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Multimeric fragment crystallizable (Fc) regions and Fc-fusion
proteins are actively being explored as biomimetic replacements
for IVIG therapy, which is deployed to manage many diseases
and conditions but is expensive and not always efficient. The Fc
region of human IgG1 (IgG1-Fc) can be engineered into multi-
meric structures (hexa-Fcs) that bind their cognate receptors
with high avidity. The critical influence of the unique N-linked
glycan attached at Asn-297 on the structure and function of
IgG1-Fc is well documented; however, whether the N-linked
glycan has a similarly critical role in multimeric, avidly binding
Fcs, is unknown. Hexa-Fc contains two N-linked sites at Asn-77
(equivalent to Asn-297 in the Fc of IgG1) and Asn-236 (equiva-
lent to Asn-563 in the tail piece of IgM). We report here that
glycosylation at Asn-297 is critical for interactions with Fc
receptors and complement and that glycosylation at Asn-563 is
essential for controlling multimerization. We also found that
introduction of an additional fully occupied N-linked glycosyl-
ation site at the N terminus at position 1 (equivalent to Asp-221
in the Fc of IgG1) dramatically enhances overall sialic acid con-
tent of the Fc multimers. Furthermore, replacement of Cys-575
in the IgM tail piece of multimers resulted in monomers with
enhanced sialic acid content and differential receptor-binding
profiles. Thus insertion of additional N-linked glycans into
either the hinge or tail piece of monomers or multimers leads to
molecules with enhanced sialylation that may be suitable for
managing inflammation or blocking pathogen invasion.

Multimeric Fc2 and Fc-fusion proteins are increasingly being
explored for novel drug, diagnostic, and vaccine approaches
(1–3). One potential area is their development as biomimetic

replacements for intravenous immunoglobulin (IVIG) therapy.
IVIG is a successful biological with Food and Drug Administra-
tion approval for treating idiopathic thrombocytopenic
purpura (ITP), Kawasaki disease, Guillain–Barré syndrome,
Graves ophthalmopathy and numerous polyneuropathies (4,
5). IVIG is increasingly viewed by clinicians as a last resort
“cure-all” for a plethora of other diseases including anemias,
arthritides, lupus, transplant rejection, abortion, and chronic
pain, especially when these are non-responsive to conventional
therapies (4, 5).

The global shortage and demand for IVIG is compounded by
a number of other inadequacies with the current drug, the most
significant being its dependence on human donors for its pro-
duction, raising safety issues and greatly adding to cost. To add
insult to injury, it is believed that less than 5% of the injected
product is therapeutically active, leading to a requirement for
high dosage (2g/kg) (6, 7). Consequently, IVIG is expensive, and
adverse events caused by excessive IVIG loading are not
uncommon (4, 5). Hence there is an urgent clinical need to
develop synthetic replacements for IVIG for use in the clinic.

The mechanism of action of IVIG is incompletely under-
stood. Although both Fab�2 and Fc-mediated mechanisms may
be involved, in humans the infusion of Fc fragments is sufficient
to ameliorate ITP (8). These Fc fragments inhibit harmful
inflammation by engaging classical and non-classical Fc recep-
tors and/or by forming complexes in vivo that allow IVIG to
interact with such receptors with greater avidity, thus mediat-
ing more potent anti-inflammatory effects (7, 9 –11). The exact
receptors or combinations of receptors involved are not defin-
itively known, although both classical (type 1) (e.g. Fc�RIIB and
Fc�RIIIA) and non-classical (type 2) Fc�Rs (e.g. DC-SIGN,
CD22, and FcRL5) have been implicated in its therapeutic effi-
cacy (1, 12, 13).

Based on our earlier findings and those of other groups that
Fc multimers can also induce tolerance (7, 10, 13, 15, 16), a
number of different approaches to Fc multimerization are
being actively investigated (1–3, 17). One approach utilizing the
hinge region of human IgG2 generates laddered sequential
multimers of diverse molecular masses when introduced into a
mouse IgG2a-Fc backbone (18). These higher-order multimers,
termed “stradomers” bind strongly to low-affinity Fc�Rs and
SIGN-R1 and were shown to protect animals from collagen-
induced arthritis, ITP, inflammatory neuropathy, and autoim-
mune myasthenia gravis (18 –20).
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We took an alternative approach to multimerization by fus-
ing the 18-amino acid tail piece (tp) from multimeric IgM to the
C terminus of the human IgG1-Fc and introducing a Leu-to-
Cys substitution at position 309 (13, 15). These molecules
formed defined multimeric, barrel-shaped structures, typically
hexamers, whose binding to receptors was shown to be criti-
cally dependent on N-linked glycosylation (13, 15). The hexa-
meric Fc also binds the human neonatal receptor (FcRn), an
interaction that is known to be critical to the maintenance of
a long in vivo half-life and to enhanced immunogenicity
(13, 21, 22). The efficacy of similar molecules in a mouse
model of ITP has been reported in two patent applications
(WO2015132364A1 and WO2015132365A1).

Glycosylation is important for correct protein folding in the
endoplasmic reticulum and for exporting correctly folded pro-
teins to the Golgi for post-translational modifications (23).
Attached glycans also increase the solubility of proteins and
have been shown to influence significantly the interactions of
IgG with both glycan and Fc receptors (23). Glycosylation of the
only available carbohydrate attachment site (Asn-297) in the Fc
is essential for interactions with both type 1 and 2 receptors (13,
24, 25). The Fc glycans at Asn-297 are typically biantennary
complex types, exhibiting high levels of fucosylation of the core
GlcNAc residue, partial galactosylation, and bisecting GlcNac.
Of these structures, less than 20% are sialylated (23). The low
levels of branching and terminal structures, such as sialic acid,
are believed to result from constraints on Asn-297 glycan pro-
cessing imposed by the Fc protein backbone (23).

Theanti-inflammatorypropertiesoftheFcarelostafterdegly-
cosylation of IVIG (8, 26, 27), and a population of IgG-bearing
�2,6-sialylated Fcs has been identified as making a significant
contribution to the control of inflammation in animal models
(26, 27). Higher levels of sialylation also lead to longer serum
retention times (28, 29). Indeed, the efficacy of sialylated Fc has
generated an incentive to modify the existing glycans on Asn-
297, either by chemical means or through mutagenesis pro-
grams in the Fc protein backbone that disrupt the protein–Asn-
297 carbohydrate interface (30 –32).

Here we take an unexplored approach to modifying glycosyl-
ation by introducing, in various combinations, up to three addi-
tional N-linked glycosylation sites into exposed areas of the
IgG1-Fc fragment (see Fig. 1). Hexa-Fc typically contains two
N-linked glycosylation sites at Asn-297 in the C�2 domain and
at Asn-563 in the 18-amino acid IgM tail piece of hexa-Fc (1).
We show, for the first time, that it is possible to add a further
N-linked glycan onto the N terminus of the IgG1-Fc hinge to
generate a panel of hypersialylated molecules (the D221N series
of mutants) that are still capable of forming multimers that then
bind to prototypic sialic acid-dependent receptors, including
Siglec-1 (sialoadhesin) and Siglec-4 (myelin-associated glyco-
protein). By further mutagenesis of the tail piece Cys-575 to
alanine, sialylated multimers can be converted into sialylated
monomers that retain strong binding to Siglec-1 and Siglec-4.
This study clarifies the role of multiple N-linked glycans in
maintaining a functional Fc structure and provides routes to
the development of antibody therapeutics with bespoke effec-
tor functions.

Results

Glycosylation influences the multimerization state of hexa-Fc

To determine the contribution of two N-linked glycans in
hexa-Fc to multimerization and receptor binding, we created a
panel of glycosylation mutants by site-directed mutagenesis
using the previously described hexa-Fc as the template (Fig. 1)
(13, 15). We also inserted an additional N-linked attachment
site at the N terminus (D221N) to investigate the impact of
additional glycosylation on hexa-Fc function (Fig. 1).

Following transfection of these mutated IgG1-Fc DNAs into
CHO-K1 cells, stable clonal cell lines were established, and the
secreted Fcs were purified by protein A/G affinity chromatog-
raphy (15). The purified IgG1-Fc proteins were analyzed by
SDS-PAGE and immunoblotting with anti-human IgG-Fc (Fig.
2). When analyzed under non-reducing conditions (Fig. 2A),
the hexa-Fc migrated as monomers and multimers, corre-
sponding to tetramers, pentamers, and hexamers as described
previously (13, 15). The N297A mutant resulted in a slight low-
ering of the molecular mass of all these multimeric forms com-
mensurate with the loss of the glycan at Asn-297 (supplemental
Fig. S1D) and as described previously (13). Therefore Asn-297
does not contribute to multimerization.

Because removal of the tail piece glycan (Asn-563) in IgM has
been shown to enhance multimer formation, mostly as an
increase in hexamers over pentamers, we reasoned that a sim-
ilar mutation introduced into hexa-Fc would also lead to
enhanced hexamer formation (33). Removal of Asn-563, as in
the N563A, N297A/N563A, D221/N563A, and D221/N297A/
N563A mutants, led to the formation of higher-order multim-
ers whose molecular mass (�650 –700 kDa) corresponded to
dodecameric forms by size-exclusion chromatography (Fig. 2A,
arrow, and supplemental Fig. S2 for N563A). The type of mul-
timers produced were unaffected by the addition of glycans at
Asn-221 (D221N), with all the molecular masses for the D221N
molecules being larger than molecules in which Asn-221 was
absent (Fig. 2, A and B).

By running these mutants under reducing conditions, we
were able to determine the relative sizes and occupancy of
the various glycans attached at each position, showing that the
Asn-221 and Asn-563 attached glycans are larger than those
attached to Asn-297 (Fig. 2B). These observations on the
molecular masses of the various glycoforms were also con-
firmed by hydrophilic interaction chromatography (HILIC)-
UPLC analysis of the carbohydrates as described below (Fig. 3
and supplemental Fig. S1).

N-Linked glycoprofiling of hexa-Fc proteins

Glycans were released from purified Fc constructs via pro-
tein N-glycosidase F (PNGase F). The free sugars were fluores-
cently labeled and resolved via HILIC using the ACQUITY�
UPLC ethylene bridged hybrid amide column. The HILIC-
UPLC spectra from the Fc mutants expressed in CHO-K1 cells
are shown in Fig. 3.

The glycans from IgG1-Fc are composed of a series of fuco-
sylated, biantennary, complex-type carbohydrates, typical of
the protein-directed glycosylation observed for IgG (Fig. 3A).
The most abundant species observed were galactosylated
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Figure 1. Schematic showing the glycan and cysteine mutants generated on the hexa-Fc template plasmid hIgG1-Fc-CL309/310CH-TP (13). Red stars
indicate the hinge Asn-221, the C�2 Asn-297, and the tail piece Asn-563 glycan sites. C�A indicates mutation of cysteine 575 to alanine in the tail piece. M,
monomer; D, dimer; O, oligomer; HOM, high-order multimer as determined by size-exclusion analysis and SDS-PAGE; n.d., not determined.
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structures, a very small population (�2%) of sialylated mate-
rial, and a complete absence of oligomannose structures
(Table 1), findings that are broadly consistent with previous
observations (13). In contrast, hexa-Fc displayed a 2-fold
reduction in galactosylated sugars and enhanced oligoman-
nose-type (Man5GlcNAc2, Man6GlcNAc2) structures, con-

sistent with a previous observation for their putative contri-
bution to DC-SIGN binding (13) (Fig. 3A and Table 1). The
loss of Man5GlcNAc2 and Man6GlcNAc2 structures in the
N563A and D221N/N563A multimers show that these oligo-
mannose structures are attached at Asn-563 in the tail piece
and not at Asn-297 as previously modeled (13).

Figure 2. Characterization of mutant Fc-proteins by SDS-PAGE. A, hexa-Fc, N297A, N563A, and N297A/N563A mutants run as high molecular mass
multimers of varying valence under non-reducing conditions. The loss of the N297A glycan does not prevent multimerization but results in lower molecular
mass multimers commensurate with the loss of glycans from Asn-297 as seen previously (13). The N563A and N297A/N563A mutants run at molecular masses
that approximate to dodecamers (also supplemental Fig. S1). The addition of a NX(T/S) glycan sequon to these mutants to generate N-terminally glycosylated
hinges (the D221N series of mutants) did not affect multimerization but increased the molecular mass of all mutants and clearly shows that additional sugars
may be attached to the N terminus of the IgG1 hinge. B, the same mutants as in A but run under reducing conditions. The decreasing molecular masses seen
in the Fc represent sequential loss of N-linked glycans. Thus the N297A/N563A mutant has the smallest molecular mass because it has no glycans attached to
the Fc, and D221N has the largest molecular mass because it has three glycans attached. This panel also shows the comparative sizes of the glycans, the Asn-221
and Asn-563 glycans being larger than those attached to Asn-297 (see also mass spectrometry data in Fig. 3 and Fig. S1). Loss of the N563A carbohydrate
resulted in two observable Fc fragments that may represent differential glycosylation of Asn-297 or represent some other post-translational modification or
proteolytic degradation of this mutant. C, the N563A/C575A mutant results in proteins that run as laddered multimers under non-reducing conditions, whereas
C575A and the L448STOP mutants run principally as monomers with a small proportion of dimer species observed. D, the D221N/N297A/C575A variant runs
as a monomer, whereas the D221N/N563A/C575A mutant runs as a ladder of varying molecular masses as seen with the N563A/C575A variant in C. E, replacing
the 18-amino acid tail piece from IgM with that from IgA resulted in a homogeneous preparation of multimers composed almost entirely of hexamers. All
proteins were run under either non-reducing or reducing conditions at 1 �g protein/lane of a 4 – 8% acrylamide gradient gel, transferred to nitrocellulose, and
blotted with anti-human IgG-Fc (Sigma).
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Triantennary species, not normally observed on the Fc, were
detected on hexa-Fc (Fig. 3A and supplemental Fig. S1 and
Table S1). Additionally, increased terminal sialylation was also
prominent on the hexa-Fc. Unusual di- and trigalactosylated
and di- and trisialylated species were also detected in the
HILIC-UPLC spectra of hexa-Fc. Similar unusually sialylated
structures have been detected in mouse serum glycoproteins,
and all are attached via �2,3 linkages, as expected for proteins
expressed by CHO-K1 cells (34). The structural assignments
were confirmed by electrospray mass spectrometry for all the
recombinant Fc proteins (supplemental Fig. S1 and Table S1).
The loss of these sialylated structures in the N563A mutant
shows that these complex structures must be located on the tail
piece Asn-563 glycan in hexa-Fc (Fig. 3A). Under reducing
conditions, the N563A mutant appeared as two separate bands.
N-Linked glycan analyses of these two bands revealed them to
contain similar glycoprofiles but in different proportions
(Fig. 3A).

We next generated the novel D221N series of mutants to
investigate whether N-linked sugars could be attached to the
exposed N terminus of the hinge and what the impact of such
glycosylation would be on glycan processing at Asn-297 and
Asn-563 (Fig. 1). The addition of D221N onto the hexa-Fc scaf-
fold doubled the overall sialic acid content while reducing the
oligomannose-type glycans (Table 1 and Fig. 3B). The D221N
mutation was clearly the main driver for extensive sialylation,
because the removal of both Asn-297 and Asn-563 in the
D221N/N297A/N563A mutant resulted in recombinant multi-
mers whose glycan composition was 75% sialylated with com-
plete loss of oligomannose and a 6-fold reduction in galactosy-
lated glycans that would normally be located on Asn-297 in the
hexa-Fc (Fig. 3B and Table 1). As expected, no glycans could be
detected on the glycosylation-deficient double mutant N297A/
N563A, and only weak signals that could not be assigned spe-
cific structures were observed for the N297A mutant (supple-
mental Fig. S1D).

The Asn-297 glycan is critical for interactions of hexa-Fc with
DC-SIGN but not Siglec-1

To determine which N-linked glycan on the hexa-Fc contrib-
utes to receptor binding, we investigated the interaction of the
panel of N-glycosylation mutants with soluble recombinant
tetrameric human DC-SIGN by ELISA (Fig. 4A). As previously
published, hexa-Fc bound DC-SIGN (13, 15). Removal of Asn-
297 resulted in a dramatic loss of binding to this receptor,
whereas removal of Asn-563 (as in the N563A mutant) had only
a minor effect (Fig. 4A). The loss of oligomannose type sugars
(Man5GlcNAc2 and Man6GlcNAc2) in the N563A mutant (Fig.
3A) that still binds DC-SIGN highlights that oligomannose
structures are not necessary for DC-SIGN interactions by mul-
timers and that other glycan structures found at Asn-297 are
involved. A similar important contribution of the Asn-297 gly-
can to DC-SIGN binding was seen with the D221N series of
mutants, which all possessed reduced interactions with DC-

Figure 3. HILIC-UPLC analysis of 2-AA–labeled N-linked glycans from IgG1-Fc mutants expressed by CHO-K1 cells (see Fig. 1). Normal phase HILIC-UPLC
analysis of 2-AA–labeled N-linked glycans released from target antibody glycoforms by in-gel protein PNGase F digestion. Glycan profiles for the following
variants are shown: hexa-Fc, IgG1-Fc, N563A (upper gel band), and N563A (lower gel band) (A); D221N, D221N/N297A, D221N/N563A, and D221N/N297A/
N563A (B); and C575A, N563A/C575A, and L448STOP (C). The y axis displays relative fluorescence, and the x axis the relative elution time. Inserted pie charts
represent the means of two analytical replicates; the pie charts summarize the quantification of oligomannose-type (green), galactosylated (yellow), and
sialylated glycans (pink) on individual sites. Quantifications are based on the peak lists in supplemental Fig. S1 and supplemental Table S1. Percentages
corresponding to this figure can be found in Table 1.

Table 1
Glycan composition expressed as percentages of the total for hexa-Fc
variants shown in Fig. 1

Samples
Glycan composition

Oligomannose Galactosylated Sialylated

%
Hexa-Fc 14.4 32.1 23.2
IgG1-Fc 58.6 2.3
N563A (upper band) 56.5 8.1
N563A (lower band) 41.6 2.5
D221N 11.1 23.8 40.9
D221N/N297A 5.3 5.1 72.6
D221N/N563A 20.9 44.8
D221N/N297A/N563A 5.8 75.7
C575A 44.3 38.4
N563A/C575A 62.9
L448STOP 38.1 12.2

Figure 4. Binding of IgG1-Fc variants to glycan receptors. A, mutants lack-
ing the Asn-297 glycan are severely restricted in their capacity to bind DC-
SIGN by ELISA. The addition of an N-linked sugar at position 221 results in
proteins with a reduced capacity to bind DC-SIGN compared with their equiv-
alent variants in which Asn-221 is absent. B, the hypersialylated D221N
mutants bind Siglec-1. No binding was observed with the N297A/N563A gly-
can-deficient mutant (error bars represent standard deviations around the
mean value, n � 2 independent experiments).
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SIGN compared with the controls that lack the D221N inser-
tion (Fig. 4A). This shows that the presence of the N-linked
glycan at Asn-221 can negatively affect interactions mediated
via the Asn-297 glycan. The lack of binding to DC-SIGN by
both the D221N/N297A and D221N/N297A/N563A mutants,
whose glycans are respectively 73 and 75% sialylated, also shows
that �2,3-linked sialic acid containing structures do not make a
significant contribution to human DC-SIGN binding while
confirming the critical role of Asn-297 to binding.

Although we tentatively suggested that oligomannose may
make a contribution to DC-SIGN binding by the hexa-Fc (14%
oligomannose) (13), the requirement for oligomannose in DC-
SIGN binding is clearly not essential, because the N563A and
N563A/C575A mutants that are both devoid of oligomannose
can still bind DC-SIGN (Fig. 3, Table 1, and supplemental Fig.
S1 and Table S1), although not as well as hexa-Fc (Fig. 4A). The
data from these two mutants, whose glycosylation profiles were
very similar to monomeric IgG1-Fc, show that glycan struc-
tures other than oligomannose on Asn-297 can contribute to
DC-SIGN binding (Fig. 2A). This finding may also provide a
rational explanation for our previous conflicting observation
that endoglycosidase H treatment of hexa-Fc did not abrogate
DC-SIGN binding (13).

The remarkable sialylation profile of the D221N series of
mutants (Fig. 3B, Table 1, and supplemental Fig. S1) led us to
investigate interactions with the prototypic sialic acid-depen-
dent human receptor Siglec-1 (Fig. 4B). Human Siglec-1, also
known as sialoadhesin or CD169, is a cell surface receptor
restricted to monocytes and macrophages with a predilection
for �2,3 glycosidic linkages. All the D221N panel of Fc proteins
bound Siglec-1 irrespective of the presence or absence of either
Asn-297 or Asn-563 (Fig. 4B). Indeed binding by the D221N/
N297A/N563A mutant shows that Asn-221 is sufficient for this
interaction with Siglec-1 to occur. As expected, the complete
absence of carbohydrate (as found in the N297A/N563A double
knock-out) or the absence of sialic acid-containing glycans (as
in the IgG1-Fc monomer) led to proteins that are unable to bind
Siglec-1 (Fig. 4B). We have also investigated binding to Siglec-2
(CD22), a receptor that has a binding preference for �2,6-gly-
cosidic linkages, and observed low binding of these �2,3-linked
sialo-Fcs to Siglec-2 (data not shown).

The Asn-297 glycan is critical for interactions of hexa-Fc with
the classical Fc� receptors and complement

We next investigated which of the N-linked glycans on the
hexa-Fc contributes to Fc� receptor (Fc�Rs) binding (Fig. 5).
As previously published, hexa-Fc bound with avidity and
specificity to all the human Fc�Rs investigated (13). Removal
of Asn-297 in either the N297A or D221N/N297A mutants
completely abolished binding to all the human Fc�Rs, dem-
onstrating a clear requirement for this Asn-297 glycan in
interactions with Fc�Rs. Attachment of N-terminal glycans
at Asn-221 inhibited binding to all Fc�Rs, although the
removal of N563A in the tail piece reinstated binding of the
D221N-containing mutant (D221N/N563A) to Fc�Rs and in
particular to Fc�RIIIA. Thus the N563A tail piece glycan is
not required for binding to Fc�Rs.

The multimeric structure of hexa-Fc also enables strong acti-
vation of the classical complement pathway (13). To investigate
which N-linked glycan on the hexa-Fc is important for C1q
binding and C5b-9 deposition, we screened the panel of
mutants by ELISA (Fig. 6). Binding to C1q and subsequent
C5b-9 deposition were critically dependent on the presence of
the Asn-297 glycan. Removal of the Asn-563 tail piece carbo-
hydrate in either the N563A or D221N/N563A mutants had
little effect on complement activation, in stark contrast to all
the mutants where Asn-297 was absent (Fig. 6). The addition of
an N-linked carbohydrate to the N terminus of the hinge
(D221N and D221N/N563A) reduced both C1q binding and
complement activation, compared with equivalent proteins
that lack Asn-221 (Fig. 6). Thus the presence of Asn-297 is
essential for complement activation in multimers.

The 18-amino acid C-terminal tail piece and in particular
Cys-575 are critical in the formation of multimeric IgG1-Fc

To investigate the structural features of the human IgM tail
piece required for multimerization and function of the hexa-Fc,
we generated further mutants, including L448STOP, C575A,
N563A/C575A, D221N/N297A/C575A, D221N/N563A/C575A,
D221N/C575A, and hexa-Fc-IgA-tp in which the 18-amino acid
tail piece from IgM was replaced with that from human IgA
(Fig. 1). Deletion of the entire tail piece by stop codon introduc-
tion (L448STOP) completely prevented the formation of higher
order multimers, although a very small proportion of dimer and
other multimers could still be seen (Fig. 2C). In the absence of
the entire tail piece, the small proportion of multimers and
dimer observed can only arise through intermonomeric disul-
fide bridging at Cys-309 (see Fig. 8). Similarly, substitution of
the Cys-575 residue of the tail piece with alanine resulted in the
secretion of mostly IgG-Fc monomers, but there is also evi-
dence of a small proportion of higher order multimers (Fig. 2C).
It is intriguing that the introduction of a glycan at Asp-221
together with the C575A mutation yields only monomers in the
presence of Asn-563 (Fig. 2D). This shows that the Asn-221
hinge glycan may constrain multimerization mediated either
through Cys-309 or the tail piece.

Deletion of both Asn-563 and Cys-575 in the tail piece
(N563A/C575A) resulted in a laddering pattern of different
molecular masses from �50 to greater than 400 kDa (Fig.
2C), most likely representing monomers, dimers, trimers,
tetramers, pentamers, and hexamers, although molecules as
uniform as those seen with the N563A-containing mutants
were not observed (Fig. 2A). These ladders probably arise
through disulfide bond formation between Cys-309 of two
adjacent monomers (Fig. 8). The introduction of the C575A
mutation onto the backbone of D221N/N297A (to generate
the D221N/N297A/C575A mutant) resulted in monomers
(Fig. 2D), whereas the introduction of C575A onto the
D221N/N563A backbone resulted in a similar laddered pat-
tern of multimers (Fig. 2D) as seen previously with N563A/
C575A (Fig. 2C). Replacement of the 18-amino acid tail piece
from IgM with that from IgA resulted in a homogeneously
multimeric protein, indicating that amino acids other than
Asn-563 and Cys-575 in the IgM tail piece are involved in
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determining the overall valence and quaternary structure of
the assembled multimer (Fig. 2E).

Substitution of Cys-575 with Ala generates monomers with
altered glycosylation profiles and enhanced binding to glycan
receptors

The C575A glycan profile when compared with N563A/
C575A shows that the Asn-563 glycan in the tail piece could be
sialylated in the C575A monomer (Figs. 2C and 3C). The C575A
glycan profile resembles that seen with complex multimers
including hexa-Fc (Fig. 3C and Table 1), with approximately
16-fold increase in sialylation compared with the IgG1-Fc con-
trol (Table 1). The C575A monomer was shown to be fully
competent with respect to Siglec-1 binding (Fig. 7A), and bind-
ing to all the Fc�R was broadly similar to the IgG1-Fc or the
L448STOP monomer control (supplemental Fig. S3). In con-

trast to hexa-Fc, the C575A mutant bound C1q (supplemental
Fig. S4A) but was unable to activate complement as determined
by C5b-9 deposition (supplemental Fig. S4B).

Given the marked binding of C575A to Siglec-1 (Fig. 7A), we
wondered whether monomeric C575A (with two N-linked sugars)
or monomeric D221N/C575A (with three N-linked sugars) could
bind other glycan receptors with a known preference for �2,3-
linked sialic acid (Fig. 7B) (35). Although C575A showed marked
binding to Siglec-1, the D221N/C575A monomer showed
enhanced binding to both human Siglec-1 and Siglec-4, another
glycan receptor with a known preference for �2,3-linked sialic
acid. However, not all glycan receptors with a preference for �2,3-
linked sialic acid could bind. For example, human Siglec-3 (CD33)
was unable to bind either Fc-monomer mutant. We were unable to
test binding to human Siglec-5 because we observed significant

Figure 5. Binding of N-linked glycan mutants to classical Fc�Rs assessed by ELISA. Removal of the Asn-297 glycan in the N297A and D221N/N297A
mutants resulted in a dramatic loss of binding to all Fc�Rs. The presence of the N-terminal hinge glycan (D221N) also reduced binding to all Fc�Rs,
although this loss of binding could be reversed with the simultaneous loss of Asn-563 (D221N/N563A mutant). A marked improvement of binding to
Fc�RIIIA was observed with this D221N/N563A mutant (error bars represent standard deviations around the mean value, n � 2 independent
experiments).
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direct binding of the Fab�2 detecting reagent to this receptor. The
Fab�2-mediated binding to Siglec-5 was dependent on glycans,
because treatment of the Fab�2 detect with neuraminidase abro-

gated binding to Siglec-5 (supplemental Fig. S5). Siglec-5 may
therefore be a target for Fab glycans that have also been associated
with the anti-inflammatory activity of IVIG (36).

Figure 6. Binding of N-linked glycan variants to complement assessed by ELISA. Removal of the Asn-297 glycan as in the N297A, N297A/N563A, D221N/N297A,
or D221N/N297A/N563A mutants resulted in dramatic loss of binding to both C1q and subsequent C5b-9 deposition. The N563A and D221N/N563A mutants were as
good as wild-type hexa-Fc at activating complement. Although unable to bind Fc�Rs, the D221N mutant was clearly capable of binding C1q, leading to C5b-9
deposition, although not as efficiently as either hexa-Fc or N563A (error bars represent standard deviations around the mean value, n � 2 independent experiments).

Figure 7. Binding of monomeric IgG1-Fc glycan variants to sialic acid-binding immunoglobulin-type lectins (Siglecs) with specificity for �2,3-linked
sialic acid. A, the C575A monomer binds Siglec-1. B, the D221N/C575A monomer binds Siglec-1 and Siglec-4. ELISA as described under “Experimental
procedures” with receptors coated down at 2 �g/ml and Fc-fragments at 20 �g/ml in TMS buffer (error bars represent standard deviations around the mean
value, n � 2 independent experiments).
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Discussion

We previously demonstrated the importance of carbohy-
drate in the binding of hexa-Fc to DC-SIGN and in the activa-
tion of the complement cascade (13). In this study we used a
protein engineering approach to determine the features of
hexa-Fc required for multimerization and binding to receptors,
by investigating the relative contributions of two N-linked gly-
cosylation sites found at Asn-297 in the C�2 domain and Asn-
563 located in the 18-amino acid IgM tail piece of hexa-Fc
(Fig. 1).

Human IgA and IgM antibodies that multimerize differ from
other isotypes in possessing an 18-amino acid C-terminal
extension of the heavy chain termed the tp, which previous
studies have implicated in multimerization of monomer sub-
units in both IgA (37) and IgM (38). In line with these earlier
studies, we found that complete removal of the tail piece from
hexa-Fc, as in the L448STOP mutant, resulted in proteins that
were mostly monomeric, although a very small proportion of
dimers was observed (Fig. 2C). Furthermore, attachment of the
18-amino acid IgA tail piece, rather than the IgM tail piece,
resulted in a homogeneous preparation of multimers with no
monomers, dimers, or other lower order multimeric forms
being detectable (Fig. 2E).

The removal of the tail piece carbohydrate at Asn-563 has
been shown to enhance multimer formation in IgM (33) while
reducing multimerization in IgA (37, 39). We therefore won-
dered what impact the removal of Asn-563 would have on
hexa-Fc containing the IgG1-Fc backbone and IgM tail piece.
Remarkably, greater than 95% of proteins from such mutants
deficient in Asn-563 were secreted with a molecular mass of
�600 kDa, approximating to dodecamers (Fig. 2A and supple-
mental Fig. S2) (33). There is a precedent for dodecamer forma-
tion when the 18-amino acid tail piece from IgA was fused to
the C terminus of CD4, although whether dodecamers could
arise when the IgM tail piece is fused to the human IgG1-Fc has
not been documented previously (40).

In contrast to hexa-Fc, the formation of native dodecameric
IgM, IgG, IgE, or IgA is unlikely given additional constraints
imposed by the size of the Fc (extra C�2 domain in the Fc
of IgM and IgE) or the associated F(ab)2 arms in each monomer
of the heavy chains of these antibody types. Therefore the
lack of bulky carbohydrates in the tail piece—the absence of
both Fab domains and the extra C1 constant domain in the Fc of
IgM or IgE—allows more of the unstructured tail pieces in the
N563A or D221N/N563A mutants to form intermonomeric
disulfide bonds via Cys-575, thus allowing for the formation of
higher ordered multimers over other multimeric species
described previously (Fig. 8). Despite their increased valence,
no improvement in the ability of either the N563A or D221N/
N563A mutants to bind DC-SIGN or activate complement
were observed (Figs. 4A and 6). Furthermore, the N563A,
D221N/N563A, and the N563A/C575A mutants all show that
binding to DC-SIGN is totally dependent on the presence of
Asn-297. These mutants may therefore have beneficial utility in
various therapeutic applications where enhanced valence is
required at no cost to receptor binding or complement activa-

tion, for example in the delivery of more copies of antigen in
vaccine applications (1).

This study also expands our knowledge of glycosylation on Fc
activity. Under normal circumstances, a single N-linked glyco-
sylation site exists at amino acid 297 in the C�2 domain of all
IgG subclasses (41) that we and others have shown is critical for
interactions with Fc�Rs and DC-SIGN (13, 27). We therefore
hypothesized that the addition of an extra N-linked carbohy-
drate onto an exposed region of the Fc would enhance interac-
tions with glycan receptors. We therefore engineered an addi-
tional N-linked sequon at position 1 of the Fc polypeptide chain
to produce the D221N series of mutants (Fig. 1). We show
for the first time that it is possible to add N-linked glycans to the
N terminus of the hinge of IgG1-Fc to generate molecules that
are still capable of forming multimers (Fig. 2A). This was unan-
ticipated, because N-linked glycans are not typically attached to
the hinges of native IgG molecules (or of other classes of anti-
body), because they are presumed to interfere with disulfide
bond formation and the capacity of the hinge to act as a flexible
linker. Native antibodies such as IgA likely O-glycosylate their
hinges for this reason.

Despite containing larger, more complex glycans (Figs. 2 and
3, Table 1, and supplemental Fig. S1), no improvement in bind-
ing to either DC-SIGN (Fig. 4A) or C1q (Fig. 6A) over hexa-Fc
was observed with the D221N panel of mutants. The presence
of the introduced glycan at Asn-221 appears mostly to have a
detrimental effect on Fc�R binding, presumably by interfering
with the Fc�R binding site located within the lower hinge
region (41). The Asn-221 attached glycans are larger than those
found at Asn-297 (Fig. 3 and supplemental Fig. S1), and there-
fore, as already shown with multimeric Fc fusions to antigens,
their presence may interfere with Fc�R binding (15). Although
this may be the case for D221N hexamers, it clearly does not
hold for the D221N/N563A, which had markedly improved
binding to Fc�RIIIA (Fig. 5). We do not yet know the structure
of the higher-order multimers, but these data might anticipate
significant yet subtle differences in their structure compared
with hexa-Fc.

Because removal of the tail piece in toto (the L448STOP
mutant) resulted in the formation of a small proportion of
dimers (Fig. 2C), presumably through intermonomer disulfide
bridges via Cys-309 in the C�2 domain of hexa-Fc, we engi-
neered two further tail piece mutants in the presence or
absence of Asn-563 to explore the role of the tail piece Cys-575
in multimerization and receptor binding (Fig. 1). Removal of
Cys-575 without loss of the Asn-563 glycan resulted in mole-
cules that mostly formed sialylated monomers (Figs. 2C and
3C). The monomeric C575A mutant could bind Siglec-1 (Fig. 7)
and was comparable with the D221N mutant in respect of DC-
SIGN binding; however, the C575A monomer was still able to
bind Fc�Rs and, like the IgG1-Fc control monomer, was unable
to activate complement (supplemental Fig. S4).

The presence of the Asn-563 glycan in the absence of disul-
fide-mediated multimerization through Cys-575 presumably
restrains further disulfide bonding via Cys-309 (Fig. 8), thus
favoring the formation of monomers and allowing for interac-
tions with glycan receptors such as Siglec-1 in the absence of
complement activation (Fig. 7 and supplemental Fig. S4). Sur-
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prisingly, removal of both Asn-563 and Cys-575 still allowed for
the formation of multimers of various molecular masses that, in
the absence of any other free cysteines, must arise through Cys-
309 (Fig. 8). In the case of the N563A/C575A multimers, all the
binding to DC-SIGN is now due to interactions via glycans
attached to Asn-297. In the absence of both Cys-575 and Asn-
563, other amino acids within the 18-amino acid tail piece must
allow for interactions between individual Fc monomers that
then allow disulfide bond formation via Cys-309 (Fig. 8), which
cannot occur with the L448STOP mutant, in which the whole
tail piece was removed. The hypothesis that other tail piece
residues, other than Asn-563 and Cys-575, are involved in
recruiting monomer-monomer interactions that permit the
final quaternary structure of hexa-Fc to form is supported by
the finding that the use of the IgA tail piece instead of that from
IgM leads to improved multimerization and yields of hexameric
IgG1-Fc (Fig. 2E).

Taken together, our results show that the Asn-563 tail piece
glycan serves as a spacer, limiting to five or six the number of
monomeric IgG1-Fc subunits that can be incorporated into an
multimer (Fig. 8). As multimers, binding to glycan receptors is
entirely dependent on glycans attached at Asn-297 or Asn-221,
because the glycans at Asn-563 are buried in multimers, only
becoming available to influence receptor interactions when
found in the context of monomeric IgG1-Fcs, such as the
C575A or D221N/C575A mutants.

IgG-Fc sialylation has emerged as an important but contro-
versial concept for regulating anti-inflammatory activity of
antibodies (6). Translating this concept to potent anti-inflam-
matory therapies has been hampered by the difficulty of gener-
ating suitably enriched sialylated products for human use. All
approaches to date have focused on chemical or genetic modi-
fications to the only available N-linked glycan found at position
Asn-297 in the Fc (30). We describe two complementary

Figure 8. Model showing the contribution of different N-linked glycan and cysteine residues on Fc stoichiometry. The presence of Cys-575 allows
optimal disulfide bonding between tail pieces of monomeric-Fcs. The tail piece glycan Asn-563 controls the number of monomeric tails that fit into the central
corona (five to six in the case of hexa-Fc) while still allowing Cys-309 interdisulfide bridge formation. Cys-575 allows disulfide bonding between tail pieces of
different monomers, but the absence of the Asn-563 glycan (the N563A mutant) allows many more tail pieces (up to twelve in the case of dodecamers) to fit
into the central corona while still allowing disulfide bond formation through Cys-309 and/or Cys-575. The absence of Cys-575 prevents disulfide bonding
between tail pieces, thereby generating sialylated monomers at Asn-563. The additional Asn-563 tail piece glycan in these monomers must explain the
increased binding seen to Siglec-1 (Fig. 3, A and B, and inset in this figure). The bulkier Asn-563 glycan with its predicted overall negative charge may lead to
repulsion between two monomers, thus preventing disulfide bond formation between two Cys-309 residues in each monomeric Fc. The loss of both Asn-563
and Cys-575 (the N563A/C575A mutant) means that the observed laddered multimers must arise through Cys-309 –mediated disulfide bonding in the C�2
domain. The presence of monomers, dimers, trimers, tetramers, pentamers, hexamers, and other intermediates in this mutant (Fig. 2C) suggests that these
structures arise through a different mechanism, most likely via the sequential addition of 25-kDa half-mer Fc units at Cys-309. The lack of observable ladders
with the L448STOP mutant implies that other amino acids in the tail piece are involved in bringing about monomer interactions that then facilitate disulfide
bonding through either Cys-309 and/or Cys-575. Monomers with glycans located at both the N- and C-terminal ends of the Fc (Asn-221 and Asn-563) may allow
for binding to receptors in cis as shown (inset).
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approaches to increasing the sialic acid content of the Fc, first
by insertion of the 18-amino acid tail piece from IgM onto the C
terminus of the IgG1-Fc into which a cysteine-to-alanine sub-
stitution is made at Cys-575 (Fig. 3 and Table 1) and second by
the addition of an extra N-glycan at Asn-221. This D221N
approach results in significantly higher sialylation over C575A,
which also led to improved binding to both Siglec-1 and
Siglec-4. Monomers in which all three glycosylation sites (Asn-
221, Asn-297, and Asn-563) are sialylated e.g. D221N/C575A,
may therefore yield molecules with greater efficacy for use in
sialic acid-dependent therapies. This approach requires no
expensive in vitro enzymatic or complex chemical modifica-
tions of the Fc glycan and no requirement for glycosidase defi-
cient/transgenic cell lines for their manufacture.

In contrast with the Asn-297 glycan, which is largely buried
within the Fc cavity, both Asn-221 and Asn-563 are located at
the N- and C-terminal tips of the Fc and, as our data show,
would therefore be more accessible for post-translational mod-
ifications by glycan-modifying enzymes. Although C-terminal
tail piece sialylation in monomers such as the C575A mutant
may appear attractive for therapy, we have recently observed
that C-terminal tail piece additions can favor interactions
with other plasma proteins (42), and therefore hinge-focused
approaches to enhancing sialylation (as in D221N mutants)
may be more tractable for therapeutic development.

Generating commercial multimeric Fcs raises significant
bioprocessing and safety issues that are not found with mono-
meric Fc production. For example, high-mannose type glycans
found in hexa-Fc have been shown to increase IgG clearance
rates because of cellular uptake via the mannose receptor (43).
Recombinant monomeric Fcs developed here that are devoid of
oligomannose and yet show improved binding to selected gly-
can receptors may therefore have significant therapeutic poten-
tial, for example as replacements for IVIG (13, 30). Further-
more, given the known effects of Fc sialylation in reducing IgG
antibody-dependent cellular cytotoxicity activity (44), it may
also be possible to use the D221N/C575A mutations to develop
therapeutic antibodies with modified effector functions.

Multimeric Fcs may nonetheless be useful, for example when
delivering antigens in vaccines or as high avidity receptor
blockers. Many pathogens rely on glycans to infect host cells
(45), and differentially glycosylated Fc multimers may be useful
inhibitors of infection. One immediate application for our
hypersialylated molecules may be to block Siglec-1– dependent
trans-infection of lymphocytes by retroviruses, including HIV
and human T-cell leukemia viruses (46). We anticipate that
expression of these mutants in human cell lines, e.g. HEK, will
bestow hypersialylated molecules with �2,6 linkages with
improved binding to �2,6-dependent receptors like Siglec-2
that are implicated in IVIG efficacy (14). Such receptor mimicry
strategies need to overcome the high avidity of the natural
receptor generated by the sum of the multiple low-affinity gly-
can binding sites that may now be achievable with the D221N
series of hypersialylated multimers. Thus, by adding or remov-
ing glycosylation and disulfide bonding sites within hexa-Fc,
new portfolios of effector functions can be generated.

Experimental procedures

Production of glycosylation mutants

The generation of hexa-Fc has been previously described (13,
15). The following mutants were constructed by PCR overlap
extension mutagenesis from the wild-type vector (pFUSE-
hIgG1-Fc-TP-LH309/310CL) as the template, using pairs of
internal mismatched primers for each mutant as follows:
N297A, 5�-GAGCAGTACGCCAGCACGTAC-3�/3�-CTCG-
TCATGCGGTCGTGCATG-5�; N563A, 5�-CCCTGTACGC-
CGTGTCCCTG-3�/3�-GGGACATGCGGCACAGGGAC-5�;
D221N, 5�-GTTAGATCTAACAAAACTCAC-3�/3�-CAATC-
TAGATTGTTTTGAGTG-5�; L450STOP, 5�-TCTCCGGGT-
AAATGAGTCCTAGGACCC-3�/3�-AGAGGCCCATTTAC-
TCAGGATCCTGGG-5�; C575A, 5�-ACCCTGCTTGCTCA-
ACTCT-3�/3�-GGCCAGCTAGCTCAGTAGGCGGTGCC-
AGC-5�; N297A/N563A, primer pair N563A was used on the
N297A mutant plasmid; D221N/N297A, primer pair N297A
was used on D221N mutant plasmid; D221N/N563A, primer
pair N563A was used on the D221N mutant plasmid; D221N/
N297A/N563A, primer pair N563A was used on the D221N/
N297A mutant plasmid; and N563A/C575A, primer pair
C575A was used on the N563A, D221N, D221N/N563A, or
D221N/N297A mutant plasmids. The following flanking prim-
ers were used in the overlap PCR. These are 5�-ACCCTGCT-
TGCTCAACTCT-3� and 3�-TGGTTTGTCCAAACTCAT-
CAA-5�, which are 71 or 22 base pairs upstream or downstream
of the EcoRI or NheI (all from New England Biolabs) sites used
in subcloning into the wild-type vector. DNA coding for the
human IgA tail piece (PTHVNVSVVMAEVDGTCY) was syn-
thesized by EUROFINS and cloned as an AvrII/NheI fragment
into pFUSE-hIgG1-Fc-TP-LH309/310CL. To verify incorpora-
tion of the desired mutation and to check for PCR-induced
errors, the entire coding sequence of the new expression plas-
mids were sequenced on both strands using the same set of
flanking primers (Sanger Sequencing Service, Source Biosci-
ence). CHO-K1 cells (European Collection of Cell Cultures)
were transfected with plasmid using FuGENE (Promega), and
positive clones were selected, expanded, and purified as previ-
ously described for hexa-Fc (13, 15).

Enzymatic release of N-linked glycans

Recombinant proteins (50 �g) were fractionated by SDS-
PAGE on Novex� NuPAGE Bis-Tris 4 –12% precast gels (Life
Technologies) under reducing condition. After staining with
Coomassie Blue, gel bands were excised, washed five times with
alternating acetonitrile and water, and air-dried. Each gel band
was rehydrated in a reaction buffer (250 �l of 50 mM NaHCO3,
pH 7.4) containing 500 units/ml PNGase F (New England Bio-
labs) and incubated at 37 °C for 16 h. The released glycans were
extracted from the gel matrix by washing three times with water
and then dried in a SpeedVac Concentrator Plus (Eppendorf).

Fluorescent labeling of N-linked glycans

PNGase F-released glycans were fluorescently labeled with
2-aminobenzoic acid (2-AA) as previously described (31).
Briefly, glycans were resuspended in 30 �l of water, followed by
the addition of 80 �l of labeling mixture (3% (w/v) 2-AA, 4.5%
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w/v sodium cyanoborohydride, 4% (w/v) sodium acetate trihy-
drate, and 2% w/v boric acid in methanol). After incubation at
80 °C for 1 h, samples were diluted with 1 ml of 97% (v/v) ace-
tonitrile before being loaded onto Speed Amide-2 cartridges
(Applied Separations) and eluted with 2 ml of water to remove
excess label.

Exoglycosidase sequencing of N-linked glycans

The 2-AA–labeled glycans were sequentially digested using
the following exoglycosidases: �2–3,6,8 neuraminidase from
Clostridium perfringens (New England Biolabs), �1,4-galacto-
sidase from Bacteroides fragilis (New England Biolabs), �-L-
fucosidase from bovine kidney (Sigma-Aldrich), �-N-acetylglu-
cosaminidase from Xanthomonas manihotis (New England
Biolabs), and �(1–2,3,6)-mannosidase from jack bean (Sigma-
Aldrich). Endoglycosidase H from Streptomyces picatus (New
England Biolabs) was used for quantification of oligomannose
structures. Digestions were carried out in an incubation buffer
(50 mM sodium phosphate, pH 5.0) at 37 °C for 16 h. PVDF
protein-binding membrane plates (Millipore) were used for
removal of enzymes prior to HILIC-UPLC analysis.

HILIC-UPLC

Fluorescently labeled glycans were separated by HILIC-
UPLC using a 2.1 � 10-mm (1.7-�m particle size) ACQUITY�
ethylene bridged hybrid glycan column (Waters) on a Waters
ACQUITY� UPLC instrument. The following gradient was
run: time � 0 min (t � 0): 22% A, 78% B (flow rate of 0.5
ml/min); t � 38.5: 44.1% A, 55.9% B (0.5 ml/min); t � 39.5: 100%
A, 0% B (0.25 ml/min); t � 44.5: 100% A, 0% B; t � 46.5: 22% A,
78% B (0.5 ml/min), where solvent A was 50 mM ammonium
formate, pH 4.4, and solvent B was acetonitrile. Fluorescence
was measured using an excitation wavelength of 250 nm and a
detection wavelength of 428 nm. A 2-AA–labeled glucose
homopolymer ladder (Ludger) was used as a calibration stan-
dard for UPLC analysis of glycans. Data processing was per-
formed using Empower 3 software. The percentage abundance
of oligomannose- and complex-type glycans were calculated by
integration of the relevant peak areas before and after endogly-
cosidase H digestion and following normalization.

Receptor and complement binding assays

Methods describing the binding of mutants to tetrameric
human DC-SIGN (Elicityl), C1q, and C5b-9 have been
described previously (13, 15). The same ELISA protocol used to
detect DC-SIGN binding was used for human Siglec-1, Siglec-4,
and Siglec-3 (Sino Biologicals). ELISAs were used to investigate
the binding of Fc mutants to human Fc�RI, Fc�RIIA, Fc�RIIB,
Fc�RIIIA, and Fc�RIIIB (Bio-Techne). Receptors were coated
down to ELISA plates (Nunc) in carbonate buffer pH 9 (Sigma-
Aldrich) at 2 �g/ml overnight at 4 °C, unless alternatively spec-
ified. The plates were blocked in PBS/0.1% Tween 20 (PBST)
containing 5% dried skimmed milk. The plates were washed
three times in PBST before adding Fc mutants at the indicated
concentrations and left at 4 °C overnight. The plates were
washed as above and incubated for 2 h with 1:500 dilution of an
alkaline phosphatase-conjugated goat Fab�2 anti-human IgG
(Jackson Laboratories). The plates were washed as above and

developed for 15 min with 100 �l/well of a Sigmafast p-nitro-
phenyl phosphate solution (Sigma-Aldrich). The plates were
read at 405 nm, and the data were plotted with GraphPad
Prism.
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