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Abstract

Pneumococcal carriage is both immunising and a pre-requisite for mucosal and systemic disease. Murine models of
pneumococcal colonisation show that IL-17A-secreting CD4+ T-cells (Th-17 cells) are essential for clearance of pneumococci
from the nasopharynx. Pneumococcal-responding IL-17A-secreting CD4+ T-cells have not been described in the adult
human lung and it is unknown whether they can be elicited by carriage and protect the lung from pneumococcal infection.
We investigated the direct effect of experimental human pneumococcal nasal carriage (EHPC) on the frequency and
phenotype of cognate CD4+ T-cells in broncho-alveolar lavage and blood using multi-parameter flow cytometry. We then
examined whether they could augment ex vivo alveolar macrophage killing of pneumococci using an in vitro assay. We
showed that human pneumococcal carriage leads to a 17.4-fold (p = 0.007) and 8-fold (p = 0.003) increase in the frequency
of cognate IL-17A+ CD4+ T-cells in BAL and blood, respectively. The phenotype with the largest proportion were TNF+/IL-
17A+ co-producing CD4+ memory T-cells (p,0.01); IFNc+ CD4+ memory T-cells were not significantly increased following
carriage. Pneumococci could stimulate large amounts of IL-17A protein from BAL cells in the absence of carriage but in the
presence of cognate CD4+ memory T-cells, IL-17A protein levels were increased by a further 50%. Further to this we then
show that alveolar macrophages, which express IL-17A receptors A and C, showed enhanced killing of opsonised
pneumococci when stimulated with rhIL-17A (p = 0.013). Killing negatively correlated with RC (r = 20.9, p = 0.017) but not
RA expression. We conclude that human pneumococcal carriage can increase the proportion of lung IL-17A-secreting CD4+

memory T-cells that may enhance innate cellular immunity against pathogenic challenge. These pathways may be utilised
to enhance vaccine efficacy to protect the lung against pneumonia.
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Introduction

Nasopharyngeal colonisation with Streptococcus pneumoniae (the

pneumococcus) peaks in prevalence at 2–3 years of age [1] and

declines thereafter becoming 10% or less in adult-hood and

undetectable in the elderly [2]. Perturbations in host defence and/

or increased pneumococcal pathogenicity facilitate colonisation

and increase the frequency of progression to mucosal diseases such

as pneumonia [3]. Pneumonia is the leading cause of hospitalisa-

tion of children in the USA [4]. Elderly populations are also highly

susceptible to pneumonia [5]. Pneumococcal carriage is critical in

transmission and disease but paradoxically it is also essential for

the development of adaptive immunity.

Pneumococcal nasopharyngeal colonisation leads to the estab-

lishment of antigen specific memory CD4+ T-cells [6,7] and

specific antibody [8,9] at systemic and mucosal sites in mice. It is

well established in mice that, in concert with specific antibody and

innate immunity, pneumococcal-responding interleukin-17+ (IL-

17A+) and not interferon-gamma+ (IFNc+) CD4+ T-cells (Th-17

cells) are essential for protection against pneumococcal carriage

[6,7] but their role in the lung is less clear. Pneumococcal lung

infection in mice leads to the significant recruitment of CD4+ T-

cells into the lungs [3,7,10,11]. T cells are associated with

protection from pneumococcal pneumonia in some models [3] but

not others [8,12] possibly owing to variation in host genetic

background and the murine bacterial challenge model used.

In humans, increased rates of pneumococcal carriage in

children [13] and clinical cases of pneumonia in adults [14] were

associated with a reduction in circulating Th-1 (IFNc+) CD4+ T-

cells. Polymorphisms in the IL-17A gene are associated with

increased pneumococcal colonisation [15] and lung infection [16].

IL-17A and IFNc can be detected in pneumococcal stimulated

blood samples [17–19] and tonsillar mononuclear cells [20]. T

cells with a Th-1 [21] and Th-17 [22] phenotype have been

described in the human airway but their specificity for pneumo-

coccus has not been shown and it is unknown whether they are

directly elicited by pneumococcal carriage.
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Many functions are attributed to IL-17A secreted from Th-17

cells [23]. It can enhance neutrophil recruitment and phagocytosis

[18], increase antimicrobial peptide (beta defensin 2) production

[24], iBALT formation [25], and enhance polymeric Immuno-

globulin receptor expression on mucosal airway epithelial cells

[26]. Human Th-17 cells persist for longer and are more resistant

to apoptosis compared to Th-1 cells [27], making their increase an

attractive goal for vaccinations relying on cellular immunity.

Nasopharyngeal pneumococcal carriage mediated alterations in

the frequency and phenotype of pneumococcal-responding T-cell

response(s) in the lung that could impact vaccination strategies to

prevent acute lower respiratory tract infections or therapies

designed to augment/modulate lung immunity. We have devel-

oped an Experimental Human Pneumococcal Carriage (EHPC)

model to determine whether carriage could enhance cellular

immunity to pneumococcus in the lung. We showed that carriage

significantly increased lung and blood IL-17A+ CD4+ T-cell

responses. Furthermore, rhIL-17A, dependent upon IL-17 recep-

tor expression, can augment alveolar macrophage killing of

pneumococci, to increase innate mucosal defences of the lung.

Materials and Methods

Volunteer Recruitment and Experimental Human
Pneumococcal Carriage (EHPC) Model

Written informed consent was obtained from healthy adult

volunteers to participate in an approved study at the Royal

Liverpool and Broadgreen University Hospitals Trust. Approval

was obtained from Liverpool Central [REC 11/NW/0011] and

Sefton [08/H1001/52]) NHS Research Ethics Committees.

This work built on other EHPC development studies [28]. In

contrast to our previous pneumococcal challenge study design [28]

we omitted pre-challenge bronchoscopy with lavage from these

cohorts to increase our colonisation success rate. Pneumococcal

inoculation was done as published on-line [29]. Briefly, volunteers

(cohort details in Table 1) were challenged with a single intra-nasal

dose of either 23F (P833 strain a gift from Prof. JN Weiser,

University of Pennsylvania) or 6B (BHN418 strain a gift from Prof.

PW Hermans, University of Nijmegen) grown in vegitone broth

(Oxoid). The inoculation was performed while the volunteer was

seated comfortably in a semi-recumbent position. The head was

tilted back slightly and 100 ml of the bacterial inoculum was

dispensed, using a Gilson pipette (P100), across the nasal mucosa.

Serial dilutions of the inoculum were plated onto blood agar

(Oxoid) both before and after inoculation to confirm the dose

(Table 1).

Intra-nasal colonisation was assessed in nasal washes collected

48 hours, 7 and 14 days later. Sterile isotonic saline (5 mls) was

instilled into each naris with the subject seated at 45u to the

horizontal. Saline was held in the nasopharynx for 5 seconds,

following which the subjects were asked to tip their head gently

forward to allow the saline to run out of the nose and be collected

into specimen pots. Collected, pooled nasal washes were centri-

fuged at 3345 g for 10 minutes and the pellet was resuspended in

100 ml of Skim milk tryptone glucose glycerol (STGG) medium.

An aliquot (25 ml) was plated onto Columbia horse blood agar

(Oxoid) containing gentamicin (Sigma) and incubated at 37uC, 5%

CO2. After 24 hours plates were inspected for the presence of

draughtsman-like pneumococcal colonies. Isolated colonies were

subsequently sub-cultured to confirm pneumococcal phenotype

using Optochin sensitivity, bile solubility tests and for serotype

confirmation, latex agglutination kits (Statens Serum Institute)

were used. A further aliquot was used to perform a serial dilution

(Miles and Misra) and 3610 ml drops per dilution were dropped

onto blood agar for colony counting to determine the carriage

density (Table 1). Carriage density was calculated by obtaining the

average CFU per 100 ml (of STGG) and dividing this value by the

volume (ml) of nasal wash recovered to obtain CFU/ml of nasal

wash. Volunteers with a pneumococcal positive nasal wash that

was of the same serotype as the original inoculum were defined as

having established carriage. These volunteers were subsequently

selected for blood and BAL collection and subject data is

summarised in Table 1. We also recruited 9 age-matched healthy

adults (without pneumococcal colonisation) to act as controls and

obtained BAL and blood samples (Table 1 and presented in [28])

for comparison in a cross-sectional study.

PBMC and BAL Processing
PBMCs were processed by standard methods [28]. Briefly,

PBMCs were seeded in 48-well tissue culture plates in RPMI 1640

media with 2 mM L-glutamine (both Sigma-Aldrich) and 10%

human AB serum (complete media) lot 655272 (Invitrogen, UK),

prior to stimulation.

BAL was obtained and processed as previously described [28].

BAL cells were plated out into standard 24-well tissue culture

plates (Greiner, UK) to allow macrophages to adhere for 3 hours

at 37uC, 5% CO2. BAL cells were also allowed to adhere to 96-

well tissue culture plates (Greiner, UK) for an opsono-phagocytic

assay, described below. Non-adherent cells were collected from 24-

well tissue culture plates, washed and the pellet re-suspended in

1 ml of complete media in 48-well plates (Greiner, UK) and

incubated at 37uC, 5% CO2.

PBMC and BAL Stimulation
For Intracellular Cytokine Staining (ICS), PBMCs or BAL cells

(containing 1–26105 lymphocytes per well) were stimulated ex vivo

for 2 hours with influenza or one of the following pneumococcal

antigen preparations: 1.0 mg/ml heat-killed 6B cells (HK-6B),

13 mg/ml (of which 4.2 mg/ml is pneumococcal protein) 6B

culture supernatant (6B c/s), 13 mg/ml vegitone broth (‘vehicle’),

0.45 mg/ml of heat-inactivated influenza (Split Virion, Sanofi

Author Summary

Pneumococcal carriage is an important step in the
development of cellular and humoral pneumococcal
immunity but paradoxically may lead to mucosal diseases
such as pneumonia. The frequency of carriage and
pneumonia in young healthy adults is very low despite
frequent exposures suggesting the presence of appropri-
ate mucosal defences. Lung mucosal immunity against the
pneumococcus is poorly described in humans and lags
behind recent advances in our understanding of protective
cellular responses in mice. We have therefore developed a
method to experimentally induce pneumococcal carriage
in healthy adults in order to provide a mechanistic insight
into the protective responses elicited at the lung surface.
We were able to produce carriage in healthy adults and
show that – in the absence of respiratory symptoms or
local lung inflammation – pneumococcal-responding
(adaptive) cellular responses are increased to a large
extent. We also provide evidence of cellular cross-talk
between lung sentinels and the pneumococcal-respond-
ing adaptive response that may help prevent lung
infection in humans. Manipulation of this response may
provide novel therapeutic approaches to prevent pneu-
monia. Furthermore these tools allow better interpretation
of defective responses in at risk individuals such as the
elderly.
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Pasteur, 2010/11 strains) or left untreated (‘NS’) [28]. After

2 hours, 1 ml of Brefeldin A (BD biosciences) was added and cells

incubated for a further 16 hours before harvesting and staining for

the presence of intracellular cytokines.

An equal number of BAL cells were also seeded in parallel and

at an equal density to that described for ICS. These cells were

stimulated for 20 hours with HK-6B, or left untreated as described

above. Cells were harvested, pelleted and the supernatant removed

and kept at 280uC for cytokine/protein measurements. There

were no significant differences in the total number of cells,

macrophages (mean [6SD] 8.565.56105 vs 8.467.56105) or

lymphocytes (1.860.256105 vs 2.060.096105) per well between

non-colonised and colonised groups, respectively.

Flow Cytometry
Cells were harvested, stained and analysed as previously

described [28]. We gated on viable, CD3+CD4+CD45RO+ T-

cells (hereafter described as CD4+ memory T-cells) and identified

individual TNF, IL-17A and/or IFNc producing cells (or

combinations thereof) following stimulation (Figure S1 in the

online repository). Alveolar macrophage expression of IL-17RA

and RC was determined as described elsewhere [30].

Measurement of Secreted Proteins in Stimulated BAL Cell
Supernatant

BAL cell culture supernatants (not treated with Brefeldin A)

were analysed using a Th-1, Th-2, Th-17 Cytometric Bead Array

(CBA) kit (Becton Dickinson, UK). IL-22 and Beta-defensin 2

(BD2) were measured, in duplicate, using an anti-human IL-22

ELISA (R and D Systems, UK) or an anti-human BD2 ELISA

(Antigenix America Inc, USA), respectively. For the CBA, bead

populations were acquired on a BD LSR 2 and fcs files analysed

against the standard curve using FCAP version 1.0.1 (Soft Flow

Inc. USA). For ELISAs optical density was measured at 450 nm

using a Fluostar microplate reader (BMG Labtech, Germany) and

corrected for background at 540 nm (IL-22) or corrected using

empty wells (BD2). Standard curves were generated using linear

regression fit (IL-22) or 4-parameter fit logistic regression (CBA

and BD2) and had an r2 value greater than 0.97.

Opsonophagocytic Killing Assay (OPKA)
An OPKA using pneumococci and human alveolar macro-

phages was performed with minor modifications [31]. Briefly, D39

Pneumococci (serotype 2) were opsonised in a 1:16 dilution of

intravenous immunoglobulin (IVIG, Gamunex, Talecris, USA) in

Hanks and incubated at 37uC for 15 mins on a rotating platform.

Opsonised D39 (20 ml), complement (10 ml) and either 20 ml of

rhIL-17A (rhIL-17A, Biolegend 570502, reconstituted as described

below) or vehicle control (HBSS [with Ca2+ Mg2+] containing

10% AB serum [lot 655272]) were added to 16105 adhered

alveolar macrophages (multiplicity of infection of 1 pneumococcus

:100 cells) in 30 ml of RPMI+10% FCS to give a total reaction

volume of 80 ml in a 96-well flat bottom plate (Greiner, UK).

Following 2 hours incubation at 37uC, 10 ml of reaction mixture

was tilt plated, in triplicate, onto blood agar (Oxoid) and incubated

at 37uC, 5%CO2 overnight. Colony forming units (CFUs) from

cell supernatants were counted the following day.

Statistical Analysis
Data with a normal distribution (tested by Shapiro Wilks) were

compared with parametric tests. Data not following a normal

distribution were compared with non-parametric tests. OPKA

counts were assumed to follow a Poisson distribution. Changes in

CFUs over the three rhIL-17A doses were examined using Poisson

regression, with the corresponding vehicle counts included as

covariates and with adjustment for clustering within participants.

Flow cytometric data were analysed using FlowJo software version

7.6 (Treestar Oregon, USA). Graph and statistical analysis was

performed using GraphPad prism version 5.0 (California, USA).

Differences were considered significant if p#0.05.

Results

Experimental Human Pneumococcal Carriage Can Be
Achieved without Significant Side Effects

We recruited and inoculated 54 healthy young adult volunteers

in a dose ranging study, with serotype 6B pneumococcus in which

20 volunteers established carriage (37%). In a 23F dose ranging

cohort, 19 healthy adult volunteers were recruited and 2

established carriage (carriage positive 11%). In the 22 volunteers

in whom we established carriage, 17 reported no symptoms, 4

reported mild upper respiratory flu-like symptoms and 1 reported

abdominal pain and shortness of breath that resolved without

therapy.

From the cohort of 22 volunteers with experimentally induced

carriage, we were able to recruit 12 volunteers (average age 22.5

years) 36 days later (range 21–56 days) for BAL and blood

sampling (6B n = 10; 23F n = 2, Table 1). These 12 carriage

positive volunteers had been challenged with a mean dose of

66,617645,637 CFUs (range 11,166–136,667 CFUs) per naris

(Table 1). The proportion CD4+ memory T-cells positive for TNF,

IL-17A or IFNc were measured in BAL and blood and compared

to controls without challenge (Table 1).

Lung (BAL) and Blood Responses to Pneumococcus and
Influenza in the Absence of Experimental Pneumococcal
Colonisation

BAL cells and PBMCs from carriage negative volunteers were

stimulated with pneumococcal antigens (HK-6B or 6B c/s) or

influenza and cytokine (TNF, IL-17A or IFNc) producing CD4+

memory T-cells were subsequently detected by ICS and flow

cytometry. Pneumococcal-responding CD4+ memory T-cells were

identified in BAL (Figure 1A and C and Figure S1 in the online

repository) and PBMCs (Figure S2 in the online repository) in the

absence of carriage. BAL CD4+ memory T-cells responding to

heat-killed pneumococci (HK-6B) in the absence of carriage were

TNF+ (0.2560.19% vs media control 0.160.07% p = 0.02, paired

T-test) and IL-17A+ (0.1260.09% vs media control 0.0460.02%,

p = 0.01, paired T-test) but not IFNc+, consistent with a Th-17

phenotype (Figure 1A). There was a positive correlation between

TNF+ CD4+ memory T-cells and IL-17A+ CD4+ memory T-cells

(Pearson r = 0.8; p = 0.009) in response to HK-6B. Similar

observations were made when cells were stimulated ex vivo with

concentrated pneumococcal culture supernatant (6B c/s) and

compared to vegetone broth (vehicle) alone. We could detect

pneumococcal-responding IL-17A+ (0.1260.07 vs vehicle

0.0660.05 p = 0.004) but not TNF+ or IFNc+ CD4+ memory T-

cells, again consistent with a Th-17 phenotype. In contrast, CD4+

memory T-cells responding to influenza stimulation, in the

absence of carriage, were detectable in almost all BAL samples

(Figure 1B and Figure S1 in the online repository) and these cells

were TNF+ (0.3360.21% vs media control 0.160.06%, p = 0.006,

paired T-test) and IFNc+ (0.2760.22% vs media control

0.0760.05%, p = 0.03, paired T-test) CD4+ memory T-cells,

consistent with a Th-1 phenotype. IL-17A+ CD4+ memory T-cells

were not detected in response to influenza (Figure 1B).

EHPC and IL-17
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Human Pneumococcal Carriage Elicits a Higher
Frequency of IL-17A+ CD4+ Memory T-cells Compared to
Volunteers without Carriage

BAL responses. BAL differential cell counts from colonised

and non-colonised volunteers were similar (Table 2). BAL cells

collected from non-colonised and colonised groups and stimulated

ex vivo with influenza antigen, showed a similar percentage of

TNF+, IL-17A+ and IFNc+ CD4+ memory T-cells (Figure 2A and

Figure S2A and B in the online repository). In contrast, when BAL

cells were stimulated with HK-6B, IL-17A+ CD4+ memory T-cells

increased 17.4-fold in BAL following nasal carriage compared to

volunteers without carriage. Following carriage 1.5762.07% of

total CD4+ memory T-cells were IL-17A+ compared to

0.0960.08% without carriage (Figure 2A, p = 0.007). The IL-

17A signal was derived mainly from IL-17A+ CD4+ memory T-

cells that were also TNF+ (0.9761.24% vs non-colonised

0.0460.04%, p = 0.001) rather than single IL-17A+ cells

(0.2660.27% vs non-colonised 0.0360.03%, p = 0.014), Figure 3.

Stimulation of BAL cells from colonised volunteers with 6B c/s

elicited higher frequencies of TNF+, IL-17A+ and IFNc+ CD4+

memory T-cells but these responses were of borderline statistical

significance (Figure 2A). Carriage did elicit cells with a Th-1

Figure 1. Pneumococcal-responding IL-17A+ and TNF+ CD4+ memory T-cells are present in BAL from non-colonised volunteers. A
Heat-killed 6B pneumococci and B Influenza-antigen stimulated BAL cells from non-colonised volunteers (n = 9) were analysed for TNF, IL-17A and
IFNc expression using flow cytometry. TNF+, IL-17A+ or IFNc+ cells were measured and recorded as a percentage of total CD4+ memory T-cells in BAL.
C Representative flow cytometry dot-plots showing 6B stimulated CD4+ memory T-cells with the percentage of TNF+, IL-17A+ or IFNc+ positive cells
shown. * = p,0.05; ** = p,0.01 vs non-stimulated controls (media).
doi:10.1371/journal.ppat.1003274.g001

Table 2. Cellular profile of BAL collected from the
pneumococcal non-colonised and colonised groups.

Non-Colonised Colonised

Volunteers n = 9 n = 12

Volume returned (ml) 116622 122629

Total cells (6106/ml) 0.12960.1 0.0960.05

Macrophages (%) 93.463 93.764

Lymphocyte (%) 5.062 4.963

Neutrophil (%) 1.661.6 1.361.2

doi:10.1371/journal.ppat.1003274.t002

EHPC and IL-17
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phenotype (IFNc+CD4+ memory T-cells) in some volunteers but

overall these findings were inconsistent and thus we could not

demonstrate statistical significance. The proportion of IL-17A+

CD4+ memory T-cells in BAL did not correlate with the density of

carriage (shown in Table 1).

Blood responses. PBMCs from pneumococcal colonised

(n = 10) and non-colonised (n = 8) adults stimulated ex vivo with

influenza antigen elicited similar frequencies of TNF+, IL-17A+ and

IFNc+ CD4+ memory T-cells (Figure 2B). In contrast, HK-6B

stimulated PBMCs from colonised volunteers showed a significantly

greater percentage of IL-17A+ but not TNF+ or IFNc+ CD4+

memory T-cells, corresponding to an 8-fold increase, compared to

non-colonised volunteers (0.3260.3% vs non-colonised

0.0460.03%, p = 0.003). PBMCs from colonised volunteers stimu-

lated with 6B c/s showed a greater percentage of IL-17A+ and IFNc+

(0.0860.07 vs non-colonised 0.0260.01, p = 0.02) but not TNF+

CD4+ memory T-cells compared to non-colonised volunteers.

BAL Cells Stimulated with Pneumococci Elicit High Levels
of IL-17A but Not IFNc

To corroborate our flow cytometry findings we stimulated BAL

cells from colonised and non-colonised volunteers with HK-6B or

left them untreated and measured secreted IL-17A (Figure 4A),

TNF (Figure 4B), IL-2, IL-4, IL-6, IL-10, IL-22 and IFNc (all

Figure S4 in the online repository) by ELISA. Large quantities of

IL-17A were detected in the culture supernatant of HK-6B

stimulated BAL cells from non-colonised volunteers (stimulated

mean6SD 14,907610,843 vs non-stimulated 2,23363,298 pg/

ml, p = 0.06, Figure 4A). BAL cells from colonised volunteers and

stimulated with HK-6B elicited significantly greater quantities of

IL-17A protein compared to non-stimulated cultures (stimulated

22,393610,830 vs non-stimulated 2,00263,738 pg/ml, p = 0.03).

HK-6B stimulated BAL cells from colonised volunteers produced

50% more IL-17A protein than HK-6B stimulated BAL cells from

non-colonised volunteers but this difference was not statistically

significant. IL-17A production did not correlate with the

frequency of pneumococcal-responding IL-17A+ CD4+ T-cells in

BAL detected by flow cytometry (r = 0.13, p = 0.68). IL-17A

production did correlate with the number of alveolar macrophages

per well (r = 0.59, p = 0.03) indicative of an alternative source of

IL-17A, other than CD4+ memory T-cells, in BAL.

Comparisons between colonised and non-colonised groups,

following pneumococcal stimulation, revealed no significant differ-

ences with the exception of TNF (198.96476.8 vs non-colonised

5.863, p = 0.05 Mann-Whitney, Figure 4B). When corrected for

background (by subtracting data from non-stimulated cells) the

significance of this observation increased (TNF 195.76476.5 vs

non-colonised 2.6762.45, p = 0.026 Mann Whitney).

We then hypothesised that the presence of IL-17A (and TNF) in

stimulated culture supernatant would in turn elicit alveolar

macrophage secretion of constitutively expressed BD2 protein

Figure 2. Pneumococcal carriage increases the percentage of pneumococcal-responding IL-17A+ CD4+ memory T-cells in BAL and
blood. A BAL CD4+ memory T-cell and B Blood CD4+ memory T-cell responses from volunteers without (2, BAL n = 9, blood n = 8) or with (+, BAL
n = 11, blood n = 10) experimental pneumococcal carriage (indicated on x-axis). Cells were stimulated ex vivo with or without (not shown) influenza or
pneumococcal proteins as indicated. TNF+, IL-17A+ or IFNc+ responses shown are background subtracted and measured as % of total CD4+ memory
T-cells. Note the change in scale for the y-axis for each cytokine ns = not significant, * = p,0.05; ** = p,0.01 vs non-colonised volunteers.
doi:10.1371/journal.ppat.1003274.g002
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[32] after 20 hrs but this was below the limit of detection in all

samples (data not shown).

Human Alveolar Macrophages Express Functional IL-17A
Receptors and rhIL-17A Stimulation Increases Uptake of
Pneumococci

Human alveolar macrophages expressed both IL-17 RA

(743861646 mean channel units, n = 5) and RC (355162426

mean channel units n = 6) sub-units consistent with our previous

observations [30]. We thus used rhIL-17A and a modified OPKA

assay to mimic CD4 T cell action and our hypothesis was that

rhIL-17A could enhance the anti-pneumococcal response (inde-

pendent of serotype) of human alveolar macrophages. To calculate

a percentage increase or decrease compared to vehicle treated

cells, CFU averages from each rhIL-17A dose and respective

control were divided to obtain a ratio (Figure 5 and raw data in

Table 3). We showed a dose dependent increase in macrophage

Figure 3. Pneumococcal carriage increases the percentage of IL-17A+/TNF+ CD4+ memory T-cells in BAL. Sub-population analysis of 6B
stimulated BAL CD4+ memory T-cell responses from A non-colonised (n = 9) and B colonised volunteers (n = 11). The percentage of triple, double or
single CD4+ memory T-cells producing either TNF, IL-17A and/or IFNc (x-axis) are shown. Pneumococcal-responding double-producing (IL-17A+/TNF+)
CD4+ memory T-cells constitute the dominant phenotype following pneumococcal colonisation. Responses shown are background subtracted.
* = p,0.05; ** = p,0.01 vs non-colonised in A.
doi:10.1371/journal.ppat.1003274.g003
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uptake of pneumococci using 12.5 ng/ml, 125 ng/ml or 625 ng/

ml concentrations of rhIL-17A (Figure 5 and Table 3).

Macrophage uptake of pneumococci was increased 26% in the

presence of 125 ng/ml of rhIL-17A, compared to the 12.5 ng/ml

dose (12.5 ng/ml Control: 14.2 vs rhIL-17A stimulated 10.5 CFU

p = 0.013). Increasing the rhIL-17A dose to 625 ng/ml further

increased pneumococcal uptake to 37% (12.5 ng/ml Control: 14.2

vs rhIL-17A stimulated 8.9 CFU p = 0.004) (Figure 5 and Table 3).

We correlated the OPKA data described above with IL-17

receptor RA and RC mean fluorescence intensity on BAL alveolar

macrophages from a sub-set of the same volunteers (n = 6) to

determine whether this response was mediated by the IL-17

receptor. Our hypothesis was that increased mean receptor

expression positively correlates with increased percentage killing

compared to vehicle at the 125 ng/ml dose. There were no

significant correlations between OPKA data and expression of RA

Figure 4. BAL cells stimulated with pneumococci ex vivo elicit large quantities of IL-17A. BAL cells from non-colonised (open bars, n = 6) or
colonised (closed bars, n = 7, 1x 23F, 6x6B colonised) volunteers were stimulated with pneumococci (6B) or left untreated (NS) for 20 hours. Following
stimulation A IL-17A and B TNF were measured in pg/ml (mean6SD) in cell culture supernatant by ELISA. * = p,0.05.
doi:10.1371/journal.ppat.1003274.g004

Figure 5. rhIL-17A stimulated alveolar macrophages show increased killing of opsonised pneumococci. Human alveolar macrophages
from non-colonised volunteers were exposed to opsonised D39 pneumococci in the presence of rhIL-17A or a vehicle control (v/v). Percentage
changes in CFU following rhIL-17A (y-axis) treatment are shown as increase or decrease relative to vehicle, which was set at 0% for comparison (x-
axis). * = p,0.05, ** = p,0.01 vs 12.5 ng/ml of rhIL-17A.
doi:10.1371/journal.ppat.1003274.g005
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or combined expression of RA and RC. Contrary to our

hypothesis, however, mean expression of RC (355162426),

negatively correlated with killing (Spearman r = 20.9, p = 0.017).

Discussion

We have shown that pneumococcal-responding IL-17A+ CD4+

memory T-cells are present at very low frequency in the healthy

adult lung in the absence of carriage. Further, using a novel

experimental human pneumococcal carriage (EHPC) model and

post carriage BAL collection an episode of pneumococcal carriage

resulted in a 17.4-fold increase and 8-fold increase in the

percentage of IL-17A+ CD4+ memory T-cells in BAL and blood,

respectively, compared to non-colonised volunteers. Using human

alveolar macrophages as effectors we showed that rhIL-17A

increased in vitro killing of S. pneumoniae in an opsonophagocytic

killing assay. These are the first data of which we are aware to

describe the relation of nasal carriage of a pathogenic organism

and lung IL-17A responses in humans and together support a role

for effector IL-17A+ CD4+ memory T-cell responses in the defence

of the lung against pneumococcal infection in adults.

The two major strengths of this study are that we have described

human CD4+ T-cell responses in the relevant mucosal site and

after a defined period of nasal colonisation. Other investigators

have identified and described pneumococcal-responding human

CD4+ T-cells in blood [13,19,20,33,34] and upper respiratory

tract mucosal tissue [13,20,35] but the initiation and duration of

carriage was unknown. The sharp increase in cellular response

seen immediately following an episode of carriage in this study,

and not seen in similar volunteers challenged with live bacteria but

without carriage [28], strongly supports a lung immunising role of

carriage in adults. Although a study of subjects at high risk of

pneumococcal disease (children, elderly) would be immunologi-

cally more relevant, it would clearly be ethically unacceptable in

the context of human pathogen challenge.

Our data contrast with decreases in antigen-specific responses

observed in blood in pneumococcal carriers in UK children [13]

or in endemic areas such as the Gambia [33] and in UK patients

with pneumonia [14], probably due to mucosal sequestration. Our

data concur, however, with increased IL-17A responses in other

studies [17] from an area with a high prevalence of pneumococcal

carriage and disease (i.e. Bangladesh) compared to Swedish

cohorts. The difference between our study and others may be

due to differences in the timing of sample collection relative to

exposure.

Human pneumococcal-responding IL-17A responses have been

demonstrated previously in peripheral blood [17,18,33] and in

adenoidal mono-nuclear cells [20,35] but in our study we have

examined the mucosal compartment where pneumonia becomes

established – the lung, which has not been examined before. In a

healthy adult population we showed, using flow cytometry, that

pneumococcal carriage elicits high frequencies of IL-17A+ and

TNF+ but not IFNc+ cells, within 5 weeks of colonisation. We have

used an extensive 7-colour panel that includes CD3+ and CD4+

antibodies that together with IL-17+ detection ensures that it is

highly likely that the responses we have identified in this

manuscript are derived from putative Th-17 cells rather than

innate sources. The IL-17A dominant responses in BAL and blood

contrast with studies that described higher IFNc and lower IL-17A

responses in blood [19,33] and tonsil [20] from healthy and HIV

affected [19] adults in Malawi and Gambia. There are multiple

factors, including the tissue site examined, burden of disease and

cellular plasticity [36] that may account for higher IFNc in these

studies and these differences between geographical areas of high

and low pneumococcal carriage warrant further attention. It is

likely, however, that both IL-17A and IFNc from T-cell effector

cells as well as T-regulatory cell populations play important but

different roles in protecting the lung against the pneumococcus

and pneunomococcal induced pathology [3,37–40]. Furthermore,

we identified increased IL-22 levels in some volunteers that were

independent of the IL-17 response suggesting a separate source of

IL-22 (possibly Th-22 cells), the diverse functions of which include

maintenance of epithelial integrity [41] and remodelling [42].

Murine models of airway inflammation have shown that IL-22 can

be pro-inflammatory (and thus pathological) in the presence of IL-

17A but in the absence of IL-17A can be anti-inflammatory/tissue

protective [43]. Determining the correct ‘‘balance’’ of Th-17, 22

and T-regulatory cells elicited following vaccination may be

important for generating adaptive anti-pneumococcal responses

that promote resolution and clearance and reduce immunopa-

thology.

We have also measured the cytokine response from lung cells

stimulated ex vivo with pneumococcus and shown that pneumo-

coccal stimulated BAL cells (from non-colonised and colonised

volunteers) produce IL-17A in quantities far greater than

described in other studies using blood [17–19] or lymphoid tissue

[20,35]. The response from colonised volunteers was 50% greater

compared to the non-colonised group who also had high levels of

IL-17A following stimulation that is likely to be derived from non-

Th-17 sources. This difference may be of relevance in vivo,

however, since TNF [44], which we have shown to be significantly

different between colonised and non-colonised groups using flow

cytometry (Figure 2A) and ELISA (Figure 4B), and IL-22 [45] can

both synergise with IL-17A to enhance epithelial derived CXC

chemokine production, important for the recruitment and

activation of neutrophils to the airway. It has been shown that

murine [46] and human [47] alveolar macrophages can also

produce IL-17A utilising a TLR-2 dependent mechanism [46] and

this may have contributed to the IL-17A signal detected by our

ELISA in both groups. An important role for the alveolar

macrophage in the early hours of pneumococcal infection has

Table 3. CFU recovered in BAL cell culture supernatant following OPKA.

IL-17A (ng/ml) Mean (95% confidence interval)
Ratio of IL-17A adjusted CFU/IL-17 adjusted CFU
at 12.5 ng/ml dose (95% confidence interval) [p]

Control IL-17A unadjusted IL-17A adjusted{

12.5 13.5 (8.8–18.2) 13.8 (7.2–20.4) 14.2 (10.7–17.6) —

125 16.8 (11.2–22.5) 13.7 (8.2–19.3) 10.5 (8.0–12.9) 0.739 (0.582–0.939) [p = 0.013]

625 16.8 (10.5–23.1) 12.4 (6.4–18.3) 8.9 (6.5–11.3) 0.629 (0.458–0.862) [p = 0.004]

{Adjusted for clustering within participants.
doi:10.1371/journal.ppat.1003274.t003
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been highlighted previously in murine models [48] and IL-17A

from innate sources are likely to be involved [49].

In this study we showed a significant increase in pneumococcal

killing by macrophages when exposed to 125 ng/ml of rhIL-17A,

a concentration that is in line with previous publications showing

an effect of IL-17 in this dose range [18,45,50–52]. This is also

consistent with the study by Lu et al. [18] who showed that human

neutrophils exposed to 100 ng/ml of rhIL-17A showed signifi-

cantly increased pneumococcal killing. Our data are also in line

with those of Higgins et al. [53] who showed that treatment of

murine peritoneal macrophages with 2.5–50 ng/ml of rmIL-17A

significantly enhanced killing of Bordetella pertussis. IL-17 also acts as

a recruitment and survival factor for monocytes and macrophages

[54], respectively, thus promoting macrophage-Th-17 interaction

in the small volume of airway lining fluid [55].

Both RA and RC subunits are required for human IL-17A

signalling with combined surface receptor density of RA and RC

determining the magnitude of the response [56] but we did not

find any positive correlations between our OPKA data and

receptor expression. In contrast to our hypothesis, we observed a

negative correlation between IL-17RC (but not RA) expression

and macrophage killing activity at the 125 ng/ml dose. The

modulation of killing by RC supports our observations of an IL-

17-dependent effect in our assay system rather than a contami-

nant. Furthermore the negative correlation between IL-17RC (but

not RA) expression and macrophage killing suggests that killing

may be mediated by a different IL-17RA heterodimer other than

RA:RC. RC may thus play a regulatory role in this process,

separate from its pro-inflammatory role within the RA:RC dimer,

fine tuning the phagocytic potential of alveolar macrophages and

thus susceptibility to infection. There is evidence that IL-17

receptors play regulatory roles during the inflammatory response

[30,52]. Recent observations have shown that RD expression

intensity can differentially regulate p38 mitogen-activated protein

kinase and nuclear factor-kappa B pathways and more importantly

the control of lung neutrophil recruitment in a CXCL2 dependent

manner [52]. Evidence provided here and elsewhere thus suggests

that the role of IL-17 receptors is more complex than initially

appreciated and may differ depending on the context. The role of

IL-17 receptors, other than the classical IL-17RA:RC heterodi-

mer, on alveolar macrophage function in health and disease

remains to be clarified and may determine the overall protective

effect of Th-17 cells.

Taken as a whole, these results have important implications for

vaccine design against pneumonia. First, they show that human

nasal carriage can boost innate (alveolar macrophage function)

and adaptive (TNF+IL-17A+ CD4+ memory T-cells) cellular lung

immunity that may protect the lung from pneumococcal challenge

and the establishment of infection in health, without significant

recruitment of neutrophils. When these and other protective

immunological mechanisms are compromised or the bacterial load

overwhelms innate defence mechanisms the responses described in

our study may synergise to enhance neutrophil mediated

recruitment into the airspace. Second, we have begun to define

the phenotypic and kinetic cellular responses elicited by pneumo-

coccal carriage – a natural immunising event, thus providing a

bench mark for vaccines that seek to protect against pneumonia.

Supporting Information

Figure S1 Flow Cytometry gating strategy to detect
cytokine positive CD4+ memory T cells in BAL. A BAL

Lymphocytes were identified on FSC and SSC analysis. B Gated

cells were measured for viability (Vivid negative) and CD3

expression. C Gated cells from B (viable CD3+ T-cells) were then

measured for CD3 and CD45RO expression to identify memory

(CD45RO+) CD3+ T-cells. D Viable CD3+ memory T cells were

gated onto a bivariate dot plot measuring CD3 and CD4 to

identify BAL CD4+ T-cells (black circle). CD4+ T-cell events from

E were gated onto a bivariate dot plot with CD3 expression on the

y-axis and either E and H TNF (AF488) or F and I IL-17A (PE) or

G and J IFNc (AF700) on the x-axis. Shown are CD4+ T-cell

responses when cultured in E, F and G media alone or following

stimulation with H, I and J influenza-antigen. Cytokine positive

events were identified as shown in E–J (boxed areas) and reported

as a percentage of total CD4+ memory T-cells for each condition.

(TIFF)

Figure S2 Pneumococcal-responding IL-17A+ and TNF+

CD4+ memory T-cells are present in blood from non-
colonised volunteers. A 6B pneumococcal culture supernatant

B heat-killed 6B pneumococci and C Influenza stimulated

PBMCs, from non-colonised volunteers (n = 8), analysed for

TNF, IL-17A and IFNc expression as a proportion of CD4+

memory T-cells. We detected a low frequency of TNF+ and IL-

17A+ CD4+ memory T-cells in response to pneumococcal

stimulation compared to vehicle control treated cells. * = p,0.05.

(TIFF)

Figure S3 Pneumococcal Carriage does not significantly
alter the influenza CD4+ T-cell response in BAL. BAL cells

from A non-colonised (n = 9) and B colonised volunteers (n = 11)

were stimulated with influenza. CD4+ memory T-cell expression

of TNF, IL-17A and/or IFNc, as indicated in legend, was

measured and recorded as a percentage. Responses shown are

background subtracted. In non-colonised volunteers BAL CD4 T

cell responses constitute mostly double (TNF/IFNc) and single

(TNF or IFNc) producing T cells. From pneumococcal colonised

volunteers, influenza specific responses are similar.

(TIFF)

Figure S4 BAL cells stimulated with pneumococci elicit
IL-2, IL-4, IL-6 IL-10, IL-22 but not IFNc. BAL cells from

non-colonised (open bars, n = 6) or colonised volunteers (closed

bars, n = 7) were left untreated (NS) or stimulated with

pneumococci (6B). Cell culture supernatants from non-colonised

and colonised volunteers were collected after 20 hours and

measured for the presence of IFNc, IL-2, IL-4, IL-6, IL-10 and

IL-22 in pg/ml as shown. * = p,0.05.

(TIFF)
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