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Abstract

Background

Household air pollution in low income countries is an important cause of mortality from

respiratory infection. We hypothesised that chronic smoke exposure is detrimental to alveo-

lar macrophage function, causing failure of innate immunity. We report the relationship

between macrophage function and prior smoke exposure in healthy Malawians.

Methods

Healthy subjects exposed daily to cooking smoke at home volunteered for bronchoalveolar

lavage. Alveolar macrophage particulate content was measured as a known correlate of

smoke exposure. Phagocytosis and intraphagosomal function (oxidative burst and proteoly-

sis) were measured by a flow cytometric assay. Cytokine responses in macrophages were

compared following re-exposure in vitro to wood smoke, before and after glutathione

depletion.

Results

Volunteers had a range of alveolar macrophage particulate loading. The macrophage

capacity for phagosomal oxidative burst was negatively associated with alveolar macro-

phage particulate content (n = 29, r2 = 0.16, p = 0.033), but phagocytosis per se and proteo-

lytic function were unaffected. High particulate content was associated with lower baseline

CXCL8 release (ratio 0.51, CI 0.29–0.89) and lower final concentrations on re-exposure to

smoke in vitro (ratio 0.58, CI 0.34–0.97). Glutathione depletion augmented CXCL8
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responses by 1.49x (CI 1.02–2.17) compared with wood smoke alone. This response was

specific to smoke as macrophages response to LPS were not modulated by glutathione.

Conclusion

Chronic smoke exposure is associated with reduced human macrophage oxidative burst,

and dampened inflammatory cytokine responses. These are critical processes in lung

defence against infection and likely to underpin the relationship between air pollution and

pneumonia.

Introduction
Environmental smoke exposure is strongly associated with all-cause mortality, even at low con-
centrations [1]. Household air pollution (HAP) is the greatest source of human particulate
exposure, and 3rd most important risk factor for ill-health worldwide [2]. HAP associated
respiratory infection results in 900000 excess deaths per year in children under 5 years [3], pre-
sumably due to adverse effects on airway immunity. These mechanisms are not understood,
but the alveolar macrophage is central to both host defence and particulate handling.

Alveolar macrophages (AM) orchestrate appropriate responses to infective insults. AMs
internalise bacteria, such as Streptococcus pneumoniae, activating NADPH oxidase which both
kills bacteria and has a role in promoting inflammatory cytokine release [4, 5]. After successful
containment, these responses are limited to prevent collateral lung damage [6]. However,
inhaled particulate material taken up by AM has the capacity to induce excessive inflammatory
signalling [7]. HAP wood smoke particles induce free radicals generation which augment mac-
rophage NF-κB activation [8], reduce intracellular glutathione [9], and potentiate TNFα, IL-6
and CXCL8 release [10]. Adsorbed lipopolysaccharide has an additional pro-inflammatory
effect [11].

In animal models, pneumonia mortality is associated with inadequate anti-inflammatory
responses and reduced pulmonary macrophage apoptosis [12, 13]. Combined infective and
particulate challenges were shown to exaggerate murine pulmonary inflammatory responses,
and oxidative stress: phagocytosis of S. pneumoniae was impaired, and survival from pneumo-
coccal pneumonia reduced [14]. In an alternative (high mortality) murine model, particle
exposure improved survival, probably due to early neutrophil recruitment [15].

Acute particulate exposures in humans generate pro-inflammatory responses. Firefighters
acutely exposed to wood smoke had increased systemic CXCL8 and neutrophilia [16]. Experi-
mental human wood smoke exposure showed increased exhaled nitric oxide and malondialde-
hyde suggesting pulmonary inflammation and oxidative stress [17].

Chronic exposures appear different. Rats after 70 days of wood smoke exposure have mini-
mal changes in BAL concentrations of cytokines, and lower levels IL-1β than controls [18].
There are few human data on pulmonary responses to chronic ambient particulate exposure,
although cigarette smoking causes an hypo-responsive state in the ex vivo human alveolar mac-
rophage, with blunted pro-inflammatory cytokine responses [19].

Previously we have reported preliminary data from a cohort of Malawians, suggesting
reduced oxidative burst in alveolar macrophages with high particulate content [20]. We wished
to perform a definitive study to extend these findings to other phagosomal functions, and to
establish potential cellular explanations. Here, we hypothesise that chronic exposures reduce
human macrophage phagosomal capacity to internalise and kill potential pathogens. Our
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hypothetical mechanism was that chronic exposure to smoke results in antioxidant buffering,
altering redox balance in the macrophages, thus disrupting inflammatory responses important
for defence against infection. We investigated macrophage function following natural ambient
and household air pollution exposure in a biomass fuel burning adult population in Malawi.

Methods
Ethical approval was granted by the Research and Ethics Committees of the College of Medi-
cine, University of Malawi (P.03/10/916) and Liverpool School of Tropical Medicine (09.69).
All participants gave informed written consent for their participation. Healthy non-smoking
and HIV negative participants were recruited for bronchoscopy in Blantyre, Malawi. Bronch-
oalveolar lavage (BAL) to obtain alveolar macrophages (AM) was performed as previously
described [20]. All assays were done at the site of sample collection (Malawi) excepting cyto-
kine measurement.

Cell culture
BAL was filtered through gauze and centrifuged. The pellet was re-suspended in RPMI1640
with 10% FBS and 2mM L-glutamine (culture medium) with penicillin, streptomycin and neo-
mycin (Sigma-Aldrich, UK). At five hours culture medium was exchanged for that without
antibiotics. AM were used on day 1 of culture after 4 hours of incubation at 37°C, 5% CO2.

Peripheral blood mononuclear cells (PBMC) were isolated from heparinised whole blood by
Lymphoprep gradient separation (Axis-Shield, UK) and sequentially centrifuged according to
manufacturer’s instructions. Cells were seeded at 7.5x105/cm2. Adherent PBMC were incu-
bated at 37°C 5% CO2 in antibiotic-free culture medium for 5 days before use, with fresh
medium introduced every 2 days.

Particulate Matter
Dried mopane firewood fromMalawi (typically used for cooking) was transported to the UK
and burned using a 3-stone open fire method in a contained room. Respirable sized particles
(<4micron) were collected by a Higgins-Dewell cyclone at 2.2l/min attached to an Apex pump
(Casella CEL, UK), onto polycarbonate isopore filters (Millipore, USA). Particulates were
removed from filters by vortexing and sonication in methanol, dried under nitrogen gas and
stored at -80°C.

We previously reported that the particulate content of AM correlates with reported expo-
sure to household air pollution [21]. Particulate burden has been used as a biomarker of expo-
sure [22], and was quantified by digital image analysis as previously described [20]. Briefly,
cytospin preparations (Thermo Shandon) were imaged at 40x by light microscopy. Fifty fields
from each experiment were analysed using freely available software (Image SXM, www.
ImageSXM.org.uk)—see Fig 1 for diagrammatic details).

Phagosomal assays
We used our previously validated flow cytometric assay to determine intraphagosomal oxida-
tive burst and proteolytic functions [23]: silica beads linked to two fluorogenic probes (a
reporter and a calibrator) are coupled to IgG to facilitate Fc receptor mediated uptake. Adher-
ent alveolar macrophages were incubated with beads for 60mins and evaluated by flow cytome-
try (CyAn ADP, Beckman Coulter). Phagocytosis was defined as the proportion of cells
associated with beads by flow cytometry. An example of analysis using FlowJo (Tree Star, Ore-
gon, USA) is shown in supporting information S1 Fig Oxidative burst activity within the
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phagosome increases the fluorescence of bead-bound “reporter” 2',7'-dichlorodihydrofluores-
ceindiacetate succinimidyl ester (DCFHDA-SE, Invitrogen, UK). Similarly, proteolytic activity
reduces quenching of bead-bound DQ-BSA (Molecular Probes), thereby increasing its fluores-
cence. For each assay, reporter fluorescence was compared to the stably fluorescent calibrator
fluorochrome (Alexa 633, Invitrogen, UK) in order to control for variation in acquisition
parameters. Both measures are reported as “activity index”, or the increase in ratio of reporter:
calibrator fluorescence at 60 minutes (oxidative burst) and 180 minutes (proteolysis) compared
with baseline.

Stimulation experiments
Particulates from wood smoke (WS) were re-suspended in culture medium at 50μg/ml. This
dose induces similar particulate burdens in alveolar macrophages to those seen in heavy
chronic exposures [20]. Lipopolysaccharide from E. coli 0111:B4 (LPS) was used as a stimulus
at a final concentration of 100ng/ml. WS and LPS stimulation of adherent alveolar macro-
phages was performed after 24 hours of in vitro culture after bronchoscopy, and samples stored
at -80°C pending analysis. Cytokines were pre-selected based on their known effects on macro-
phages, and putative involvement in redox signaling, and assayed from supernatant using the
Luminex platform (R&D systems, UK).

To induce oxidative stress in cytokine stimulation experiments, cells were pre-treated for
18hours with 0.2mM buthionine sulfoximine (BSO) causing glutathione depletion. Additional
supplementation with 2mM N-acetylcysteine (NAC) provided antioxidant depletion/repletion

Fig 1. Particulate burden is measured by the percentage of macrophage cytoplasm taken up with
particulate matter as calculated by digital image analysis of light microscopy images. ImageSXM
software analyses cytospin images treated with Fields B stain (A), and identifies both cytoplasmic (B) and
particulate areas (C). The proportion of particulate to cytoplasm in the output image (D) is used as a measure
of recent particulate exposure. Fifty 40x fields are used, and the overall mean particulate burden used as the
summary statistic. Panels B and C are generated internally within the software, and are shown here for
illustrative purposes only.

doi:10.1371/journal.pone.0138762.g001
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conditions. BSO related cell toxicity was determined from lactate dehydrogenase concentra-
tions in culture supernatants (Tox7 kit, Sigma).

Redox assessment
Macrophages were lysed in 5% sulfasalicylic acid. Oxidised glutathione (GSSG) and total gluta-
thione were measured in triplicate by a recycling enzymatic assay. Briefly, reduced glutathione
is oxidised by 5,5’-dithiobis-2-nitrobenzoic acid (DTNB) to give a yellow product (TNB). Oxi-
dised glutathione is recycled through the assay by NADPH dependent glutathione reductase.
Total glutathione is determined from the linear reaction kinetic measured by absorbance at
412nm against known standards. Oxidised glutathione is identically measured, after pre-treat-
ment with 2-vinylpyridine to remove reduced glutathione. Reduced glutathione (GSH) was cal-
culated from [total glutathione = 2GSH + GSSG]. All reagents were obtained from Sigma, UK.

LDH assay for cell toxicity
Toxicity resulting from BSO treatment was measured by lactate dehydrogenase release into cul-
ture supernatants using a kit (Tox7, Sigma) according to manufacturer’s instructions. NADH
formed in the catalytic reduction of NAD+ reacts with iodonitrotetrazolium producing a blue
formazan product which can be quantified by absorption at 492nm. Separately, alveolar macro-
phages treated with 1% Triton-X for 5 minutes at 21°C were centrifuged at 10000g for 5 min-
utes, and the supernatant used as a positive control.

Data Analysis
Experiments were performed sequentially due to cell numbers. For each assay, consecutive par-
ticipants were used to reduce the risk of bias. Due to the ubiquity of particulate exposure in the
study population, control groups were not available. Results are therefore reported based of rel-
ative exposures within the spectrum of that measured.

Human AM production of cytokines, phagocytosis and phagosomal oxidative function was
compared in subjects with variable exposure to household air pollution, measured by AM par-
ticulate burden. Cytokine data and particulate densities were normalized by logarithmic trans-
formation, using x’ = log(x+0.05), due to zero values and to enable parametric testing. Groups
were compared with paired t-test or ANOVA. Effects on cytokine release were assessed by
Sidak’s multiple comparison testing. Analysis used Stata v12 (StatCorp, TX) and GraphPad
Prism v6 (GraphPad, CA), with significance at p<0.05 unless stated.

Results

Participants
We recruited 128 non-smoking participants with median age 28.4 (IQR 23.6–34.9). 57 (44%)
were female. Median bronchoalveolar lavage return was 65% (130ml, IQR 112–140), contain-
ing 96.3% macrophages (IQR 93.7–98.1) with 97% viability (IQR 95–99). Tobacco smoking by
a household contact was reported in 23 (18%), but smoking in Malawi is outdoors and typically
fewer than five cigarettes per day. Baseline details of participants are given in Table 1.

Particulate loading in macrophages from subjects exposed to HAP
121 (94.5%) participants were routinely exposed to biomass derived household air pollution:
119 (93%) used biomass fuel for cooking of whom 77 (61%) cooked only indoors; 94 (75%)
used candle or paraffin as the main source of lighting, the remainder used electricity or battery
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powered lights. Median macrophage carbon load was 0.4% of total cytoplasmic area (range
0–8.0%, IQR 0.2–0.9%).

Intraphagosomal function
Phagocytosis, proteolysis and oxidative burst were measured in 29 BAL samples. There was a
significant negative correlation, between macrophage particulate content and macrophage
intraphagosomal oxidative burst (see Fig 2, r2 = 0.16, p = 0.033). There were wide differences
between individuals in propensity to generate phagosomal reactive oxygen species (ROS). Nei-
ther phagocytosis per se nor proteolytic function were associated with macrophage particulate
loading (r2 = 0.00, p = 0.90; r2 = 0.01, p = 0.25 respectively).

Cytokine response and particulate burden
AM from 24 consecutive Malawian participants were stimulated ex vivo with wood smoke
extract or media control. Culture supernatant CXCL8 concentrations rose at 6 hours (1.54 fold
increase above control [95%CI 1.30–1.82], p<0.0001), see Fig 3A. We compared baseline
CXCL8 production between low and high particulate groups as defined by the median macro-
phage particulate content. AM with high particulate loading had lower CXCL8 release

Table 1. Summary details of the participants’ demographics and BAL findings.

n (%)

Age, mean years (SD) 30 (7.7)

Sex, female (%) 57 (44%)

Body Mass Index, mean kg/m2 (SD) 22.5 (3.8)

African ethnicity, n (%) 128 (100%)

Passive cigarette smoke exposure, n (%) 23 (18%)

Cooking (main source)

Open wood fire, n (%) 43 (33.6%)

Charcoal stove, n (%) 76 (59.4%)

Electricity, n (%) 9 (7.0%)

Cooking location (predominant)

Inside the house, n (%) 77 (60.6%)

Outside, n (%) 50 (49.4%)

Lighting (main source)

Paraffin, n (%) 45 (35.4%)

Candle, n (%) 47 (37.0%)

Electricity, n (%) 31 (24.4%)

Flaming torch, n (%) 4 (3.2%)

Incomplete data 1

FEV1, mean % predicted (SD) 94 (13.5)

FVC, mean % predicted (SD) 98 (12.6)

FEV1/FVC, % (SD) 82 (6.7)

BAL return*, median ml (IQR) 130 (112–140)

Cell viability, median % (IQR) 97 (95–99)

Percent of BAL macrophages, median (IQR) 96.3 (93.7–98.1)

Macrophage particulate load, median % of cytoplasm (IQR) 0.4 (0.2–0.9), range 0–8

SD standard deviation; IQR interquartile range;

* 200ml instilled.

doi:10.1371/journal.pone.0138762.t001

Inhaled Particulates and Macrophage Function

PLOS ONE | DOI:10.1371/journal.pone.0138762 September 25, 2015 6 / 15



Fig 2. Alveolar macrophages naturally exposed to higher levels of particulate have reduced capacity
for intraphagosomal oxidative burst, but an unaffected capacity for phagocytosis and proteolysis.
Unselected participants naturally exposed to inhaled particulates underwent bronchoscopy. The burden
particulate within the alveolar macrophage was used as a measure of overall exposure. The capacity of
alveolar macrophages to phagocytose, produce oxidative burst and proteolytic responses was tested on the

Inhaled Particulates and Macrophage Function

PLOS ONE | DOI:10.1371/journal.pone.0138762 September 25, 2015 7 / 15



compared with low particulate under unstimulated culture conditions (ratio of means 0.51
(95%CI 0.29–0.89, p = 0.02), see Fig 3B. After stimulation with wood smoke, this difference
persisted: the ratio of mean CXCL8 in high compared with low particulate groups was 0.58
(95%CI 0.34–0.97). There was no relationship, however, between high particulate loading and
the magnitude of CXCL8 responses (ratio of mean high vs low of 0.99 (95%CI 0.72–1.35,
p = 0.93), see Fig 3C.

Cytokine response and redox balance
Having described the relation of particulate load to both cytokine production and phagocytic
function, we then determined the extent to which AM cytokine responses to particulates (stim-
ulated ex vivo) were dependent on intracellular redox balance. Preliminary experiments (Fig
4A) showed that buthionine sulfoximine (BSO) 0.2mM decreased total glutathione (total

same day by co-incubation with fluorophore labelled silica beads. (A) phagocytosis as indicated by the
percentage of macrophages associated with fluorophore labelled beads by flow cytometry. (B) Oxidative
burst and (C) Proteolysis were measured using twin labelled beads with calibrator fluor and reporter fluor
(DCFH-DA and DQ-bovine serum albumin conjugate respectively), reported as “activity index” (see
Methods). Each dot represents an individual (n = 29). Solid and dotted lines show the linear regression model
with 95% confidence intervals. The x-axis describes the particulate burden (% of cytoplasm taken up by
particulate). This has been log transformed by x’ = log(x+0.05), as described in the methods in order to
normalise the data.

doi:10.1371/journal.pone.0138762.g002

Fig 3. CXCL8 release is decreased in particulate ladenmacrophages. Prior exposure to particulates was measured by HAM particulate burden.
Individuals were designated “low” and “high” exposures according to whether their HAM particulate burden was below or above the median value for this
group (n = 24). Adherent HAM on day 1 after bronchoscopy were incubated with media only or with additional wood smoke suspension for 6 hours. CXCL8
concentrations in the cell culture supernatant following challenge are shown logarithmically transformed (log10). For all panels, open circles represent
individuals with “low”macrophage particulate burden. Filled circles are those with “high” baseline particulate burden. (A) shows concentrations of CXCL8 in
media for control and wood smoke stimulated wells for the entire group. There is a significant increase in concentration in stimulated cells (paired t-test,
p<0.0001). (B) shows CXCL8 concentrations from untreated (control) and wood smoke treated wells. Here, results are grouped according to baseline
particulate burden (low and high as described above). Bars show the mean and 95% confidence intervals. There is a significantly higher CXCL8
concentration from cells with low baseline particulate burden in both control and wood smoke treated wells (two-sided t-test, p = 0.020 and p = 0.039
respectively). (C) represents the increase in CXCL8 (log10 change in wood smoke treated wells compared with control). Bars show the mean and 95%
confidence intervals. There is no difference in the magnitude of cytokine response between cells with low and high baseline particulate burden (two sided t-
test, p = 0.93).

doi:10.1371/journal.pone.0138762.g003
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glutathione) in HAM to 35% of its baseline (from 85.7μmol [SD 14.3] to 30.1μmol [SD 8.0],
p = 0.015). BSO treated AMs therefore had reduced antioxidant buffering capacity (total gluta-
thione). However, the ratio of oxidized to total glutathione (GSSG:total glutathione) expressed
as a percentage was unaltered: control and treated mean values were 1.2% (SD 0.30) and 1.6%
(SD 0.66) respectively (Fig 4B). This ratio is a frequently used measure of redox signaling [24],
and suggests that the macrophage redox potential was not significantly affected, at least under
resting culture conditions. There was no evidence for BSO induced toxicity (supporting infor-
mation S2 Fig).

Cytokine release from BSO treated AM was measured following ex vivo incubation with WS
particles and LPS (Fig 5). CXCL8 production was augmented by BSO pre-treatment (mean
fold increase of 1.49 [95%CI 1.02–2.17]). NAC offset this increase. CCL2 release was also
altered by redox balance (p = 0.0074 by ANOVA), and was significantly reduced in response to
wood smoke in cells pretreated with BSO/NAC (mean fold difference 0.40 [CI 0.24–0.66].
Other inflammatory mediators demonstrated no statistical difference after redox manipulation.
All measured cytokines were increased following lipopolysaccharide treatment (p<0.05 by
repeated measures).

Fig 4. BSO treatment of HAM reduced total intracellular glutathione concentrations but did not alter
overall proportion of glutathione in the oxidised state. Ex vivo adherent macrophages (3x106 per well)
were cultured for 18 hours in medium only (control), or with addition of 0.2mM BSO. Concentrations of total
and oxidised glutathione were measured using an enzymatic recycling assay (see Methods). (A) Total
glutathione (a measure of buffering capacity against oxidative stress) is reduced by BSO treatment compared
with control. (B) Oxidised glutathione, as conventionally expressed as a percentage of total (a measure of
oxidative stress), was not significantly altered by BSO treatment. n = 4 in each group. Boxes indicate 25th to
75th centile with median, and whiskers at 95% CI. Two sided t-test used for comparison.

doi:10.1371/journal.pone.0138762.g004
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Fig 5. Cytokine responses to wood smoke particulates and LPS: the effect of intracellular redox
balance. Ex-vivo adherent alveolar macrophages were pre-incubated with media alone (control), 0.2mM
BSO (glutathione depletion), or BSO plus 2mM NAC (antioxidant depletion-repletion) for 18 hours, followed
by stimulation with either media alone (control), wood smoke (left panels, WS) or lipopolysaccharide (right
panels, LPS). After WS stimulus, low level changes were seen in CXCL8 and CCL2 release, while other
cytokines were no significantly different. Maximal responses were seen with LPS, with no consistent effect of
redox manipulation. Boxes showmean cytokine concentration in cell culture supernatants with 25th to 75th

centile, and whiskers at 95% CI. n = 8 for each group. p values represent repeated measures ANOVA on log-
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Discussion
This study has shown that human AM obtained from participants most exposed to HAP have
altered macrophage function: macrophage cytokine responses to wood smoke particles are
reduced, and phagosomal oxidative burst responses are diminished. Further, we have shown
that experimental alteration of human AM redox balance augments the prominent cytokine
response to wood smoke (CXCL8). We did not show any alteration in macrophage phagocyto-
sis associated with chronic particulate exposure, which is different from reports of acute expo-
sure but consistent with the clinical differences between acute and chronic smoke exposure in
human subjects.

A large number of participants underwent bronchoscopy, allowing confidence in the find-
ings. We carefully characterised alveolar macrophage particulate burden as a measure of expo-
sure, and determined intraphagosomal function. While in vitro challenge models are by their
nature different from in vivo conditions, and relevant concentrations at cellular interface are
debated, our model is consistent with in vivo findings: we used respirable fraction particles at
concentrations which mimicked cellular appearances of macrophages exposed in vivo. Smoke
particles were produced from the same firewood sources used by the exposed population, thus
providing a relevant exposure model.

Phagosomal function
We identified a specific defect in phagosomal function associated with natural particulate load-
ing of alveolar macrophages. Despite known crosstalk between oxidative burst and proteolysis
pathways, particulate burden was independently associated with reduced oxidative burst, but
proteolytic and phagocytic functions were preserved.

These results differ from models of acute exposure which have generally demonstrated
decreased phagocytosis [25]. Cellular reactive oxygen species increase following acute expo-
sure, but many methods measure ROS release throughout the cell, including potentially dam-
aging extra-phagosomal production. Compared with our intraphagosomal assay, such
methods are more likely to measure cellular oxidative stress than phagocytic killing. In mice,
chronic PM2.5 exposure causes increased NADPH oxidase activity, by infiltration of bone mar-
row derived monocytes [26]. In our study, chronic exposures in humans do not have this effect.
Particulate toxicity could explain a reduction in oxidative burst, but this does not explain the
differential effect on phagocytosis and proteolysis. Other studies report no difference on mac-
rophage viability at the same particulate dose and time interval [27].

Our data provide novel evidence that innate pulmonary immunity is specifically impaired
by in vivo particulate exposure. Reduced oxidative burst could result in less robust bacterial
handling, which is key to innate defence during early pulmonary infection[4]. NADPH oxidase
is important in both bacterial killing, and in limiting inflammatory responses by limiting NF-
κB activity and the effect of LPS on pro-inflammatory cascades (reduction of NADPH oxidase
activity, dampens the pro-inflammatory effect of particulates [28]). These mechanisms are
likely to be important in the major observed associations between pulmonary infection and
smoke exposure [2].

HAP particulates from biomass fuel combustion contain endotoxin concentrations one
hundred times higher than those which cause childhood respiratory disease [11]. In view of the

transformed data. * denotes difference from control. † denotes difference from stimulated condition without
pre-treatment. Significance testing by Sidak’s multiple comparisons test (p<0.05 significance level).
Horizontal broken line represents limit of detection for each cytokine.

doi:10.1371/journal.pone.0138762.g005
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lower oxidative burst in particulate laden macrophages, we hypothesize that chronic inhaled
endotoxin down-regulates M1-“activation” phenotype, reducing ROS production analogous to
the endotoxin tolerance seen in cigarette smokers [19].

Release of inflammatory mediators
Wood smoke particles induced AM to produce CXCL8 in vitro, which is the prominent sys-
temic cytokine response in wood smoke exposed firefighters [16]. We noted non-significant
rises in IL-6 and TNFα which might be explained by our use of lower particulate concentra-
tions than previous studies [10]. Particulate type also alters the effect: WS generates lower level
inflammatory responses compared with other particulates in animals [29]. However, we have
for the first time used alveolar macrophages obtained from chronically exposed adults who
have down-regulated inflammatory AM responses when compared with monocytic cells used
in many in vitromodels [30].

Dampening of LPS cytokine responses has been demonstrated in COPD patients’mucosa
(CXCL8) [31], and alveolar macrophages (TNFα but not CXCL8) [32]. In our study, LPS
induced rises in IL-6, CXCL8 and TNFα within bronchoalveolar lavage fluid were reduced by
the antioxidant, N-acetylcysteine [33]. We tested the effect of oxidative stress, and showed that
CXCL8 was increased in BSO pre-treated cells. The differential in effect (the absence of a mea-
surable effect on IL-6 and TNFα) might be due to relatively larger absolute changes in CXCL8,
or the involvement of separate (non-NFΚB) induction pathways. Recent study has shown that
redox changes induce CXCL8 in other ways, including Lyn (an Src family kinase), AP-1 bind-
ing and histone 3 modifications in the promotor region, [34]

In contrast to CXCL8, CCL2 responses to LPS stimulation were reduced by glutathione
depletion. CCL2 is released following acute inflammatory lung injury, reducing AM oxidant
production [35]. Under conditions of oxidative stress, reducing CCL2 may therefore prevent
excessive inflammation.

Gosset et al noted that macrophage glutathione depletion by 90% augments LPS stimulated
release of CXCL8 and TNFα [36]. Our BSO treatment effect was less profound (65% reduc-
tion), which might explain our observed lack of redox effect. However, Gosset et al also demon-
strate CXCL8 changes with glutathione reduction of 45%. CXCL8 production is known to be
influenced by oxygen metabolites. We are investigating the possibility that our participants’
macrophages had already up-regulated antioxidant defences due to chronic particulate-
induced oxidative stress.

Summary
AM obtained from subjects with prior exposure to high concentrations of respirable particu-
lates show reduced cytokine production at baseline and after further stimulation with particu-
late generated from wood combustion. Reducing intracellular glutathione increased CXCL8
responses and decreased CCL2 responses in human AM in a similar pattern to that observed in
chronically particulate exposed subjects. With LPS stimulation, we did not see an increase in
cytokine in BSO treated AM, perhaps due to chronic oxidative stress caused by HAP exposure
in this population [36].

In conclusion, particulate exposure in vivo is directly associated with impaired macrophage
function. It is unlikely that these cellular changes can be specifically altered by antioxidant ther-
apy. These data should, however, provide biological plausibility for public health interventions
to reduce HAP with consequent reductions in the burden of pulmonary infection among adults
and children living in homes using biomass fuel.
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Supporting Information
S1 Fig. Diagram of the gating and analysis strategy used to estimate the intraphagosomal
function of alveolar macrophages.
(EPS)

S2 Fig. Treatment of alveolar macrophages with 0.2mM of BSO for 18 hours did not result
in increased toxicity as measured by LDH release into culture medium. Culture medium
content of lactate dehydrogenase (LDH) following human alveolar macrophage culture for 18
hours, in the presence BSO 0.2mM or media alone (control). LDH given as proportion of lysed
HAM positive control (see Methods). n = 6 in each group.
(EPS)
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