
Imputation-Based Meta-Analysis of Severe Malaria in
Three African Populations
Gavin Band1, Quang Si Le1, Luke Jostins2, Matti Pirinen1, Katja Kivinen2, Muminatou Jallow3,4,

Fatoumatta Sisay-Joof3, Kalifa Bojang3, Margaret Pinder3, Giorgio Sirugo3, David J. Conway3,5,

Vysaul Nyirongo6, David Kachala6, Malcolm Molyneux6,7, Terrie Taylor8, Carolyne Ndila9,

Norbert Peshu9, Kevin Marsh9, Thomas N. Williams9, Daniel Alcock2, Robert Andrews2, Sarah Edkins2,

Emma Gray2, Christina Hubbart1, Anna Jeffreys1, Kate Rowlands1, Kathrin Schuldt1,10, Taane G. Clark1,2,5,

Kerrin S. Small1,11, Yik Ying Teo1,12, Dominic P. Kwiatkowski1,2, Kirk A. Rockett1,2, Jeffrey C. Barrett2,

Chris C. A. Spencer1*, Malaria Genomic Epidemiological Network"

1 Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom, 2 Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom, 3 Medical Research

Council Unit, Fajara, The Gambia, 4 Royal Victoria Teaching Hospital, Banjul, The Gambia, 5 London School of Hygiene and Tropical Medicine, London, United Kingdom,

6 Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi, 7 Liverpool School of Tropical Medicine,

Liverpool, United Kingdom, 8 Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi, 9 KEMRI–Wellcome Trust Research Programme, Kilifi,

Kenya, 10 Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany, 11 Department of Twin Research and Genetic

Epidemiology, King’s College London, London, United Kingdom, 12 Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore

Abstract

Combining data from genome-wide association studies (GWAS) conducted at different locations, using genotype
imputation and fixed-effects meta-analysis, has been a powerful approach for dissecting complex disease genetics in
populations of European ancestry. Here we investigate the feasibility of applying the same approach in Africa, where
genetic diversity, both within and between populations, is far more extensive. We analyse genome-wide data from
approximately 5,000 individuals with severe malaria and 7,000 population controls from three different locations in Africa.
Our results show that the standard approach is well powered to detect known malaria susceptibility loci when sample sizes
are large, and that modern methods for association analysis can control the potential confounding effects of population
structure. We show that pattern of association around the haemoglobin S allele differs substantially across populations due
to differences in haplotype structure. Motivated by these observations we consider new approaches to association analysis
that might prove valuable for multicentre GWAS in Africa: we relax the assumptions of SNP–based fixed effect analysis; we
apply Bayesian approaches to allow for heterogeneity in the effect of an allele on risk across studies; and we introduce a
region-based test to allow for heterogeneity in the location of causal alleles.
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Introduction

Severe malaria, meaning life-threatening complications of

Plasmodium falciparum infection, kills on the order of a million

African children each year [1]. However this represents only a

small proportion of the total number of infected individuals, the

majority of whom recover without life-threatening complications.

Understanding the genetic basis of resistance to severe malaria

could provide valuable insights into molecular mechanisms of

pathogenesis and protective immunity that will aid the develop-

ment of treatments and vaccines. It might also identify selective

pressures that have shaped human physiology and susceptibility to

other common diseases, because of the historical impact of malaria

as a major cause of mortality in ancestral human populations.

Genome-wide association studies (GWAS) have identified

thousands of genetic variants which predispose individuals to

particular disease phenotypes. However, the vast majority of these

studies are of non-communicable disease in collections of
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individuals with European ancestry. The challenges of applying

these approaches to studying disease in Africa are well document-

ed [2]; the long ancestral history of African populations has two

consequences. Firstly it has led to an overall reduction in the

correlation (linkage disequilibrium) between alleles at neighbour-

ing loci. Secondly it has given rise to differences in the

combinations of alleles along chromosome (haplotypes) both

between, and within, geographically defined populations.

The first of these complications is problematic because GWAS

rely on the correlations between causal mutations and genotyped

markers to identify susceptibility variants. From a statistical

perspective, unless the causal marker is typed directly, the reduced

linkage disequilibrium acts to dilute association signals [3], making

it hard to distinguish real effects on disease risk from apparent

effects that arise from sampling. In theory this loss of power can be

overcome simply by increasing the sample size or the number of

typed markers [3]. Another way in which GWAS critically rely on

correlation among nearby variants is via imputation based meta-

analysis, which has proven a powerful tool for combining

information across collections of individuals with similar ancestry.

These approaches work by first obtaining genotypes at a common

set of loci and then combining the statistical evidence at each

locus, across collections, often by assuming the alleles to have a

consistent, or fixed, effect on susceptibility. However, the

differences in haplotype structure in Africa means that the

correlation between any given marker locus and the causal allele

may vary from one collection to the next, so the apparent effect on

risk may be heterogeneous. The utility of applying the same

methodology for meta-analysis in African populations is therefore

unclear.

Here we describe the first imputation based meta-analysis

approach in Africa to study severe malaria susceptibility across

multiple African populations. We use data from large samples of

individuals collected from Kenya, Malawi and Gambia which

together included 5425 individuals with severe malaria and 6891

population controls. As each of the collections was typed on a

different Illumina genotyping array, we used imputation (using the

program IMPUTE2 [4]) to obtain genotypes at a common set of

1.3 million SNPs. We use these data to investigate the accuracy of

the imputation, assess genetic structure within and between

populations, describe association patterns at loci known to

influence risk of severe malaria, and investigate methods for

identifying new susceptibility loci.

Results

Datasets and genotyping
MalariaGEN partners in Gambia, Malawi and Kenya collected

blood samples from children diagnosed with severe malaria,

including cerebral malaria and severe malarial anaemia. As

population controls, cord blood samples were collected from the

same geographic areas as the cases. Ethical approval was obtained

from each ethics committees at each of the partner study sites and

institutions (Table S1). DNA was extracted from the blood samples

and assayed at SNPs genome-wide on Illumina arrays. There are

challenges specific to collecting blood from children in Africa,

particularly if they are ill with severe malaria, making it hard to

obtain large quantities of DNA. We performed whole-genome

amplification (WGA) on a small quantity of DNA before array-

based genotyping to preserve samples. The process of WGA can

lead to additional experimental noise, potentially leading to

genotype calling errors. To produce a robust set of genotype

calls, we used three different calling algorithms to process intensity

data from the Illumina arrays, separately in each of the three

cohorts. A set of consensus calls was obtained by treating as

missing any genotype that was discordant among algorithms (see

Methods).

As high levels of missing (or discordant) genotypes are indicative

of poor genotype calling (either due to poor assay performance or

sporadic genotype clustering errors) we excluded SNPs with

.2.5% missing genotype calls. Using the three-way calling in this

way provided a robust set of SNPs for analysis and very little

additional filtering of SNPs was required (Table S3).

Prior to imputation we excluded samples with outlying levels of

missing or heterozygous genotypes as well as one of each pair of

duplicate samples (see Table S2). Preliminary analysis of the data

revealed a subset of control samples in the Malawi cohort which

showed sporadic assay failure at a small number of SNPs across

the genome. This type of error is hard to identify prior to analysis,

and we provide a description of our observations in Text S1 and

Figure S1 in case it is helpful to readers with similar data.

Imputation across African populations
Imputation is now a well-established strategy for exploiting

densely genotyped reference panels to infer genotypes at SNPs not

assayed directly in a given study. For each study collection we

thinned the set of SNPs to just those that passed quality control

filters and were present in the HapMap3 haplotype panel [5]

made available for use with the imputation program IMPUTE2

(http://mathgen.stats.ox.ac.uk/impute/impute_v2.html). We ran

IMPUTE2 separately on each collection using the entire

HapMap3 reference panel to obtain genotypes at a common set

of 1.3 million SNPs (see Methods).

The accuracy of the genotype imputation typically depends on

the correlation between typed and untyped SNPs and the

similarity of haplotypes in available reference panels to those in

the study samples. In both regards imputation in Africa is more

challenging than in non-African populations [6]. Our study

provides an opportunity to quantify the utility of imputation in this

setting, and illustrates a number of issues that are relevant to other

imputation-based studies in African populations.

We assessed the accuracy of imputation by comparing the

genotype calls obtained from the three-way calling described above

to the probabilistic estimates for those same SNPs produced by

IMPUTE2 (type 2 r2 in IMPUTE2). Figure 1 shows per-individual

Author Summary

Malaria kills nearly a million people every year, most of
whom are young children in Africa. The risk of developing
severe malaria is known to be affected by genetics, but so
far only a handful of genetic risk factors for malaria have
been identified. We studied over a million DNA variants in
over 5,000 individuals with severe malaria from the
Gambia, Malawi, and Kenya, and about 7,000 healthy
individuals from the same countries. Because the popula-
tions of Africa are far more genetically diverse than those
in Europe, it is necessary to use statistical models that can
account for both broad differences between countries and
subtler differences between ethnic groups within the same
community. We identified known associations at the genes
ABO (which affects blood type) and HBB (which causes
sickle cell disease), and showed that the latter is
heterogeneous across populations. We used these findings
to guide the development of statistical tests for association
that take this heterogeneity into account, by modelling
differences in the strength and genomic location of effect
across and within African populations.

GWAS of Severe Malaria across Africa
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imputation accuracies broken down by country. While less accurate

than typically achieved using similar genotyping arrays in European

populations [7], imputation still captures the majority of common

variation in these three populations (a mean type 2 r2 of 0.93 in

Malawi, 0.92 in Kenya and 0.87 in Gambia). Common SNPs were

better imputed than low-frequency SNPs, suggesting that this

analysis, much like similar experiments in Europeans, will be

relatively less well powered to detect associations at low frequency

SNPs.

Two different types of inaccuracy are possible in imputed data:

overconfidence in predicting an incorrect genotype, or under-

confidence in predicting a correct genotype. We therefore

evaluated the calibration of the confidence of IMPUTE2

(measured by the info score) against its actual performance at

genotyped SNPs. The calibration of confidence was high across

our three samples (r2 between predicted and true accuracy: 0.93 in

Malawi, 0.92 in Kenya, 0.96 in Gambia) but, like overall accuracy,

on average worse than in European samples (0.96). Quality scores

were less well calibrated for low-frequency variation, but still

remained relatively high across all three populations (89%, 84%

and 92% respectively for variants with MAF,0.05). We included

only SNPs with info score.0.75 for downstream analyses, leaving

a high quality set with mean r2.0.9 in all samples, and less than

1% of either very overconfident (predicted r2.0.75, actual,0.6)

or very underconfident (predicted,0.75, actual.0.9) SNPs.

Taken together, these results suggest the underlying model of

IMPUTE2, combined with a diverse reference panel provided by

the HapMap project, is generally applicable to samples from

African populations.

Despite the high performance of imputation overall, there were a

number of factors that influenced relative imputation performance,

including (i) genotyping platform, (ii) ethnic matching of target

GWAS samples to the imputation reference panel, and (iii)

homogeneity of individual GWAS collections. Our Gambian

samples (typed on the Illumina 650Y array) show much poorer

imputation quality (Figure 1) than our Kenyan and Malawian

samples (typed on Illumina chips with .1 million SNPs). While

genotyping array represents the single most important factor to

imputation accuracy, two aspects of population genetics are also

critical: good matching between reference and target samples (here

achieved by using a cosmopolitan reference panel, likely to be

improved by future reference samples of African diversity [8]) and

homogeneity within a GWAS sample (illustrated by a small number

of samples of differential ancestry in Kenya with poorer imputation

quality, Figures S12 and S13).

Genetic structure within and between study samples
Genetic diversity in Africa is extensive [7] and our collections

derive from locations separated by thousands of miles and include

individuals from several distinct ethnic groups. To characterise

population structure we performed principal component analysis

(PCA) across our three African collections and a set of African

individuals genotyped as part of the HapMap 3 project. For this

purpose we selected a set of 121029 SNPs with accurate

(MAF.1%, IMPUTE2 info score.0.9) genotypes in all three

study collections, and then thinned the data to reduce the

correlation between neighbouring SNPs (see Methods).

To summarise the relatedness structure within our data, we

similarly produced a thinned list of SNPs with good calls separately

in each collection, and calculated allele sharing between all pairs of

individuals at the thinned set of SNPs. The distribution of the

degree of similarity between each individual and their closest

relative within each study is shown in Figure S2. High levels of

relatedness between individuals can violate the assumptions of

standard tests of association and can dominate attempts to

characterise population structure. For these reasons we iteratively

removed closely related individuals and those with atypical

ancestry as described in Methods. We refer to the remaining set

of individuals as the ‘‘filtered set’’ and use them for analyses which

rely on the use of principal components (PCs).

The projection of a subset of study and HapMap individuals

onto the first two PCs is shown in Figure 2. Some care is needed in

interpreting PCA of genetic data [9]; however, the analysis has the

property that the distance between any two individuals on the plot

is proportional to the genome-wide similarity in their genotypes.

The relationships among our samples broadly reflect the

geography and peopling of Africa; we see that East African study

samples from Kenya and Malawi cluster near one another and are

relatively close to HapMap Luhye individuals who are also from

Kenya (LWK); and the Gambian samples cluster closer to

Yoruban individuals from Nigeria (YRI), representing individuals

from West Africa. The Kenyan study samples are recruited from

the coastal region of Kilifi and our data confirm they are

genetically distinct from the Maasai (MKK).

To characterise the genetic diversity within collections we

performed PCA on each study separately and plotted all

individuals on the first two principal components (Figure 2). In

Gambia, the first PC separate the Fula from the rest of the sample

with subsequent PC (Figure S14) stratifying further ethnic groups,

as previously shown [10]. A similar relationship between genetic

diversity and self-reported ancestry is seen in Kenya.

Genome-wide meta-analysis
It is well known that subtle differences in the patterns of

relatedness between case and control individuals can potentially

Figure 1. Per-sample imputation accuracy measured by r2

between true genotypes and genotypes predicted by imputa-
tion, averaged over imputation chunks. Black vertical line shows
typical imputation accuracy in a UK population, taken from [8].
Gambian samples (red) perform worst due to the poor coverage of
African variation by the Illumina 550 K platform, followed by Kenyan
samples (green) on the Illumina Omni2.5M, which while dense has
limited overlap with our HapMap3 reference, with Malawian samples
(yellow) performing best. Note that imputation accuracy in the Kenyan
sample showed a bimodal distribution driven at least partially by ethnic
ancestry (Figures S12 and S13).
doi:10.1371/journal.pgen.1003509.g001

GWAS of Severe Malaria across Africa
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lead to spurious signals of association [11]. We observed significant

correlation between case control status and the principal

components in each of studies (Table S4), and the probability

that the closest relative to each sample had the same case status

was significantly greater than an expected by chance (P,161024

in all three cohorts).

We took two approaches to controlling for the potential bias

that can result from population structure. Firstly we restricted

analysis to the filtered set described above and included five PCs as

covariates in a logistic regression analysis as implemented in the

program SNPTEST (https://mathgen.stats.ox.ac.uk/genetics_

software/snptest/snptest.html). Secondly we included all individ-

uals passing quality control filters by modelling the covariance in

case status due to relatedness between samples as a random effect

in a linear model approximation, as implemented in the program

MMM [12]. The latter of these approaches potentially retains

more power by increasing the sample size, and provides additional

robustness to population structure by modelling relatedness at all

levels (or equivalently using all PCs) [13]. Empirically, the

evidence for association at each SNP is similar between the two

methods (Figures S3 and S4) and both reduce the overall inflation

in test statistic to acceptable levels (Table S6). Throughout we

assume an additive model of association, estimating a single

parameter which determines the effect each copy of risk allele has

on the log-odds of being a case individual, using the mixed model

approach, unless otherwise stated.

To combine the evidence of association across studies we use an

inverse-variance weighted fixed effects approach to calculate an

estimate of the log of the odds ratio and its standard error

combined across the three studies [14]. This approach has become

the standard method for meta-analysis of case-control studies. We

return to a discussion of the meta-analysis below.

The results of the autosomal genome-wide association analysis

are shown in Figure S5. Two regions of the genome show

compelling evidence of association (P,561028). These include

SNPs near established malaria susceptibility loci; in the beta globin

(HBB) gene on chromosome 11 and in the ABO blood group gene

(ABO) on chromosome 9. Several other regions show strong but not

conclusive association (P,161026) and are detailed in Table S7.

Additional analysis using dominant, recessive or two-parameter

Figure 2. Principle components analysis. Top left: principal components analysis (PCA) of the African populations from Hapmap 3 (LWK = Luhya
in Webuye, Kenya, 90 individuals; MKK = Maasai in Kinyawa, Kenya, 143 individuals; YRI = Yoruba in Ibadan, Nigeria, 113 individuals) with 500
randomly selected control samples from each of the three study cohorts. Top right, bottom left, bottom right: PCA of all non-excluded samples in
each study cohort, coloured by reported ethnic group. Ethnic group is shown as ‘‘OTHER’’ for groups constituting less than 5% of individuals in the
cohort, or where the ethnic group was unreported.
doi:10.1371/journal.pgen.1003509.g002

GWAS of Severe Malaria across Africa
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models did not reveal any other convincing regions of association

showing consistent evidence across collections, nor did direct

analysis of the genotype data (Figures S9 and S10).

Association at HBB and ABO
The strong signals of association at HBB and ABO demonstrate

that, despite the additional challenges of genetic analysis in Africa,

the standard approach to imputation based meta-analysis can

identify loci with convincing levels of evidence when sample sizes

are sufficiently large.

The non-synonymous variant rs334 in the HBB gene, whose

derived allele (HbS) causes sickle-cell anaemia in homozygote

individuals and is known to be strongly protective against malaria

in heterozygotes, is perhaps the best known case of balancing

selection in the genome [15]. The pattern of association around

this region across the three cohorts is shown in Figure 3. The SNP

rs334 is neither genotyped nor imputed in our genome-wide data.

In its absence, the strongest signal of association is seen over

400 kb upstream of HBB in the Kenya and Malawi studies. The

combined evidence at this locus drives the main fixed-effect meta-

analysis signal. Strikingly there is very little signal of association at

this position in the Gambian data, although strong evidence for

association is seen closer to HBB gene at 200 kb upstream and, to

a lesser extent, 200 kb downstream.

Direct genotyping of rs334 across the MalariaGEN data (see

Methods) allows us to measure the correlation (allelic r2, estimated

using EM algorithm) between the HbS allele and the SNPs around

HBB in our genome-wide data. The strength of the correlation is

indicated by the colour of the points in Figure 3. Association

analysis of the region including genotype at rs334 as a covariate

completely removes the signal (P.1024,see Figure S6). Together

these observations confirm that the heterogeneous signals of

association in the three cohorts are driven by their different

patterns of correlation with the causal allele rs334, probably

because it arose on different haplotypes in different ancestral

populations [16]. The lowest meta-analysis P value across the

region is at rs12788102 (P = 1.9610216), which was imputed in

Gambia, whereas at the directly typed rs334 the meta-analysis

P = 2.8e236. We note that the lowest SNPTEST meta-analysis P

value in this region is 5.7610213 at rs17325567.

In contrast to the complex patterns of association at HBB, the

strong meta-analysis evidence for association at ABO derives from

a combination of signals at the same set of SNPs across the three

cohorts (Figure 3). In each cohort the strength of association is

moderate with P.1e-6, so under the assumption that malaria

susceptibility loci of modest effect are rare in the genome, none of

these signals are convincing in any one study. However, when

combined via meta-analysis they reach established level of

significance (P,561028) for genome-wide analysis.

The determinants of the ABO blood group are SNPs within the

ABO gene, and have also been typed across the MalariaGEN data,

including the deletion at rs8176719 which determines AB/O

groups. The correlation between rs8176719 and neighbouring

SNPs is also shown in Figure 3. The pattern of association across

the cohorts is similar to those typically seen in studies of European

populations where the correlations between alleles at tag (marker)

SNPs and the causal allele are consistent across different samples.

The strongest meta-analysis signal at the locus is at rs8176722 with

P = 8.9610210. Conditioning on rs8176719 also removes any

other signals of association (P.1024) from the region (Figure S6).

Bayesian analysis
The differences in ancestries of the three study samples can lead

to a causal SNP being differentially tagged, as observed at the HBB

locus in our data. As a consequence the effect sizes at directly

typed or imputed loci can vary between samples, even when the

risk at the causal locus is the same. Moreover, variation across

studies in imputation accuracy can also lead to differential levels of

effect size underestimation at SNPs not genotyped directly. These

effects are likely to be more important in studies across African

populations and motivate approaches which relax the assumption

of the same or ‘‘fixed’’ effect.

To investigate the impact of non-fixed effect approaches on the

evidence for association we used a normal approximation to the

logistic regression likelihood suggested by Wakefield [17]. One

way of thinking about the approach is that it uses the study-wise

estimated log-odds ratio (beta) and its standard error as summary

statistics of the data (See Text S2). For each model of association

we assume a prior on the log odds ratio which is normally

distributed around zero with a standard deviation of 0.2 (see [18]

for a discussion). By changing the prior on the covariance (or

correlation) in effect sizes between studies we can formally

compare models where:

1) The effects are independent across studies.

2) The effects are correlated equally between studies.

3) The effects are correlated, but to a greater degree

between Malawi and Kenya (referred to as ‘‘structured

effects’’ below).

4) The effects are the same across studies (referred to as

‘‘fixed effects’’ below).

(See Text S2 for details). For each model we can obtain a Bayes

factor (BF) for association by comparing it with the null model

where all the prior weight is on an effect size of zero. These models

are similar in spirit to those employed to look at shared effects

across sub-phenotypes (rather than populations) in a study of

ischemic stroke [19] or at heterogeneity between studies [20].

The genome-wide Bayes factors for the fixed effects and

structured effects models are plotted against each other in Figure 4.

From this plot we can see that the fixed effect BF is larger for SNPs

at ABO, while at HBB, there is more evidence for association when

effect sizes are allowed to vary more extensively between East and

West African collections (structured effects). The posterior

probability on each of the models at the SNPs in these regions is

shown in Figure S17. Similar results are seen when the prior on

the effect size is increased (standard deviation of 0.75; data not

shown).

Motivated by these observations at known malaria susceptibility

loci we performed a genome-wide scan (Figure 5) to look for

regions with strong evidence of association (log10(BF).4) under

model 2, 3 or 4 above. These are listed in Table S7. In large case-

control samples, like those analysed here, then for common SNP

(minor allele frequency .5%) the fixed effect meta-analysis P

values are highly correlated with the fixed effect BF (see Figure S7).

Nonetheless, power to detect new regions of association is highest

when the prior distribution of the effect sizes across cohorts is close

to the truth. We therefore advocate this approach as a way of

accounting for our uncertainty in the correct meta-analysis model

in terms of similarity of effect sizes between cohorts. Two regions

showing over twice as much evidence for association under the

structured effects model compared to the fixed effects model were

on chromosome 16 in the large gene CDH13, where the signal of

association is strongest in East Africa (Kenya and Malawi), and a

region of association on chromosome 14, where the association

signal is largely confined to West Africa (Gambia). The structured

effects log10(BF) for these regions is 4.84 and 4.03 respectively (see

Table S7).

GWAS of Severe Malaria across Africa
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Regional association test
Another possible approach to identifying genetic associations

across populations, where the most associated SNPs at a locus are

not necessarily the same, is to base a test on all SNPs within a

region [21,22]. One way to formulate this test is to consider the

causal SNP as a random effect, which is not observed, but is

assumed to have a correlation structure across individuals dictated

by the pattern of relatedness (or allele sharing) within the region of

interest. A test for association can then be constructed by asking

whether the random effect explains any of the covariance in the

phenotype (case-control status), after accounting for population

structure, which can be captured by including PCs as fixed effects

in the model (See Text S2). As the model includes only fixed effects

and a single additional random effect it can be computed using the

MMM software [11]. To assess the evidence for association we

used a score test statistic which has a complex, but computable,

distribution under the null to calculate a P value. We also

computed Bayes factors by specifying priors on the model

parameters, in particular on the proportion of the variance

explained by the region.

To exploit a region-based test we constructed allele sharing

matrices (as defined in [12]) for all SNPs within 50 kb of each of

approximately 20,000 genes in the genome (where there were at

least 5 SNPs in each cohort). We then tested for association as

described above to obtain a P value for each gene in each of the

three study collections using the filtered data sets. To check that

population structure was sufficiently accounted for by the inclusion

of five PCs, we calculated the genomic inflation factor of the P

values in each study and found them to all be less than 1.07 (after

removing HBB and ABO regions). We combined evidence across

cohorts using Fisher’s method [23]. The meta-analysis P values

had an acceptable genomic inflation factor of 1.071. See Figure

S8. We also multiplied Bayes factors across studies to obtain a

study-wide Bayes factor. We note that, unlike the fixed-effect SNP

analysis, these approaches to meta-analysis do not assume that the

same allele, or combination of alleles, determine susceptibility in

each cohort.

As a proof of principle we applied this test to all SNPs within the

HBB region (4.6 Mb to 5.5 Mb of chromosome 11), which covers

the two peaks of association in the single SNP analysis (Figure 3).

The region-based test showed evidence for association

(P,561025) in each cohort and had a meta-analysis

P = 3.5610217, whereas the lowest SNPTEST meta-analysis P

value in the region (which also uses 5 PCs as covariates) is

5.7610213. Although this region would have been discovered via

either approach, this additional boost in power highlights the

potential benefit of region based tests.

In the gene-based analysis the most associated region was a gene

overlapping the region of strongest association at HBB in Malawi

and Gambia (OR51F1 from 4.73 Mb to 4.8.3 Mb, containing

Figure 3. Patterns of association around the HBB and ABO loci. In each figure the top three panels of the plot is the P value of the logistic
regression analysis using 5 PCAs in each cohort with the fixed-effect meta-analysis P value shown in the bottom panel. Circles represent genotyped SNP
and triangles imputed SNPs. SNPs in r2.0.2 with the functional SNPs in each region:rs334 in HBB which encodes the sickle locus [HbS], and rs8176719 in
ABO are coloured with yellow indicating more correlation and red indicating less. Vertical lines indicate the positions of the functional SNPs.
doi:10.1371/journal.pgen.1003509.g003

Figure 4. Comparison of fixed and structure effect Bayes factor at autosomal SNPs. Red dots indicate SNPs mapping to the HBB region in
and blue dots indicate those mapping to the ABO region (see Figure 3). Note that points below the diagonal line have more evidence for association
under a structured effects model, whereas those above the line have more evidence for association under a fixed effect model.
doi:10.1371/journal.pgen.1003509.g004
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approximately 70 SNPs), it had a meta-analysis P val-

ue = 4.4610211. In contrast the gene-based signal at the ABO

locus (P = 1.661025) was significantly less than the SNP-based

analysis. It is likely that the inclusion of multiple SNPs from the

region and removal of assumptions about the direction of effect

across cohort reduces the signal of association at this locus.

However, the region-based analysis focuses attention on the

approximately 20,000 annotated genes; since consensus does not

yet exist on interpreting gene-based P values, BFs are useful in

evaluating the evidence for association in the gene-based tests. For

instance, if we assume that there are 20 annotated genes which

contain SNPs within 50 Kb that influence malaria susceptibility

then the prior odds of association are roughly 1 in 1000. In

comparison, the prior probability associated with any given SNP is

much lower, perhaps 1 in 100,000 [18]. Thus, a log10(BF) of 2

(BF = 100) for the region-based analysis gives the same posterior

probability of association to a log10(BF) of 4 in the single-SNP

analysis. Plots of the empirical distribution of the estimated

proportion of the phenotypic variance explained by the regions,

and a comparison of Bayesian and frequentist tests, are shown in

Figure S19.

Outside the ABO and HBB regions, five regions contained genes

with BF greater than 100. Although this analysis is gene focussed, it

does not necessarily directly implicate specific genes but regions of

the genome (see Table S7), but here we refer by gene name to the

regions with the most evidence. These include the regions of the

genes BET1L (telomere chromosome 1, log10(BF) = 2.504),

C10orf57 (chromosome 10, log10(BF) = 2.387), MYOT (chromo-

some 5, log10(BF) = 2.051)), SMARCA5 (chromosome 4,

log10(BF) = 2.04) and ATP2B4 (chromosome 1, log10(BF) = 2.015).

Interestingly, we note that the SMARCA5 region is 250 kb upstream

of the GYPE/A/B gene cluster which encodes the M blood group

antigens, and that the variants in the BET1L gene have been

associated with platelet volume in Europeans [24,25]. A recent

study [26] identified malaria-associated variants in ATP2B4.

Another benefit of a test which averages over SNPs within a

region to obtain a single P value or BF is that it is possible to look

for consistent association in collections of genes (or regions) of

interest. We hypothesised that loci either previously implicated in

auto-immune disease [27] (referred to below as ‘‘Immunochip

regions’’), associated with measurable properties of red and white

blood cells and platelets [24,28,29], or known determinants of

blood groups (obtained from the HUGO database and excluding

the ABO types) might be candidates for malaria susceptibility

variants. To investigate, we also calculated region-based Bayes

factors for these regions and ranked them against the results from

the gene-based analysis. Table S8 shows that only the Immu-

nochip loci showed a nominally significant (P = 0.001) excess of

high-ranking BFs (those in the top 5% of the empirical

distribution) of genes. We note that, other than the BET1L locus,

the two highest ranking (in the top 0.1% of the empirical

distribution) regions include the RUNX3 locus, implicated in

ankylosing spondylitis [30] (empirical P = 0.0060) and the region

containing the IL12A gene (empirical P = 0.0096) implicated in

Celiac disease [31] and multiple sclerosis [31,32].

Simulations
The empirical observations described above, including the

heterogeneity of signal at the HBB locus, and the ability of the

region-based test to detect the recently identified association at the

ATP2B4 locus [26], motivates further investigation of the new

approaches to association analysis. To further assess the utility of

these methods we used HAPGEN [33,34] to generate a series of

simulated case-control meta-analysis datasets in ten randomly

chosen genomic regions, using samples from three African

populations collected as part of the HapMap project. We

conducted two sets of simulation, designed to test two distinct

association scenarios (see Methods). In the first set, the three

populations were assigned the same underlying causal variant

(with an odds ratios of 1.2 per allele), but the causal variant was

Figure 5. Evidence for association at approximately 1.3M autosomal SNPs. The plot shows the log10 Bayes factor comparing the structured
effects model (model 4; see main text) to a model of no association. Chromosomes are coloured alternatively light and dark blue. The horizontal line
indicates regions with strong evidence of association (BF.1e4).
doi:10.1371/journal.pgen.1003509.g005
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assumed to be untyped. In the second set, each of the three

populations had a different causal variant. We also carried out a

series of null simulations (with no causal variants present at all) in

order to quantify false-positive rates. We ranked all the simulations

according to either the strongest evidence of association under

different single SNP analyses or the region-based approach, and

plotted true positive and false positive rates for all methods (Figure

S18). We found that if the causal SNP is the same across

populations then the fixed effect approaches, and Bayesian

approaches that assume highly correlated effects, perform best.

In contrast, when the causal SNP is population-specific the region-

based approaches have the highest power for a fixed false positive

rate. Importantly, the single SNP correlated effects Bayesian

approach performs well under both scenarios, highlighting the

utility of this approach when the assumption of homogeneous

effect sizes across populations does not hold.

Discussion

The purpose of our analysis was to assess the utility of

imputation based meta-analysis for combining data from individ-

uals, typed on different genotyping arrays, and sampled from

different African populations, for studying Malaria susceptibility.

Until recently [26], no single genome-wide analysis of malaria has

revealed evidence of association strong enough to overcome the

implicit low prior probability that any given SNP affects

susceptibility. We show that by increasing sample size, through

meta-analysis, it is possible to identify such polymorphism from

diverse African populations. This reinforces the utility of applying

the GWAS approach in this setting.

The two loci we identified with P values,561028 have been

known to influence malaria susceptibility for more than 25 years

and are likely to exhibit some of the strongest effects on risk for

common alleles. Extensive analysis of other phenotypes, both

communicable and non-communicable, suggests that these loci are

the tip of the iceberg, with many smaller effects left to be found.

Identifying these regions requires additional statistical power.

Primarily this can be achieved by increasing the size of the data

sets by collecting more individuals or obtaining data at a denser set

of SNPs, perhaps initially through imputation [6], but ultimately

by whole-genome sequencing of study individuals. By typing more

SNPs the difference in patterns of linkage disequilibrium between

different ancestral groups, which can complicate analysis, may be

mitigated as it becomes more likely that the causal variant is typed

directly. Nonetheless, a combination of approaches such as the

Bayesian random effect models and region-based tests outlined

here may still provide additional power by relaxing the assump-

tions of standard SNP-by-SNP fixed effect analysis. For example,

when the genetic effects are modified by the environment (such as

the parasite or mosquito sub-species), or the clinical criteria for

inclusion as a case individual varies between cohorts, or when

different mutations arise at the same locus in different ancestral

populations, even typing the causal variant may still result in effect

heterogeneity. We note that the application of these new methods

requires additional care because they are potentially less robust to

sporadic genotyping errors in one or more cohorts. The ultimate

decision about which of the approaches we have explored will be

most appropriate for other researchers working on GWAS in

complex populations will depend on the circumstances of

individual studies. We view comparison of the models to be

informative, and suggest averaging across models where a single

summary of the evidence for association is preferable. Prior

information on the likelihood of real, or apparent, effect

heterogeneity can easily be incorporated in this approach.

Although the methods described in this paper do not confidently

identify any new malaria susceptibility loci, they do highlight a set

of potential candidates. For example, variation in the large gene

CDH13 has recently been conclusively associated with adiponectin

levels [35] and other metabolic traits [36]. The chromosome 4

gene-based association may further implicate glycophorins A, B

and E which encode the M blood group antigens and are potential

receptors for the malaria parasite P. falciparum. The signal of

association at ATP2BA coincides with the findings of a recent

GWAS study in Ghana [26] and is of potential functional

significance as it encodes the major calcium-transporting ATPase

on the erythrocyte plasma membrane. It is also just upstream of

LAX1, a transmembrane protein expressed in peripheral blood

lymphocytes and implicated in T and B cell responsiveness to

stimulation [37]. Further data will be required to confirm if these

replicate in other collections, which specific genes are involved,

and how genetic variation in the region influences severe malaria

susceptibility.

There has been a long standing hypothesis that high mortality

from infectious disease in ancestral populations has led to selection

pressures which have had an impact on human physiology. For the

first time in human genetics we are in a position to test such

hypotheses. The random effects models and the region-based test

described here provide a statistically principled approach to

looking systematically for shared, antagonistic or pleiotrophic

effects across phenotypes. The identification of new malaria

susceptibility loci that will result from larger studies will empower

investigations of this kind as well as providing desperately needed

insights into the aetiology of malaria infection and the host’s

response.

Methods

Samples and partnerships
The studies and sample sets described in this manuscript form

part of a larger ongoing project within the Malaria Genomic

Epidemiology Network (www.malariagen.net). Here we describe

partner projects from the MRC laboratories in Fajara, Gambia,

The KEMRI-Wellcome Trust Unit in Kilif, Kenya and The

Blantyre-Wellcome Trust Project in Blantyre, Malawi (Table S1).

At each study site, cases of severe malaria were recruited on

admission to hospital while controls (cord blood samples) for the

cases were sampled from the same populations by recruiting

mothers giving birth at local maternity units. This was usually

done as part of a larger programme of clinical research on malaria,

designed and led by local investigators. Further details can be

found by visiting the MalariaGEN website (www.malariagen.net).

We define a case of severe malaria as an individual admitted to a

hospital or clinic with P. falciparum parasites in the blood film and

with clinical features of severe malaria as defined by WHO criteria

[38,39].

Ethics statement
Study sites worked with the MalariaGEN resource centre to

define best practices for ethical conduct of these genetic studies in

the local setting, including the development of guidelines for

obtaining informed consent [40–42]. Further information on

policies, research and the consent process may be found on the

MalariaGEN website (http://www.malariagen.net/community/

ethics-governance). All research was reviewed and approvals

granted by local Research Boards and Ethics committees in The

Gambia: The Gambia Government/MRC Unit Joint Ethics

Committee (SCC1029 and SCC670/630); Kenya: Research Ethics

Committee from the KEMRI-Wellcome Research Programme,
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Kilifi, Kenya (SCC1192); Malawi: College of Medicine Research

Ethics committee, University of Malawi and the Blantyre Malaria

Project with the Malawi-Liverpool-Wellcome Trust Programme,

Blantyre, Malawi (P.05/06/422) and Oxford; Oxford University

Tropical Research Ethics committee (OXTREC), Oxford, United

Kingdom (OXTREC 020-006). This paper is published with the

permission of the Director of KEMRI.

DNA extraction and genotyping
Sample collection and DNA extraction were undertaken at

partner study sites and at the MalariaGEN Resource Centre as

previously described [4]. All samples submitted to the Malaria-

GEN Resource Centre underwent a standard set of procedures

that included quantification using picogreen, genotyping of 65

polymorphisms (including HbS - rs334, and 3 gender-typing SNPs)

on the Sequenom iPLEX MassArray platform and matching to

baseline clinical data (e,g gender, ethnic group and case-control

status) as described in [4]. Samples meeting DNA concentration

and genotyping criteria with appropriate clinical data were

selected for GWAS. However, due to restrictions on the total

amounts of blood and DNA collected, it was necessary to first

whole-genome amplify all gDNA samples by multiple-displace-

ment-amplification as previously described [10]. Briefly gDNA

was whole-genome amplified using the REPLI-g kit (Qiagen,

Crawley, UK) with the modification for increased sample

volumes). All final reaction DNA concentrations were measured

using PicoGreen reagent (Invitrogen, Paisley, UK) and adjusted to

100 ng/ul with low TE (10 mM Tris-HCL pH 8, 0.1 mM EDTA-

Na2).

Twelve percent of samples were assessed for amplicon size

range using the Agilent 2100 bioanalyser (Agilent Technologies,

Stockport, UK) according to manufacturer’s instructions and for

genotyping efficiency using the SNP set described above. Whole-

genome amplified material was submitted to the Wellcome Trust

Sanger Institute for genotyping on as part of the ongoing

MalariaGEN consortial Project 1 (http://www.malariagen.net/

node/128). Details of the 3 datasets are described in Table S1.

Data processing
Our processing pipeline first uses the AutoConvert function in

Illumina Beeline software to convert raw read data from Illumina

BeadArray (idat) files into binary genotype call (gtc) files using

cluster positions and normalisation information in the (egt) files.

We used the gtc files to extract the calls made by the algorithm

GenCall [5], to extract the raw intensities for GenoSNP [6] and

the normalised intensities for the program Illuminus [7]. We wrote

custom software to split the data into chunks, and modified

Illuminus and GenoSNP to accept the new format. This allowed

us to parallelise the genotype calling. We then included all the

three sets of genotypes, along with normalised intensity data into a

single vcf file (see http://www.1000genomes.org/node/101).

Genotype calling
Three genotype calling algorithms were specifically chosen to

utilise different information in the intensity data; GenoSNP which

independently calls genotypes in each individual by clustering

probe intensities across SNPs; Illuminus which independently calls

genotypes at each SNP by clustering probe intensities across study

individuals; and Gencall which uses predetermined probe intensity

information to infer genotypes at each SNP in each individual.

Each of the three algorithms can make one of four calls for a

given individual at a given SNP: 0,1,2 or missing. To merge the

calls we took a simple consensus approach to generate a single call

for each genotype. The rules were as follows:

N If less than two algorithms were confident enough to make a

call (and reported the genotype as missing) we labelled the

genotype as missing.

N If all algorithms that made a call agreed we kept the inferred

genotype.

N If there were any discordance between the calls we labelled the

genotype as missing.

The above rule is strict in the sense that only complete

agreement between algorithms that made a call leads to a

genotype call in the merged data. Analysis of trio data

demonstrated that this retains a relatively high fraction of calls

relative to anyone calling approach and had the lowest number of

Mendelian errors in terms of absolute errors made and the fraction

of SNPs with one or more errors (data not shown).

Quality control
Prior to imputation we applied quality control (QC) metrics to

each cohort as follows. All QC was performed on the ‘‘consensus’’

genotype call, as defined above. First, we aligned each dataset to

the forward strand of the reference genome using the Illumina-

supplied chip manifest, and restricted attention to the set of SNPs

in the HapMap 3 reference panel (obtained from the IMPUTE

website). We excluded samples with missingness .10% or

heterozygosity outside the range 0.25–0.35. We then proceeded

to filter out SNPs based on missingness (or discordance of the

consensus genotype call), minor allele frequency, and HWE P

value. We also examined differential missingness between cases

and controls in each cohort, but did not apply exclusions based on

this criterion. Next, we computed pair-wise concordance between

samples using a thinned set of approximately 20,000 SNPs chosen

to be no closer than 100 kb apart. For each pair of highly

concordant samples we removed the sample with higher missing-

ness.

Genotype imputation
Imputation was performed with IMPUTE 2.12, using the

phased release #2 of HapMap3 from the Impute website (http://

mathgen.stats.ox.ac.uk/impute/). All HapMap3 haplotypes from

all populations (African and non-African) were used. The genome

was split up into segments which are either 5 Mb, or have 20 000

reference SNPs (whichever is smaller), with an additional 500 kb

buffer on either side of the segment. We used imputation

parameter settings of k = 80 and Ne = 14000. Imputation was

performed in parallel for each segment, and segments were

reconstructed into chromosomes once all imputations had

finished. For each cohort we examined diagnostic metrics to

assess imputation performance (see Figure S11).

Accuracy of imputation was measured using IMPUTE2’s ‘‘type 2

r2’’, which is the squared correlation coefficient between actual

genotypes in our GWAS dataset (discrete values of 0, 1, or 2 measured

by the genotyping algorithms described above) and the expected

genotype, or ‘‘dosage’’, predicted by IMPUTE2 (a continuous value

from 0–2). As long as variants present in the GWAS are not biased

towards being easier or more difficult to impute than typical variants

in HapMap3, this metric is a good representation of the accuracy of

our imputed genotypes at all sites [5].

Principal component analysis and filtered data set
To investigate population structure, and for genome-wide scans

performed using SNPTEST and other tools that do not directly

model relatedness, we further restricted the set of individuals as

follows. For each cohort we computed a matrix (denoted R) of
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genome-wide allele sharing, using approximately 100,000 SNPs

thinned to be at least 0.01 cM apart using the HapMap combined

recombination map. Using this matrix we excluded one of each

pair of individuals that were closely related. Using the same matrix

R we also computed the projection of samples onto the principal

components (given by the eigenvectors of R). To investigate the

potential for population structure to generate false signals of

association we calculated the correlation between each PC and

case control status using logistic regression. The resulting P values

are shown in Table S4 and show that case control status is

significantly associated with the principal components.

To ensure individuals of unusual ancestry did not dominate

analyses, we iteratively excluded individuals that were extreme

outliers (.10 standard deviations away from the mean) in any of

the first ten PCA components, and re-computed PCs; this resulted

in a small number of further exclusions (see Table S5). Projections

of samples onto the principal components are depicted in Figure 2

and Figures S14, S15, S16.

Statistical analysis
Relatedness matrix and PCA computations were performed

using QCTOOL (http://www.well.ox.ac.uk/,gav/qctool) and

the generateR program included with the MMM program [12] .

Association tests were performed using SNPTEST v2.3.0, using

maximum likelihood estimation taking into account uncertainty in

imputed genotypes, and including 5 PCAs to control for

population structure. Mixed model scans and region based tests

were performed using MMM, with mean-centering of genotypes,

imputation of missing and uncertain genotypes. For region-based

tests we computed relatedness matrices using all SNPs within the

region that passed QC filters (info.0.75, MAF.0.001) and used

this relatedness matrix as a random effect in the MMM program.

Five PCs were included to control for population structure. For

Bayesian tests, we specified the prior on the h parameter (see Text

S2) as a beta distribution with parameters 1.5 and 100; intuitively

this corresponds to a belief that the regional relatedness matrix

explains relatively little (around 1%) of the overall residual

variance. Pairwise LD computations were performed using

QCTOOL, which uses the EM algorithm to estimate the phase

of individuals heterozygous at both markers. Meta-analysis was

performed using fixed-effect inverse variance weighting and

Fisher’s method using custom software written in C and R [43].

Bayes factors for meta-analysis models were also calculated in R.

For technical details on novel methods see Text S2.

Region definitions
For the gene based analysis regions were obtained by taking the

transcript start and end positions from the refGene table of the

UCSC genome browser database [44]; where a gene had multiple

transcripts we used the longest transcript. This resulted in 22903

gene regions, of which 21908 were on autosomes. We then added

50 kb to start and the each end of the region before applying the

regional association test and only included regions with more than

5 SNPs in each of the three cohorts.

For empirical investigation of regional association test statistics

we used several lists of regions. A list of blood group antigen genes

was obtained from the HUGO Gene Nomenclature Committee

website (http://www.genenames.org/genefamilies/blood-group)

and these were extracted from the gene based analysis described

above by matching gene names. To define lists of genes associated

with blood cell phenotypes, we took association signals from [28]

(red blood cell traits comprising Hemoglobin concentration (Hgb),

hematocrit (Hct), mean corpuscular volume (MCV), mean

corpuscular hemoglobin (MCH), mean corpuscular hemoglobin

concentration (MCHC) and red blood cell count (RBC)) [24],

(platelet traits comprising mean platelet volume (MPV) and/or

platelet count (PLT)), and [29] (white blood cell traits comprising

total white blood cell count (WBC), and counts of Neutrophils,

Basophils, Lymphocytes and Monocytes.) For each of the three

overall phenotypes (red or white blood cell, or platelet traits) we

recorded the most-associated SNP across sub-phenotypes for each

reported locus from the relevant study. For each such locus, we

then defined a region by finding the furthest SNP upstream and

downstream of the locus having r2.0.5 with the associated SNP,

and then moving out to the nearest recombination hotspot. If the

region contained no genes we further extended it by 25 kb in each

direction. This procedure is the same as those implemented in

GRAIL [45]. To define a list of regions associated with auto-

immune disorders we used fine-mapping regions from the

Immunochip platform [27].

Simulations of effect heterogeneity
Ten 100 Kb regions were chosen uniformly from across the

autosomal genome. For each region we used the program

HAPGEN (v2.1.2, with default settings used [34]) to simulate a

total of 1,000 meta-analysis datasets, each consisting of 1000 cases

and 1000 controls from each of the three African populations

(YRI, LWK and MKK) from HapMap3 (release 2). We repeated

this simulation under three scenarios of association for a total of

30,000 datasets. The scenarios considered were:

1. (Null simulations): all variants were simulated under the null

model of no association (and thus cases and controls were

drawn from the same distribution.)

2. (Single-variant simulations): A single causal variant was picked

in the region and the three populations were simulated

assuming this causal variant.

3. (Three-variant simulations): A different causal variant was

chosen for each population.

Causal variants were picked at random from among those with

combined MAF.0.05, and assumed to act additively on the log

odds scale, with odds ratio of 1.2.

For each dataset we tested each SNP in the region for

association, separately in each population, using SNPTEST. We

combined effect size estimates and standard errors across

populations using frequentist fixed-effect and Bayesian meta-

analyses (Methods and Text S2). For Bayesian meta-analysis, prior

variance on effect sizes was set to 0.22 and we used between-

population prior correlations of 1 (fixed effect), 0.9, 0.5, and 0

(independent effect). For the single causal variant scenario, the

chosen causal variant was masked from association testing.

For each dataset and population we also computed a Pvalue and

Bayes factor for the regional association test (Methods and Text

S2). For the single causal variant scenario, the causal variant was

masked from computation of the covariance matrix. We combined

P values using Fisher meta-analysis and multiplied Bayes factors

across populations to produce a single P value and a single Bayes

factor for the dataset.

For each of the two scenarios of association and each method of

detecting association across the region (regional test with Fisher

meta-analysis, regional test with Bayesian meta-analysis, best

single-SNP frequentist meta-analysis, best single-SNP Bayes factor

for each of the four choices of correlation parameter) we produced

ROC curves (Figure S18) by combining all datasets simulated

under that scenario and the null scenario, ranking by the chosen P

value or Bayes factor, and computing empirical true and false

positive rates.
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Data access
For information on access to project data see www.malariagen.net.

Supporting Information

Figure S1 Example of cluster plot from Malawi cohort with

outlying sets of individuals.

(TIF)

Figure S2 Distribution of relatedness between most-related pairs.

(TIF)

Figure S3 Comparison of logistic regression (SNPTEST) and

mixed model (MMM) P values.

(TIF)

Figure S4 SNPs showing highly divergent P values between

logistic regression and mixed model scans.

(TIF)

Figure S5 –log10(P values) for test of association using the mixed

model.

(TIF)

Figure S6 Top: signal of association in the HBB region after

conditioning on the genotype at the known causal locus rs334.

Bottom: signal of association in the ABO region after conditioning

on the genotype at rs8176719.

(TIF)

Figure S7 Comparison of meta-analysis P values versus Bayes

factors under the fixed-effect model.

(TIF)

Figure S8 Quantile-quantile plots of the region-based test in the

three cohort and in the meta-analysis. The genomic control

inflation factor is given in the title of the plots.

(TIF)

Figure S9 Manhattan plot showing –log10 P values (thresholded

at 10) for additive, dominant, heterozygote, recessive, and general

models, and additive model conditional on the genotype at the

sickle locus rs334, across all imputed SNPs. Meta-analysis P values

for all three cohorts and for the East African cohorts are also

shown for additive, dominant, recessive and heterozygote scans.

(TIF)

Figure S10 Manhattan plot showing –log10 P values (thre-

sholded at 10) for additive, dominant, heterozygote, recessive, and

general models, and additive model conditional on the genotype at

the sickle locus rs334, across all non-excluded genotyped SNPs.

Meta-analysis P values for all three cohorts and for the East

African cohorts are also shown for additive, dominant, recessive

and heterozygote scans.

(TIF)

Figure S11 Example output from the imputation quality control

pipeline for the Kenya imputation. a) per-SNP certainty (mean

maximum posterior genotype call); b) per-SNP accuracy (type2 r2);

c) per-individual type2 r2, averaged across segments; d) per-

segment heterozygous call accuracy (proportion of true heterozy-

gous calls that are correctly imputed with high certainty); e)

average per-SNP type2 r2, computed per segment and plotted

against the position of the segment.

(TIF)

Figure S12 The distribution of imputation quality (measured by

type2 r2) across imputed Kenyan samples. The red line is at

r2 = 0.909, and is the minimum between the two peaks.

(TIF)

Figure S13 The distribution of ethnic groups in Kenyan samples

that were imputed with higher or lower quality (as defined by the

red line in Figure S12). The difference in the two distributions is

highly significant (Fisher’s exact test, P = 461024), suggesting that

ethnic differences contribute to the bimodal distribution of

imputation quality seen in Figure S12.

(TIF)

Figure S14 Population-specific PCA analysis of Gambian samples.

(TIF)

Figure S15 Population-specific PCA analysis of Kenyan samples.

(TIF)

Figure S16 Population-specific PCA analysis of Malawian samples.

(TIF)

Figure S17 Comparison of fixed, structured, correlated and

independent-effect models at the ABO and HBB loci. The height

of each bar represents the posterior probability that the

corresponding model is true, under the assumption that one of

the models is true.

(TIF)

Figure S18 ROC curve showing empirical true positive rate (y-

axis) against false positive rate (x-axis) for each method used to

detect regional association (regional test with Fisher meta-analysis,

regional test with Bayesian meta-analysis, best single-SNP

frequentist meta-analysis in region, best single-SNP Bayes factor

for each of the four choices of correlation parameter) under the

single- variant association scenario (left) and the three-variant

association scenario (right).

(TIF)

Figure S19 a) Empirical distribution, across approximately

20,000 gene regions, of the maximum likelihood estimate of the

eta parameter (see Text S2), for the region-based test. Overlaid

(red line) is the assumed prior distribution under the alternative

used to calculate Bayes factors in the region-based analysis. b)

Scatter plot of the log10 combined Bayes Factor and the -

log10(Fisher’s P value). Dotted horizontal and vertical line

indicates log10(Bayes Factor) = 2 and a -log10(P value) = 0.0005.

(TIF)

Table S1 Details on the 3 study sites and genotyping platforms.

(DOCX)

Table S2 Pre-imputation individual QC.

(DOCX)

Table S3 Pre-imputation SNP QC.

(DOCX)

Table S4 P values for correlation between the first 5 PCs and

case/control status.

(DOCX)

Table S5 Post-imputation sample exclusions.

(DOCX)

Table S6 Genomic Inflation factors (l) for logistic regression

and mixed-model scans.

(DOCX)

Table S7 Regions showing most association in single-SNP and

regional association test analyses.

(XLSX)

Table S8 Enrichment of low region based test P values in three

previously defined sets of regions. Each P value in the table results

from a one-sided binomial test for an enrichment in the number of

regions with empirical P value below the given threshold. The
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bottom row gives a summary of the distribution of the number of

SNPs in each region. Note that the Immunochip regions contain

on average more SNPs than the gene-based analysis (median = 66

(quartiles = 52, 92)) from which the empirical P value is calculated.

(DOCX)

Text S1 Details of quality control.

(DOCX)

Text S2 Supplementary statistical details.

(PDF)
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