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Abstract: Introduction: Severe acute malnutrition (SAM) is a major cause of child mortality
worldwide, however the pathogenesis of SAM remains poorly understood. Recent
studies have uncovered an altered gut microbiota composition in children with SAM,
suggesting a role for microbes in the pathogenesis of malnutrition.
Objectives: To elucidate the metabolic consequences of SAM and whether these
changes are associated with changes in gut microbiota composition.
Methods: We applied an untargeted multi-platform metabolomics approach (gas
chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass
spectrometry (LC-MS)) to stool and plasma samples from 47 Nigerian children with
SAM and 11 control children. The composition of the stool microbiota was assessed by
16S rRNA gene sequencing.
Results: The plasma metabolome discriminated children with SAM from controls, while
no significant differences were observed in the microbial or small molecule composition
of stool. The abundance of 585 features in plasma were significantly altered in
malnourished children (Wilcoxon test, FDR corrected P < 0.1), representing
approximately 15% of the metabolome. Consistent with previous studies, children with
SAM exhibited a marked reduction in amino acids/dipeptides and phospholipids, and
an increase in acylcarnitines. We also identified numerous metabolic perturbations
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which have not been reported previously, including increased disaccharides, truncated
fibrinopeptides, angiotensin I, dihydroxybutyrate, lactate, and heme, and decreased
bioactive lipids belonging to the eicosanoid and docosanoid family.
Conclusion: Our findings provide a deeper understanding of the metabolic
consequences of malnutrition. Further research is required to determine if specific
metabolites may guide improved management, and/or act as novel biomarkers for
assessing response to treatment.
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Dear Royston Goodacre,  
Editor-in-Chief 
Metabolomics 
 
We are very grateful for the valuable comments raised by the reviewers. Please see our responses below; we 
trust that these are appropriate. I have also attached a revised version of the manuscript with the changes 
highlighted.  
 
Please note that, in response to comments by reviewer 3, we have moved details of methodology to the 
main manuscript. This has increased the length of the manuscript but we trust that this is acceptable. 
 
Please do let me know if there are any remaining issues.  
 
Sincerely, Stephen Allen 
 
Reviewer #1: This study is about metabolic derangements identified through untargeted metabolomics in a 
cross-sectional study of Nigerian children with severe acute malnutrition. It is an interesting and relevant 
study because studies investigating the pathogenesis of SAM are lacking. To this respect the study presented 
in the manuscript has some qualities, however as the authors point it out it has several limitations. Only the 
plasma samples gave some results which were able to discriminate between the control but this 
discrimination is very weak as the total variance is around 12%. The lack of difference in the stool samples 
could be due to the fact that the authors did not take into account the demographic characteristics in their 
model, these can be confounding variables. 
Response: We acknowledge in the discussion that there are many unaccounted for sources of variation in the 
plasma metabolome along with a number of other limitations. However, despite the small sample size and 
moderate percent variation explained, we were able to identify a number of novel metabolites significantly 
associated with SAM. We believe our findings have the potential to improve our understanding of 
malnutrition once validated in other cohorts, and are therefore worthy of publication. 
 
We have explored residence as a potential confounder and could not find any plasma metabolites which 
differed significantly between rural, urban and peri-urban children (Kruskal-Wallis test, FDR corrected P>0.1) 
,indicating residence does not significantly affect the metabolome in this population. These findings held true 
when SAM/Control samples were analyzed individually or together. We have added statements to the 
manuscript clarifying this.  
 
Reviewer #1: On the "Study design and sample collection" part the sample collection is not clear. In which 
period the samples were collected? Were all the samples collected in the same period? Here the samples 
collection is not standardized as it should be. The period collection may have an impact also on the results of 
a metabolomic study. 
Response: Dates of patient recruitment and sample collection are noted in Supplementary Table 1. All 
samples were collected between June 25th and Sept 21st 2012. A statement has been added to the 
manuscript clarifying this.  
 
Reviewer #1: Instead of PCA, the PLS is more appropriate for the discrimination in metabolomic analyses 
because of its ability to model highly collinear spectral data with considerable amounts of both random and 
systematic noise. 
Response: We prefer to use unsupervised methods when possible due to risks of over-fitting with supervised 
models. However, to further validate the separation between groups we have included supplementary PLS-
DA models for both plasma and stool. The plasma model had moderate predictability and was significant 
(R2=0.98,Q2=0.69,CV-ANOVA p=1.43E-05, 5 PCs), while the stool model had low predictability and was not 

Response to Reviewer Comments



significant (R2=0.46,Q2=0.08,CV-ANOVA p=0.085,1PC), further validating conclusions from unsupervised 
analyses. We have added a statement to the results section including these findings. 
 
Reviewer #1: Line 43-51 p9 should be in the material and method. 
Response: This section has been moved to the materials and methods 
 
Reviewer #1: A limited number of volunteers were included in the control group. 
Response: We acknowledge this is a limitation of the study. These were the maximum number of controls we 
were able to recruit during the study duration. 
 
Reviewer #1: Line 36-43 p10 correct P > 0.1 to P < 0.1. 
Response: These findings were not significant and therefore “P >0.1” is the appropriate notation. 
 
Reviewer #1: Line 48 p17 to correct Bartz et al (Bartz et al. 2014) to Bartz et al. (2014). 
Response: This has been corrected  
 
Reviewer #1: Line 26 p18 to correct Zhang et al (Zhang et al. 2013) to Zhang et al (2013) 
Response: This has been corrected  
 
Reviewer #3: The paper describes a comparison of plasma and stool samples from children with severe acute 
malnutrition and a normal control group. LC-MS, GC-MS as well as rRNA gene sequencing and calprotectin 
and lactoferrin analyses were conducted. The paper is very well written; clear, concise and the interpretation 
is as such sensible. Unfortunately the paper has one severe issue and that is the design of the study itself. 
The control group is small (n=11) even if you would think that recruiting controls should not have been 
difficult. This made it impossible to control possible confounding factors such as urban/rural, ethnicity, age, 
formula fed or not etc. The reported demographics data unfortunately suggest that the SAM and control 
groups are not well matched. The Ethnicity but especially the Residence differences is a major concern. It 
would be easy to imagine that the difference in Residence could influence things such as diet (as is seem with 
the formula/no formula numbers) that would certainly cause a difference in the plasma metabolome. You 
must try to address this issue before it is possible to trust that the markers you find are markers of SAM and 
not something else. One suggestion could be to try to subset the SAM group to create matched groups. It is 
to the authors' credit that they discuss honestly and detailed the issues. The reservations one should have 
about making conclusions based on the reported study are thus clear, but should be investigated more in 
detail. 
Response: We acknowledge the small number of controls is a major limitation of the study. Unfortunately, 
these were the maximum number of controls we could recruit during the study duration. In terms of the 
potential effects of residence on the metabolome, we found no evidence that this is a confounding variable. 
There were no plasma metabolites which differed significantly between rural, urban and peri-urban (Kruskal 
Wallace test, FDR corrected P>0.1) indicating residence does not significantly affect the metabolome in this 
population. These findings held true when SAM/Control samples were analyzed individually or together. 
There was also no affect of formula feeding on the metabolome. We have added statements to the 
manuscript presenting these findings.  
 
Major issues 
 
Reviewer #3: Fig 1A: This is a bad choice of plot to represent the data. The stacking of the bars make it 
impossible to see the difference between the taxa. I would suggest that a heatmap might be a better way to 
represent the data. Using clustering you might also be able to visualize sub-groups in the heatmap should 
such be present in addition to observing if the two groups are perhaps more similar intra-group than inter-
group.  



Response: Thank you for your suggestion. We have tried this approach, however due to the large number of 
rare taxa we find the heatmap to be less informative compared to barplots (ie most of the plot is blank space 
representing rare taxa). One could show only the most abundant taxa, however the clustering in this case 
would be misleading due to the compositional nature of 16S data. The PCoA plot was used to display 
clustering of samples as an alternative to heatmap clustering. 
 
Reviewer #3: Fig 3: In the caption phospholipids are mentioned as significantly different but they are not 
marked as such in the text. 
Response: The phospholipids findings are mentioned in pg 12, line 7-9 of the manuscript. 
 
Reviewer #3: Pre-processing description should be in the main manuscript. 
Response: These details were moved to the supplemental methods due to manuscript word limit 
recommendations. We have restored them to the main manuscript for the revised version assuming the 
editorial board deems this acceptable.  
 
Reviewer #3: Pre-processing: Peakwidth settings missing. For grouping minsamp and bw parameters is 
missing. The bw parameter is one of the most critical. 
Response: The “bw” parameter was included in the supplementary methods (“allowable retention time 
deviation was 5 seconds”). “minfrac” was used in place of “minsamp” to select the proportion of samples in 
which a feature must be found to be retained in the dataset. These details have been moved to the main 
manuscript for the revised version. 
 
Reviewer #3: I suggest using CAMERA also. This will give you an estimation of the number of compounds 
instead of features. 
Response: We have included the CAMERA output in the Table S5. 
 
Reviewer #3: Using CAMERA would also help your identification. For example the compound you have 
identified as "Tetrahydro-2,5-furan-diacetic acid" looks like an isotope of your feature ID = 562 which is in 
turn the [M-NH3+H]+ fragment of your feature 640 which is Tryptophan, I am pretty sure. I looked as this 
manually in excel plotting the intensities against each other to see correlations but CAMERA would do that 
for you. So you might get fewer false positive identifications. 
Response: Thank you for catching this error. Feature 162 has been re-annotated as Tryptophan.  
 
 
Reviewer #3: For the dipeptides it would be better in figures and tables to be explicit that you don't know if 
you have Glu-Val or Val-Glu for example. 
Response: We are able to determine the specific order of dipeptides due to differences in MS/MS spectras. 
As a result of amide bond cleavage during fragmentation, the C-terminal amino acid will remain intact in the 
MS/MS spectra while the N-terminal amino acid will appear as M-H2O, allowing one to determine the C and 
N-term amino acids in each peptide. 
 
Reviewer #3: p=12, l=4: you mention Leucine yet your tables indicate that you cannot measure Leu 
independant of Ile. 
Response: “Leucine” has been replaced with “leucine/isoleucine” in all instances in the manuscript. 
 
Reviewer #3: The results says the age was from 6-59 months. Yet table 1 indicates 6-48. The real range should 
be in the results. Not the inclusion criteria. 
Response: This has been corrected. 
 



Reviewer #3: You state that GC-MS was able to discriminate the disaccharides that LC-MS found to be 
statistically significant. Yet they are not significant in GC-MS. Please comment on how this could be. 
Response: The precise species of disaccharides differ between individuals, and therefore only when all 
disaccharides are analyzed together are they significant. As different disaccharides were resolved by our GC-
MS method, they did not reach significance, however sucrose trended towards being increased in SAM (FDR 
p=0.2). Lower sensitivity with GC-MS compared to LC-MS may also be a factor as many of the disaccharides 
were close to the limit of detection when analyzed by GC-MS. 
 
Minor issues: 
 
Reviewer #3: p=7,l=32: "directly injected" to me indicates no LC. But an LC was used. 
Response: This has been corrected. 
 
Reviewer #3: p=7,l=27: u --> µ 
Response: This has been corrected. 
 
Reviewer #3: "The authors declare that they have not conflict of interests": not --> no? 
Response: This has been corrected. 
 
Reviewer #3: space before degree sign or not is not consistent. 
Response: This has been corrected. 
 
Reviewer #3: LC-MS analysis (gradient, voltage etc) should be in the main manuscript. 
Response: This has been corrected. 
 
Reviewer #3: Fig 2: For the loadings I would suggest that points instead of arrows might be easier to visualize. 
Response: We believe arrows make the plots more intuitive as they indicate in which direction the features 
are pulling the samples on the corresponding scoreplot, and are visually distinct from the scoreplot which 
uses points.  
 
Reviewer #3: In my opinion Figure 1 should be moved to the supplementary since all the results are negative. 
Response: Although there were no differences between groups, the composition of the microbiota of this 
population remains under sampled (Reid et al, 2014, Microbiome 2:12), and therefore may be of interest to 
readers. 
 
Reviewer #3: Fig 1B: What is the point of using 3D? To me you cannot see where the points are in the 3 
dimensions and there is no effect anyway. I would assume PC1 vs PC2 would suffice to show the point. 
Response: This is simply the way plots are constructed in Qiime, a widely used software for analyzing 16S 
data. 
 
Reviewer #3: The Pearson reference is a little off: "Pearson a D" --> "Pearson AD" 
Response: This has been corrected. 
 
Reviewer #3: What is the purpose of the ROC curves? What is the reason to predict SAM from metabolites 
when a diagnosis is not difficult? Please state this in the manuscript. If you want to make a prediction model I 
suggest building a multivariate model. 
Response: The purpose of the ROC curves was to identify metabolites which might be most useful as 
predictors of mortality/recovery in future studies. A statement has been added to the manuscript clarifying 
their purpose. 
 



Reviewer #3: Pre-processing: I am concerned about the ppm tolerance of 1 ppm which is very optimistic. 
Even for orbitrap; the tails of peaks need to be within that too. I suggestion checking for split peaks and 
running with ppm= 10 - 20 and check for differences. This is of course instrument dependent but in my hands 
ppm=1 was never a good choice. 
Response: Our initial analyses had set the ppm higher as you suggest (5, 2.5 ppm), however we consistently 
received warnings indicating the ppm tolerance was too high and therefore settled upon 1 ppm. We did not 
observe any instances of peak splitting with these settings. 
 
Reviewer #3: Pre-processing: "grouping included features present in at least 25% of samples". The settings 
refer to the percentage in each group. If you didn't group the data in XCMS the statement is correct but could 
be more explicit to say "grouping included features present in at least 25% of all the samples". 
Response: Samples were not grouped into SAM/Control for xcms pre-processing. We have added statement 
to clarify this as you suggest. 
 
Reviewer #3:  p=11, l=26: The separation in Fig 2. is far from clear. There are far fewer controls than SAM 
samples so it is difficult to see if they really occupy a different space. Their spread does seem to be smaller 
which I guess is to be expected. I would be less absolute in the statements regarding the PCA analysis. A 
supervised analysis could be considered instead. PLS-DA or similar perhaps. 
Response: We prefer to use unsupervised methods when possible due to risks of over-fitting with supervised 
models. However, to further validate the separation between groups we have included supplementary PLS-
DA models for both plasma and stool. The plasma model had moderate predictability and was significant 
(R2=0.98,Q2=0.69,CV-ANOVA p=1.43E-05, 5 PCs), while the stool model had low predictability and was not 
significant (R2=0.46,Q2=0.08,CV-ANOVE p=0.085,1PC), further validating conclusions from unsupervised 
analyses. We have added a statement to the results section including these findings. 
 
Reviewer #3: But you already have the univariate analysis so I assume the PCAs are just for illustrative 
purposes? If so it might be more informative to do a heatmap of the significant features 
Response: Thank you for the suggestion. We have experimented with heatmaps as alternatives to PCA in the 
past and concluded the following: The purpose of the PCA in this case is to demonstrate the grouping of 
samples based on the entire detected metabolome, with the later stripcharts used to display the variation 
within specific compounds of interest. In comparison to these plots, we feel a heatmap is less appropriate as 
it does not display the entire dataset in an informative manor (ie control/SAM do not cluster well together as 
would be expected based on components 1 and 2 of the PCAs), nor does it allow easy interpretation of the 
spread of the data for individual metabolites.  
 
Reviewer #3: "2C6 disaccharides" needs to be defined. I finally got the notation but I have never seen it 
before and it seems neither has google. 
Response: We have changed the notation to “Dihexoses” to reflect more conventionally used nomenclature.  
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ABSTRACT 

Introduction: Severe acute malnutrition (SAM) is a major cause of child mortality worldwide, 

however the pathogenesis of SAM remains poorly understood. Recent studies have 

uncovered an altered gut microbiota composition in children with SAM, suggesting a role for 

microbes in the pathogenesis of malnutrition. 

Objectives: To elucidate the metabolic consequences of SAM and whether these changes 

are associated with changes in gut microbiota composition. 

Methods: We applied an untargeted multi-platform metabolomics approach (gas 

chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry 

(LC-MS)) to stool and plasma samples from 47 Nigerian children with SAM and 11 control 

children. The composition of the stool microbiota was assessed by 16S rRNA gene 

sequencing. 

Results: The plasma metabolome discriminated children with SAM from controls, while no 

significant differences were observed in the microbial or small molecule composition of stool. 

The abundance of 585 features in plasma were significantly altered in malnourished children 

(Wilcoxon test, FDR corrected P < 0.1), representing approximately 15% of the metabolome. 

Consistent with previous studies, children with SAM exhibited a marked reduction in amino 

acids/dipeptides and phospholipids, and an increase in acylcarnitines. We also identified 

numerous metabolic perturbations which have not been reported previously, including 

increased disaccharides, truncated fibrinopeptides, angiotensin I, dihydroxybutyrate, lactate, 

and heme, and decreased bioactive lipids belonging to the eicosanoid and docosanoid family.  
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Conclusion: Our findings provide a deeper understanding of the metabolic consequences of 

malnutrition. Further research is required to determine if specific metabolites may guide 

improved management, and/or act as novel biomarkers for assessing response to treatment. 

 

1 Introduction 

  Severe acute malnutrition (SAM) is a leading cause of global child mortality, is 

associated with growth faltering, and results in impaired cognitive development (Kar et al. 

2008). A significant proportion of deaths due to numerous illnesses including malaria, 

measles and diarrheal diseases have also been attributed to malnutrition (Caulfield et al. 

2004). SAM is most frequently defined by a weight-for-length/height Z-score (WHZ) < -3 

and/or presence of oedema (Who 2009). Middle upper arm circumference (MUAC) < 11.5 cm 

is also commonly used in children aged 6-– months (Who 2009). Despite its prevalence, the 

metabolic changes that occur during malnutrition are poorly understood. A better 

understanding of these metabolic derangements may shed light on pathophysiology and/or 

adaptation to malnutrition, and inform improved clinical management. 

  Multiple studies have demonstrated amino acid depletion in children with SAM 

(Ghisolfi et al. 1978; Bartz et al. 2014), but untargeted studies pertaining to other metabolites 

are limited. Bartz et al 2014 applied a targeted and untargeted approach to identify 

biomarkers associated with recovery and mortality in Ugandan children with SAM (Bartz et al. 

2014). The concentrations of a number of metabolites were significantly altered upon 

rehabilitation, including amino acids, acylcarnitines and leptin. However, non-malnourished 

controls were not included, and the untargeted analysis was limited to gas chromatography-

mass spectrometry (GC-MS) which covers only a small portion of the metabolome. 
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 4 

Malnutrition in juvenile pigs has also revealed alterations in the metabolome, including 

changes in amino acids, choline metabolites, and products of microbial-mammalian co-

metabolism (Jiang et al. 2015), suggesting the gut microbiota may be altered by malnutrition. 

  Differences in gut microbiota composition of children with SAM compared to healthy 

co-twins and unrelated controls have been described in Malawian and Bangladeshi children 

(Smith et al. 2013; Subramanian et al. 2014). Additionally, specific taxa capable of causing 

enteropathy when combined with a low protein diet have been identified in mice (Brown et al. 

2015). Enteropathy resulting in malabsorption and increased intestinal permeability is 

associated with SAM in humans, as indicated by intestinal biopsies and dual sugar 

permeability tests (Denno et al. 2014). This phenomenon may be a more severe form of 

environmental enteric dysfunction (EED), which occurs almost universally in people exposed 

to poor hygiene and sanitation. The etiology of enteropathy in SAM is not well understood, 

but may involve repeated exposure to fecal enteropathogens combined with a low protein diet 

(Hashimoto et al. 2012; Brown et al. 2015).  

  The aim of this study was to identify conserved changes in the metabolome of children 

with SAM compared to controls in order to improve our understanding of the pathophysiology 

of malnutrition. Given the association with enteropathy and recent studies linking changes in 

the microbiota to SAM (Smith et al. 2013; Subramanian et al. 2014), we also measured 

biomarkers of intestinal inflammation and profiled the gut microbiota of these children.  

 

2 Materials and methods 

Study design and sample collection 
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  We aimed to undertake a pragmatic study of unselected children admitted to a health 

facility in a region with endemic malnutrition to maximise the relevance of our findings to 

clinical practice. We recruited 58 children aged 6-48 months: 47 with SAM and 11 well-

nourished hospital controls. Demographic and clinical characteristics at recruitment are 

shown in Table 1. Children aged 6 – 48 months with SAM (WHZ <-3 or MUAC <11.5 cms 

and/or nutritional oedema) admitted to the Federal Medical Centre, Gusau, Zamfara State, 

Nigeria between June 25th and September 21st, 2012 were invited to participate in the study. 

The hospital serves both urban and rural populations and recruitment occurred during the 

rainy season when malnutrition is most common. Written information about the study and a 

verbal explanation in the appropriate local language was provided to parents/carers and 

signed or thumb-printed consent secured. Clinical management was performed according to 

usual practice based on WHO guidelines including those for the management of SAM (WHO 

1999). Well-nourished children (MUAC >12.5 cms or WHZ score ≥ -1 and no nutritional 

oedema) were recruited from the paediatric ward or outpatient clinics as controls during the 

same time period (Supplementary Table 1). HIV positive individuals were excluded from the 

study. In both groups, baseline demographic and clinical information was collected on 

standard forms by one of five clinicians trained in the research methods (Supplementary 

Table 1). The first available stool sample was collected and its consistency and the presence 

of visible blood and mucus were recorded. At the time of clinical sampling, approximately 2.5 

mL of venous blood was collected into EDTA tubes for the purposes of the study. Ethical 

approval was provided by the Joint Ethical Review Committees of the University of Ibadan / 

University College Hospital, Ibadan, Nigeria. 
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Metabolite extraction from stool 

  Approximately 250 mg of wet stool was lyophilized overnight. After drying, 40 mg was 

weighed into microcentrifuge tubes and extracted with 8:2 methanol:H2O to a final 

concentration of 40 mg/mL. Samples were then vortexed for 30 sec, followed by 

centrifugation for 15 min at 10 000 rpm. 50 μL of this supernatant was dried in a speedvac for 

GC-MS analysis and the remaining stored at -80 °C for LC-MS. 

 

Metabolite extraction from plasma 

  Metabolites were extracted from plasma according to the methods of Dunn et al, 2011 

(Dunn et al. 2011). Briefly, plasma samples were thawed on ice for 30 min. Once thawed, 

805 μL of 8:2 methanol:H2O was added to 230 μL of plasma to make a 4.5 fold dilution. 

Samples were vortexed for 15 sec and centrifuged at 15 000 rpm for 15 min to pellet 

precipitated proteins. 370 μL of supernatant was then transferred to separate vials and dried 

down for GC-MS and LC-MS using a speedvac with no heat.  

 

Untargeted GC-MS analyses 

  For stool, samples were derivatized with 40 μL of 2% methoxyamine-HCl in pyridine 

(MOX) incubated at 50 °C for 90 min, followed by 20 μL of N- Methyl-N-(trimethylsilyl) 

trifluoroacetamide (MSTFA) for 30 min at 50 °C. Samples were then transferred to micro-

inserts before analysis by GC-MS. For plasma, 50 μL of MOX was added to dried samples 

and incubated for 90 min at 50 °C. 50 μL of MSTFA was then added and incubated for 30 min 

at 50 °C. Samples were then transferred to 1.5 ml microcentrifuge tubes and centrifuged at 
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 7 

15 000 rpm for 5 min to pellet debris. This supernatant was then transferred to HPLC vials 

containing inserts for analysis. 

  One μL of sample was injected into an Agilent 7890A GC, 5975 inert MSD with triple 

axis detector. Samples were injected using pulsed splitless mode using a 30 m DB5-MS 

column with 10 m duraguard, diameter 0.35mm, thickness 0.25 μm (J&W Scientific, Folsom, 

USA). Helium was used as the carrier gas at a constant flow rate of 1 mL/min. Oven 

temperature was held at 70 °C for 5 min then increased at a rate of 5 °C/min to 300 °C and 

held for 10 min. Solvent delay was set to 7 min, and total run time was 61 min. Masses 

between 25 m/z and 600 m/z were selected by the detector. All samples were run in random 

order and a single sample was run with every batch as a quality control to ensure machine 

consistency. 

  Chromatogram files were deconvoluted and converted to ELU format using AMDIS 

Mass Spectrometry software (Stein 1999) with the sensitivity set to low, resolution to medium, 

and support threshold to high. Chromatograms were aligned using Spectconnect 

(http://spectconnect.mit.edu) (Styczynski et al. 2007) with the support threshold set to low. 

The integrated signal (IS) matrix output was used for all further analysis. Zeros were replaced 

with two thirds the minimum detected value on a per metabolite basis (Timotej 2011), 

followed by a log base 2 transformation. All further analyses were performed using these log-

transformed values.  

  Metabolites were initially identified by comparison to the NIST 11 standard reference 

database (http://www.nist.gov/srd/nist1a.cfm). Identities of metabolites of interest were then 

confirmed by authentic standards if available. 

Untargeted LC-MS analyses 
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 8 

  For stool, 2.5 μL of 1 μg/mL 13C6
 phenylalanine internal standard (Cambridge Isotopes, 

Tewksbury, USA) was added to 47.5 μL of extracted stool. For plasma, dried samples were 

reconstituted in 85.5 μL of ddH2O. 4.5 μL of 1 ug/mL 13C6
 phenylalanine in ddH2O was then -

added to each vial as an internal standard. Samples were vortexed for 15 sec, then 

transferred to microinserts and injected into an Agilent 1290 Infinity HPLC coupled to a Q-

Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, USA) with a HESI 

(heated electrospray ionization) source. For HPLC, 2 μL of each sample was injected into a 

ZORBAX Eclipse plus C18 2.1 x 50mm x 1.8 micron column. Mobile phase (A) consisted of 

0.1% formic acid in water and mobile phase (B) consisted of 0.1% formic acid in acetonitrile. 

The initial composition of 0% (B) was held constant for 30 s and increased to 100% over 3.0 

min. For stool, mobile phase B was held at 100% for 1 minute and returned to 0% over 30s 

for a total run time of 5 min. For plasma, mobile phase B was held at 100% for 2 minutes and 

returned to 0% over 30s for a total run time of 6 min. 

  Full MS scanning between the ranges of m/z 50-750 was performed on all samples in 

both positive and negative mode at 140 000 resolution. The HESI source was operated under 

the following conditions: nitrogen flow of 30 and 8 arbitrary units for the sheath and auxiliary 

gas respectively, probe temperature and capillary temperature of 450 °C and 250 °C 

respectively and spray voltage of 3.9 kV and 3.5 kV in positive and negative mode 

respectively. The automatic gain control (AGC) target and maximum injection time were 1e6 

and 500 ms respectively. For molecular characterization, every tenth sample was also 

analyzed with a data dependent MS/MS method where a 35 000 resolution full MS scan 

identified the top 12 signals above a 1e5 threshold which were subsequently selected at a 1.2 

m/z isolation window for MS/MS. Normalized collision energy for MS/MS was 28, resolution 
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17 500, AGC target 1E5 and maximum injection time was 60ms. Blanks of pure methanol 

were run between every sample to limit carryover, and a single sample was run multiple 

times with every batch to account for any machine inconsistency. After data acquisition 

Thermo .RAW files were converted to .MZML format and centroided using ProteoWizard 

(Kessner et al. 2008). Files were then imported into R using the XCMS package (Patti et al. 

2012) for chromatogram alignment and deconvolution. Features were detected with the 

“xcmsSet” function using the “centWave” method and a ppm tolerance of 1. Prefilter was set 

to 3-5000, noise 1E5, and signal to noise threshold was set to 5. Due to a lower overall noise 

and signal in negative mode, noise was set to 1E3 for this mode. Retention time correction 

was conducted using the “obiwarp” method, grouping included features present in at least 

25% of all samples, allowable retention time deviation was 5 seconds, and m/z width set to 

0.015. Areas of features below the signal to noise threshold in the data were integrated using 

the “fillPeaks” function with default settings. Any remaining zeros in the data were then 

replaced with two-thirds the minimum value on a per mass basis (Timotej 2011) before log 

base 2 transformation. The log-transformed mass list was then exported as a single .txt file 

and used for all further analyses. All further analyses were carried out in R unless otherwise 

specified. Positive and negative mode data were treated as two independent datasets for all 

analyses. 

  Metabolites were putatively identified based on accurate mass and LC-MS/MS 

fragmentation patterns (Supplemental Figure 1). Predictions were made mainly by de novo 

compound identification from in depth investigation of individual MS/MS spectra, utilizing the 

METLIN database (http://metlin.scripps.edu) (Smith et al. 2005), Human Metabolome 

Database (www.hmdb.ca)  (Wishart et al. 2007), and CFM-ID (http://cfmid.wishartlab.com) 
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(Allen et al. 2014) whenever possible to aid in identification. Metabolites of interest were 

confirmed by authentic standards when available based on accurate mass, retention time and 

MS/MS spectra (Supplemental Table 2).  

 

Statistical analysis of metabolome data 

  Principal Component Analysis (PCA) was conducted in R using the “FactoMineR” 

package with pareto scaling. Components 1 and 2, representing approximately 15 % and 9% 

of the variation respectively, could not be explained by any of the metadata collected 

(Supplemental Figure 2). We therefore selected the lowest components which maximized 

separation between SAM and controls (components 3 and 4) for qualitative analysis of the 

metabolome. Partial Least Squares Discriminant Analysis (PLS-DA) models were constructed 

in SIMCA 13.0.3.0 (Umetrics) using pareto scaling and 7-fold cross-validation. The number of 

components was selected using the autofit function which selects the maximum number of 

significant components according to cross-validation rules. Significant models were defined 

as those with cross-validated analysis of variance (CV-ANOVA) P values less than 0.05. 

Metabolites that differed between SAM and controls were determined independently of PCA 

analysis using unpaired Wilcoxon tests with Benjamini-Hochberg (False Discovery Rate 

(FDR)) corrections to account for multiple hypothesis testing (Benjamini and Hochberg 1995). 

Metabolites with a corrected P < 0.1 and average fold change > 2 in either group (SAM or 

control) were selected for further investigation. Fold changes were calculated using the 

geometric mean to limit inflation of fold change values due to outliers. Boxplots and 

stripcharts were constructed in R using the ggplot2 package. Odds ratios of metabolites to 

identify SAM from controls were calculated from conditional logistic regressions performed on 
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all metabolites using the glm function in R with 10 000 iterations and a binomial distribution. 

Receiver operating characteristic (ROC) curves and forest plots were built in R using the 

pROC and forestplot packages respectively. In the case of Des ADS-FPA, the 13C isotope 

was used for statistical analyses and plotting due to a large singly-charged interfering peak 

with mass similar to the 12C Des ADS-FPA. All raw data files were manually inspected to 

ensure the data was accurately represented by the 13C peak.  The effect of potential 

confounding variables was investigated using Spearman’s correlations for continuous 

variables and Wilcoxon or Kruskal Wallace tests for discrete variable. Tests with FDR 

corrected P-values less than 0.1 were considered significant. 

 

Calprotectin and lactoferrin stool ELISAs 

  Calprotectin was measured using the IDK® Calprotectin ELISA Kit along with the IDK 

Extract® stool extraction kit (Immundiagnostik, Bensheim, Germany). Lactoferrin was 

measured using the Lactoferrin Scan™ ELISA kit (Techlab®, Blacksburg, USA). All protocols 

were followed as per the manufacturer’s instructions. 

 

Microbiome profiling 

  DNA was extracted from stool samples using the PowerSoil-htp 96 Well Soil DNA 

isolation kit from MoBio (Carlsbad, CA) according to the manufacturer’s protocol, with 

modifications as outlined by the Earth Microbiome Project (version 4_13). Approximately 250 

mg of fecal sample was used for the extractions. Samples were sequenced by amplifying the 

V4 hypervariable region of the 16S rRNA gene. Sample amplification for sequencing was 

carried out using the forward primer 
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(ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN(8)GTGCCAGCMGCCGCGGTAA) 

and the reverse primer 

(CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNN(8)GGACTACHVGGGTWT

CTAAT) where nnnn indicates four randomly incorporated nucleotides, and (8) was a sample-

specific nucleotide barcode where the barcodes differed by an edit distance of at least 4. The 

5’ end is the adapter sequence for the Illumina MiSeq sequencer and the sequences 

following the barcode are complementary to the V4 rRNA gene region. Amplification was 

carried out in 42 μL with each primer present at 3.2 pmol/μL, 20 μL GoTaq hot start colorless 

master mix (Promega) and 2 μL extracted DNA. The PCR protocol was as follows: initial 

activation step at 95 °C for 2 minutes and 25 cycles of 1 minute 95 °C, 1 minute 50 °C and 1 

minute 72 °C. 

  All subsequent work was carried out at the London Regional Genomics Centre (LRGC, 

lrgc.ca, London, Ontario, Canada). Briefly, PCR products were quantified with a Qubit 2.0 

Flourometer and the high sensitivity dsDNA specific fluorescent probes (Life Technologies). 

Samples were mixed at equimolar concentrations and purified with the QIAquick PCR 

Purification kit (QIAGEN). Samples were paired-end sequenced on an Illumina Mi-Seq with 

the 600 cycle version 3 reagents with 2x220 cycles. 

  Resulting reads were extracted and de-multiplexed using modifications of in-house 

Perl and UNIX-shell scripts with operational taxonomic units (OTUs) clustered at 97% 

identity, similar to our reported protocol (Gloor et al. 2010). Automated taxonomic 

assignments were carried out by comparison to the SILVA database (http://www.arb-

silva.de/). Supplemental Table 1 displays the nucleotide barcodes and their corresponding 

samples. To control for background contaminating sequences, a no-template control was 
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also sequenced. Barplots were constructed with R (r-project.org) using proportional values. 

Rare OTUs found at less than 1% abundance in all samples were grouped in the remainder 

for barplots only. All other analyses were conducted with all OTUs. Principal Coordinate 

Analysis (PCoA) plots were constructed in Qiime (Caporaso et al. 2010) (qiime.org) using 

weighted UniFrac distances. 

  To avoid inappropriate statistical inferences made from compositional data, centred 

log-ratios (clr), a method previously described by Aitchison (Aitchison 1982), and adapted to 

microbiome data was used with unpaired Wilcoxon tests for comparisons of OTU level data 

(Fernandes et al. 2013; Fernandes et al. 2014). The Benjamini Hochberg (FDR) method was 

used to control for multiple testing with a significance threshold of 0.1. All statistical analysis, 

unless otherwise indicated, was carried out using R (r-project.org). 

 

3 Results 

3.1 Study population 

  The demographics of the study population is displayed in Table 1. Amongst the 58 

children recruited, 47 were diagnosed with SAM (WHZ < -3 and/or MUAC < 11.5 and/or 

oedema), of which 26 (55.3%) were diagnosed with kwashiorkor. Apathy was present in 34 

(72.3%), anorexia in 42 (89.4%), thin hair in 42 (89.4%), glossitis in 27 (57.4%), one or more 

Bitot spots in 9 (19.1%), dermatitis in 22 (46.8%), stomatitis in 27 (57.4%) and 18 (38.3%) 

had oral ulceration. Abdominal distension was present in 11 (23.4%), hepatomegaly in 28 

(59.6%) and splenomegaly in 26 (55.3%). Loose or watery stools (Bristol Stool Form Scale 5-

7) occurred in 36 (76.6%) of the SAM cases compared with 4 (36.4%) controls (Table 1). 
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None of the children had bloody stools. The distribution of ethnicity and area of residence 

differed significantly between cases and controls. 

 

3.2 The fecal microbiota of Nigerian children 

  To determine if the composition of the gut microbiota differed between Nigerian 

children with SAM and controls, we profiled the microbiota of stool samples by amplifying the 

V4 region of the 16S rRNA gene. Two samples did not have enough material for DNA 

extraction, leaving 45 SAM and 11 controls remaining. The fecal microbiota was dominated 

by Enterobacteraciae, Bifidobacterium, Enterococcus, Pediococcus, Lactobacillus and 

Streptococcus species (Fig. 1A). There were no differences in alpha or beta diversity 

between SAM and controls (Fig. 1B,C), nor were there any individual taxa that differed 

significantly between groups (Wilcoxon test, FDR corrected P > 0.1, Supplementary Table 3). 

Although there was a trend for lower bacterial diversity in children with SAM compared to 

controls, the difference was not significant, even when age was taken into account (Fig. 1C, 

ANCOVA P > 0.05).  

 

3.3 Fecal metabolome and inflammatory markers do not distinguish SAM from controls 

  To obtain a global view of nutrient deficiency in SAM and gain insight into 

pathophysiology, we performed a comprehensive untargeted analysis of metabolites in stool 

from all 58 children using two different methods; gas chromatography-mass spectrometry 

(GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Surprisingly, both methods 

yielded no metabolites significantly affected by SAM (Wilcoxon test, FDR corrected P > 0.1, 

Supplementary Fig. 3, Supplementary Table 4). There was no separation of groups based on 
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qualitative PCA analysis, and PLS-DA models had low predictability and were not significant 

(Positive ESI model R2=0.46, Q2=0.08, CV-ANOVA p=0.085,1 component) (Supplementary 

Fig. 4). There were also no significant differences in the inflammatory proteins calprotectin or 

lactoferrin, as measured by ELISA (Supplementary Fig. 5). 

 

3.4 Children with SAM have a distinct plasma metabolome 

  In contrast to stool results, the abundance of approximately 15% of LC-MS features 

(defined as a unique m/z and retention time) detected in plasma were significantly altered by 

SAM (Wilcoxon test, FDR corrected P < 0.1, Supplementary Table 5). Moderate separation 

between groups was observed along the 3rd and 4th component of principal component 

analysis (PCA) plots built from LC-MS data (Fig. 2; Supplementary Fig. 2 shows principal 

components 1 and 2), demonstrating the plasma metabolome of children with SAM is distinct 

from non-malnourished children. To further validate these findings, supervised PLS-DA 

models were constructed from positive ESI data (Supplementary Fig. 6). The PLS-DA model 

showed moderate predictability and was significant (R2=0.98, Q2=0.69, CV-ANOVA 

p=1.43E-05, 5 components), indicating that the plasma metabolome of children with SAM 

was unique from healthy controls. The vast majority of differential features were detected 

exclusively by LC-MS, with only three metabolites differing significantly by GC-MS (valine, 

leucine/isoleucine and aspartic acid). There were no metabolites that differed between 

children with non-oedematous malnutrition (marasmus, N = 21) or oedematous malnutrition 

(kwashiorkor, N = 26), and no significant effect of sex, age, formula feeding, or residence was 

observed (data not shown).  
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3.5 Oxylipins, phospholipids and amino acids are depleted in the plasma of children 

with SAM 

  Significant features in LC-MS data with greater than 2-fold change between SAM and 

controls were selected for further identification. As expected, free amino acids and dipeptides 

were lower in children with SAM including glutamine, arginine, tyrosine, leucine/isoleucine, 

valine, and the tryptophan metabolite kynurenine (Fig. 3A). A number of ether-linked single 

chain phospholipids belonging to the phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) families were also significantly decreased (Fig. 3B). 

Additionally, there was a marked reduction in a number of oxylipins belonging to the 

eicosanoid and docosanoid family. In depth investigation of fragmentation patterns of these 

lipids revealed that each feature (represented as a single boxplot pair in Fig. 3C) contained at 

least two different oxylipin species, differing only in the location of the hydroxyl group(s). The 

precise species contributing to the differences between SAM and controls could therefore not 

be determined. Arachidonic acid (AA), a precursor to the eicosanoids was also significantly 

lower in children with SAM. While median abundance of docosahexaenoic acid (DHA, the 

precursor to the docosanoids), was lower in children with SAM, the difference was not 

significant (FDR corrected P = 0.2) (Fig. 3C). 

 

3.6 Metabolites elevated in plasma of children with SAM 

  Unlike metabolites negatively associated with SAM, the classes of metabolites 

elevated in malnourished children were more diverse, and included sugars, peptides, lipids, 

short chain fatty acids and porphyrins among others. Of interest, we detected a dihexose (a 

disaccharide composed of two six carbon hexoses) by LC-MS in both positive and negative 
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ionization modes that was significantly elevated in children with SAM (Wilcoxon test, FDR 

corrected P < 0.1, Fig. 4).  Authentic standards of different dihexoses confirmed that our LC-

MS measurements represented the total dihexoses in plasma. Analysis of standards by GC-

MS, which is able to resolve dihexoses, and LC-MS/MS determined that sucrose was the 

most abundant dihexose in plasma, with smaller amounts of lactose and maltose also 

present. 

  Two forms of truncated fibrinopeptide A (FPA) missing 2, or 3 N-terminal amino acids 

were also detected in significantly greater amounts in children with SAM. Specifically, des-AD 

(lacking N-terminal alanine and aspartate) and des-ADS FPA (lacking N-terminal alanine, 

aspartate and serine) were both increased approximately 6-fold (Fig. 4). Intact FPA was 

outside the mass range of our initial analysis, and therefore we conducted a second analysis 

with a larger mass range to include the intact FPA peptide. Surprisingly, the abundance of 

intact FPA was not significantly different between SAM and controls (Supplementary Fig. 7), 

indicating that the truncated forms are not simply a degradation product of increased intact 

FPA, but have some other unknown origin. 

  Other metabolites of interest elevated in SAM included several acylcarnitines, the 

peptide hormone angiotensin I (Ang I), heme, lactate, oleoyl ethanolamide, 2,4 and 3,4- 

dihyroxybutyrate, an uncharacterized sphingoid base, a hydroxyvitamin D3 derivative and 

several other unknown compounds (Fig. 4, Supplementary Table 5). 

 

3.7 Assessment of metabolites to discriminate SAM from controls 

  To measure the strength of the association between metabolites and SAM, we 

calculated odds ratios (OR) based on conditional logistic regressions of all metabolites 
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elevated in children with SAM (Supplementary Table 6).  Dihexoses and lactate were among 

the metabolites with the highest OR, ranging from 2.25-2.20 respectively (Fig. 5A). ROC 

curves identified decanoylcarnitine, dihexoses, an uncharacterized sphingoid base, 

angiotensin I, and heme as the metabolites that maximized the sensitivity and specificity for 

SAM, as shown by the area under the curve (AUC), which ranged from 0.83- 0.81 for these 

compounds (Fig. 5B, Supplementary Table 6).  

 

4 Discussion 

  We report the first LC-MS-based untargeted metabolomic study of stool and plasma 

from children with SAM. In contrast to the stool microbiota and metabolome, which did not 

discriminate SAM from controls, approximately 15% of the plasma metabolome, equating to 

585 features, were significantly altered in malnutrition. The explanation for the lack of 

differences in stool are likely multifaceted, but may include the large effect of diet and inter-

individual variation which cannot be accounted for with small cross-sectional studies. It is also 

worth noting that feces represent the net result of nutrient consumption, digestion and 

absorption.  Malabsorption has been widely reported in SAM (Kvissberg et al. 2016), and 

therefore it is possible that these children both consume and absorb fewer nutrients 

compared with non-malnourished controls, resulting in little net difference in stool nutrient 

composition.  

  The stool microbiota data mirrored the metabolome results as neither the composition 

nor diversity were significantly altered by malnutrition, even when children were matched for 

age. This is in contrast to previous studies that have observed differences in the relative 

abundance of specific taxa and diversity for age in twin pairs and unrelated controls (Smith et 
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al. 2013; Subramanian et al. 2014). The relatively small number of controls in our study 

limited our ability to model the relationship between microbial diversity and age, and therefore 

it is possible that a larger sample size may have revealed significant differences. Our cohort 

also tended to be older than the children included in the study by Subramanian et al 

(Subramanian et al. 2014), which could also partially explain the lack of differences in the 

microbiota. As the microbiota has been shown to stabilize by around two years of age 

(Subramanian et al. 2014), and a large proportion (41%) of the children in our study were two 

years or older, it is possible that the window where microbiota stunting is most apparent was 

not captured by our study. However, none of the plasma metabolites affected by SAM were 

of clear microbial origin, providing further evidence that the microbiota may not be playing a 

major role in this particular cohort. 

  Among the plasma metabolites discriminating SAM from controls, the total dihexoses 

had one of the strongest positive associations, as determined by ROC and OR analyses, and 

were detected in both positive and negative ionization modes. Regardless of their structure 

and content in the diet, disaccharides are not readily absorbed, and therefore must pass 

through the intercellular space of the intestinal mucosa to reach systemic circulation. For this 

reason, sucrose, cellobiose, lactulose and other disaccharides have been used as indicators 

of intestinal permeability (Pearson et al. 1982; Sutherland et al. 1994). Malabsorption and 

increased intestinal permeability are associated with SAM and EED, as measured by dual 

sugar permeability tests such as the lactulose/mannitol test (Denno et al. 2014; Kvissberg et 

al. 2016). Although these tests are fairly reliable, the requirement for fasting prior to 

administration raises ethical concerns for children with SAM, and urine must be collected 
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over several hours for accurate results. A non-administered permeability test, for which the 

total dihexoses are an attractive candidate, would therefore be highly valuable. 

  Although elevated dihexoses are suggestive of enteropathy in the SAM group, we did 

not observe any difference in the inflammatory markers calprotectin or lactoferrin in stool. 

These proteins are used as indicators of inflammation in other pathologies such as 

inflammatory bowel disease (Smith and Gaya 2012), but have not been evaluated as 

biomarkers of enteropathy in SAM. The weak correlation between lactoferrin and calprotectin 

(Spearman’s R = 0.33, P =0.01) limits our ability to make conclusions as to the intestinal 

inflammatory status of these children. Future studies evaluating the association of non-

administered disaccharides with enteropathy are warranted to determine if they might also be 

useful in identifying EED. 

  The majority of metabolites discriminating SAM from controls in plasma were 

consistent with nutritional depletion due to malnutrition. As expected, a number of amino 

acids/dipeptides were reduced, indicative of protein deficiency. Oxylipins were also 

significantly decreased, and to the best of our knowledge, have not been examined in 

children with SAM previously.  Importantly, each oxylipin feature contained at least two 

different species, and therefore the number and diversity of oxylipins altered by SAM may be 

vastly under-represented by our study. Oxylipins are bioactive lipids formed by oxidation of 

long chain polyunsaturated fatty acids (LCPUFA), with the most well studied being the AA-

derived eicosanoids (Gabbs et al. 2015). These bioactive lipids perform a wide array of 

functions, including tissue repair, blood clotting, and regulation of the immune system. 

Oxylipins within the same family can have similar or opposing effects (i.e. pro- or anti-

inflammatory), and therefore we cannot determine the precise biological consequence of 
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reduced oxylipins during SAM (Gabbs et al. 2015). However, as children with SAM exhibit an 

impaired immune response to a variety of pathogens (Schaible and Kaufmann 2007), a lack 

of oxylipin mediators may be a contributing factor and warrants further investigation.  

  Previous studies have confirmed that children with SAM are deficient in LCPUFA 

(Holman et al. 1981; Leichsenring et al. 1995), including the oxylipin precursors AA and DHA. 

A large proportion of LCPUFA are stored as acyl-linked phospholipids, which could not 

detectable by our method, and therefore a comparison of the total LCPUFA in our cohort was 

not possible. Nevertheless, the significant reduction in free AA, non-significant trend for lower 

free DHA, and significant decreases in multiple phospholipids and oxylipins are suggestive of 

LCPUFA deficiency in our cohort.  

  Despite previous evidence of LCPUFA deficiency in SAM, the levels of LCPUFA in 

ready-to-use therapeutic food (RUTF) are low (Jones et al. 2015). Recently, a RUTF 

formulation supplemented with fish oil has been developed, which translated into increased 

LCPUFA in recipient children (Jones et al. 2015). More studies are required to determine if 

the incorporation of fish oil into refeeding programs restores oxylipin levels as well and 

whether this leads to any clinical benefit.  

  Apart from dietary deficiencies, other factors may also influence LCPUFA and oxylipin 

levels.  Children with SAM have decreased desaturase activity, resulting in decreased 

synthesis of AA and DHA from their precursors (Koletzko et al. 1986; Smit et al. 2004). 

Additionally, a large proportion of dietary fatty acids are lost to beta-oxidation, a process that 

is induced during starvation (Nagao et al. 1993; Cunnane and Anderson 1997). Interestingly, 

a number of even-chain acylcarnitines, the bi-products of beta oxidation, were significantly 

elevated in children with SAM in our study. This suggests beta-oxidation of lipids may 
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contribute in part to LCPUFA deficiency in SAM. Bartz et al. 2014 found that even-chain 

acylcarnitines, including the C10, C8 and C2 species identified in our study, decreased 

significantly upon nutritional intervention in children with SAM from Uganda. Acylcarnitines 

may therefore be useful not only as biomarkers of a malnourished state, but also as 

measures of treatment efficacy. 

  The truncated FPAs were also metabolites of interest as they are unique peptides of 

unknown origin and were elevated approximately 6-fold in SAM. The des-ADS form in 

particular has not been reported previously. FPA is a 16 amino acid peptide produced upon 

cleavage of the fibrinogen alpha chain by thrombin during the coagulation cascade. Thus it is 

an indicator of thrombosis, and is elevated in plasma during a number of inflammatory 

conditions including Crohn’s disease, gastric cancer, and coronary thrombosis (Eisenberg et 

al. 1985; Edwards et al. 1987; Ebert et al. 2006). As the intact peptide was not elevated in 

SAM, these fragments are not simply a result of increased inflammation and thrombosis, but 

have another unknown origin. One hypothesis is that they may arise from increased protease 

activity as proposed by Zhang et al. 2013 who reported elevated des-A FPA in gastric cancer 

with lymph node metastasis. Protease activity is increased during starvation to supply the 

body with additional amino acids (Medina et al. 1991), and therefore it is possible that these 

truncated forms are a consequence of this up-regulation. 

  Lactate was also elevated in the plasma of malnourished children, and was one the 

metabolites with the highest OR for SAM. Lactate is an endproduct of cellular respiration 

under anaerobic conditions, and is elevated in blood due to a number of etiologies, including 

anemia, sepsis, trauma, and malignancy (Reddy et al. 2015). In the context of malnutrition, 

elevated lactate may result from insufficient oxygen supply due to the anemia or increased 
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infections associated with SAM. Interestingly, several studies have shown blood lactate to be 

a good predictor of mortality due to a variety of illnesses (Krishna et al.; Shapiro et al. 2005; 

Mikkelsen et al. 2009), including a study of Tanzanian children with any febrile illness (Mtove 

et al. 2011).  Further research should evaluate lactate as a predictor of mortality in SAM. 

  Finally, we observed a significant increase in free iron (III) heme in the plasma of 

malnourished children. Heme is normally bound to hemeproteins, but is released under 

conditions of oxidative stress and as a result of hemolysis. Free heme causes tissue damage, 

systemic inflammation (Balla et al. 1991; Wagener et al. 2001), and exacerbates sepsis and 

malaria in animal models (Seixas et al. 2009; Larsen et al. 2010). In humans, malaria severity 

correlates with the levels of free heme, and sepsis-related mortality is associated with 

decreased levels of the heme binding protein hemopexin (Larsen et al. 2010; Dalko et al. 

2015). These diseases frequently affect children with SAM in the developing world, and 

malaria in particular is significantly associated with malnutrition (Berkley et al. 2009; Khogali 

et al. 2011). Our findings indicate elevated heme during SAM may contribute to increased 

severity of these infections, and therefore treatments targeting free heme may be beneficial. 

  Our study has several limitations. Firstly, reliable information regarding other infections 

and pathologies was not available due to the limited local diagnostic facilities, so their 

possible impact on the microbiota and metabolome remains unknown. Children with 

malnutrition were also more likely to originate from rural settings, and therefore we cannot 

distinguish the role of environment from that of malnutrition with absolute certainty. However, 

we could not identify any metabolites that differed significantly between children from urban, 

peri-urban or rural settings, indicating residence does significantly impact the plasma 

metabolome in this cohort. Also, although we identified clear differences in the plasma 
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metabolome of children according to nutritional status, this was not the only source of 

variation. We speculate that other unaccounted for sources of variation may include time of 

sample collection as it relates to circadian rhythms (Dallmann et al. 2012) and feeding time, 

diet and other environmental exposures, and/or the proximity of the plasma sampling to the 

plasma-red blood cell interface. The samples in this study were taken at random time points, 

with no requirements for fasting or feeding prior to collection. This may explain why we did 

not identify some of the classical signs of fasting, such as ketones elevated in the SAM 

group. However, our pragmatic collection method emphasized metabolites robust to external 

factors such as time of day and feeding. This strengthens the applicability of our findings to a 

clinical setting, where controlling for such variables may not be feasible. 

  In conclusion, we have demonstrated the plasma metabolome discriminates children 

with SAM from controls and identified a number of previously unreported metabolic 

derangements in malnutrition, providing new insight into disease mechanisms and 

management. Future studies are needed to monitor these metabolites during intervention to 

identify those most correlated with mortality and/or recovery. Validation of such biomarkers 

may enable better identification of children at highest risk of poor outcomes, and could guide 

improved management for a leading cause of childhood mortality worldwide.  
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Figure legends 
 

Fig. 1: The stool microbiota does not discriminate SAM from controls. (A). Stool 

microbiota profiled using the V4 region of the 16S rRNA gene. Each bar in the 

barplot represents a single sample from a single child and each color a different 

bacterial taxa (OTU). OTUs present at less than one percent in every sample 

were placed in the remainder displayed in black. Samples are ordered by their 

WHZ displayed in the heatmap above. (B). Principal Coordinate Analysis (PCoA) 

plot of microbiota profiles built from weighted UniFrac distances. Each point 

represents a single sample from a single child. Positions of points display 

dissimilarities in the microbiota, with points further from one another being more 

dissimilar. (C). Shannon’s diversity of the stool microbiota in children with SAM 

compared with controls. The boxes represent the 25th and 75th quartiles, and the 

line displays the median value within each group. Points extending beyond the 

lines are outliers defined as values greater or less than 1.5 times the interquartile 

range. 

 

Fig. 2. Principal component analysis (PCA) plots of plasma metabolome from 

children with SAM and controls as determined by LC-MS using positive (top) or 

negative (bottom) electrospray ionization (ESI). Only components 3 and 4 are 

shown. The plots on the left display individual samples (scores). Each point 

represents a single sample from a single child. Positions of points display 

dissimilarities in the metabolome, with points furthest from one another being 

most dissimilar. Plots on the right display individual LC-MS features (loadings). 
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Each ray represents a single LC-MS feature, with those significantly elevated in 

SAM or Controls highlighted in black or red respectively (Wilcoxon test, FDR 

corrected P < 0.1).  

 

Fig. 3. Free amino acids/dipeptides (A), phospholipids (B), and oxylipins (C) 

significantly decreased in children with SAM compared to controls (> 2 fold 

change, Wilcoxon test, FDR corrected P < 0.1, with the exception of DHA which 

was not significant). Panels (A) and (B) were detected by positive ESI LC-MS and 

(C) by negative ESI LC-MS. Each point represents a single sample from a single 

child. The boxes represent the 25th and 75th quartiles, and the line displays the 

median value within each group. Points extending beyond the lines are outliers 

defined as values greater or less than 1.5 times the interquartile range. PC: 

Phosphatidylcholine, PE: Phosphatidylethanolamine. See Supplementary Table 

5 for phospholipid identities. (*) Metabolite ID confirmed by authentic standards. 

 

Fig. 4. Metabolites significantly elevated at least 2-fold in the plasma of children 

with SAM compared to controls (Wilcoxon test, FDR corrected P < 0.1). (Left) 

Metabolites detected using positive ESI LC-MS. (Right) Metabolites detected 

using negative ESI LC-MS. Each point represents a single sample from a single 

child. The boxes represent the 25th and 75th quartiles, and the line displays the 

median value within each group. Points extending beyond the lines are outliers 

defined as values greater or less than 1.5 times the interquartile range. FPA: 
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Fibrinopeptide A, HTD: 3-Hydroxy-cis-5-tetradecenoyl. (*) Metabolite ID 

confirmed by authentic standards. 

 

Fig. 5. Evaluation of biomarkers to identify SAM from controls. (A) Odds Ratios 

as determined by conditional logistic regressions of all validated metabolites 

positively associated with SAM. Bars represent 95% confidence intervals. (B) 

Receiver Operator Characteristics (ROC) curves. Metabolites with the highest 

area under the curve (AUC) are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 1 

Metabolic derangements identified through untargeted metabolomics in a cross-
sectional study of Nigerian children with severe acute malnutrition 
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ABSTRACT 

Introduction: Severe acute malnutrition (SAM) is a major cause of child mortality worldwide, 

however the pathogenesis of SAM remains poorly understood. Recent studies have 

uncovered an altered gut microbiota composition in children with SAM, suggesting a role for 

microbes in the pathogenesis of malnutrition. 

Objectives: To elucidate the metabolic consequences of SAM and whether these changes 

are associated with changes in gut microbiota composition. 

Methods: We applied an untargeted multi-platform metabolomics approach (gas 

chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry 

(LC-MS)) to stool and plasma samples from 47 Nigerian children with SAM and 11 control 

children. The composition of the stool microbiota was assessed by 16S rRNA gene 

sequencing. 

Results: The plasma metabolome discriminated children with SAM from controls, while no 

significant differences were observed in the microbial or small molecule composition of stool. 

The abundance of 585 features in plasma were significantly altered in malnourished children 

(Wilcoxon test, FDR corrected P < 0.1), representing approximately 15% of the metabolome. 

Consistent with previous studies, children with SAM exhibited a marked reduction in amino 

acids/dipeptides and phospholipids, and an increase in acylcarnitines. We also identified 

numerous metabolic perturbations which have not been reported previously, including 

increased disaccharides, truncated fibrinopeptides, angiotensin I, dihydroxybutyrate, lactate, 

and heme, and decreased bioactive lipids belonging to the eicosanoid and docosanoid family.  
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Conclusion: Our findings provide a deeper understanding of the metabolic consequences of 

malnutrition. Further research is required to determine if specific metabolites may guide 

improved management, and/or act as novel biomarkers for assessing response to treatment. 

 

1 Introduction 

  Severe acute malnutrition (SAM) is a leading cause of global child mortality, is 

associated with growth faltering, and results in impaired cognitive development (Kar et al. 

2008). A significant proportion of deaths due to numerous illnesses including malaria, 

measles and diarrheal diseases have also been attributed to malnutrition (Caulfield et al. 

2004). SAM is most frequently defined by a weight-for-length/height Z-score (WHZ) < -3 

and/or presence of oedema (Who 2009). Middle upper arm circumference (MUAC) < 11.5 cm 

is also commonly used in children aged 6-– months (Who 2009). Despite its prevalence, the 

metabolic changes that occur during malnutrition are poorly understood. A better 

understanding of these metabolic derangements may shed light on pathophysiology and/or 

adaptation to malnutrition, and inform improved clinical management. 

  Multiple studies have demonstrated amino acid depletion in children with SAM 

(Ghisolfi et al. 1978; Bartz et al. 2014), but untargeted studies pertaining to other metabolites 

are limited. Bartz et al 2014 applied a targeted and untargeted approach to identify 

biomarkers associated with recovery and mortality in Ugandan children with SAM (Bartz et al. 

2014). The concentrations of a number of metabolites were significantly altered upon 

rehabilitation, including amino acids, acylcarnitines and leptin. However, non-malnourished 

controls were not included, and the untargeted analysis was limited to gas chromatography-

mass spectrometry (GC-MS) which covers only a small portion of the metabolome. 
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Malnutrition in juvenile pigs has also revealed alterations in the metabolome, including 

changes in amino acids, choline metabolites, and products of microbial-mammalian co-

metabolism (Jiang et al. 2015), suggesting the gut microbiota may be altered by malnutrition. 

  Differences in gut microbiota composition of children with SAM compared to healthy 

co-twins and unrelated controls have been described in Malawian and Bangladeshi children 

(Smith et al. 2013; Subramanian et al. 2014). Additionally, specific taxa capable of causing 

enteropathy when combined with a low protein diet have been identified in mice (Brown et al. 

2015). Enteropathy resulting in malabsorption and increased intestinal permeability is 

associated with SAM in humans, as indicated by intestinal biopsies and dual sugar 

permeability tests (Denno et al. 2014). This phenomenon may be a more severe form of 

environmental enteric dysfunction (EED), which occurs almost universally in people exposed 

to poor hygiene and sanitation. The etiology of enteropathy in SAM is not well understood, 

but may involve repeated exposure to fecal enteropathogens combined with a low protein diet 

(Hashimoto et al. 2012; Brown et al. 2015).  

  The aim of this study was to identify conserved changes in the metabolome of children 

with SAM compared to controls in order to improve our understanding of the pathophysiology 

of malnutrition. Given the association with enteropathy and recent studies linking changes in 

the microbiota to SAM (Smith et al. 2013; Subramanian et al. 2014), we also measured 

biomarkers of intestinal inflammation and profiled the gut microbiota of these children.  

 

2 Materials and methods 

Study design and sample collection 
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  We aimed to undertake a pragmatic study of unselected children admitted to a health 

facility in a region with endemic malnutrition to maximise the relevance of our findings to 

clinical practice. We recruited 58 children aged 6-48 months: 47 with SAM and 11 well-

nourished hospital controls. Demographic and clinical characteristics at recruitment are 

shown in Table 1. Children aged 6 – 48 months with SAM (WHZ <-3 or MUAC <11.5 cms 

and/or nutritional oedema) admitted to the Federal Medical Centre, Gusau, Zamfara State, 

Nigeria between June 25th and September 21st, 2012 were invited to participate in the study. 

The hospital serves both urban and rural populations and recruitment occurred during the 

rainy season when malnutrition is most common. Written information about the study and a 

verbal explanation in the appropriate local language was provided to parents/carers and 

signed or thumb-printed consent secured. Clinical management was performed according to 

usual practice based on WHO guidelines including those for the management of SAM (WHO 

1999). Well-nourished children (MUAC >12.5 cms or WHZ score ≥ -1 and no nutritional 

oedema) were recruited from the paediatric ward or outpatient clinics as controls during the 

same time period (Supplementary Table 1). HIV positive individuals were excluded from the 

study. In both groups, baseline demographic and clinical information was collected on 

standard forms by one of five clinicians trained in the research methods (Supplementary 

Table 1). The first available stool sample was collected and its consistency and the presence 

of visible blood and mucus were recorded. At the time of clinical sampling, approximately 2.5 

mL of venous blood was collected into EDTA tubes for the purposes of the study. Ethical 

approval was provided by the Joint Ethical Review Committees of the University of Ibadan / 

University College Hospital, Ibadan, Nigeria. 
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Metabolite extraction from stool 

  Approximately 250 mg of wet stool was lyophilized overnight. After drying, 40 mg was 

weighed into microcentrifuge tubes and extracted with 8:2 methanol:H2O to a final 

concentration of 40 mg/mL. Samples were then vortexed for 30 sec, followed by 

centrifugation for 15 min at 10 000 rpm. 50 μL of this supernatant was dried in a speedvac for 

GC-MS analysis and the remaining stored at -80 °C for LC-MS. 

 

Metabolite extraction from plasma 

  Metabolites were extracted from plasma according to the methods of Dunn et al, 2011 

(Dunn et al. 2011). Briefly, plasma samples were thawed on ice for 30 min. Once thawed, 

805 μL of 8:2 methanol:H2O was added to 230 μL of plasma to make a 4.5 fold dilution. 

Samples were vortexed for 15 sec and centrifuged at 15 000 rpm for 15 min to pellet 

precipitated proteins. 370 μL of supernatant was then transferred to separate vials and dried 

down for GC-MS and LC-MS using a speedvac with no heat.  

 

Untargeted GC-MS analyses 

  For stool, samples were derivatized with 40 μL of 2% methoxyamine-HCl in pyridine 

(MOX) incubated at 50 °C for 90 min, followed by 20 μL of N- Methyl-N-(trimethylsilyl) 

trifluoroacetamide (MSTFA) for 30 min at 50 °C. Samples were then transferred to micro-

inserts before analysis by GC-MS. For plasma, 50 μL of MOX was added to dried samples 

and incubated for 90 min at 50 °C. 50 μL of MSTFA was then added and incubated for 30 min 

at 50 °C. Samples were then transferred to 1.5 ml microcentrifuge tubes and centrifuged at 
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15 000 rpm for 5 min to pellet debris. This supernatant was then transferred to HPLC vials 

containing inserts for analysis. 

  One μL of sample was injected into an Agilent 7890A GC, 5975 inert MSD with triple 

axis detector. Samples were injected using pulsed splitless mode using a 30 m DB5-MS 

column with 10 m duraguard, diameter 0.35mm, thickness 0.25 μm (J&W Scientific, Folsom, 

USA). Helium was used as the carrier gas at a constant flow rate of 1 mL/min. Oven 

temperature was held at 70 °C for 5 min then increased at a rate of 5 °C/min to 300 °C and 

held for 10 min. Solvent delay was set to 7 min, and total run time was 61 min. Masses 

between 25 m/z and 600 m/z were selected by the detector. All samples were run in random 

order and a single sample was run with every batch as a quality control to ensure machine 

consistency. 

  Chromatogram files were deconvoluted and converted to ELU format using AMDIS 

Mass Spectrometry software (Stein 1999) with the sensitivity set to low, resolution to medium, 

and support threshold to high. Chromatograms were aligned using Spectconnect 

(http://spectconnect.mit.edu) (Styczynski et al. 2007) with the support threshold set to low. 

The integrated signal (IS) matrix output was used for all further analysis. Zeros were replaced 

with two thirds the minimum detected value on a per metabolite basis (Timotej 2011), 

followed by a log base 2 transformation. All further analyses were performed using these log-

transformed values.  

  Metabolites were initially identified by comparison to the NIST 11 standard reference 

database (http://www.nist.gov/srd/nist1a.cfm). Identities of metabolites of interest were then 

confirmed by authentic standards if available. 

Untargeted LC-MS analyses 
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  For stool, 2.5 μL of 1 μg/mL 13C6
 phenylalanine internal standard (Cambridge Isotopes, 

Tewksbury, USA) was added to 47.5 μL of extracted stool. For plasma, dried samples were 

reconstituted in 85.5 μL of ddH2O. 4.5 μL of 1 ug/mL 13C6
 phenylalanine in ddH2O was then -

added to each vial as an internal standard. Samples were vortexed for 15 sec, then 

transferred to microinserts and injected into an Agilent 1290 Infinity HPLC coupled to a Q-

Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, USA) with a HESI 

(heated electrospray ionization) source. For HPLC, 2 μL of each sample was injected into a 

ZORBAX Eclipse plus C18 2.1 x 50mm x 1.8 micron column. Mobile phase (A) consisted of 

0.1% formic acid in water and mobile phase (B) consisted of 0.1% formic acid in acetonitrile. 

The initial composition of 0% (B) was held constant for 30 s and increased to 100% over 3.0 

min. For stool, mobile phase B was held at 100% for 1 minute and returned to 0% over 30s 

for a total run time of 5 min. For plasma, mobile phase B was held at 100% for 2 minutes and 

returned to 0% over 30s for a total run time of 6 min. 

  Full MS scanning between the ranges of m/z 50-750 was performed on all samples in 

both positive and negative mode at 140 000 resolution. The HESI source was operated under 

the following conditions: nitrogen flow of 30 and 8 arbitrary units for the sheath and auxiliary 

gas respectively, probe temperature and capillary temperature of 450 °C and 250 °C 

respectively and spray voltage of 3.9 kV and 3.5 kV in positive and negative mode 

respectively. The automatic gain control (AGC) target and maximum injection time were 1e6 

and 500 ms respectively. For molecular characterization, every tenth sample was also 

analyzed with a data dependent MS/MS method where a 35 000 resolution full MS scan 

identified the top 12 signals above a 1e5 threshold which were subsequently selected at a 1.2 

m/z isolation window for MS/MS. Normalized collision energy for MS/MS was 28, resolution 
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17 500, AGC target 1E5 and maximum injection time was 60ms. Blanks of pure methanol 

were run between every sample to limit carryover, and a single sample was run multiple 

times with every batch to account for any machine inconsistency. After data acquisition 

Thermo .RAW files were converted to .MZML format and centroided using ProteoWizard 

(Kessner et al. 2008). Files were then imported into R using the XCMS package (Patti et al. 

2012) for chromatogram alignment and deconvolution. Features were detected with the 

“xcmsSet” function using the “centWave” method and a ppm tolerance of 1. Prefilter was set 

to 3-5000, noise 1E5, and signal to noise threshold was set to 5. Due to a lower overall noise 

and signal in negative mode, noise was set to 1E3 for this mode. Retention time correction 

was conducted using the “obiwarp” method, grouping included features present in at least 

25% of all samples, allowable retention time deviation was 5 seconds, and m/z width set to 

0.015. Areas of features below the signal to noise threshold in the data were integrated using 

the “fillPeaks” function with default settings. Any remaining zeros in the data were then 

replaced with two-thirds the minimum value on a per mass basis (Timotej 2011) before log 

base 2 transformation. The log-transformed mass list was then exported as a single .txt file 

and used for all further analyses. All further analyses were carried out in R unless otherwise 

specified. Positive and negative mode data were treated as two independent datasets for all 

analyses. 

  Metabolites were putatively identified based on accurate mass and LC-MS/MS 

fragmentation patterns (Supplemental Figure 1). Predictions were made mainly by de novo 

compound identification from in depth investigation of individual MS/MS spectra, utilizing the 

METLIN database (http://metlin.scripps.edu) (Smith et al. 2005), Human Metabolome 

Database (www.hmdb.ca)  (Wishart et al. 2007), and CFM-ID (http://cfmid.wishartlab.com) 
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(Allen et al. 2014) whenever possible to aid in identification. Metabolites of interest were 

confirmed by authentic standards when available based on accurate mass, retention time and 

MS/MS spectra (Supplemental Table 2).  

 

Statistical analysis of metabolome data 

  Principal Component Analysis (PCA) was conducted in R using the “FactoMineR” 

package with pareto scaling. Components 1 and 2, representing approximately 15 % and 9% 

of the variation respectively, could not be explained by any of the metadata collected 

(Supplemental Figure 2). We therefore selected the lowest components which maximized 

separation between SAM and controls (components 3 and 4) for qualitative analysis of the 

metabolome. Partial Least Squares Discriminant Analysis (PLS-DA) models were constructed 

in SIMCA 13.0.3.0 (Umetrics) using pareto scaling and 7-fold cross-validation. The number of 

components was selected using the autofit function which selects the maximum number of 

significant components according to cross-validation rules. Significant models were defined 

as those with cross-validated analysis of variance (CV-ANOVA) P values less than 0.05. 

Metabolites that differed between SAM and controls were determined independently of PCA 

analysis using unpaired Wilcoxon tests with Benjamini-Hochberg (False Discovery Rate 

(FDR)) corrections to account for multiple hypothesis testing (Benjamini and Hochberg 1995). 

Metabolites with a corrected P < 0.1 and average fold change > 2 in either group (SAM or 

control) were selected for further investigation. Fold changes were calculated using the 

geometric mean to limit inflation of fold change values due to outliers. Boxplots and 

stripcharts were constructed in R using the ggplot2 package. Odds ratios of metabolites to 

identify SAM from controls were calculated from conditional logistic regressions performed on 
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all metabolites using the glm function in R with 10 000 iterations and a binomial distribution. 

Receiver operating characteristic (ROC) curves and forest plots were built in R using the 

pROC and forestplot packages respectively. In the case of Des ADS-FPA, the 13C isotope 

was used for statistical analyses and plotting due to a large singly-charged interfering peak 

with mass similar to the 12C Des ADS-FPA. All raw data files were manually inspected to 

ensure the data was accurately represented by the 13C peak.  The effect of potential 

confounding variables was investigated using Spearman’s correlations for continuous 

variables and Wilcoxon or Kruskal Wallace tests for discrete variable. Tests with FDR 

corrected P-values less than 0.1 were considered significant. 

 

Calprotectin and lactoferrin stool ELISAs 

  Calprotectin was measured using the IDK® Calprotectin ELISA Kit along with the IDK 

Extract® stool extraction kit (Immundiagnostik, Bensheim, Germany). Lactoferrin was 

measured using the Lactoferrin Scan™ ELISA kit (Techlab®, Blacksburg, USA). All protocols 

were followed as per the manufacturer’s instructions. 

 

Microbiome profiling 

  DNA was extracted from stool samples using the PowerSoil-htp 96 Well Soil DNA 

isolation kit from MoBio (Carlsbad, CA) according to the manufacturer’s protocol, with 

modifications as outlined by the Earth Microbiome Project (version 4_13). Approximately 250 

mg of fecal sample was used for the extractions. Samples were sequenced by amplifying the 

V4 hypervariable region of the 16S rRNA gene. Sample amplification for sequencing was 

carried out using the forward primer 
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(ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN(8)GTGCCAGCMGCCGCGGTAA) 

and the reverse primer 

(CGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNN(8)GGACTACHVGGGTWT

CTAAT) where nnnn indicates four randomly incorporated nucleotides, and (8) was a sample-

specific nucleotide barcode where the barcodes differed by an edit distance of at least 4. The 

5’ end is the adapter sequence for the Illumina MiSeq sequencer and the sequences 

following the barcode are complementary to the V4 rRNA gene region. Amplification was 

carried out in 42 μL with each primer present at 3.2 pmol/μL, 20 μL GoTaq hot start colorless 

master mix (Promega) and 2 μL extracted DNA. The PCR protocol was as follows: initial 

activation step at 95 °C for 2 minutes and 25 cycles of 1 minute 95 °C, 1 minute 50 °C and 1 

minute 72 °C. 

  All subsequent work was carried out at the London Regional Genomics Centre (LRGC, 

lrgc.ca, London, Ontario, Canada). Briefly, PCR products were quantified with a Qubit 2.0 

Flourometer and the high sensitivity dsDNA specific fluorescent probes (Life Technologies). 

Samples were mixed at equimolar concentrations and purified with the QIAquick PCR 

Purification kit (QIAGEN). Samples were paired-end sequenced on an Illumina Mi-Seq with 

the 600 cycle version 3 reagents with 2x220 cycles. 

  Resulting reads were extracted and de-multiplexed using modifications of in-house 

Perl and UNIX-shell scripts with operational taxonomic units (OTUs) clustered at 97% 

identity, similar to our reported protocol (Gloor et al. 2010). Automated taxonomic 

assignments were carried out by comparison to the SILVA database (http://www.arb-

silva.de/). Supplemental Table 1 displays the nucleotide barcodes and their corresponding 

samples. To control for background contaminating sequences, a no-template control was 
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also sequenced. Barplots were constructed with R (r-project.org) using proportional values. 

Rare OTUs found at less than 1% abundance in all samples were grouped in the remainder 

for barplots only. All other analyses were conducted with all OTUs. Principal Coordinate 

Analysis (PCoA) plots were constructed in Qiime (Caporaso et al. 2010) (qiime.org) using 

weighted UniFrac distances. 

  To avoid inappropriate statistical inferences made from compositional data, centred 

log-ratios (clr), a method previously described by Aitchison (Aitchison 1982), and adapted to 

microbiome data was used with unpaired Wilcoxon tests for comparisons of OTU level data 

(Fernandes et al. 2013; Fernandes et al. 2014). The Benjamini Hochberg (FDR) method was 

used to control for multiple testing with a significance threshold of 0.1. All statistical analysis, 

unless otherwise indicated, was carried out using R (r-project.org). 

 

3 Results 

3.1 Study population 

  The demographics of the study population is displayed in Table 1. Amongst the 58 

children recruited, 47 were diagnosed with SAM (WHZ < -3 and/or MUAC < 11.5 and/or 

oedema), of which 26 (55.3%) were diagnosed with kwashiorkor. Apathy was present in 34 

(72.3%), anorexia in 42 (89.4%), thin hair in 42 (89.4%), glossitis in 27 (57.4%), one or more 

Bitot spots in 9 (19.1%), dermatitis in 22 (46.8%), stomatitis in 27 (57.4%) and 18 (38.3%) 

had oral ulceration. Abdominal distension was present in 11 (23.4%), hepatomegaly in 28 

(59.6%) and splenomegaly in 26 (55.3%). Loose or watery stools (Bristol Stool Form Scale 5-

7) occurred in 36 (76.6%) of the SAM cases compared with 4 (36.4%) controls (Table 1). 
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None of the children had bloody stools. The distribution of ethnicity and area of residence 

differed significantly between cases and controls. 

 

3.2 The fecal microbiota of Nigerian children 

  To determine if the composition of the gut microbiota differed between Nigerian 

children with SAM and controls, we profiled the microbiota of stool samples by amplifying the 

V4 region of the 16S rRNA gene. Two samples did not have enough material for DNA 

extraction, leaving 45 SAM and 11 controls remaining. The fecal microbiota was dominated 

by Enterobacteraciae, Bifidobacterium, Enterococcus, Pediococcus, Lactobacillus and 

Streptococcus species (Fig. 1A). There were no differences in alpha or beta diversity 

between SAM and controls (Fig. 1B,C), nor were there any individual taxa that differed 

significantly between groups (Wilcoxon test, FDR corrected P > 0.1, Supplementary Table 3). 

Although there was a trend for lower bacterial diversity in children with SAM compared to 

controls, the difference was not significant, even when age was taken into account (Fig. 1C, 

ANCOVA P > 0.05).  

 

3.3 Fecal metabolome and inflammatory markers do not distinguish SAM from controls 

  To obtain a global view of nutrient deficiency in SAM and gain insight into 

pathophysiology, we performed a comprehensive untargeted analysis of metabolites in stool 

from all 58 children using two different methods; gas chromatography-mass spectrometry 

(GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Surprisingly, both methods 

yielded no metabolites significantly affected by SAM (Wilcoxon test, FDR corrected P > 0.1, 

Supplementary Fig. 3, Supplementary Table 4). There was no separation of groups based on 
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qualitative PCA analysis, and PLS-DA models had low predictability and were not significant 

(Positive ESI model R2=0.46, Q2=0.08, CV-ANOVA p=0.085,1 component) (Supplementary 

Fig. 4). There were also no significant differences in the inflammatory proteins calprotectin or 

lactoferrin, as measured by ELISA (Supplementary Fig. 5). 

 

3.4 Children with SAM have a distinct plasma metabolome 

  In contrast to stool results, the abundance of approximately 15% of LC-MS features 

(defined as a unique m/z and retention time) detected in plasma were significantly altered by 

SAM (Wilcoxon test, FDR corrected P < 0.1, Supplementary Table 5). Moderate separation 

between groups was observed along the 3rd and 4th component of principal component 

analysis (PCA) plots built from LC-MS data (Fig. 2; Supplementary Fig. 2 shows principal 

components 1 and 2), demonstrating the plasma metabolome of children with SAM is distinct 

from non-malnourished children. To further validate these findings, supervised PLS-DA 

models were constructed from positive ESI data (Supplementary Fig. 6). The PLS-DA model 

showed moderate predictability and was significant (R2=0.98, Q2=0.69, CV-ANOVA 

p=1.43E-05, 5 components), indicating that the plasma metabolome of children with SAM 

was unique from healthy controls. The vast majority of differential features were detected 

exclusively by LC-MS, with only three metabolites differing significantly by GC-MS (valine, 

leucine/isoleucine and aspartic acid). There were no metabolites that differed between 

children with non-oedematous malnutrition (marasmus, N = 21) or oedematous malnutrition 

(kwashiorkor, N = 26), and no significant effect of sex, age, formula feeding, or residence was 

observed (data not shown).  
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3.5 Oxylipins, phospholipids and amino acids are depleted in the plasma of children 

with SAM 

  Significant features in LC-MS data with greater than 2-fold change between SAM and 

controls were selected for further identification. As expected, free amino acids and dipeptides 

were lower in children with SAM including glutamine, arginine, tyrosine, leucine/isoleucine, 

valine, and the tryptophan metabolite kynurenine (Fig. 3A). A number of ether-linked single 

chain phospholipids belonging to the phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) families were also significantly decreased (Fig. 3B). 

Additionally, there was a marked reduction in a number of oxylipins belonging to the 

eicosanoid and docosanoid family. In depth investigation of fragmentation patterns of these 

lipids revealed that each feature (represented as a single boxplot pair in Fig. 3C) contained at 

least two different oxylipin species, differing only in the location of the hydroxyl group(s). The 

precise species contributing to the differences between SAM and controls could therefore not 

be determined. Arachidonic acid (AA), a precursor to the eicosanoids was also significantly 

lower in children with SAM. While median abundance of docosahexaenoic acid (DHA, the 

precursor to the docosanoids), was lower in children with SAM, the difference was not 

significant (FDR corrected P = 0.2) (Fig. 3C). 

 

3.6 Metabolites elevated in plasma of children with SAM 

  Unlike metabolites negatively associated with SAM, the classes of metabolites 

elevated in malnourished children were more diverse, and included sugars, peptides, lipids, 

short chain fatty acids and porphyrins among others. Of interest, we detected a dihexose (a 

disaccharide composed of two six carbon hexoses) by LC-MS in both positive and negative 
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ionization modes that was significantly elevated in children with SAM (Wilcoxon test, FDR 

corrected P < 0.1, Fig. 4).  Authentic standards of different dihexoses confirmed that our LC-

MS measurements represented the total dihexoses in plasma. Analysis of standards by GC-

MS, which is able to resolve dihexoses, and LC-MS/MS determined that sucrose was the 

most abundant dihexose in plasma, with smaller amounts of lactose and maltose also 

present. 

  Two forms of truncated fibrinopeptide A (FPA) missing 2, or 3 N-terminal amino acids 

were also detected in significantly greater amounts in children with SAM. Specifically, des-AD 

(lacking N-terminal alanine and aspartate) and des-ADS FPA (lacking N-terminal alanine, 

aspartate and serine) were both increased approximately 6-fold (Fig. 4). Intact FPA was 

outside the mass range of our initial analysis, and therefore we conducted a second analysis 

with a larger mass range to include the intact FPA peptide. Surprisingly, the abundance of 

intact FPA was not significantly different between SAM and controls (Supplementary Fig. 7), 

indicating that the truncated forms are not simply a degradation product of increased intact 

FPA, but have some other unknown origin. 

  Other metabolites of interest elevated in SAM included several acylcarnitines, the 

peptide hormone angiotensin I (Ang I), heme, lactate, oleoyl ethanolamide, 2,4 and 3,4- 

dihyroxybutyrate, an uncharacterized sphingoid base, a hydroxyvitamin D3 derivative and 

several other unknown compounds (Fig. 4, Supplementary Table 5). 

 

3.7 Assessment of metabolites to discriminate SAM from controls 

  To measure the strength of the association between metabolites and SAM, we 

calculated odds ratios (OR) based on conditional logistic regressions of all metabolites 
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elevated in children with SAM (Supplementary Table 6).  Dihexoses and lactate were among 

the metabolites with the highest OR, ranging from 2.25-2.20 respectively (Fig. 5A). ROC 

curves identified decanoylcarnitine, dihexoses, an uncharacterized sphingoid base, 

angiotensin I, and heme as the metabolites that maximized the sensitivity and specificity for 

SAM, as shown by the area under the curve (AUC), which ranged from 0.83- 0.81 for these 

compounds (Fig. 5B, Supplementary Table 6).  

 

4 Discussion 

  We report the first LC-MS-based untargeted metabolomic study of stool and plasma 

from children with SAM. In contrast to the stool microbiota and metabolome, which did not 

discriminate SAM from controls, approximately 15% of the plasma metabolome, equating to 

585 features, were significantly altered in malnutrition. The explanation for the lack of 

differences in stool are likely multifaceted, but may include the large effect of diet and inter-

individual variation which cannot be accounted for with small cross-sectional studies. It is also 

worth noting that feces represent the net result of nutrient consumption, digestion and 

absorption.  Malabsorption has been widely reported in SAM (Kvissberg et al. 2016), and 

therefore it is possible that these children both consume and absorb fewer nutrients 

compared with non-malnourished controls, resulting in little net difference in stool nutrient 

composition.  

  The stool microbiota data mirrored the metabolome results as neither the composition 

nor diversity were significantly altered by malnutrition, even when children were matched for 

age. This is in contrast to previous studies that have observed differences in the relative 

abundance of specific taxa and diversity for age in twin pairs and unrelated controls (Smith et 
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al. 2013; Subramanian et al. 2014). The relatively small number of controls in our study 

limited our ability to model the relationship between microbial diversity and age, and therefore 

it is possible that a larger sample size may have revealed significant differences. Our cohort 

also tended to be older than the children included in the study by Subramanian et al 

(Subramanian et al. 2014), which could also partially explain the lack of differences in the 

microbiota. As the microbiota has been shown to stabilize by around two years of age 

(Subramanian et al. 2014), and a large proportion (41%) of the children in our study were two 

years or older, it is possible that the window where microbiota stunting is most apparent was 

not captured by our study. However, none of the plasma metabolites affected by SAM were 

of clear microbial origin, providing further evidence that the microbiota may not be playing a 

major role in this particular cohort. 

  Among the plasma metabolites discriminating SAM from controls, the total dihexoses 

had one of the strongest positive associations, as determined by ROC and OR analyses, and 

were detected in both positive and negative ionization modes. Regardless of their structure 

and content in the diet, disaccharides are not readily absorbed, and therefore must pass 

through the intercellular space of the intestinal mucosa to reach systemic circulation. For this 

reason, sucrose, cellobiose, lactulose and other disaccharides have been used as indicators 

of intestinal permeability (Pearson et al. 1982; Sutherland et al. 1994). Malabsorption and 

increased intestinal permeability are associated with SAM and EED, as measured by dual 

sugar permeability tests such as the lactulose/mannitol test (Denno et al. 2014; Kvissberg et 

al. 2016). Although these tests are fairly reliable, the requirement for fasting prior to 

administration raises ethical concerns for children with SAM, and urine must be collected 
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over several hours for accurate results. A non-administered permeability test, for which the 

total dihexoses are an attractive candidate, would therefore be highly valuable. 

  Although elevated dihexoses are suggestive of enteropathy in the SAM group, we did 

not observe any difference in the inflammatory markers calprotectin or lactoferrin in stool. 

These proteins are used as indicators of inflammation in other pathologies such as 

inflammatory bowel disease (Smith and Gaya 2012), but have not been evaluated as 

biomarkers of enteropathy in SAM. The weak correlation between lactoferrin and calprotectin 

(Spearman’s R = 0.33, P =0.01) limits our ability to make conclusions as to the intestinal 

inflammatory status of these children. Future studies evaluating the association of non-

administered disaccharides with enteropathy are warranted to determine if they might also be 

useful in identifying EED. 

  The majority of metabolites discriminating SAM from controls in plasma were 

consistent with nutritional depletion due to malnutrition. As expected, a number of amino 

acids/dipeptides were reduced, indicative of protein deficiency. Oxylipins were also 

significantly decreased, and to the best of our knowledge, have not been examined in 

children with SAM previously.  Importantly, each oxylipin feature contained at least two 

different species, and therefore the number and diversity of oxylipins altered by SAM may be 

vastly under-represented by our study. Oxylipins are bioactive lipids formed by oxidation of 

long chain polyunsaturated fatty acids (LCPUFA), with the most well studied being the AA-

derived eicosanoids (Gabbs et al. 2015). These bioactive lipids perform a wide array of 

functions, including tissue repair, blood clotting, and regulation of the immune system. 

Oxylipins within the same family can have similar or opposing effects (i.e. pro- or anti-

inflammatory), and therefore we cannot determine the precise biological consequence of 
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reduced oxylipins during SAM (Gabbs et al. 2015). However, as children with SAM exhibit an 

impaired immune response to a variety of pathogens (Schaible and Kaufmann 2007), a lack 

of oxylipin mediators may be a contributing factor and warrants further investigation.  

  Previous studies have confirmed that children with SAM are deficient in LCPUFA 

(Holman et al. 1981; Leichsenring et al. 1995), including the oxylipin precursors AA and DHA. 

A large proportion of LCPUFA are stored as acyl-linked phospholipids, which could not 

detectable by our method, and therefore a comparison of the total LCPUFA in our cohort was 

not possible. Nevertheless, the significant reduction in free AA, non-significant trend for lower 

free DHA, and significant decreases in multiple phospholipids and oxylipins are suggestive of 

LCPUFA deficiency in our cohort.  

  Despite previous evidence of LCPUFA deficiency in SAM, the levels of LCPUFA in 

ready-to-use therapeutic food (RUTF) are low (Jones et al. 2015). Recently, a RUTF 

formulation supplemented with fish oil has been developed, which translated into increased 

LCPUFA in recipient children (Jones et al. 2015). More studies are required to determine if 

the incorporation of fish oil into refeeding programs restores oxylipin levels as well and 

whether this leads to any clinical benefit.  

  Apart from dietary deficiencies, other factors may also influence LCPUFA and oxylipin 

levels.  Children with SAM have decreased desaturase activity, resulting in decreased 

synthesis of AA and DHA from their precursors (Koletzko et al. 1986; Smit et al. 2004). 

Additionally, a large proportion of dietary fatty acids are lost to beta-oxidation, a process that 

is induced during starvation (Nagao et al. 1993; Cunnane and Anderson 1997). Interestingly, 

a number of even-chain acylcarnitines, the bi-products of beta oxidation, were significantly 

elevated in children with SAM in our study. This suggests beta-oxidation of lipids may 
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contribute in part to LCPUFA deficiency in SAM. Bartz et al. 2014 found that even-chain 

acylcarnitines, including the C10, C8 and C2 species identified in our study, decreased 

significantly upon nutritional intervention in children with SAM from Uganda. Acylcarnitines 

may therefore be useful not only as biomarkers of a malnourished state, but also as 

measures of treatment efficacy. 

  The truncated FPAs were also metabolites of interest as they are unique peptides of 

unknown origin and were elevated approximately 6-fold in SAM. The des-ADS form in 

particular has not been reported previously. FPA is a 16 amino acid peptide produced upon 

cleavage of the fibrinogen alpha chain by thrombin during the coagulation cascade. Thus it is 

an indicator of thrombosis, and is elevated in plasma during a number of inflammatory 

conditions including Crohn’s disease, gastric cancer, and coronary thrombosis (Eisenberg et 

al. 1985; Edwards et al. 1987; Ebert et al. 2006). As the intact peptide was not elevated in 

SAM, these fragments are not simply a result of increased inflammation and thrombosis, but 

have another unknown origin. One hypothesis is that they may arise from increased protease 

activity as proposed by Zhang et al. 2013 who reported elevated des-A FPA in gastric cancer 

with lymph node metastasis. Protease activity is increased during starvation to supply the 

body with additional amino acids (Medina et al. 1991), and therefore it is possible that these 

truncated forms are a consequence of this up-regulation. 

  Lactate was also elevated in the plasma of malnourished children, and was one the 

metabolites with the highest OR for SAM. Lactate is an endproduct of cellular respiration 

under anaerobic conditions, and is elevated in blood due to a number of etiologies, including 

anemia, sepsis, trauma, and malignancy (Reddy et al. 2015). In the context of malnutrition, 

elevated lactate may result from insufficient oxygen supply due to the anemia or increased 
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infections associated with SAM. Interestingly, several studies have shown blood lactate to be 

a good predictor of mortality due to a variety of illnesses (Krishna et al.; Shapiro et al. 2005; 

Mikkelsen et al. 2009), including a study of Tanzanian children with any febrile illness (Mtove 

et al. 2011).  Further research should evaluate lactate as a predictor of mortality in SAM. 

  Finally, we observed a significant increase in free iron (III) heme in the plasma of 

malnourished children. Heme is normally bound to hemeproteins, but is released under 

conditions of oxidative stress and as a result of hemolysis. Free heme causes tissue damage, 

systemic inflammation (Balla et al. 1991; Wagener et al. 2001), and exacerbates sepsis and 

malaria in animal models (Seixas et al. 2009; Larsen et al. 2010). In humans, malaria severity 

correlates with the levels of free heme, and sepsis-related mortality is associated with 

decreased levels of the heme binding protein hemopexin (Larsen et al. 2010; Dalko et al. 

2015). These diseases frequently affect children with SAM in the developing world, and 

malaria in particular is significantly associated with malnutrition (Berkley et al. 2009; Khogali 

et al. 2011). Our findings indicate elevated heme during SAM may contribute to increased 

severity of these infections, and therefore treatments targeting free heme may be beneficial. 

  Our study has several limitations. Firstly, reliable information regarding other infections 

and pathologies was not available due to the limited local diagnostic facilities, so their 

possible impact on the microbiota and metabolome remains unknown. Children with 

malnutrition were also more likely to originate from rural settings, and therefore we cannot 

distinguish the role of environment from that of malnutrition with absolute certainty. However, 

we could not identify any metabolites that differed significantly between children from urban, 

peri-urban or rural settings, indicating residence does significantly impact the plasma 

metabolome in this cohort. Also, although we identified clear differences in the plasma 
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metabolome of children according to nutritional status, this was not the only source of 

variation. We speculate that other unaccounted for sources of variation may include time of 

sample collection as it relates to circadian rhythms (Dallmann et al. 2012) and feeding time, 

diet and other environmental exposures, and/or the proximity of the plasma sampling to the 

plasma-red blood cell interface. The samples in this study were taken at random time points, 

with no requirements for fasting or feeding prior to collection. This may explain why we did 

not identify some of the classical signs of fasting, such as ketones elevated in the SAM 

group. However, our pragmatic collection method emphasized metabolites robust to external 

factors such as time of day and feeding. This strengthens the applicability of our findings to a 

clinical setting, where controlling for such variables may not be feasible. 

  In conclusion, we have demonstrated the plasma metabolome discriminates children 

with SAM from controls and identified a number of previously unreported metabolic 

derangements in malnutrition, providing new insight into disease mechanisms and 

management. Future studies are needed to monitor these metabolites during intervention to 

identify those most correlated with mortality and/or recovery. Validation of such biomarkers 

may enable better identification of children at highest risk of poor outcomes, and could guide 

improved management for a leading cause of childhood mortality worldwide.  
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Figure legends 
 

Fig. 1: The stool microbiota does not discriminate SAM from controls. (A). Stool 

microbiota profiled using the V4 region of the 16S rRNA gene. Each bar in the 

barplot represents a single sample from a single child and each color a different 

bacterial taxa (OTU). OTUs present at less than one percent in every sample 

were placed in the remainder displayed in black. Samples are ordered by their 

WHZ displayed in the heatmap above. (B). Principal Coordinate Analysis (PCoA) 

plot of microbiota profiles built from weighted UniFrac distances. Each point 

represents a single sample from a single child. Positions of points display 

dissimilarities in the microbiota, with points further from one another being more 

dissimilar. (C). Shannon’s diversity of the stool microbiota in children with SAM 

compared with controls. The boxes represent the 25th and 75th quartiles, and the 

line displays the median value within each group. Points extending beyond the 

lines are outliers defined as values greater or less than 1.5 times the interquartile 

range. 

 

Fig. 2. Principal component analysis (PCA) plots of plasma metabolome from 

children with SAM and controls as determined by LC-MS using positive (top) or 

negative (bottom) electrospray ionization (ESI). Only components 3 and 4 are 

shown. The plots on the left display individual samples (scores). Each point 

represents a single sample from a single child. Positions of points display 

dissimilarities in the metabolome, with points furthest from one another being 

most dissimilar. Plots on the right display individual LC-MS features (loadings). 
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Each ray represents a single LC-MS feature, with those significantly elevated in 

SAM or Controls highlighted in black or red respectively (Wilcoxon test, FDR 

corrected P < 0.1).  

 

Fig. 3. Free amino acids/dipeptides (A), phospholipids (B), and oxylipins (C) 

significantly decreased in children with SAM compared to controls (> 2 fold 

change, Wilcoxon test, FDR corrected P < 0.1, with the exception of DHA which 

was not significant). Panels (A) and (B) were detected by positive ESI LC-MS and 

(C) by negative ESI LC-MS. Each point represents a single sample from a single 

child. The boxes represent the 25th and 75th quartiles, and the line displays the 

median value within each group. Points extending beyond the lines are outliers 

defined as values greater or less than 1.5 times the interquartile range. PC: 

Phosphatidylcholine, PE: Phosphatidylethanolamine. See Supplementary Table 

5 for phospholipid identities. (*) Metabolite ID confirmed by authentic standards. 

 

Fig. 4. Metabolites significantly elevated at least 2-fold in the plasma of children 

with SAM compared to controls (Wilcoxon test, FDR corrected P < 0.1). (Left) 

Metabolites detected using positive ESI LC-MS. (Right) Metabolites detected 

using negative ESI LC-MS. Each point represents a single sample from a single 

child. The boxes represent the 25th and 75th quartiles, and the line displays the 

median value within each group. Points extending beyond the lines are outliers 

defined as values greater or less than 1.5 times the interquartile range. FPA: 
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Fibrinopeptide A, HTD: 3-Hydroxy-cis-5-tetradecenoyl. (*) Metabolite ID 

confirmed by authentic standards. 

 

Fig. 5. Evaluation of biomarkers to identify SAM from controls. (A) Odds Ratios 

as determined by conditional logistic regressions of all validated metabolites 

positively associated with SAM. Bars represent 95% confidence intervals. (B) 

Receiver Operator Characteristics (ROC) curves. Metabolites with the highest 

area under the curve (AUC) are shown. 
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Table 1: Demographic and clinical characteristics of cases and controls.1 
 

 
Variable 

Severe acute 
malnutrition 

(N=47) 

Non-malnourished 
controls 
(N=11) 

 
P value 

 
Male: No (%) 

 
30 (63.8) 

 
7 (63.6) 

 
1.00 

 
Age (months; median, range) 

 
22.0 (6 to 48) 

 
14.0 (6 to 44) 

 
0.76 

 
Ethnicity: No. (%) 

 Hausa 
 Fulani 
 Ibo 
 Yoruba 
 Bugaje 

 
 

43 (91.5) 
3 (6.4) 
1 (2.1) 
0 (0) 
0 (0) 

 
 

9 (81.8) 
0 (0) 
0 (0) 

1 (9.1) 
1 (9.1) 

 
 
 

 
0.048 

 
Residence: No. (%) 

 Urban 
 Peri-urban 
 Rural 

 
 

21 (44.7) 
1 (2.1) 

25 (53.2) 

 
 

7 (63.6) 
2 (18.2) 
2 (18.2) 

 
 
 

0.024 

 
Weight-for-length/height z score 
(median; IQR) 

 
-5.08 (-10.74 to -2.32) 

 
-0.61 (-1.64 to 0.73) 

 
<0.001 

 
Mid-upper arm circumference (cms: 
median; IQR) 

 
10.0 (7.0 to 12.0) 

 
14.0 (13.5 to 18.0) 

 
<0.001 

 
Pedal oedema: No. (%) 
 

 
21 (44.7) 

 
0 (0) 

 
- 

Stool appearance (Bristol Stool 
Form Scale): 

 2 
 3 
 4 
 5 
 6 
 7  

 
 

0 (0) 
9 (19.1) 
2 (4.3) 
9 (19.1) 

18 (38.3) 
9 (19.1) 

 
 

3 (27.3) 
4 (36.4) 

0 (0) 
2 (18.2) 
2 (18.2) 

0 (0) 

 
 
 
 

0.003 

 
Ever received formula milk: No. (%) 

 
23 (48.9) 

 

 
2 (18.2) 

 

 
0.093 

 
 
Ever breast fed: No. (%)                                

 
47(100) 

 
11(100) 

 
1.00 

1P values were calculated using the Wilcoxon test with the exception of ethnicity, residence, formula 
and breast feeding, for which the Chi squared or Fisher’s exact test was used.  
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