JBC Papers in Press. Published on May 12, 2016 as Manuscript M116.722074 The latest version is at http://www.jbc.org/cgi/doi/10.1074/jbc.M116.722074 Human IgM Binds Broadly Diverged DBLMSP Protein Variants

Binding of *Plasmodium falciparum* Merozoite Surface Proteins DBLMSP and DBLMSP2 to Human Immunoglobulin M Is Conserved Amongst Broadly Diverged Sequence Variants

Cécile Crosnier^{‡,§}, Zamin Iqbal^I, Ellen Knuepfer[¶], Sorina Maciuca^I, Abigail J. Perrin^{‡,§}, Gathoni Kamuyu[§], David Goulding^{**}, Leyla Y. Bustamante[§], Alistair Miles^{I, §}, Shona C. Moore^{A#}, Gordon Dougan^{**}, Anthony A. Holder[¶], Dominic P. Kwiatkowski^{§,I}, Julian C. Rayner[§], Richard J. Pleass^Δ, and Gavin J. Wright^{‡,§,1}

From [†] Cell Surface Signalling Laboratory, [§] Malaria Programme, and ^{**} Microbial Pathogenesis, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK; ¹ Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK; [¶] The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK; ^Δ Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; [#] Warwick Systems Biology Centre, Senate House, University of Warwick, Coventry, CV4 7AL

Running title: Human IgM Binds Broadly Diverged DBLMSP Protein Variants

¹ To whom correspondence should be addressed: Dr Gavin J. Wright, Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK; Telephone: +44 (0)1223 496852; E-mail: <u>gw2@sanger.ac.uk</u>

Keywords: protein-protein interaction, Plasmodium, parasite, immunoglobulin M (IgM), merozoite, genetic polymorphism, host-pathogen interaction

ABSTRACT

Diversity at pathogen genetic loci can be driven by host adaptive immune selection pressure and may reveal proteins important biology. Population-based for parasite genome sequencing of Plasmodium falciparum - the parasite responsible for the most severe form of malaria - has highlighted two related polymorphic genes called *dblmsp* and *dblmsp2*, which encode Duffy bindinglike (DBL) domain-containing proteins located on the merozoite surface but whose function remains unknown. Using recombinant proteins and transgenic parasites, we show DBLMSP and DBLMSP2 directly and avidly bind human immunoglobulin M (IgM) via their DBL domains. We used whole genome sequence data from over 400 African and Asian P. falciparum isolates to show that dblmsp and dblmsp2 exhibit extreme protein polymorphism in their DBL domain, with multiple variants of two major allelic classes present in every population tested. Despite this variability, the IgM-binding function was retained across diverse sequence representatives. While this interaction did not seem to have an effect on the ability of the parasite to invade red blood cells, binding of DBLMSP and DBLMSP2 to IgM inhibited the overall immunoreactivity of these proteins to IgG from patients who had been exposed to the parasite. This suggests that IgM binding might mask these proteins from the host humoral immune system.

Malaria is responsible for up to one million deaths annually and therefore remains one of the world's major health problems (1,2). Amongst the different species of *Plasmodium* causing malaria in humans, Plasmodium falciparum is responsible for the highest burden of disease. The clinical symptoms of malaria are associated with the blood stage of the infection, when the merozoite stage of the parasite recognises, invades and develops within human erythrocytes (3). Because merozoites are directly exposed to circulating antibodies, and passive immunisation of infected children with purified immunoglobulins from clinically-immune individuals parasitaemia reduces (4),merozoite surface proteins are considered likely targets of host immunity and therefore potential vaccine candidates (5). Consistent with this, population-based P. falciparum genome sequence analysis (6) has revealed that genes encoding merozoite surface proteins are amongst the most polymorphic in the genome, with several exhibiting signatures of balancing selection, suggesting that host immune pressure maintains the presence of multiple distinct antigenic variants (7).

dblmsp and dblmsp2 (also known as msp3.4 and msp3.8, respectively) are two members of the P. falciparum msp3 family which comprises a cluster of eight paralogous genes on chromosome 10. The *msp3* family encodes proteins characterised by the presence of an NLR[K/N][A/G/N] motif at their N-terminus (8,9), are secreted by the blood stage of the parasite, and located in both the parasitophorous vacuole and on the merozoite's surface. Most proteins within this family also contain a C-terminal acidic and a coiled-coil region believed to be involved in oligomerisation of the proteins (10), which form the SPAM (secreted polymorphic antigen associated with merozoites) domain (11). DBLMSP and DBLMSP2 are distinguished from the other MSP3-family members because they contain a Duffy binding-like (DBL) domain (8,12). DBL domains are known to bind directly to host receptors and are present in other P. falciparum surface proteins including ligands involved in erythrocyte invasion such as EBA175 and EBA140 (13-15) and members of the PfEMP1 family, which are displayed on the surface of the infected erythrocyte (16). Sequencing of some African P. falciparum strains has shown that the genetic diversity in *dblmsp* and *dblmsp2* is particularly high and concentrated in the region encoding the DBL domain (17-19). Clearly identifiable orthologues of *dblmsp* and *dblmsp2* are not present in other Plasmodium species that infect humans, but the genome of the chimpanzee parasite P. reichenowi encodes a functional dblmsp gene, although *dblmsp2* is a pseudogene (19). Despite these interesting features, the function of DBLMSP and DBLMSP2 and their role in the pathology of malaria are unknown.

Here, we used recombinant proteins produced in mammalian cells and a knockout parasite line to show that the DBL domains of DBLMSP and DBLMSP2 from the 3D7 strain of *P. falciparum* bind avidly and directly to human IgM. Using population–based genome sequencing and bespoke assembly tools, we revealed widespread genetic diversity focussed on the DBL domain, with two major allelic forms of both *dblmsp* and *dblmsp2* observed in populations from Africa and South-East Asia. Despite their diversity, binding of the DBL domains from different DBLMSP and DBLMSP2 sequence variants to human IgM was conserved, suggesting an important role in the parasite's biology.

RESULTS

DBLMSP and DBLMSP2 bind human IgM - To gain insight into the functional role of DBLMSP and DBLMSP2 during malaria pathogenesis, we first expressed the entire coding region of both proteins from the P. falciparum 3D7 strain using a recently developed expression system based on mammalian cells, which has been shown to produce natively-folded P. falciparum proteins (20). Both proteins were expressed (Fig. 1A), and their immunoreactivity to sera from malariaexposed and unexposed control individuals was quantified. To our surprise, while other MSP3 family members (MSP3, MSP6, H101 and MSP11) and DBL-containing merozoite surface proteins (EBA140, EBA175, EBA181) reacted, as expected, with only the exposed sera, DBLMSP and DBLMSP2 showed equally strong immunoreactivity to both the unexposed control and exposed sera (Fig. 1B). This suggested that recombinant DBLMSP and DBLMSP2 bound immunoglobulins present in normal serum from individuals without prior exposure to the malaria parasite. Indeed, when each protein was exposed to purified human immunoglobulin isotypes, strong binding was observed to IgM, but not to IgA, IgE, or IgG (Fig. 1C). This binding was specific to human IgM since they did not bind immunoglobulins from other mammalian species including goat, rabbit, guinea pig and cow, or purified mouse IgM (Fig. 1D). To confirm these observations, we showed that DBLMSP-coated beads but not control beads incubated in normal human serum purified bands with masses there were consistent with the heavy and light chain of IgM (Fig. 1E), and their identities were subsequently confirmed by mass spectrometry.

IgM adopts a flat, planar structure in solution but can change to a "staple" conformation upon antigen binding thereby permitting interaction with other proteins such as C1q (21). To determine whether antigen bound to IgM influenced its interaction with DBLMSP and DBLMSP2, we made use of two transfectomas producing chimeric IgMs that recognise dinitrophenyl (DNP), but differ by either the presence or absence of a murine J-chain. In these chimeric IgMs, the whole κ light chain and the variable region of the heavy chain are of murine origin, whereas the heavy chain Fc constant region is human (22). DBLMSP and DBLMSP2 bound IgM from both transfectomas demonstrating that they interact with the human IgM heavy chain constant region, and this binding was independent of whether they were engaged with antigen or not. Binding of DBLMSP2 to IgMs lacking a J-chain, however, was consistently weaker (Fig. 1F).

The DBL domain of DBLMSP and DBLMSP2 binds directly and avidly to the IgM $C\mu_4$ domain - To identify the region on IgM that bound DBLMSP and DBLMSP2, we used mouse monoclonal antibodies that bind to specific domains of the human μ chain constant region (23,24). Antibody 1G6, whose epitope is located within the $C\mu_4$ domain, inhibited the interaction of DBLMSP and DBLMSP2 with human IgM whereas antibodies IX11 and HB57, with epitopes located in the $C\mu_1$ and $C\mu_2$ domains, respectively, or the Cµ3-specific antibodies 196.6b and 5D7 did not (Fig. 2A). To confirm these observations, we also made use of chimaeric recombinant antibodies in which domains of the human μ chain constant region replace domains from the human α or γ chain (25,26). In all cases, binding of DBLMSP and DBLMSP2 proteins was observed only when the $C\mu_4$ domain was present in the chimaeric antibodies, and no binding was detected with domain-swapped antibodies only containing the $C\mu_2$ or $C\mu_3$ domains (Fig. 2B).

To determine which regions of DBLMSP and DBLMSP2 were involved in IgM binding, we individually expressed either the DBL domain, or the SPAM fragment. The SPAM fragments did not bind IgM whereas the isolated DBL domains bound IgM as efficiently as the full-length proteins in this assay, indicating that the DBL domain encompassed all IgM binding activity (Fig. 2C).

DBLMSP and DBLMSP2 form multimers that interact avidly with human IgM - To determine whether DBLMSP and DBLMSP2 could. like MSP3. form oligomers, we first used size-exclusion chromatography on each full-length protein. In both cases, polydisperse peaks were observed, suggesting the formation of higher order oligomers composed exclusively of the proteins of interest (Fig. 3A). We then resolved purified proteins encompassing the DBL domain and SPAM fragment by sizeexclusion chromatography. While the DBL domain of DBLMSP2 eluted as a single monodisperse peak consistent with it being a monomer, the SPAM fragment elution profile was polydisperse, with peaks consistent with tetrameric and other higher order complexes, and only a minor fraction consistent with a monomeric form (Fig. 3B). A similar analysis of DBLMSP gave comparable results, suggesting that both DBLMSP and DBLMSP2 are able to form higher-order oligomers by interactions through their C-terminus.

To quantify the interaction between IgM and both DBLMSPs, and demonstrate that the proteins interacted directly, we used surface plasmon resonance. Binding of soluble, purified human IgM was tested against immobilised full-length DBLMSP or DBLMSP2, mimicking the orientation of the proteins that would be expected in vivo. IgM binding to both parasite proteins was clearly saturable, demonstrating the specificity of the equilibrium interactions, with binding constants (K_{Ds}) of 0.3 and 1.1 nM for DBLMSP and DBLMSP2, respectively (Fig. 3C). Given the multimeric nature of both IgM and the two parasite proteins studied, these measurements reflect overall binding avidity and are not easily comparable with other monomeric protein interactions. We therefore immobilised human IgM on the chip and used the monomeric DBL domains as analytes. Using this approach, the affinity for human IgM was 200- to 550-fold weaker reflecting the loss of avidity but nonetheless still strong, with an equilibrium binding affinity of 60nM for DBLMSP versus 600nM for DBLMSP2 (Fig. 3D). The physiological concentration of IgM in human serum is around 1-2 mg/mL (1-2 µM), which is at least three orders of magnitude higher than the measured binding constants, and implies

that all serum-exposed DBLMSP and DBLMSP2 would be rapidly and irreversibly complexed with IgM.

dblmsp-deficient merozoites invade ervthrocvtes efficiently but do not bind IgM -To demonstrate that native DBLMSP could bind human IgM, we generated $\Delta dblmsp P$. falciparum merozoites in which the dblmsp gene has been targeted (Fig. 4A), and confirmed this by Southern blotting (Fig. 4B). Using an antibody raised against the SPAM region of DBLMSP, we showed that the $\Delta dblmsp$ parasites no longer expressed DBLMSP protein (Fig. 4C) and that it was absent from the surface of merozoites (Fig. 4D). We then used immunohistochemistry to test for the presence of human IgM at the surface of 3D7 wild-type, or $\Delta dblmsp$ parasites. In wild-type parasites, DBLMSP is expressed at the surface of merozoites in all schizonts, whereas DBLMSP2 is present in only a very small subset of schizonts (1% or less; (17)). Following culture in the presence of purified human IgM or with human serum, IgM could be detected readily at the surface of wild-type but not *dblmsp*-deficient merozoites (Fig. 5A). These observations were further confirmed by immunoelectron microscopy of purified wild-type and knockout merozoites incubated in the presence of purified human IgM, which showed regular punctate labelling at the surface of wild-type but not $\Delta dblmsp$ merozoites (Fig. 5B). These data demonstrate that native DBLMSP binds IgM and is the sole IgM-binding protein at the surface of most merozoites. $\Delta dblmsp$ knock-out mutants grown in the presence of medium containing a serum alternative that does not contain human IgM did not show any invasion phenotype when compared to the wild-type. To determine whether the presence of human IgM on the merozoite surface had any effect on the ability of the wild-type parasite to invade red blood cells, we also performed invasion assays with parasites grown in either serum alternative alone, or serum alternative supplemented with 1 mg/mL human IgM. No difference in invasion efficiency was observed, suggesting that the presence of human IgM on the merozoite surface does not affect erythrocyte invasion in vitro (Fig. 5C).

dblmsp and dblmsp2 are dimorphic – Our observations suggest that the DBLMSP and DBLMSP2 proteins from the 3D7 strain

of *Plasmodium falciparum* parasite are able to bind human IgM. Sequencing of some P. falciparum isolates from Africa has, however, shown sequence variability in dblmsp and dblmsp2 (17-19). To further characterise the genetic diversity in these two genes, we looked at the sequence variability amongst field isolates from Africa and South-East Asia. Characterising and quantifying genetic architecture in field isolates using population-based genomic sequencing are challenging both because of their high degree of polymorphism, and the appreciable levels of mixed infections. To circumvent these issues, we applied the Cortex de novo variation assembler (27,28), which constructs a so-called de Bruijn graph representing the sequence and variation within the sample without the use of a reference genome. This method is agnostic to different types of genetic variation including indels and structural variants, and is highly specific. Using this method we generated biallelic variant calls across the *P. falciparum* genome using short-read Illumina sequence data from 434 field isolates from The Gambia, Ghana, Guinea, and Cambodia (minimum 50x coverage, mean read length 74 bp) as reported elsewhere (17,29,30). Comparing genome sequences across P. falciparum isolates revealed striking regions of high sequence diversity, for example on chromosome 10 (Fig. 6A), and in particular around the MSP3 gene family. Using this approach, the highest peak was observed at msp3 whose two diverged haplotypes within which recombination is reduced have been very well-studied in the literature, and whose divergence precedes the P. reichenowi/P. falciparum split (31);however, we also observed extremely high peaks at *dblmsp* and *dblmsp*2.

After close examination of the variant calls within *dblmsp* and *dblmsp2*, we found a large number of overlapping variants. Since Cortex only calls biallelic variants, samples with multiple infections, which contain more than two alleles at a single site, will return no value. Because few sites were multi-allelic in all samples, we took the union of all sites in the 434 samples and removed redundancy - this union contained the vast majority of polymorphic sites. The overlapping alleles in *dblmsp2* were long (up to around 1kb), and

shared sequence. As a result of this, together with the unknown multiplicity of infection and lack of phasing information with the short Illumina reads, we took a conservative approach and did not attempt to genotype the implied long multi-allelic variants. Applying these approaches, we established that *dblmsp* and *dblmsp2* each contained one major cluster of long non-recombining haplotypes (15 haplotypes in *dblmsp*, and 41 in dblmsp2), with differing lengths (around 570 bp in *dblmsp*, and 1350 bp in *dblmsp2*) and all overlapping the region encoding the DBL domain. In *dblmsp*, these 15 haplotypes grouped into two major allelic forms which we termed class 1 (three haplotypes) and 2 (12 haplotypes) (Fig. 6B and 6C). In dblmsp2, we found two major allelic forms, class 1 (six haplotypes) and class 2 (35 haplotypes), which we subdivided into two subclasses (c2.1 and c2.2) on the basis of multiple sequence alignments (Fig. 6B and 6D). To quantify the divergence between haplotypes, we designated d(c1,c2) as the mean number of SNP and indel differences between classes c1 and c2. For *dblmsp*, d(c1,c1)=1.77 and d(c2,c2)=22.5, whereas d(c1,c2)=185.Similarly for dblmsp2, d(c2.1,c2.1)=34.2,d(c1,c1)=2.9, d(c2.2,c2.2)=7.0, d(c2.1, c2.2)=61, whereas c2.1)=239, d(c1,c2.2)=194;d(c1, demonstrating that for both genes, the two main allelic classes were deeply diverged.

To get an estimate of population frequencies, we used the alignments to find sequence markers characteristic of the main classes, and then queried the de Bruijn graph for all 434 samples to see which samples showed evidence of class 1 and/or class 2 haplotypes. Using this approach, we were able to find evidence for a haplotype from either dimorphic form even in samples where no call had been made. Our findings confirmed that both dimorphic forms coexisted at high frequencies in each gene and all four countries (Fig. 6E). Haplotype classes in all 434 samples were clearly identified in the region encoding the DBL domain, with SNP and indel sites present on either side. Outside the DBL domain, a strong long-range linkage disequilibrium (LD) structure was observed, but all four countries showed different patterns. Within the DBL domain, however, samples from all countries showed both allelic classes at

appreciable frequencies, a powerful signal of balancing selection. Although this had been shown previously in Africa, to our knowledge this is the first time it has been demonstrated in Southeast Asia. In the case of *dblmsp*, one of the two haplotype classes was very close to the *P. reichenowi* sequence (Fig. 6C) and is a strong example of balancing selection. Until further samples of P. reichenowi are sequenced, we will not know whether the selection pressure is present in *P. falciparum* only, or whether this is a trans-species polymorphism (32). Interestingly, the population counts for haplotype classes in *dblmsp* showed much higher levels of mixed infection than expected (Fig. 6E), from which we inferred the existence of a *dblmsp* paralog, as has been suggested before (19). In conclusion, the lack of recombination within the classdefining region of the DBL domain and the long-range LD observed on either side of this region are striking and provide convincing evidence for strong selection pressure on the DBL domains of DBLMSP and DBLMSP2, suggesting they play an important role in

parasite biology. Most naturally-occurring DBL domain variants can bind human IgM -Because the genetic variability within *dblmsp* and *dblmsp2* is concentrated on the region encoding the DBL domain, we tested whether the ability to bind IgM was retained across DBL sequence variants representing the major allelic forms for both genes found in our and others' analyses (18,19). For DBLMSP, a total of ten DBL variants from three P. falciparum laboratory strains 7G8, Dd2, FCR3, six field isolates, and the P. reichenowi ortholog sharing between 59 and 99% sequence identity were selected (Fig. S1). Except for the DBL domains from 7G8 and 028, IgM binding was conserved across all variants, including the most divergent (384 and P. reichenowi) (Fig. 7A). Similarly for DBLMSP2, seven representative DBL variants with sequence identities ranging from 62 to 98% were selected (Fig. S1). Although variant 082 repeatedly did not produce protein, all the other six bound human IgM (Fig. 7A). Interestingly, while the 7G8 and 028 DBLMSP DBL domains could not bind human IgM, their shared DBLMSP2 DBL sequence was able to do so.

To further confirm that binding to IgM was conserved amongst sequence variants, we performed IgM pull-down from long-term parasite culture supernatants from the var1 and var13 sub-strains of the IT4 strain (whose *dblmsp* sequence is identical to that of FCR3) grown in the presence of human serum. Following SDS-PAGE and incubation with an anti-DBLMSP antibody, a band corresponding to the DBLMSP protein was identified in the immunoprecipitates from parasite cultures but not from the negative control supernatant in which no parasite was grown (Fig. 7B). In summary, despite their high level of sequence polymorphism, binding of the DBL domains to human IgM was conserved across most of the DBLMSP and DBLMSP2 DBL domain variants tested.

Binding of human IgM to their DBL domains masks DBLMSP and DBLMSP2 from host antibodies - The fact that the DBL domains of DBLMSP and DBLMSP2 retain IgM binding despite their extraordinary sequence diversity suggests that DBLMSP and DBLMSP2 are targeted by the host immune system and that IgM binding promotes parasite survival. To determine whether individuals regularly exposed to P. falciparum mount an immune response to DBLMSP and DBLMSP2, we compared the immunoreactivity of the full-length proteins and DBL domains of both DBLMSP and DBLMSP2 from the 3D7 strain to purified IgG from Malawian immune adults (33). As comparators, we used AMA1 and RH5, which have previously been shown to be highly and weakly immunoreactive, respectively, to antibodies in sera from Kenyan, Malian and Senegalese immune adults (20,34-36). In the absence of human IgM, the immunoreactivity of the full-length 3D7 isoform of DBLMSP was intermediate. being weaker than the immunoreactivity of AMA1 but significantly higher than that of RH5. Full-length DBLMSP2, however, was only very slightly immunoreactive when compared to RH5 (Fig. 8A). Consistent with the large number of variants observed in P. falciparum populations, almost no binding of purified hyperimmune IgG was observed to either of the two DBL domains. To confirm this was not merely because the sera were collected from individuals who had not been exposed to the 3D7 variants used in this

assay, we also tested the immunoreactivity of other DBL variants for DBLMSP and DBLMSP2 and confirmed that they were generally not immunoreactive (Fig. 8B).

Non-immune human IgM is also known to bind to some P. falciparum PfEMP1 variants expressed at the surface of infected erythrocytes, which are associated with rosetting or placental malaria (24,37). Although the function of IgM binding in rosetting remains unclear, association to the var2CSA variant responsible for placental malaria has been linked to masking of the parasite from antigen-specific IgG (38,39). To determine whether binding of IgM to the DBL domains of DBLMSP and DBLMSP2 could have a steric immunological "masking" effect, we pre-complexed each of the two parasite proteins with varying concentrations of purified human IgM before incubating them with purified hyperimmune IgG. The presence of IgM significantly reduced the overall immunoreactivity of both full-length proteins in a dose-dependent manner, an effect that was not observed for AMA1 and RH5 (Fig. 8A). Interestingly, the presence of IgM had almost no effect on the already very limited immunoreactivity of the DBL domains. This suggests that binding of IgM to DBLMSP and DBLMSP2 masks antibody epitopes that are located in other regions of the proteins.

DISCUSSION

The deeply diverged lineages preserved in *dblmsp* and *dblmsp2* across *P*. *falciparum* populations suggests that they are under extremely strong selection and must have important biological functions. One possibility is that they are direct targets of the host immune response and are therefore potential targets for therapeutic intervention, but their function has remained unknown. Here, we have demonstrated that the DBL domains in both proteins bind directly and avidly to host IgM and that this function is conserved between the different sequence variants identified in P. falciparum isolates.

The population-based sequence analysis of *dblmsp* and *dblmsp2* reported here extends earlier findings that both genes exhibit a strong allelic dimorphism with limited inter-allelic recombination across parasite isolates from all populations sampled. Strikingly, we have now shown that both allelic classes in *dblmsp* and *dblmsp2* are present at relatively high frequency in populations from West Africa (Ghana, The Gambia and Guinea) and Southeast Asia (Cambodia), with recombination absent (or selected against) within a specific block of the DBL domain. The pattern of balancing selection preserving two deeply diverged haplotypes with reduced recombination has previously been seen in *msp3*, which lacks a DBL domain. We would draw a distinction between this pattern, and the known dimorphism at EBA-175, which is simply a single indel, rather than a long preserved haplotype. This unusual genetic architecture raises the question as to how this dimorphism arose and is maintained within the population. Following our demonstration that the DBL domain can bind host IgM, one possibility is that there is a selective advantage to binding the two major IgM species that either contain or lack a J-chain. Dimorphism, however, is also observed in genes encoding other merozoite surface proteins suggesting selection by a broader dichotomous feature within the immune system of the host population.

Despite the large number of polymorphisms within the DBL domains of both DBLMSP and DBLMSP2, the ability to bind the constant region of human IgM was broadly conserved across representative sequence variants suggesting that this interaction plays an important role in the parasite biology. Using the known-crystal structure of the DBL domain for DBLMSP2 (9) to model the DBL domains of DBLMSP and DBLMSP2 used in our functional analysis, we observed that the majority of the differences between IgM-binders and -nonbinders are located in helices h1, h2a and h4 (Fig. S2). These helices could therefore be potential binding sites for human IgM. While DBLMSP is highly expressed in all mature schizonts in the parasitophorous vacuole and located on the merozoite surface, DBLMSP2 is only expressed in a small percentage of schizonts (17,40). One suggestion could therefore be that DBLMSP2 is expressed at the surface of the minority of merozoites gametocytogenesis. committed to One interesting observation was that while all tested DBLMSP2 variants were able to bind IgM, some DBLMSP variants did not. While this may indicate that *dblmsp* function - or its

ability to bind IgM - is dispensable, which may be consistent with an earlier finding that some *dblmsp* sequences from field isolates contained premature stop codons (18,19), three out of fourteen cloned *P. falciparum* lines were found to contain multiple sequences for *dblmsp* (19). These results, combined with our observation of a higher proportion than expected of mixed haplotypes at the *dblmsp* locus, suggest the existence of functional paralogous *dblmsp* genes that can substitute in some isolates and strains.

Our finding that DBLMSP binds to IgM with a K_D almost four orders of magnitude lower than physiological plasma IgM concentrations demonstrates that DBLMSP would rapidly and irreversibly be saturated with host IgM once merozoites are exposed to host blood following schizont rupture. Consequently, plasma-exposed DBLMSP should really be considered as a DBLMSP:IgM complex: something that must be taken into account when investigating the role of these proteins in the parasite's blood stages. Previous research has suggested a role for DBLMSP in erythrocyte invasion, supported by the presence of a DBL domain, which is shared by other invasion ligands and its localisation to the surface of merozoites (9,40,41), through its interaction with MSP1 (42,43). However, addition of anti-DBLMSP antibodies at very high concentration (20 mg/mL) only had a modest 25% decrease on invasion (41), and deletion of the *dblmsp* gene in the 3D7 laboratory strain did not affect the invasion efficiency of the parasite in our study and others (41). Presence of human IgM in the parasite culture did not either affect the ability of wild-type or $\Delta dblmsp$ parasites to invade red blood cells, suggesting that DBLMSP is not essentially required for parasite invasion in vitro.

DBL domains, in addition to binding erythrocyte receptors from the glycophorin family, are known to mediate IgM binding in some PfEMP1 variants that are displayed on the surface of infected erythrocytes (37,44-46). This IgM binding, which is involved in adhesion of infected erythrocytes (47,48), has recently been suggested to cluster PfEMP1 on the erythrocyte surface thereby increasing their avidity for host receptors (49,50). Alternatively, PfEMP1-mediated IgM binding could also be implicated in masking from immune IgG, thereby acting as a steric shield from the host adaptive immune system (38). The conservation of IgM binding to DBLMSP, despite high levels of sequence polymorphism, suggests it might be an important immune evasion strategy for the parasite. Consistent with this, a comparative immunoreactivity analysis performed with purified IgG from Malawian adults revealed that the DBL variants of DBLMSP and DBLMSP2 are poorly immunogenic, and that binding to human IgM further decreases the overall immunoreactivity to the full length proteins. This masking, however, did not seem to affect the accessibility of IgGs to other merozoite surface proteins since surface labelling of PfMSP1from 3D7 parasites grown in the presence or absence of human IgM looked similar by immunofluorescence analysis (data not shown). Binding of host IgM to DBLMSP and DBLMSP2 might therefore mask specific domains that are important for the parasite biology on these two proteins but whose function remains unknown.

In conclusion, we have extended the genetic characterisation of two *P. falciparum* genes that are under strong balancing selection, and shown that the proteins both bind directly and with high affinity to host IgM and thereby shield the parasite from the host adaptive immune response. Given that both infected erythrocytes and merozoites are able to bind host IgM, IgM-binding proteins could be a general immunoprotective mechanism used by *P. falciparum* and possibly other parasites and pathogens.

EXPERIMENTAL PROCEDURES

Ethics statement Use of erythrocytes and serum from human donors for *P. falciparum* culture was approved by the NHS Cambridgeshire 4 Research Ethics Committee. All subjects provided written informed consent. The use of animals to raise antisera was performed according to UK Home Office governmental regulations and in accordance with European directive 2010/63/EU regarding the use of laboratory animals. Research was approved by the Sanger Institute Animal Welfare and Ethical Review Board (AWERB).

P. falciparum population sequence analysis - 434 samples from Gambian, Ghanaian, Guinean, and Cambodian origin, sequenced by the MalariaGEN consortium, underwent standard QC protocols as previously documented (29), and were sequenced to a depth of at least 50x with Illumina reads (mean read length 74 bp) and PCR-based library preparation. Samples underwent Cortex assembly using the "Independent workflow" as previously described (28) using a k-mer of 31. All variants called within *dblmsp* and *dblmsp2* were collated, and clustered into groups separated by at least 31 bp, revealing 15 different haplotypes overlapping the DBL domain in *dblmsp*, and 41 in *dblmsp2*. Their Genbank accession numbers are KM577604 to KM577618 for *dblmsp*, and KM589600 to KM589640 for *dblmsp2*.

Recombinant protein production -All Plasmodium falciparum proteins were produced recombinantly by transient transfection of human embryonic kidney (HEK293E) cells (51) essentially as described (20) except Py MSP1₁₉ (52). Briefly, chemically synthesised genes were codon-optimised for mammalian expression, cloned in frame with an exogenous signal peptide (53) and potential N-linked glycosylation sequons mutated to prevent inappropriate glycosylation of *Plasmodium* proteins. All recombinant proteins contain a C-terminal Cd4d3+4 tag (54) followed by either an enzymatically biotinylatable sequence, a 6-His tag, or a pentamerisation sequence followed by β -lactamase (55). Monobiotinylated proteins were produced by cotransfecting with a plasmid encoding (55,56). secreted Proteins BirA were processed and purified using His-Trap purification columns (GE Healthcare) as previously described (57,58).

Protein purification from human serum or parasite culture supernatant -Streptavidin-coated paramagnetic beads (100 μ L, 1 μ m diameter, Life Technologies) were with µg enzymatically saturated 20 monobiotinylated DBLMSP or a Cd4 tagalone control, isolated with a magnet and washed three times with PBS before incubating with 1 mL filtered human serum (Sigma) for one hour at 4°C. Beads were washed four times with 1 mL PBS and eluted with 200 µL 1% SDS. 20 µL were resolved by SDS-PAGE under reducing conditions, stained with SYPRO Orange (Sigma) and the gel image captured on a Typhoon 9400 phosphoimager (GE Healthcare).

Anti-human IgM agarose beads (Sigma) were incubated with long-term parasite culture supernatants from the IT4 var1 and var13 strains grown in the presence of human serum, or control culture medium without parasite for 1 week at 37°C. After five washes in PBS, beads were resuspended in loading buffer in the presence or absence DTT. of and eluates blotted onto nitrocellulose membranes (Amersham Protran) followed by blocking in PBS/0.1% Tween-20 / 5% non-fat milk powder) and incubated for 1h with a rabbit anti-full-length DBLMSP antibody at a 1:100 dilution. After further washes, the membrane was incubated with an anti-rabbit HRP-conjugated IgG secondary antibody (1:1000, Sigma) and developed using 3',3'-Diaminobenzidine (DAB; DAKO) according to manufacturer's instructions.

Parasite culture and transfection -Plasmodium falciparum parasites (3D7 strain) were grown *in vitro* in RPMI 1640 medium containing Albumax II or 10% human serum as described previously (59), and transfected using standard protocols (60). Transfected parasite cultures were selected with 10 nM WR99210 (kind gift of Jacobus Pharmaceuticals) and 10 μ M ganciclovir (Sigma Aldrich) and cloned by limiting dilution.

dblmsp knockout construct design and characterisation - For gene disruption via double homologous recombination in P. falciparum, a 520-bp 5' fragment (F1 region) and a 659-bp 3' fragment (F2 region) comprising ORF and UTR sequences of dblmsp were amplified using primers 348F1for (5'-AATAAACCGCGGCACATTTAATTAAG GTTGTATTTACTG-3', SacII site underlined). 348F1rev (5' -TTATTTAGATCTGACATTTTTAATACC CTTACAAAAATTTTC-3'; BglII site underlined), 348F2for (5'-TTATTTATCGATAGTGTTAGGGATTCT AGTAATCTAGATCAACG-3'; ClaI site underlined) and 348F2rev (5'-TTTATTCCTAGGCATATCTTCTGTCAA ACCCTTAAAAATAGTTTC -3'; AvrII site underlined). Amplification products were digested using SacII + BglII (F1 flank) and ClaI + AvrII (F2 flank) and cloned into

pHTK vector (60), resulting in construct pHTKDBLMSP.

For Southern blotting, the genomic DNA from *P. falciparum* 3D7 wild-type parasites, transgenic parasites in presence of WR99210 with or without ganciclovir, and clonal transfectants were digested with EcoRV and BgIII, separated on a 0.7% agarose gel and transferred onto a nitrocellulose membrane using standard techniques. A radioactive probe was generated from the 520-bp F1 flank in construct pHTKDBLMSP using random priming (Decaprime II, Ambion). Hybridisation was carried out at 62°C overnight before stringent washes and autoradiography.

For Western blot analysis, total lysate from 1 x 10^6 schizonts was prepared in SDS reducing sample buffer and boiled at 95°C for 5 min. The lysates were separated on precast 10 % Bis Tris NuPAGE polyacrylamide (Invitrogen) and transferred gels to nitrocellulose membranes by electroblotting. Membranes were blocked, and incubated with rabbit anti-DBLMSPSPAM (1:2000), rabbit anti-MSP3 (1:2000), mouse anti-MSP2 (1:1000; (61)) and rat anti-BiP antibodies (1:1000). Bound antibodies were detected with horseradish peroxidase-conjugated secondary antibodies (Biorad).

Downloaded from http://www.jbc.org/ at LIVERPOOL SCHOOL OF TROPICAL MEDICINE on May 31, 2016

For immunofluorescence analysis, thin smears of schizont and merozoites from wild-type and Δ DBLMSP parasites were incubated with anti-DBLMSPSPAM (1:2000) and anti-MSP1₁₉ (clone 1E1, 1:3000) antibodies diluted in 3% BSA/PBS, and incubated for one hour at room temperature before washes and incubation with secondary AlexaFluor-labelled (488 and 594; Invitrogen) antibodies at 1:5000.

Human IgM binding to merozoites -To detect IgM binding to merozoites, parasites were tightly synchronised before late stage schizonts were purified using 70% Percoll, put back into culture containing RPMI + Albumax II with the addition of 20% human serum, or 0.125 mg/mL purified human IgM (Sigma). IgM was detected using an AlexaFluor 488 goat anti-human IgM μ chain antibody (Molecular Probes; preadsorbed against human IgG) at 1:1000. Slides were viewed on a Zeiss Axioplan 2 imaging system with Plan Apochromat 100x/1.4 oil immersion objective. Images were captured using Axiovision 4.6.3 software and edited using Adobe Photoshop. For immunogold-labelling, merozoites were fixed in 4% paraformaldehyde in 0.1 M phosphate buffer (PB) at pH 7.4 for 1 hour at room temperature, rinsed 3 times in buffer, infiltrated with 1% and then 10% gelatin before immersing in 2.3 M sucrose in PB overnight at 4°C for cryoprotection. Frozen samples were prepared by mounting onto aluminium pins and rapidly immersing in liquid nitrogen in preparation for ultrathin 80 nm sectioning on a Leica EM FC6 ultramicrotome. Ultra-thin sections were labelled as per Tokuyasu (62), with a rabbit anti-human IgM antiserum (abcam) diluted 1:25, and detected with 10 nm protein A gold. Imaging was performed on an FEI 120kV Spirit Biotwin with a Tietz F4.15 CCD camera.

Cell culture of transfectomas anti-DNP human IgM secreting Transfectomas expressing anti-DNP IgM antibodies containing the human constant heavy chains either with (Xp) or without (Gp) the mouse J-chain (22) were a kind gift of Professor Marc Shulman. Transfectomas were grown in DMEM supplemented with 10% foetal bovine serum, 0.6 mg/mL G418, 0.02% β-mercaptoethanol, and and supernatants harvested and filtered before use in ELISA and AVEXIS experiments.

Enzyme-linked immunosorbent assay (ELISA) and primary antibodies Biotinylated recombinant P. falciparum proteins were normalised and immobilised on streptavidin-coated plates, preblocked with HBS-0.1%Tween-20 (HBST)/2% BSA for 30 mins. After washing with HBST, serial dilutions of either pooled human sera from malaria-exposed malaria-naïve ten or transfectoma individuals, cell culture supernatants, or purified primary antibodies were incubated for 90 minutes. Plates were again washed with HBST, and appropriate alkaline-phosphatase-conjugated secondary antibodies incubated for 1 h. Plates were washed with HBST, and once with HBS before adding p-nitrophenyl at 1 mg/mL, and absorbance at 405 nm quantified on either a PHERAstar Plus or FLUOstar Optima plate reader (BMG Labtech). For domain-mapping experiments involving chimaeric human antibodies, an HRP-conjugated anti-human secondary antibody was used. Following PBS washes, tetramethylbenzidine substrate was added, and absorbance quantified at 450nm. All procedures were performed at room temperature. Primary antibodies used anti-Cd4 OX68 (1:1000; AbD were: Serotec); purified human IgA, IgE, IgM (3 µg/mL; Sigma), or IgG (3 µg/mL; Bethyl laboratories); human, goat, rabbit, guinea pig or bovine serum (1:1000; Sigma); purified mouse IgM (10 µg/mL MEM-150; Abcam); or domain-swapped human antibodies at 25 nM (25,26). All alkaline-phosphataseconjugated secondary antibodies were from Sigma, except anti-rabbit immunoglobulins (Jackson Immunoresearch).

Mapping DBLMSP and DBLMSP2 binding site on human IgM - Domainspecific monoclonal antibodies that bind the human constant u chain (23) were incubated for 90 mins with either biotinylated human IgM or biotinylated human IgG (used as a and control) before washing adding pentamerised, *B*-lactamase-tagged DBLMSP or DBLMSP2 and incubating for a further hour. After washes, the β -lactamase substrate nitrocefin was added at 125 µg/mL and colorimetric turnover measured bv absorbance reading at 485 nm. Antibodies were biotinylated using EZ-link Sulfo-NHS-LC-biotin (Pierce).

Construction of the homology model for the DBL domain of DBLMSP and DBLMSP2 was done using the Phyre2 engine.

Surface plasmon resonance analysis - Surface plasmon resonance analysis was performed on a BIAcore T100 instrument at 37°C in HBS-EP buffer, using streptavidinsensor chips (GE Healthcare) coated essentially as described (63). Briefly, 300 response units (RU) of the biotinylated Cd4 tag was used as a reference and molar equivalents of full-length biotinylated DBLMSP or DBLMSP2 were immobilised in query flow cells. Increasing concentrations of purified human IgM were injected for 30min at 10 µL/min until equilibrium had been reached and binding was quantified from reference-subtracted sensorgrams. The surface was regenerated after each cycle with either 2 M NaCl for 60 seconds for DBLMSP, or 10 mM glycine:HCl pH3.0 for 20 seconds for DBLMSP2 and duplicate injections of the same concentration of IgM in each experiment showed no loss of activity between each cycle. For the binding analysis

using the DBL domains only, 500 RU of biotinylated human IgG were immobilised as a reference and a molar equivalent of biotinylated human IgM was immobilised in the query flow cell. Each purified DBL domain was resolved by gel filtration on a Superdex 200 Tricorn 10/600 column to remove any protein aggregates that might interfere with the kinetic measurements. Increasing concentrations of DBL domains were injected at 20 µL/min for 2 minutes in each cycle until equilibrium had been reached. The surface was regenerated after each cycle with 2 M NaCl for 60 seconds, with no loss of activity. Data analysis was performed using BIAcore analysis software.

Generation of polyclonal antibodies - A polyclonal antibody against the SPAM fragment of DBLMSP was generated. Briefly, a 619 bp DNA product (corresponding to amino acids 439 – 633 of DBLMSP) was amplified from 3D7 genomic DNA using primers 348ForPET30 (5'-GGTATTGAGGGTCGCAAAGAATTTAA AGATAACGTTACACTTCTTAAAGC-3') and

348revbPET30 (5'-AGAGGAGAGTTAGAGCCTTAACTTTG TTGTTGATTACTGAGTTCTTTTTCC-3') and cloned into pET-30 Xa/LIC expression vector (Novagen). Expression plasmids were sequenced before transformation into E.coli BL21(DE3)pLysS and expression was induced with 1 mM IPTG for 4 h at 30°C. Recombinant DBLMSPSPAM protein was purified using Ni-NTA affinity

chromatography under non-denaturing conditions. Purified rDBLMSPSPAM was used for antibody production in rabbits (Harlan Laboratories Inc.) following standard antibodies procedures. Rabbit were subsequently affinity purified using rDBLMSPSPAM coupled to CNBr-activated Sepharose 4B (GE Healthcare) and IgGselected using protein G-Sepharose (Sigma Aldrich).

Polyclonal antibodies against the full-length 3D7 form of DBLMSP were raised in rabbits (Cambridge Research Biochemicals). The full-length, His-tagged protein was produced in mammalian cells, purified by Ni-NTA chromatography using HisTrap column (GE Healthcare), and injected every two weeks over an 11-weeks period with the first injection in complete Freund's adjuvant, and the subsequent five injections in incomplete adjuvant. Rabbit antibodies were subsequently affinity purified using HiTrap protein G columns (GE Healthcare).

Immunoreactivity analysis -Pentamerised, normalised β -lactamasetagged parasite proteins were incubated with serial dilutions of purified human IgM for 90 minutes before being transferred to 20 µg/mL purified IgG from Malawian adults (33), immobilised on ProteinG-coated microtitre plates (Pierce). After 60 minutes, the plates were washed and incubated with nitrocefin at 125 µg/mL. The incubations were performed at room temperature and absorbance read at 485nm as described above.

Acknowledgements: We would like to thank Marc Shulman and Alister Craig for kindly providing the transfectomas and purified IgG from Malawian adults, respectively. Our thanks also go to Britta Urban, Magnus Manske and Antoine Claessens for their expert help and advice as well as Katy Lloyd and Nadia Cross for technical help. This publication uses sequencing data from the MalariaGEN Community Project on *Plasmodium falciparum* population genomics as described in (29) and we thank Lucas Amenga-Etego, David Conway, Alfred Amambua-Ngwa, Victor Mobegi and Rick Fairhurst for graciously allowing us to use data on samples that they have contributed to the project.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions: CC identified and characterised the interactions between human IgM and recombinant DBLMSP proteins, performed the binding and immunoreactivity studies on DBL variants and wrote the manuscript. ZI, SM, AM and DPK collated the samples, designed and analysed the data corresponding to the genetic analysis of field isolates. EK and AAH designed, performed and analysed the data relating to the generation and analysis of $\Delta dblmsp$ and wild-type parasites. AJP performed the IgM purification from human serum. GK, DG and GD purified the merozoites and performed the immuno-electron microscopy experiments. LYB and JCR performed and analysed

parasite culture experiments. SM and RJP performed the mapping experiment on human IgM and the immunoprecipitation of IgM from parasite culture supernatant, and built the homology model. GJW conceived and coordinated the study, and wrote the manuscript. All authors analysed the results and approved the final version of the manuscript.

REFERENCES

- 1. Murray, C. J., Rosenfeld, L. C., Lim, S. S., Andrews, K. G., Foreman, K. J., Haring, D., Fullman, N., Naghavi, M., Lozano, R., and Lopez, A. D. (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. *Lancet* **379**, 413-431
- 2. World_Health_Organization. (2012) World Malaria Report 2012. http://www.who.int/malaria/publications/world_malaria_report_2012/report/en/index.html
- 3. Cowman, A. F., Berry, D., and Baum, J. (2012) The cellular and molecular basis for malaria parasite invasion of the human red blood cell. *The Journal of cell biology* **198**, 961-971
- 4. Cohen, S., McGregor, I. A., and Carrington, S. (1961) Gamma-globulin and acquired immunity to human malaria. *Nature* **192**, 733-737
- 5. Richards, J. S., and Beeson, J. G. (2009) The future for blood-stage vaccines against malaria. *Immunology and cell biology* **87**, 377-390
- Manske, M., Miotto, O., Campino, S., Auburn, S., Almagro-Garcia, J., Maslen, G., O'Brien, J., Djimde, A., Doumbo, O., Zongo, I., Ouedraogo, J. B., Michon, P., Mueller, I., Siba, P., Nzila, A., Borrmann, S., Kiara, S. M., Marsh, K., Jiang, H., Su, X. Z., Amaratunga, C., Fairhurst, R., Socheat, D., Nosten, F., Imwong, M., White, N. J., Sanders, M., Anastasi, E., Alcock, D., Drury, E., Oyola, S., Quail, M. A., Turner, D. J., Ruano-Rubio, V., Jyothi, D., Amenga-Etego, L., Hubbart, C., Jeffreys, A., Rowlands, K., Sutherland, C., Roper, C., Mangano, V., Modiano, D., Tan, J. C., Ferdig, M. T., Amambua-Ngwa, A., Conway, D. J., Takala-Harrison, S., Plowe, C. V., Rayner, J. C., Rockett, K. A., Clark, T. G., Newbold, C. I., Berriman, M., MacInnis, B., and Kwiatkowski, D. P. (2012) Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. *Nature* 487, 375-379
- 7. Weedall, G. D., and Conway, D. J. (2010) Detecting signatures of balancing selection to identify targets of anti-parasite immunity. *Trends in parasitology* **26**, 363-369
- 8. Singh, S., Soe, S., Weisman, S., Barnwell, J. W., Perignon, J. L., and Druilhe, P. (2009) A conserved multi-gene family induces cross-reactive antibodies effective in defense against Plasmodium falciparum. *PLoS One* **4**, e5410
- 9. Hodder, A. N., Czabotar, P. E., Uboldi, A. D., Clarke, O. B., Lin, C. S., Healer, J., Smith, B. J., and Cowman, A. F. (2012) Insights into Duffy binding-like domains through the crystal structure and function of the merozoite surface protein MSPDBL2 from Plasmodium falciparum. *J Biol Chem* **287**, 32922-32939
- Gondeau, C., Corradin, G., Heitz, F., Le Peuch, C., Balbo, A., Schuck, P., and Kajava, A. V. (2009) The C-terminal domain of Plasmodium falciparum merozoite surface protein 3 self-assembles into alpha-helical coiled coil tetramer. *Mol Biochem Parasitol* 165, 153-161
- McColl, D. J., Silva, A., Foley, M., Kun, J. F., Favaloro, J. M., Thompson, J. K., Marshall, V. M., Coppel, R. L., Kemp, D. J., and Anders, R. F. (1994) Molecular variation in a novel polymorphic antigen associated with Plasmodium falciparum merozoites. *Mol Biochem Parasitol* 68, 53-67
- 12. Wickramarachchi, T., Cabrera, A. L., Sinha, D., Dhawan, S., Chandran, T., Devi, Y. S., Kono, M., Spielmann, T., Gilberger, T. W., Chauhan, V. S., and Mohmmed, A. (2009) A novel Plasmodium falciparum erythrocyte binding protein associated with the merozoite surface, PfDBLMSP. *Int J Parasitol* **39**, 763-773
- 13. Orlandi, P. A., Klotz, F. W., and Haynes, J. D. (1992) A malaria invasion receptor, the 175kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac(alpha 2-3)Gal- sequences of glycophorin A. *The Journal of cell biology* **116**, 901-909
- 14. Maier, A. G., Duraisingh, M. T., Reeder, J. C., Patel, S. S., Kazura, J. W., Zimmerman, P. A., and Cowman, A. F. (2003) Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. *Nature medicine* **9**, 87-92

- 15. Sim, B. K., Chitnis, C. E., Wasniowska, K., Hadley, T. J., and Miller, L. H. (1994) Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. *Science* **264**, 1941-1944
- 16. Kraemer, S. M., and Smith, J. D. (2006) A family affair: var genes, PfEMP1 binding, and malaria disease. *Current opinion in microbiology* **9**, 374-380
- Amambua-Ngwa, A., Tetteh, K. K., Manske, M., Gomez-Escobar, N., Stewart, L. B., Deerhake, M. E., Cheeseman, I. H., Newbold, C. I., Holder, A. A., Knuepfer, E., Janha, O., Jallow, M., Campino, S., Macinnis, B., Kwiatkowski, D. P., and Conway, D. J. (2012) Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites. *PLoS Genet* 8, e1002992
- Ochola, L. I., Tetteh, K. K., Stewart, L. B., Riitho, V., Marsh, K., and Conway, D. J. (2010) Allele frequency-based and polymorphism-versus-divergence indices of balancing selection in a new filtered set of polymorphic genes in Plasmodium falciparum. *Mol Biol Evol* 27, 2344-2351
- Tetteh, K. K., Stewart, L. B., Ochola, L. I., Amambua-Ngwa, A., Thomas, A. W., Marsh, K., Weedall, G. D., and Conway, D. J. (2009) Prospective identification of malaria parasite genes under balancing selection. *PLoS One* 4, e5568
- Crosnier, C., Wanaguru, M., McDade, B., Osier, F. H., Marsh, K., Rayner, J. C., and Wright, G. J. (2013) A library of functional recombinant cell surface and secreted Plasmodium falciparum merozoite proteins. *Mol Cell Proteomics*
- 21. MacKenzie, M. R., Creevy, N., and Heh, M. (1971) The interaction of human IgM and C1q. *J Immunol* **106**, 65-68
- 22. Collins, C., Tsui, F. W., and Shulman, M. J. (2002) Differential activation of human and guinea pig complement by pentameric and hexameric IgM. *Eur J Immunol* **32**, 1802-1810
- 23. Rudich, S. M., Mihaesco, E., Winchester, R., and Mongini, P. K. (1987) Analysis of the domain specificity of various murine anti-human IgM monoclonal antibodies differing in human B lymphocyte signaling activity. *Mol Immunol* **24**, 809-820
- 24. Ghumra, A., Semblat, J. P., McIntosh, R. S., Raza, A., Rasmussen, I. B., Braathen, R., Johansen, F. E., Sandlie, I., Mongini, P. K., Rowe, J. A., and Pleass, R. J. (2008) Identification of residues in the Cmu4 domain of polymeric IgM essential for interaction with Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). *J Immunol* **181**, 1988-2000
- 25. Braathen, R., Sorensen, V., Brandtzaeg, P., Sandlie, I., and Johansen, F. E. (2002) The carboxyl-terminal domains of IgA and IgM direct isotype-specific polymerization and interaction with the polymeric immunoglobulin receptor. *J Biol Chem* **277**, 42755-42762
- 26. Sorensen, V., Rasmussen, I. B., Sundvold, V., Michaelsen, T. E., and Sandlie, I. (2000) Structural requirements for incorporation of J chain into human IgM and IgA. *Int Immunol* **12**, 19-27
- 27. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and McVean, G. (2012) De novo assembly and genotyping of variants using colored de Bruijn graphs. *Nature genetics* **44**, 226-232
- 28. Iqbal, Z., Turner, I., and McVean, G. (2013) High-throughput microbial population genomics using the Cortex variation assembler. *Bioinformatics* **29**, 275-276
- Miotto, O., Almagro-Garcia, J., Manske, M., Macinnis, B., Campino, S., Rockett, K. A., Amaratunga, C., Lim, P., Suon, S., Sreng, S., Anderson, J. M., Duong, S., Nguon, C., Chuor, C. M., Saunders, D., Se, Y., Lon, C., Fukuda, M. M., Amenga-Etego, L., Hodgson, A. V., Asoala, V., Imwong, M., Takala-Harrison, S., Nosten, F., Su, X. Z., Ringwald, P., Ariey, F., Dolecek, C., Hien, T. T., Boni, M. F., Thai, C. Q., Amambua-Ngwa, A., Conway, D. J., Djimde, A. A., Doumbo, O. K., Zongo, I., Ouedraogo, J. B., Alcock, D., Drury, E., Auburn, S., Koch, O., Sanders, M., Hubbart, C., Maslen, G., Ruano-Rubio, V., Jyothi, D., Miles, A., O'Brien, J., Gamble, C., Oyola, S. O., Rayner, J. C., Newbold, C. I., Berriman, M., Spencer, C. C., McVean, G., Day, N. P., White, N. J., Bethell, D., Dondorp, A. M., Plowe, C. V., Fairhurst, R. M., and Kwiatkowski, D. P. (2013) Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. *Nature genetics* 45, 648-655
- 30. Mobegi, V. A., Duffy, C. W., Amambua-Ngwa, A., Loua, K. M., Laman, E., Nwakanma, D. C., MacInnis, B., Aspeling-Jones, H., Murray, L., Clark, T. G., Kwiatkowski, D. P., and

Conway, D. J. (2014) Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in West African populations of differing infection endemicity. *Mol Biol Evol* **31**, 1490-1499

- 31. Okenu, D. M., Thomas, A. W., and Conway, D. J. (2000) Allelic lineages of the merozoite surface protein 3 gene in Plasmodium reichenowi and Plasmodium falciparum. *Mol Biochem Parasitol* **109**, 185-188
- 32. Segurel, L., Thompson, E. E., Flutre, T., Lovstad, J., Venkat, A., Margulis, S. W., Moyse, J., Ross, S., Gamble, K., Sella, G., Ober, C., and Przeworski, M. (2012) The ABO blood group is a trans-species polymorphism in primates. *Proc Natl Acad Sci U S A* **109**, 18493-18498
- Taylor, T. E., Molyneux, M. E., Wirima, J. J., Borgstein, A., Goldring, J. D., and Hommel, M. (1992) Intravenous immunoglobulin in the treatment of paediatric cerebral malaria. *Clin Exp Immunol* 90, 357-362
- 34. Douglas, A. D., Williams, A. R., Illingworth, J. J., Kamuyu, G., Biswas, S., Goodman, A. L., Wyllie, D. H., Crosnier, C., Miura, K., Wright, G. J., Long, C. A., Osier, F. H., Marsh, K., Turner, A. V., Hill, A. V., and Draper, S. J. (2011) The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. *Nat Commun* 2, 601
- 35. Patel, S. D., Ahouidi, A. D., Bei, A. K., Dieye, T. N., Mboup, S., Harrison, S. C., and Duraisingh, M. T. (2013) Plasmodium falciparum merozoite surface antigen, PfRH5, elicits detectable levels of invasion-inhibiting antibodies in humans. *J Infect Dis*
- 36. Tran, T. M., Ongoiba, A., Coursen, J., Crosnier, C., Diouf, A., Huang, C. Y., Li, S., Doumbo, S., Doumtabe, D., Kone, Y., Bathily, A., Dia, S., Niangaly, M., Dara, C., Sangala, J., Miller, L. H., Doumbo, O. K., Kayentao, K., Long, C. A., Miura, K., Wright, G. J., Traore, B., and Crompton, P. D. (2013) Naturally Acquired Antibodies Specific for Plasmodium falciparum Reticulocyte-Binding Protein Homologue 5 Inhibit Parasite Growth and Predict Protection From Malaria. *J Infect Dis*
- 37. Semblat, J. P., Raza, A., Kyes, S. A., and Rowe, J. A. (2006) Identification of Plasmodium falciparum var1CSA and var2CSA domains that bind IgM natural antibodies. *Mol Biochem Parasitol* **146**, 192-197
- 38. Barfod, L., Dalgaard, M. B., Pleman, S. T., Ofori, M. F., Pleass, R. J., and Hviid, L. (2011) Evasion of immunity to Plasmodium falciparum malaria by IgM masking of protective IgG epitopes in infected erythrocyte surface-exposed PfEMP1. *Proc Natl Acad Sci U S A* **108**, 12485-12490
- Czajkowsky, D. M., Salanti, A., Ditlev, S. B., Shao, Z., Ghumra, A., Rowe, J. A., and Pleass, R. J. (2010) IgM, Fc mu Rs, and malarial immune evasion. *J Immunol* 184, 4597-4603
- 40. Tetteh, K. K., Osier, F. H., Salanti, A., Kamuyu, G., Drought, L., Failly, M., Martin, C., Marsh, K., and Conway, D. J. (2013) Analysis of antibodies to newly described Plasmodium falciparum merozoite antigens supports MSPDBL2 as a predicted target of naturally acquired immunity. *Infect Immun* **81**, 3835-3842
- 41. Sakamoto, H., Takeo, S., Maier, A. G., Sattabongkot, J., Cowman, A. F., and Tsuboi, T. (2012) Antibodies against a Plasmodium falciparum antigen PfMSPDBL1 inhibit merozoite invasion into human erythrocytes. *Vaccine* **30**, 1972-1980
- 42. Lin, C. S., Uboldi, A. D., Epp, C., Bujard, H., Tsuboi, T., Czabotar, P. E., and Cowman, A. F. (2016) Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. *J Biol Chem* **291**, 7703-7715
- 43. Lin, C. S., Uboldi, A. D., Marapana, D., Czabotar, P. E., Epp, C., Bujard, H., Taylor, N. L., Perugini, M. A., Hodder, A. N., and Cowman, A. F. (2014) The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. *J Biol Chem* **289**, 25655-25669
- 44. Rowe, J. A., Shafi, J., Kai, O. K., Marsh, K., and Raza, A. (2002) Nonimmune IgM, but not IgG binds to the surface of Plasmodium falciparum-infected erythrocytes and correlates with rosetting and severe malaria. *Am J Trop Med Hyg* **66**, 692-699
- 45. Jeppesen, A., Ditlev, S. B., Soroka, V., Stevenson, L., Turner, L., Dzikowski, R., Hviid, L., and Barfod, L. (2015) Multiple Plasmodium falciparum Erythrocyte Membrane Protein 1 Variants per Genome Can Bind IgM via Its Fc Fragment Fcmu. *Infect Immun* **83**, 3972-3981

- 46. Pleass, R. J., Moore, S. C., Stevenson, L., and Hviid, L. (2016) Immunoglobulin M: Restrainer of Inflammation and Mediator of Immune Evasion by Plasmodium falciparum Malaria. *Trends in parasitology* **32**, 108-119
- 47. Scholander, C., Treutiger, C. J., Hultenby, K., and Wahlgren, M. (1996) Novel fibrillar structure confers adhesive property to malaria-infected erythrocytes. *Nature medicine* **2**, 204-208
- 48. Rasti, N., Namusoke, F., Chene, A., Chen, Q., Staalsoe, T., Klinkert, M. Q., Mirembe, F., Kironde, F., and Wahlgren, M. (2006) Nonimmune immunoglobulin binding and multiple adhesion characterize Plasmodium falciparum-infected erythrocytes of placental origin. *Proc Natl Acad Sci U S A* **103**, 13795-13800
- Akhouri, R. R., Goel, S., Furusho, H., Skoglund, U., and Wahlgren, M. (2016) Architecture of Human IgM in Complex with P. falciparum Erythrocyte Membrane Protein 1. *Cell reports* 14, 723-736
- 50. Stevenson, L., Laursen, E., Cowan, G. J., Bandoh, B., Barfod, L., Cavanagh, D. R., Andersen, G. R., and Hviid, L. (2015) alpha2-Macroglobulin Can Crosslink Multiple Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Molecules and May Facilitate Adhesion of Parasitized Erythrocytes. *PLoS pathogens* **11**, e1005022
- 51. Durocher, Y., Perret, S., and Kamen, A. (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. *Nucleic acids research* **30**, E9
- 52. Ling, I. T., Ogun, S. A., and Holder, A. A. (1994) Immunization against malaria with a recombinant protein. *Parasite immunology* **16**, 63-67
- 53. Crosnier, C., Staudt, N., and Wright, G. J. (2010) A rapid and scalable method for selecting recombinant mouse monoclonal antibodies. *BMC biology* **8**, 76
- 54. Brown, M. H., and Barclay, A. N. (1994) Expression of immunoglobulin and scavenger receptor superfamily domains as chimeric proteins with domains 3 and 4 of CD4 for ligand analysis. *Protein engineering* **7**, 515-521
- 55. Bushell, K. M., Sollner, C., Schuster-Boeckler, B., Bateman, A., and Wright, G. J. (2008) Large-scale screening for novel low-affinity extracellular protein interactions. *Genome research* **18**, 622-630
- 56. Sun, Y., Gallagher-Jones, M., Barker, C., and Wright, G. J. (2012) A benchmarked protein microarray-based platform for the identification of novel low-affinity extracellular protein interactions. *Analytical biochemistry* **424**, 45-53
- 57. Bartholdson, S. J., Bustamante, L. Y., Crosnier, C., Johnson, S., Lea, S., Rayner, J. C., and Wright, G. J. (2012) Semaphorin-7A is an erythrocyte receptor for P. falciparum merozoite-specific TRAP homolog, MTRAP. *PLoS pathogens* **8**, e1003031
- 58. Kerr, J. S., and Wright, G. J. (2012) Avidity-based extracellular interaction screening (AVEXIS) for the scalable detection of low-affinity extracellular receptor-ligand interactions. *Journal of visualized experiments : JoVE*, e3881
- 59. Trager, W., and Jensen, J. B. (1976) Human malaria parasites in continuous culture. *Science* **193**, 673-675
- Duraisingh, M. T., Triglia, T., and Cowman, A. F. (2002) Negative selection of Plasmodium falciparum reveals targeted gene deletion by double crossover recombination. *Int J Parasitol* 32, 81-89
- 61. Gerold, P., Schofield, L., Blackman, M. J., Holder, A. A., and Schwarz, R. T. (1996) Structural analysis of the glycosyl-phosphatidylinositol membrane anchor of the merozoite surface proteins-1 and -2 of Plasmodium falciparum. *Mol Biochem Parasitol* **75**, 131-143
- 62. Tokuyasu, K. (1997) Immunocytochemistry on ultrathin cryosections. in *Cells, a laboratory* manual. Subcellular localization of genes and their products (Specer DL, G. R., Leinwand, editors ed.), Laboratory Press, Cold Spring Harbour. pp 131.131–131.127
- Crosnier, C., Bustamante, L. Y., Bartholdson, S. J., Bei, A. K., Theron, M., Uchikawa, M., Mboup, S., Ndir, O., Kwiatkowski, D. P., Duraisingh, M. T., Rayner, J. C., and Wright, G. J. (2011) Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. *Nature* 480, 534-537

FOOTNOTES

This work was supported by the Wellcome Trust grant number 098051 (CC, LYB, AP, DPK, JCR and GJW). ZI was funded by a Sir Henry Dale Fellowship jointly awarded by the Wellcome Trust and Royal Society (102541/Z/13/Z). EK and AAH were funded by the Francis Crick Institute which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust. RP was funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement N° 242095.

The abbreviations used are: DBL, Duffy binding-like; EBA, erythrocyte-binding antigen; LD, linkage disequilibrium; MSP, merozoite surface protein; SPAM, secreted polymorphic antigen associated with merozoites

FIGURE LEGENDS

FIGURE 1. Recombinant P. falciparum DBLMSP and DBLMSP2 bind human IgM. A. Anti-biotin Western-blot showing expression of recombinant monobiotinylated DBLMSP and DBLMSP2 proteins from mammalian cells. B. DBLMSP and DBLMSP2 are immunoreactive with control, naïve human sera. Enzymatically monobiotinylated recombinant parasite proteins were immobilised on streptavidin-coated plates and their immunoreactivity to pooled sera from either unexposed individuals (black bars) or immune Kenyan adults (grey bars) was tested. C. DBLMSP (blue) and DBLMSP2 (red) bind purified human IgM and no other immunoglobulin isotype, relative to no immunoglobulin control (ctl). D. DBLMSP and DBLMSP2 binding was restricted to human IgM, and did not bind sera from other species, including purified murine IgM. E. Streptavidin-coated paramagnetic beads were coated in monobiotinylated 6His-tagged recombinant DBLMSP or a control protein (Cd4-d3+4) and incubated in the presence of normal human serum. Following elution and resolution by SDS-PAGE, 80- and 25-kDa bands corresponding to the heavy (H) and light (L) chains of human IgM, respectively, were observed in the DBLMSP but not the negative control pull-down. Purified albumin, DBLMSP and IgM protein are shown for comparison on the left. F. Both DBLMSP and DBLMSP2 bound chimaeric IgM containing human heavy chains regardless of whether it was antigen-bound (right panel), or not (left panel). Both DBLMSP and DBLMSP2 could bind IgM that contained or lacked a J-chain, although DBLMSP2 binding to IgM lacking a J-chain was reproducibly weaker. Negative control (ctl) was the Cd4 tag alone. B, C, D and F represent one representative from two or more ELISA experiments; bars represent means \pm SD; n = 3 replicate wells.

FIGURE 2. The DBL domains directly interact with the Cµ4 domain of human IgM. A. Monoclonal antibodies to human IgM with known domain-specific epitopes were used to map the DBLMSP and DBLMSP2 binding domain on human IgM heavy chain. Binding of both parasite proteins was inhibited by the Cµ4-specific 1G6 antibody, but not by antibodies recognising other domains or by the IF11 antibody, which is known to bind a different epitope on Cµ4. Negative control (ctl) was immobilised biotinylated IgG. B. DBLMSP and DBLMSP2 bound the Cµ4 domain of human IgM. Systematic testing of a small panel of chimaeric human immunoglobulins containing different combinations of heavy chain domains from either IgA, IgG and IgM (numbered and labelled α , γ , μ , respectively) showed DBLMSP and DBLMSP2 bound the Cµ4 domain only. C. The DBL domain of DBLMSP and DBLMSP2 bound human IgM. Fragments encompassing the DBL, but not the SPAM domain, of both DBLMSP and DBLMSP2 bound human IgM indistinguishably from the full-length (FL) protein. Bars represent mean ± SD in all panels; n = 3 (A, C) or 4 (B) replicate wells.

FIGURE 3. DBLMSP and DBLMSP2 form oligomers and their DBL domain bind to human IgM with high affinity. A. Size exclusion chromatography showing polydisperse profile of full-length DBLMSP (left panel, blue) and DBLMSP2 (right panel, red). The indicated fractions were resolved by denaturing SDS-PAGE gel and the insets show that each peak is largely composed of the full-length protein. B. The SPAM fragment of DBLMSP2 induces oligomerisation. Size exclusion chromatography showed purified SPAM-Cd4 (green) was polydisperse, containing oligomers of higher molecular mass relative to DBL-Cd4 (orange) and the Cd4 tag alone (black). The predicted monomeric molecular mass of SPAM-Cd4 is 52kDa: the major peak lies within the void volume of

the column used, while the other two peaks correspond to theoretical molecular masses of ~480 and ~200kDa, respectively. Molecular markers shown in blue are: thyroglobulin (669), ferritin (440), aldolase (158), conalbumin (75) and carbonic anhydrase (29 kDa) C. DBLMSP and DBLMSP2 bind directly and avidly to human IgM. Equilibrium binding analysis of full-length DBLMSP (blue) and DBLMSP2 (red) to human IgM, as determined by surface plasmon resonance. Biotinvlated DBLMSP or DBLMSP2 were immobilised on a streptavidin-coated chip and two-fold serial dilutions of human IgM were used as analyte until equilibrium was reached. Reference-subtracted data were plotted and the $K_{\rm D}$ s estimated by fitting to a simple Langmuir binding isotherm. D. Surface plasmon resonance was used to quantify the biophysical parameters of the monomeric DBL domains of DBLMSP and DBLMSP2 binding to human IgM. Increasing concentrations of purified DBL domains for both DBLMSP (blue, left panel), or DBLMSP2 (red, right panel) were injected as analytes over immobilised human IgM on a sensor chip until equilibrium had been reached (see inset). Referencesubtracted binding data were plotted as a function of injected DBL protein concentration, and the $K_{\rm DS}$ estimated by fitting to a simple (1:1 binding) Langmuir binding isotherm. Binding of both DBL domains showed clear evidence of saturation demonstrating the specificity of the interaction. The DBL domain of DBLMSP reproducibly bound with approximately 10-fold higher affinity than DBLMSP2.

FIGURE 4. Generation of *dblmsp* knockout parasites. A. Schematic representation of knockout strategy for *dblmsp*. B. Southern Blot on EcoRV /BglII-digested genomic DNA from wild-type and transgenic parasites: genomic DNA was extracted from *P. falciparum* 3D7 wild-type parasites, transgenic parasites in presence of WR99210 with or without ganciclovir, and clonal transfectants as indicated on the top of the blot. Bands corresponding to the endogenous gene, episome and disrupted gene locus are indicated with arrows. Size markers are given on the left of the panel (in kb). C. Western blot analysis from the lysate of 1 x 10⁶ schizonts prepared in SDS reducing sample buffer and incubated with the corresponding primary antibodies. DBLMSP could readily be detected in the lysate of wild-type parasites, but not of clones A and B. Sizes of molecular mass markers (kDa) are shown on the left of the panels. D. Indirect immunofluorescence assay on thin smears of schizont and merozoites from wild-type and $\Delta dblmsp$ parasites showing expression of DBLMSP (green; first panel) and MSP1 (red; second panel). Third panel depicts the overlay of both antibodies with the nuclear stain DAPI; forth panel shows the corresponding brightfield images. Size bars represent 1µm.

FIGURE 5. Human IgM bind native DBLMSP protein. A. Indirect immunofluorescence assay for detection of human IgM was conducted on live wild-type and $\Delta dblmsp$ merozoites grown in either 20% human serum (+HS) or 0.125 mg/ml purified human IgM (+IgM). AlexaFluor 488 goat antihuman IgM μ chain antibodies are depicted in green (panel 1). Panel 2 corresponds to the bright field image, and panel 3 shows the overlay. B. Immunoelectron microscopy showing the presence of human IgM at the surface of wild-type, but not $\Delta dblmsp$ purified merozoites. Size bar represents 200 nm. C. Addition of 1 mg/mL purified human IgM to both wild-type and $\Delta dblmsp$ parasites grown in Albumax did not affect their ability to infect red blood cells. Bars represent mean \pm SD; n = 3 replicate wells. A representative of four independent experiments is presented.

FIGURE 6. Genome sequencing of 434 *P. falciparum* isolates reveals *dblmsp* and *dblmsp2* are dimorphic and divergent. A. The number of segregating sites across chromosome 10 from 434 *P. falciparum* isolates sequenced from The Gambia, Ghana, Guinea, and Cambodia, plotted in half-overlapping 500bp windows showing isolated regions of high sequence diversity. B. Cluster dendrogram of the 15 *dblmsp* haplotypes (left) and 41 *dblmsp2* haplotypes (right) identified in the study. Both trees were obtained using ClustalW. C. A schematic representation of the amino acid multiple sequence alignment of six representative exemplar haplotypes for the DBL domain of DBLMSP between residues C144 and R344, and the *P. reichenowi* (Pr) ortholog. Note the long non-recombining region has two alternate allelic forms (orange and yellow), of which the yellow is relatively close to the *P. reichenowi* sequence (shown in brown). A phylogenetic tree indicating the relationships of the sequences built by clustering haplotypes based on a distance matrix (where distance corresponds to the number of SNP and indel differences) is shown on the left. D. A schematic representation of the amino-acid multiple sequence alignment of the amino-acid multiple sequence alignment of the amino-acid multiple sequence alignment of the number of SNP and indel differences is shown on the left. D. A

exemplar haplotypes for the DBL domain of DBLMSP2 between residues E102 and G550. Note the long non-recombining region has two alternate allelic forms (orange for class 1 and purple/dark green for subclasses 2.1/2.2, respectively). A phylogenetic tree indicating the relationships of the sequences built by clustering haplotypes based on a distance matrix (where distance corresponds to the number of SNP and indel differences) is shown on the left. E. Haplotype structure in the region of DBLMSP; rows are samples and columns are polymorphic sites. Outside the DBL domain, the reference allele is shown in red, alternate allele in blue, and missing data in white. Within the DBL domain, the class of allele found in each sample is shown: class1 only (yellow), class 2 only (green) or both present (black). Samples are split by country and then sorted first by DBLMSP type, and then by haplotype structure outside the DBL domain. Note that the x-axis is not drawn to scale.

FIGURE 7. Binding to human IgM is conserved across DBLMSP and DBLMSP2 variants. A. IgM binding to representative DBL domains from eleven DBLMSP (blue) and seven DBLMSP2 (red) was conserved. Only the DBLMSP DBL domains from the laboratory strain 7G8 and isolate 028 did not show binding. A representative from two experiments is shown in each panel. Bars represent mean \pm SD; n = 3 replicate wells. B. Western-blot showing that DBLMSP is associated to human IgM that were purified from long term cultures of IT4 var1 or var13 parasite; the negative control corresponds to culture medium without parasites. Note that the anti-rabbit secondary antibody used in this experiment cross-reacts with the light (25kDa) and heavy chains (50kDa) of human IgG.

FIGURE 8. IgM binding to full-length DBLMSP and DBLMSP2 masks them from the host immune system. A. Normalised amounts of full-length (FL) DBLMSP, DBLMSP2, RH5, the entire ectodomains of AMA1, or the DBL domain of both DBLMSP and DBLMSP2 expressed as βlactamase-tagged pentamers were pre-complexed with varying concentrations of human IgM, and the immunoreactivity of the complexes to purified IgG from Malawian adults quantified by β-lactamase substrate hydrolysis. The immunoreactivity of full-length DBLMSP and DBLMSP2 decreased with increasing concentrations of IgM. The AMA1 and RH5 proteins were used as exemplars of high and low immunoreactivity, respectively, and their immunoreactivity, as well as those of the DBL domains, was only marginally affected by the presence of IgM. * 0.02 ; ** <math>0.01 ; *** <math>p < 0.01; two-tailed paired t-test. Shown is one representative of three experiments. Bars represent mean \pm SD; n = 3 replicate wells; all proteins were the 3D7 strain sequences. B. DBL domains from a representative panel of DBLMSP and DBLMSP2 variants were expressed as β -lactamase pentamers and pre-complexed with varying concentrations of human IgM before incubating with purified immobilised IgG from Malawian adults. The immunoreactivity of all the DBL domains was very low, irrespective of the IgM concentration. The entire ectodomains of AMA1 and RH5 from the 3D7 strain were used as exemplars of high and low immunoreactivity, respectively. Bars represent mean \pm SD; n = 3 replicate wells.

Figure 1

Figure 2

Α

Figure 3

Figure 4

Figure 5

Downloaded from http://www.jbc.org/ at LIVERPOOL SCHOOL OF TROPICAL MEDICINE on May 31, 2016

Figure 7

Figure 8

DBLMSP DBL variants	DNA	Protein	Boundaries
3D7	XM_001347596	XP_001347632	S135-D435
7G8	FJ406853	ACR09793	S103-D405
Dd2	FJ406861	ACR09800	S103-D403
FCR3	FJ406860	ACR09799	S103-D403
P. reichenowi	FJ406845	ACR09785	S103-D403
Isolate 002	FJ556030	ACR49847	S103-D403
Isolate 017	FJ556042	ACR49858	S103-D403
Isolate 026	FJ556049	ACR49864	S103-D405
Isolate 067	FJ556070	ACR49882	S103-D403
Isolate 028	HM000310	ADJ58681	S103-D405
Isolate 384	HM000317	ADJ58688	S103-D405
DBLMSP2 DBL varian	ts DNA	Protein	Boundaries
3D7	XM_001347603	XP 001347639	T154-V454
Isolate 020	HM000330	ADI99310	H134-V436
Isolate 023	HM000332	ADI99312	\$131-V430
Isolate 028	HM000334	ADI99314	T131-V431
Isolate 082	HM000336	ADI99316	S131-V431
Isolate 093	HM000339	ADI99319	T131-V430
Isolate 097	HM000340	4D199320	T131-V430
Isolate 384	HM000390	ADI99370	\$131-V431
FCR3 1 SPLOGN Isolate002 1 SPLOGN Isolate002 1 SPLOGN Joate002 1 SPLOGN JD7 1 SPLOGN JD7 1 SPLOGN JD7 1 SPLOGN JS0 1 SPLOGN	NICE DENE CKGIKINU ESCEPKINSAGRINGDWI SVAN NICE DEENE CKGIKINU ESCEPKINSAGRINGDWI SVAN NICE DEENE CKGIKINU ESCEPKINSAGRINGDWI SVAN NICE DEENE CKGIKINU ESCEPKINSAGRINGDWI SVAN NICE DEENE CKGIKINU ESCEPKINSAGRINGDWI SVAN NICE DEKINE CHGIKINU ESCEPKINSAGRINGDWASSIN NIKE DEKINE CHGIKINU ESCEPKINSAGRINGDWASSIN NIKE PERISTAGI KINU ESCEPKINSAGRINGDWASSIN NIKE PERISTAGI KINU ESCEPKINSAGRINGDWASSIN	KESSTINKGVLYPPARTKLCLENN NKWHRIKDE KESSTINKGVLYPPARTKLCLENN NKWHRIKDE KESSTINKGVLYPPARKKLCLENN NGWHRIKDE KESSTINKGVLYPPARTKLCLENN NGWHRIKDE KESSTINKGVLYPPARTKLCLENN NKWHRIKDE RANELTWNKGVLYPPARKQMGFRINI NNEPKLKKT RANELTWNKGVLYPPARKQMGFRINI NNEPELKKT RANELTWNKGVLYPPARKQMGFRINI NNEPELKKT RANELTVNKGVLYPPARKQMGFRINI NNEPELKKT	NNF KEEFYNXALG ESNAL WRHYKERN NNF KEEFYNXALG ESNAL WRHYKERN NNF KEFYNXALG ESNAL WRHYKERN NNF KEFYNALG ESNAL WRHYKERN NNF KEFYNALG ESNAL WRHYKERN EGKFENFYSSAGS ARCUL Y GNNA EGKFENFYSSAGS ARCUL Y GNNA EGKFENFYSSAGS ARCUL Y GNNA EGKFENFYSSAGS ARCUL Y GNNA
Dd2 105 ALTAIKY FCR3 105 ALTAIKY Isolate067 105 ALTAIKY Isolate002 105 ALTAIKY Isolate017 105 ALTAIKY Jord 105 ALTAIKY Pol 105 ALTAIKY JOT 105 ALTAIKY JOS 106 ALGAIKY JSOL 106 ALGAIKY JSOL 106 ALGAIKY JSOL 106 ALGAIKY JSOL 106 ALGAIKY	GFSDWGDIIKGTDLIDYQITKNINRALDKILGNE/ GFSDWGDIIKGTDLIDYQITKNINRALDKILGNE/ GFSDWGDIIKGTDLIDYQITKNINRALDKILGNE/ GFSDWGDIIKGTDLIDYQITKNINRALDKILGNE/ GFSDWGDIIKGTDLIDYQITKNINRALDKILGNE/ GFSDWGDIIKGTDLIDYQITKNINRALDKILGNE/ GFSDWGDIIKGTDLIDYQITKNINRALDKILGNE/ GFSDWGDIKGTDLIDYQITKNINRALDKILGNE/ GFDMGDIKGNUMOMIDTPISNKAKTYLEEV/CKY SFADIGNIKGOD/WDTPISNKAKTYLEEV/CKY SFADIGNIYQGNDMIDTPISNKAKTYLEEV/CKY SFADIGNIYQGNDMIDTPISNKAKTYLEEV/CKY	SSN- DKI KKRVDWWEANKAAFWDAFWCGYKV HI GNI SSN DKI KKRVDWWEANKAAFWDAFWCGYKV HI GNI SSN DKI KKRVDWEANKAAFWDAFWCGYKV HI GNI SSN DKI KKRVDWEANKAAFWDAFWCGYKV HI GNI SSN DKI KKRVDWWEANKAAFWDAFWCGYKV HI GNI SSN DKI KKRVDWWEANKAAFWDAFWCGYKV HI GNI SSN DKI KKRVDWWEANKAAFWDAFWCGYKVHI GNI KNIVNDFKDAKTWWI GNKHRWMDAMCGYGY HI GNI KNIVNDFKDAKTWWI GNKHRWMDAMCGYGY SEI KDI KNIVNDFKDAKTWWI GNKHRWMDAMCCGYGY SEI KDI KNIVNDFKDAKTWWI GNKHRWMAAMCGYKV HI KNIVNDFKDAKTWWI GNKHRWMDAMCCGYGY SEI KDI	KPCPEHDNWDRIPQYLRWFREWGTYVC KPCPEHDNWDRIPQYLRWFREWGTYVC KPCPEHDNWDRIPQYLRWFREWGTYVC KPCPEHDNWDRIPQYLRWFREWGTYVC KPCPEHDNWDRIPQYLRWFREWGTYVC KPCPEHDNWDRIPQYLRWFREWGTYVC VMCTGYCNIPDIPQYLRWFREWGTYVC VMCTGYCNIDDIPQYLRWFREWGTYVC VPCPEHDNWDRIPQYLRWFREWGTYVC VPCPEHDNWDRIPQYLRWFREWGTYVC
Dd2 209 YKNKFEN FCR3 209 YKNKFEN Isolate067 209 YKNKFEN Isolate002 209 YKNKFEN Jodate002 209 YKNKFEN JO7 209 YKNKFEN JC6 211 YKNKFEN TG8 211 YKNKFEN Isolate384 211 YKNKFEN Isolate028 211 YKNKFEN	VIELCNVRQITNQDDSQLLEISKKDKCKGALKHY VIELCNVRQITNQDDSQLLEISKKDKCKGALKHY VIELCNVRQITNQDDSQLLEISKDKCKGALKHY VIELCNVRQITNQDDSQLLEISKEDKCKGALKHY VIELCNVRQITNQDDSQLLEISKDKCKGALKHY VIKLCNIQQITNQDDSQLLEISKDKCKGALKHY VIKLCNIQQITNQDDSQLLEISKKDKCKEALKHY VIKLCNIQQITNQDDSQLLEISKKDKCKEALKHY VIKLCNIQQITNQDDSQLLEISKKDKCKEALKHY VIKLCNIQQITNQDDSQLLEISKKDKCKEALKHY VIKLCNIQQITNQDDSQLLEISKKDKCKEALKHY	E WWNRRRPE WKGQCDKFE KEKSKYEDTKSRTAEI E WWNRRPE WKGQCDKFEKEKSKYEDTKSRTAEI E WWNRRPE WKGQCDKFEKEKSKYEDTKSRTAEI E WWNRRPE WKGQCDKFEKEKSKYEDTKSRTAEI E WWNRRPE WKGQCDKFEKEKSKYEDTKSTAEI E WWNRRPE WKGQCDKFEKEKSKYEDTKSITAEK E WWNRRPE WKGQCDKFEKEKSKYEDTKSITAEK E WWNRRPE WKGQCDKFEKEKSKYEDTKSITAEK E WWNRRPE WKGQCDKFEKEKSYEDTKSITAEK E WWNRRPE WKGQCDKFEKEKSYEDTKSITAEK E WWNRRPE WKGQCDKFEKEKSYEDTKSITAEK E WWNRRPE WKGQCDKFEKEKSYEDTKSITAEK E WWNRRPE WKGQCDKFEKEKSYEDTKSITAEK E WWNRRPE WKGQCDKFEKEKSYEDTKSTAEI	YLKEI CSECDCKYKDLD YLKEI CSECDCKYKDLD
C 3D7 1 IINLGFNK Isolate384 1 SINILGPNK Isolate093 1 IINLGFNK Isolate097 1 IINLGFNK Isolate023 1 SINILGPNK Isolate082 1 SINILGPNK Isolate028 1 IINLGPNK Isolate020 1 HLEGNHYK	PTEEICKDFSNLPOCRKNVHE-RNNWLGSSVK PTEEICKDFGPLPOCRKNVHE-RNNWLGSSVK PTEEICKDFSNLPOCRKNVHE-RNNWLGSSVK PTEEICKDFSNLPOCRKNVHE-RNNWLGSSVK PVERICKDFGPLPOCRKNVHE-RNNWLSSNVK PVERICKDFGPLPOCRKDVHE-RNNWLSSNVK PVERICKDFSNLPOCRKNVHE-RNNWLSSNVK PTEEICKDFSNLPOCRKNVHE-RNNWLSSNVK PTEEICKDFSNLPOCRKNVHE-	NFASDNK GVL V PPRROSL CLRITLODFRTKK K KEG FBSDNK GVL V PPRROSL CLRITLODFRTKK K KEG FASDNK GVL V PPRROSL CLRITLODFRTK K K KEG FSDNK GVL V PPRROSL CLRITLODFRTK K K KEG FSDNK GVL V PPRROSL CLRITLODFRTK K K KEG FSDD MK GVL V PPRROSL CLRITLODFRTK K K K KEG FASDNK GVL V PPRROSL CLRITLODFRTK K K K KEG SFD SD MK GVL V PPRROSL CLRITLODFRTK K K K KEG SFD TMK GVL V PPRROSL CLRITLODFRTK K K K KEG	DFEKFIYSYASSEA IRKL RTIHNNNLE DFEKFIYSYASSEA IRKL RTIHNNNL DFEKFIYSYASSEA KKL RTIHNNIA DFEKFIYSYASSEA KKL RTIHNNIA DFEKFIYSYASSEA KKL RTIHNNIA DFEKFIYSYASSEA KKL RTIHNNIA ISFEKFIYSYASSEA KKL RTIHNNIA IKFENFIYSIA ISEA KOLLIKLIYGINNA
3D7 104 HOAIRYSF Isolate384 104 HOAIRYSF Isolate093 104 LOAIRYSF Isolate097 104 LOAIRYSF Isolate023 104 LOAIRYSF Isolate023 104 LOAIRYSF Isolate028 104 HOAIRYSF Isolate028 104 HOAIRYSF Isolate020 106 LOAMRYGF	ADIGNITRGDDMMDTPTSKEITITYLEKVLKIYNE ADIGNITRGDDMMDTPTSKEITITYLEKVLKIYNE ADIGNITRGDDLDTPTSGNTKTYLEEVLKLHKK ADIGNITKGDDLLDTPTSGNTKTYLEEVLKLHKK ADIGNITKGDDLLDTPTSGNTKTYLEEVLKLHKK ADIGNITKGDDLLDTPTSGNTKTYLEEVLKLHKK ADIGNITKGDDLDTPTSGNTKTYLEEVLKLHKK ADIGNITKGDDMDTPTSKETITYLEEVLKLHKK ADIGNITGGDMMDTPTSKETITYLEEVLKLHKK	NNDK PIKDAKKWWTE NIRHIH WEAMWCGY OS ACKDNO NNDK PIKDAKKWWTE NIRHIH WEAMWCGY OS ACKDNO NINE - AKDAKKWWTE NIRHIH WEAMWCGY ON EKKDNE NINE - AKDAKKWWTE NIRHIH WEAMWCGY ON EKKDNE NIE - AKDAKKWWTE NIRHIH WEAMWCGY ON EKKDNE NIDE AKDAKKWTE NIRHIH WEAMWCGY OS ACKDNO NIDRIK PLAKKWTE NIRHIH WEAMWCGY OS ACKDNO NIDRIK PLAKKWTE NIRHIH WEAMWCGY OS ACKDNO NIDRIK PLAKKWTE NIRHIH WEAMWCGY OS ACKDNO NIDRIK PLAKTIMU ON KHRI WEAMWCGY OS ACKDNO	CTGYGNI DDI POFLRWFREWGTYVCE CTGYGNI DDI POFLRWFREWGTYVCE CTWYGNI DDI POFLRWFREWGTYVCE CTWYGNI DDI POFLRWFREWGTYVCE CTWYGNI DDI POFLRWFREWGTYVCE CTGYGNI DDI POFLRWFREWGTYVCE CTGYGNI DDI POFLRWFREWGTYVCE
3D7 209 EKNMNTLK Isolate384 209 EKNMNTLK Isolate093 208 ENNMTLK Isolate097 208 ENNMTLK Isolate023 208 ENNMTLK Isolate023 208 ENNMTLK Isolate023 208 ENNMTLK Isolate023 208 ENNMTLK Isolate0203 208 ENNMTLK Isolate0203 208 ENNMTLK Isolate0203 208 ENNMTLK	AVCFPKQPRTEANPALTVHENENCSSTLKKYEEW AVCFPKQPRTEANPALTVHENENCSSTLKKYEEW AVCFPKQLRTETNSAMTVTQKGTCSSTLKNYEEW AVCFPKQLRTETNSAMTVTQKGTCSSTLKNYEEW AVCFPKQLRTETNSAMTVTQKGTCSSTLKNYEEW AVCFPKQLRTETNSAMTVTQKGTCSSTLKNYEEW AVCFPKQLRTETNSAMTVTQKGTCSSTLKNYEEW AVCFPKQLRTETNSAMTVTQKGTCSSTLKNYEEW	YNKRKTEWTEQS-IIKYNNDKIINYADIKTLSPSEYL YNKRKTEWTEQS-IIKYNNDKIINYADIKTLSPSEYL YNKRKNEWTEQS-IIKYNKDKTKYKDIEQLSPSVVL YNKRKNEWTEQS-IIKYNKDKTKYKDIEQLSPSVVL YNKRKNEWTEQS-IIKYNKDKTKYKDIEQLSPSVVL YNKRKNEWTEQSIIKYNKDKTKYKDIEQLSPSVVL YNKRKNEWTEQSIIKYNKDKTKYKDIEQLSPSVVL	I EKCPECKCTKKNLODV EKCPECKCTKKNLODV I KKCPECKCTENNLHDV I KKCPECKCTENNLHDV I KKCPECKCTENNLHDV I KKCPECKCTENNLHDV I KKCPECKCTENNLHDV I KKCPECKCTENNLHDV

Figure S1. Details of the DBLMSP and DBLMSP2 DBL domains used for functional analysis

A. DNA and protein accession numbers of the different DBL domains used in this study. The aminoacid boundaries of each DBL domain are indicated in the right-hand column. **B.** Sequence alignment of the DBLMSP DBL domains. A common feature of the two DBL domains that do not bind IgM (7G8 and isolate 028) is the presence of a Glu amino-acid residue at position 310, where all other domains contain either a His or an Ala residue. To test whether we could narrow the binding site to IgM even further, we used site-directed mutagenesis and substituted the Glu and Leu present at positions 310-311 in the non-binding domain of isolate 028 for Ala and Gln residues present in the binding domain of isolate 384 (red box). These substitutions were however not sufficient to restore binding of the DBL domain of isolate 028 to human IgM, suggesting that these two residues are not sufficient to confer the IgM-binding property. **C.** Sequence alignment of the DBLMSP2 DBL domains. Sequence alignments of the different DBL variants were performed with ClustalW2 (<u>http://www.ebi.ac.uk/Tools/msa/clustalw2/</u>) and displayed using Boxshade (<u>http://embnet.vitalit.ch/software/BOX_form.html</u>).

Figure S2. Modelled structural comparisons between IgM-binding and –non-binding DBL domains

The structures of the IgM-binding DBL domains from DBLMSP and DBLMSP2 were modelled using the Phyre2 software and the known crystal structure of the DBL domain from DBLMSP2. The IgM-binding DBL domain models are shown in beige, and the regions that differ in the non-binding DBL domains (isolate 028 and strain 7G8 in DBLMSP), are superimposed and highlighted in red (left panel). The right panel shows a 180° rotation of the same structure. Most differences were observed in helices h1, h2a, h4 and h7. Polymorphisms in h7 are, however, also frequently observed around the same positions amongst DBL domains that have retained their IgM-binding ability. The IgM-binding site is therefore most likely to be in helices h1, h2a or h4.

Binding of Plasmodium falciparum merozoite surface proteins DBLMSP and DBLMSP2 to human immunoglobulin M is conserved amongst broadly diverged sequence variants

Cécile Crosnier, Zamin Iqbal, Ellen Knuepfer, Sorina Maciuca, Abigail J. Perrin, Gathoni Kamuyu, David Goulding, Leyla Y. Bustamante, Alistair Miles, Shona C Moore, Gordon Dougan, Anthony A. Holder, Dominic P. Kwiatkowski, Julian C. Rayner, Richard J. Pleass and Gavin J. Wright

J. Biol. Chem. published online May 12, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M116.722074

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material: http://www.jbc.org/content/suppl/2016/05/12/M116.722074.DC1.html

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2016/05/12/jbc.M116.722074.full.html#ref-list-1