strain and no QTL was detected in the vicinity of this locus
(situated on chromosome 2L). Metabolic resistance has already been
implicated as the main mechanism of pyrethroid resistance in an
An. arabiensis populations in Maga from North Cameroon around
200 miles from Ndjamena (Wondji et al., 2005) and the synergist

and biochemical data from this study support the suggestion
that this mechanism is common to populations of this species in
Central Africa.

In order to identify loci associated with permethrin resistance
linkage maps of all three Anopheles chromosomes were constructed
using combined data from two families generated from reciprocal
crosses between the permethrin-resistant Ndja and the susceptible
Moz strain. The maps generated cover the An. arabiensis genome
with similar marker resolution on the autosomes (5.8 and
4.5 cM per marker for chromosomes 2 and 3, respectively) and lower
resolution for the X chromosome (12.4 cM per marker). This
compares with previously established genetic maps for An. funestus
(Wondji et al., 2007) that also reported lower marker resolution
for the X chromosome. This is most likely due to the limited
availability of informative markers for the X chromosome as well as
restricted recombination in sex chromosomes in general. The average
resolution of 6.4 cM per marker of this first An. arabiensis map is
much lower than the resolution of the published An. gambiae s.s.
microsatellite map (Zheng et al. 1996) but was sufficient for initial
QTL mapping.
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Single-family analysis identified a QTL associated with permethrin
resistance in family 3 only. However, as the strength of this QTL was
increased in the combined data set, it is likely that the same locus is
associated with resistance in both families but there was insufficient
resolution to detect this in family 2 in this study. Many of the markers
in the vicinity of the QTL were only semi-informative for family 2 and
this will substantially reduce the power of the analysis. The difference
in marker density on chromosome 2 for the two families (6.1 cM per
marker in family 2 compared with 2.9 cM per marker in family 3)
could also explain the absence of a QTL in family 2.

This study identified a single QTL for permethrin resistance on
chromosome 2R explaining 24% of the genetic variance. A previous
genetic mapping study of permethrin resistance in An. gambiae s.s.
identified two major QTL in populations possessing target-site and
metabolic resistance (Ranson et al., 2004). It is likely that other minor
QTLs for permethrin resistance are present in the Ndja strain but this
study lacked the power to detect these. The existence of potential
undetected QTLs of smaller genetic variance than rp1 is supported by
the study of the inheritance mode that shows that resistance in this
strain is under the control of more than one loci.

The use of F2 generations, limitations in sample sizes and marker
density all limit the resolution that can be obtained in the QTL
analysis. In An. funestus a single major QTL for pyrethroid resistance
was detected in the F2 generation but when advanced intercross lines
at generations F6 and F8 were analysed, two additional minor QTLs
where detected (Wondji et al., 2007, 2009). Therefore, future studies
to improve the resolution of the An. arabiensis rp1 QTL and detect
potential new QTLs should use such an advanced intercross line
experimental approach.

At least 47 cytochrome P450 genes are encoded on chromosome 2R
(Ranson et al., 2002) with the majority of these located in three
clusters (belonging to gene families cyp4, cyp325 and cyp6; Ranson
et al., 2002). The boundaries of the identified QTL are B10 cM with
the flanking markers 757 and 590 spanning a genome region of
B14 Mb including 910 annotated genes (vectorbase biomart 03/
2012). This region is significantly enriched in P450s with an

enrichment of 4.2-fold (DAVID; Gene Functional Classification soft-
ware v.6.7; Huang et al., 2009). The QTL boundaries encompass a
total of 25 P450 genes. This, plus the elevated levels of cytochrome
P450s observed in the Ndja strain from the biochemical assays,
synergist data, plus the defined role of P450s in pyrethroid resistance
in other species, leads us to suggest that the rp1 QTL may represent
the overexpression of one or more P450 genes. This is supported by
the significant upregulation of the Cyp6p4 P450 gene in the Ndja-
resistant strain compared with the susceptible Moz strain. Cyp6p4
is also upregulated in a DDT/pyrethroid-resistant population of
An. arabiensis from Chad (Ranson, unpublished data) and the
ortholog of Cyp6p4 has previously been associated with pyrethroid
resistance in the malaria vector An. funestus (Wondji et al., 2009),
suggesting that this gene could probably be responsible for the
permethrin resistance explains by the rp1 QTL. Functional character-
isation of Cyp6p4 is now necessary to determine whether it can
metabolise pyrethroid insecticides.

The elucidation of the inheritance of this permethrin resistance in
An. arabiensis from Chad will aid the tracking of the spread of
resistance alleles in this population, which is important to monitor
the success of resistance management strategies.

A full susceptibility to the carbamate bendiocarb was observed in
the Ndja strain as well as a nearly full susceptibility to the
organophosphate malathion. The absence of the ace-1 mutation in
this strain (even in the few specimens alive after malathion exposure)
further confirms this susceptibility profile. Therefore, carbamate or
organophosphate insecticides represent a suitable alternative for
control of An. arabiensis in Chad through indoor residual
spraying (IRS) if this resistance to pyrethroids proves widespread in
the country.
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