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A B S T R A C T

The efficiency of spatial repellents and long-lasting insecticide-treated nets (LLINs) is a key research topic in
malaria control. Insecticidal nets reduce the mosquito-human contact rate and simultaneously decrease mos-
quito populations. However, LLINs demonstrate dissimilar efficiency against different species of malaria mos-
quitoes. Various factors have been proposed as an explanation, including differences in insecticide-induced
mortality, flight characteristics, or persistence of attack. Here we present a discrete agent-based approach that
enables the efficiency of LLINs, baited traps and Insecticide Residual Sprays (IRS) to be examined. The model is
calibrated with hut-level experimental data to compare the efficiency of protection against two mosquito species:
Anopheles gambiae and Anopheles arabiensis. We show that while such data does not allow an unambiguous
identification of the details of how LLINs alter the vector behavior, the model calibrations quantify the overall
impact of LLINs for the two different mosquito species. The simulations are generalized to community-scale
scenarios that systematically demonstrate the lower efficiency of the LLINs in control of An. arabiensis compared
to An. gambiae.

1. Introduction

The aim of this paper is to present a numerical simulation frame-
work that allows testing various hypotheses concerning the impact of
LLINs on malaria vector mosquitoes. Specifically, the work aims to
model and determine differences in the behavior between An. arabiensis
and An. gambiae as observed in hut experiments. A population of host-
seeking mosquitoes is treated as a number of non-interacting agents
driven by external factors. We assume four basic driving effects: the
attraction of odor emitted from a host (e.g., CO2 and sensed by the
mosquitoes (see [2,8,9,22,34,37]), repulsion by a physical net barrier,
avoidance of a repellent, and the killing effect of the chemicals in the
LLIN.

According to data acquired from hut trials in [21], mortality of An.
arabiensis is consistently lower than that of An. gambiae or An. funestus.
A number of plausible explanations can be offered for the difference in
host-seeking behavior of the species. A direct comparison, available
from [36], suggests that An. arabiensis is a faster feeder than An. gam-
biae, which means that the former spends less time in contact with the
skin (or net surface); An. arabiensis’s exposure to insecticide treatment is
hence shorter, with a lower dosage of chemical consumed. Another

explanation suggests that An. gambiae and An. arabiensis exhibit dif-
ferent hunting patterns, with a tendency of An. gambiae to stay close to
the human-baited net (more ‘determined’ hunting), while An. arabiensis
exhibits a more random walk near the net. In the model simulation, this
would be achieved by more direct movement towards the human. A
further alternative explanation suggests that An. gambiae and An. ara-
biensis exibit different levels of persistence in blood-feeding attempts,
since odorant receptors of anthropophilic An. gambiae are narrowly
tuned to compounds of human sweat, see [23,35].

All the above described factors can be implemented in the modeling
approach presented here. Each factor needs to be given by a parametric
formula, with the parameters calibrated against measurement data,
which calls for parsimonious models where the expressions for the basic
factors are given with formulas containing a minimal number of para-
meters.

This work shows how to fit such models to the data of [21]. The
identifiability of the parameters is studied using extensive Monte Carlo
(MCMC) sampling methods. It is found that the data in [21] does not
allow unambiguous identification of all the possible factors, as different
model variants are able to give equally good fits. It is demonstrated,
however, that all model variants lead to essentially the same results for
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overall protection efficiency. This finding enables us to model reduced
mosquito-human contact rates and increased mosquito mortality in
community-scale scenarios consisting of several households with var-
ious degrees of protection. The outputs of community-scale simulations
demonstrate lower efficiency of LLIN control against An. arabiensis than
An. gambiae, and quantify the higher increase in mortality for An.
gambiae.

Agent based approaches have previously been applied to model
many different aspects of mosquito behavior and malaria transmission.
The results of such models highlight, for instance, the role of hetero-
geneity in host movement, mosquito distribution and density, and the
impact of environment on the spread of mosquito-borne disease,
[1,4,10,13,24,27]. For instance, in [6] a combination of continuous
modeling and agent-based simulation was used to simulate the flight of
mosquitoes towards a host in outdoor conditions including wind.

The aim of this work is to characterize the impact of LLINs on host-
seeking behavior of different mosquito species. We restrict the model
calibration to the situation of mosquitoes and a host in a hut, but the
approach can easily be modified for different experimental conditions.
Furthermore, the calibrated model can be used to simulate vector dy-
namics in more complex situations such as, in domains larger in space
and time, in combination with continuous modeling as in [6], and with
larger host populations with varying levels of protection.

The rest of the paper is organized as follows. In Section 2 we present
the modeling approach, the selections and parameterizations for the
various factors needed for the modeling, as well as two slightly different
approaches to model the difference between the two mosquito species.
Section 3 describes the numerical details behind the simulations, and
Section 4 gives the results of the model runs. The paper concludes with
summary of results and findings, and discussion of further possible
applications of the model.

2. Methods

2.1. Mosquito movement and attraction to the host

Our attraction model is based on the assumption that mosquitoes
estimate the direction of odor increase (the gradient) by the mechanism
of klinotaxis, as is conjectured in [37]. During klinotaxis, a mosquito
samples the host odor at one location, then changes location and re-
peats the sampling, using its memory of the concentration to chose the
next position [3,6]. The model in this work aims to comprise essential
elements only: movement towards the host, and the effects of the nets
and impregnated chemicals on host-seeking and mosquito mortality.
While a number of choices has to be made to model these factors, the
aim is to develop a parsimonious model with a minimal number of free
parameters.

Mimicking the klinotaxis, the flight of mosquitoes is modeled here
as a discrete time-stepping random walk. Odour attraction is given by
means of an accept-reject procedure: once a random candidate position
is selected by the Brownian step, the agent accepts this new position
with a probability specified to favor candidate steps towards the at-
traction i.e., the increased CO2 concentration, see [25]. The acceptance
probability includes the influence of untreated or treated nets and the
hut barrier by a rejection function. An untreated net is a physical bar-
rier with close to zero probability of penetration. The model accounts
for both for natural mortality and enhanced insecticide-induced death
by treated nets, which depends on the accumulated amount of che-
mical, i.e. the amount of insecticide consumed by the mosquito. At each
time step of the simulation, each mosquito is updated individually, with
its current condition recorded in a vector of the state (position, accu-
mulation of chemicals, probability of death, etc).

Suppose that at time step −n 1 a mosquito-agent is at position −xn 1.
The agent randomly selects a new candidate position xn by:

= +−x x δW,n n 1 (1)

from a 2D proposal distribution. In the experimental runs, the para-
meters x0, σ were matched to imitate the real flight speed of the mos-
quito, which falls in the range 0.4–1.1m/s for most species of mos-
quitoes, as presented in [32]. Thus, the increment δW∼N(x0, σ2I) was
sampled as a random point on a circle centered at −xn 1 with radius

=R 0.4 m with a random number from N(0, σ2) with =σ 0.1 added in
the radial direction.

To reduce the CPU computational time, one simulation step covers 2
s. In the simulations presented, spatial units are given in meters. More
detailed models for the flight of insects exist, see [7,17,29,30]; how-
ever, the above simple approach is sufficient for the purposes of the
present study.

In the absence of any attraction towards a host, the flight of the
mosquito is given by the above random walk. Next, we add a me-
chanism that enables us simulation of movement towards the host in
the presence of attraction. Several mechanisms enable mosquitoes to
find a human host. Essentially, they are able to sense carbon dioxide
(CO2 exhaled by humans at a long distance and to smell chemical odors
emitted from the human body. Many substances associated with human
sweat have been identified as attractive for mosquitoes, such as non-
anol, lactic acid, ammonia, phenol and many other compounds con-
tained in human sweat [2,8,9,22,34]. Additionally, mosquitoes are able
to sense humans at a distance using heat sensors around their mouth-
parts to detect the warmth of the human body. They are also able to
discern movement, colors, shapes and patterns via vision. In general,
mosquitoes are unable to recognize the human prey from a distance
greater than 80m [3].

As we restrict the model here to the hut experiment situation, the
concentration of attractive odor emitted from the individual host is
modeled as a solution of the diffusion equation with a point source,
which is a Gaussian kernel centered at a spacial position of the host xh:

= ⎡
⎣⎢

− ⎤
⎦⎥

C d
σ

x x x x( , ) exp ( , )
2

,
h

a

h
2

2 (2)

where x is the position of a mosquito, C stands for a concentration that
enables a mosquito to sense the host at a distance d(x, xh). The standard
deviation of the Gaussian σa determines a maximal distance at which
the mosquito is able to sense the host. Naturally, in more complex si-
tuations the concentration may be given by other means, such as con-
vection-diffusion models taking into account the spatial geometry,
wind, etc [6]. Note that real odor concentrations are not used here, as
we scale the concentrations and, moreover, only need the ratios of an
attraction potential function as defined below. The movement towards
the host is defined as a random accept-reject walk, where the accep-
tance probabilities are calibrated to fit the measured effects of attrac-
tants and repellents.

We employ the main features of the Metropolis algorithm [25].
Suppose that at each point x we have an attraction potential p(x) that
depends on the concentration and other attraction factors. We take a
step from point −xn 1 to a next candidate point xn. If the respective
function values are −p p, ,n n1 the new point is accepted with the prob-
ability:

⎜ ⎟= ⎛
⎝

⎞
⎠

−

−
α

p
p

x x( ) min 1,a
n

n

n n 1

1 (3)

The CO2 concentration is regarded as the main attraction factor for
mosquitoes. To introduce increasing attraction as approaching the host
in a parsimonious way, we simply define the attraction potential as a
function:

=p C σx x( ) exp( ( )/ )acc (4)

with a scaling factor σacc that depends on the distance to the host. A
linear distance dependency of σacc is introduced to account for the vi-
sion-activated attraction at a short distance to the host:
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The function increases from the minimum value σacc
1 with a slope given

by the parameter σacc
2 until it is replaced by a constant. The constant is

matched so that the movement is purely random outside the con-
centration plume. Further details on specifying the constants σacc

max and
σacc

min are in the next section.
Fig 1 shows the piecewise-linear function for σacc, as well as the

resulting probability of accepting steps away from the host (steps to-
wards the host are always accepted). Note that the parameters of σacc
can be bounded so that the acceptance probability given by (3) is
practically 1 at the distance of 80 m from a host, i.e., all moves are then
accepted and the movement becomes purely random outside the con-
centration plume. The next section, Section 3 gives more details of the
numerical implementation.

The algorithm essentially mimics the well-known Simulated
Annealing optimization method, introduced in [20], but with the ‘an-
nealing temperature schedule’ replaced with a ‘greediness scale’ asso-
ciated with the distance from the mosquito to the host.

As seen in Fig. 1, the rate of acceptance for steps away from the host
decays as the insect approaches the host. In proximity of the host it
increases locally but remains quite small. This property can be attrib-
uted to a real insect behavior, since in proximity of a host mosquitoes of
different species have been observed to exhibit more tortuous flights
when scanning the environment before landing [33].

2.2. Modeling treated and untreated nets

Protective devices are modeled using properties of the logistic
function:

=
+ −

y
x s

1
1 exp( / )

.
(6)

The logistic function represents S-shaped behavior of growth. The
growth increases exponentially and then slows down for |x|→∞.

In order to capture the protective properties of the net, we modify
the function so that it attenuates as the distance to the host grows,
which parameterized as:

= − + − −α d r s r d d sx x x( , , ) [1 1/(1 exp( ( ( , ) )/ ))],r
h

50 50 (7)

where d(x, xh) denotes the distance from the mosquito to the protected
human (Fig. 2). In our simulations, the above formula gives the prob-
ability of rejection at the candidate position x. The parameters d50 and s
determine the range of coverage and the spread of the repellent, and r

stands for intensity of repulsion.

Untreated nets. We consider bed nets protecting individuals at night
time with fixed actual size comprising 1.5 meters, according to WHO
specifications. Untreated nets could be modeled with rejection
probability given as a step function, which is a particular case of
Eq. (7) when s< <1. But nets used in rural communities are
commonly holed [38]. Hence, deliberately holed nets are used in
experimental hut trials (see [21,26]). We simulate torn nets with a
penetration probability − <p1 1net that gives non-zero chance to
penetrate the net barrier. So, in the simulations, a proposed step
given by formula (1) taken inside the area of the net is accepted with
probability − p1 net. Estimation results for the parameters of the
untreated net case, based on the hut experiment data, are given in
the first part of the Results section.

Treated nets. The repulsion by LLIN is computed in two steps. First, we
apply the accept/reject step, where the probability of rejection is given
by a logistic function describing the chemical repulsion, see Eq. (7).
Next, we take into account the physical net barrier just as in the
untreated net case. Additionally, LLINs are equipped with the poisoning

Fig. 1. Scaling factor σacc conditioned on distance to
the host (top), average probability of accepting steps
taken away from the host as a function of distance to
the host (bottom).

Fig. 2. Probability of rejection associated with repellent for different values of s, with
=d 0.7550 and =r 1.
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effect. When a mosquito consumes the chemical substance spread on
the treated net surface, the probability of death increases, which is
represented by the insecticide induced mortality.

2.3. Mortality rates

Natural mortality of a population is usually expressed in continuous
time, in the form of an ordinary differential equation

= −dP
dt

μP,
(8)

where the coefficient μ denotes decay rate, and P stands for population
number. The connection to discrete-time calculations is easily given by
discretizing:

+ − = −P t t P t
t

μP t( Δ ) ( )
Δ

( ), (9)

where is a time unit. The equation can be written in the form:

+ = −P t t
P t

μ t( Δ )
( )

1 Δ ,
(10)

which gives the relative decrease of the population during a time step.
Therefore, the probability of death per unit time Δt is computed as the
decay rate multiplied by the length of the time interval:

=α μ tmin{1, Δ }.tΔ (11)

In this work we calculate the natural death probability by the above
formula with =tΔ 2 seconds, using a literature (see [5]) value for μ that
corresponds to 34-hour natural death rates for An. gambiae and An.
arabiensis as 10%%.

For each mosquito, the probability of death is tracked separately
within the simulation. The probability of poisoning from a unit dosage
of chemical is assumed to be the same for An. gambiae and An. arabiensis
[21]. Insecticide-induced mortality rate αp

tΔ depends on the effective
amount of chemical, Ctot, consumed by mosquito up to a time instant t.
We use here the expression:

=α t C t( ) ( ),p
t

tot
Δ

(12)

where the effective amount of chemical consumed by a mosquito is
computed as the total accumulated concentration given by the sum of
steps in the repellent plume:

∑ ∑= =
= =

C C μ α d r sx x( ) ( , , ).tot
i

T
rep i

p
i

T

r
i

1 1
50

(13)

Here αr(xi|d50, r, s) gives the probability of rejection due to the che-
mical, as described in Eq. (7). We can interpret the quantity Ctot as a
scaled chemical concentration with the parameter μp scaling the value
to the ’effective’ poisoning concentration impacting the mosquitoes.

For every mosquito-agent at each step of the algorithm, the total
probability of death is computed as the sum of the natural and che-
mically enhanced probabilities of death:

= +α α αmin{1, }.t
p

tΔ Δ
(14)

Initially, when a mosquito is poison-free, the death rate is restricted to
natural mortality. After a mosquito accumulates the chemical,

= +α α αmin{1, }t
p

tΔ Δ tends to one, which corresponds a fatal poisoning
on taking a lethal dosage of the insecticide.

Remark 1. Note that in Kitau et al. [21] live mosquitoes were collected
and kept under glass for 24 h before scoring delayed mortality after the
10 hours in the hut. We imitate the process by fixing the death rate α
from Eq. (14) after 10 h in the hut. With α fixed, the probability of
death after a 24 h time period is given by Eq. (11) with =tΔ 24·1800:

= +α α α tmin{1, min{1, }Δ }t t
p

t
24h
Δ Δ Δ

(15)

Remark 2. In (13) we have postulated a simple functional form for the

impact of the insecticide, which is found to be sufficient for the
purposes of the present work. Naturally, more detailed models for the
poisoning effect may be employed if such knowledge is available.

Remark 3. The host-seeking behavior, as modeled above by the factors
of attraction, is assumed to last only a given maximum time period tmax .
In the control case without repellents this time is assumed to be 5 h
[28]. After tmax the mosquito switches to a pure Random walk without
influence of the CO2 concentration. However, the barriers imposed by
the net and repellent remain in power, as well as the impact on
mortality of the chemicals. Note that we assume that the chemical clue
does not impact the movement when mosquito abandons the host-
seeking process, either after taking a blood meal sufficient for egg
development or after tmax spent inside the hut. In our study we assume
that sufficient amount of blood is obtained after one feeding on the
human host. Additionally, we verified that the resting time after the
contact does not impact the overall statistical outcome of the
simulations if added in the algorithm, so this feature was excluded
for sake of parsimony. In all the simulations we assume that the
mosquitoes are not able to interact with each other.

3. Calculation

3.1. Numerical simulations

Details of the numerical simulations are described in this section. In
the simulation model, the mosquitoes are represented as a number of
agents in a rectangular patch [xmin , xmax ]× [ymin , ymax ] and are in-
itially considered as having uniformly random spatial positions. For any
time point n, we summarize the change of location for every agent from
the present position −xn 1 as in Algorithm 1.

Several parameters employed in the model are related to given
physical factors and hence are fixed for all simulations. Table 1 gives
the values used for these parameters.

In addition, it was found that the parameters σ σ,acc acc
1 2 of the function

σacc can be fixed by the following argument. At a distance of roughly
80m, i.e. outside of the CO2 plume, the motion is purely random as
C≃ 0. In the hut experiment this distance is never reached. Moreover,
the upper limit for σacc was selected such that it is large enough to
produce Brownian motion outside the plume. Using Eq. (5) and ac-
counting for < <σ 1,acc

1 we find by the requirement:

= =σ dx x x( ( , ) 80) 0.001acc
h (16)

that the second attraction parameter can be given as =σ 0.001/80acc
2

(here the numerical value of 0.001 is given by the typical difference
values in the concentrations, = − −C C Cx x x xΔ ( , ) ( , ),n h n h1 at the dis-
tance of 80 m from the host). Given the upper limit, the parameter
estimation should identify the value of σ ,acc

1 see Eq. (5). However, it was
found that the data in [21] only gives an upper bound for σacc

1 .
=σ 0.0001acc

1 was selected from the range of possible values.
With these values, the acceptance rate for steps away from the host

tends from one to close to zero when the distance d(xn, xh) decreases
from 80m to zero. This means a gradual transition from random walk
outside of the plume to increasingly directional motion at short dis-
tances from the host. Fig. 1 illustrates the function σacc and the resulting
average values of the probabilities of accepting steps taken away from
the host. At a short distance from the host the acceptance rate for
downhill steps exhibits a slight growth. This can be interpreted as a
tendency of the mosquito to turn more often before landing on the host
[33]. Naturally, more detailed flight data would be required to properly
identify the slope of attraction in Fig. 1. However, the present choice is
sufficient for the purpose of fitting the data in [21].

Finally, some decisions have to be specified on how to treat the
movement at the net, inside the net, on the walls of the hut and at the
exit from the hut. If a candidate position gets coordinates inside the net,
it is rejected with probability pnet, the probability of being blocked by
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the net barrier. In the case of rejection the mosquito position is updated
with the closest point on the net xn to the previous position −xn 1 such
that =d dx x( , ) ,n h

p where dp is the net width specified in the Table 2. If
the step inside the net is accepted, the direction of the net repulsion is
swapped as the mosquito approaches the host under the net. Similarly,
if a candidate step gets values outside the hut, it is accepted with
probability phut. In this case we assume that the mosquito enters one of
the window traps. Properties and positions of trapped mosquitoes are
not updated further, except their mortality status. When a candidate
position outside the hut is rejected, we simulate the mosquito hitting
the wall. Then the updated position xn is selected as the closest point on
the wall to the previous position −xn 1. The size of the hut is given in
Table 1.

Here, we have only given the steps that impact the movement of the
agent. In addition, we have to update a list of properties of each agent
by taking into account the accumulated amount of chemical, possible
exit from hut, blocking by the net, feeding, switching to random walk,
residing inside the net and death. After a mosquito is marked as dead,
its position and property list are no longer updated (but the mortality
status for a trapped mosquito is still updated at every step).

A mosquito is marked as fed if its updated position is closer than ϵ to
the center point of the host, see Table 1. If marked as fed, or if the
maximal tmax time spent in host-seeking attempts is used, the mosquito
switches to a pure random walk (or kinesis), so the accept-reject
probability, Eq. (3) due to CO2 for any candidate position is one. At
every next step position Eq. (1) is accepted, unless mosquito hits the net
or the wall, or was repelled from the net.

The steps of Algorithm 1 are repeated so that the time period of one
night, 10 h, is covered, with the additional delayed mortality taken into
account, see Remark 1 in Section 1.3. Thus each calculation simulates a
34 h hut trial. The outcome of the above step depends on random
numbers, so the result of each full simulation is stochastic. To calibrate
the model against real measurements by estimating the impact of var-
ious model parameters, the expected values or averages of the model
outputs are needed. This is done by repeated simulations, using many
mosquitoes in each simulation. Note that the data in [21] is relative, so
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Table 1
Fixed parameters.

Parameter Parameter description Values Source
symbols

μs average flight speed 0.4 m/s [32],
[33]

σ standard deviation [32]
of the flight speed 0.1 m [33]

3σa distance at which mosquito
is able to sense a host 80m [12]
size of experimental hut 3 m [38]

dp width of the net 1.5 m [38]
ϵ minimal distance between mosquito

and host treated as an exposure 0.65m
tmax maximal host-seeking 5 h [11]

time in absence of chemicals [18]
s slope of repellent, [19]

characterizes spatial
spread of repellent 0.015

Table 2
Model parameters for the control case and initial guess for the sampler.

Parameter symbols Parameter description Value

pnet probability of being blocked 0.99967
by the physical barrier
created by the net

phut probability of exiting −5.9·10 4

the hut
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the absolute number of mosquitoes does not impact the calibration.
The repeated simulations for a swarm of mosquitoes are quite CPU

intensive. Moreover, to properly study how well the available data is
able to identify the model parameters exhaustive computational sam-
pling methods have to be employed. To minimize the CPU times, the
computations were carried out by a combination of MATLAB and GPU
programming. As each agent can be simulated independently, the cal-
culations are well-suited for parallel computing. To further minimize
the computational times, while keeping the model output variances
small enough, a compromise between the number of mosquitoes and
the number of simulation repetitions was sought. A suitable combina-
tion was found to be 6 repeated simulations for a swarm of size 600
mosquitoes. For calculation of the expected values a two-dimensional
grid was employed for the GPU runs in which every GPU thread was
computed with the above specified algorithm independently. Note that
in the LLIN case we compute the cost function twice, corresponding to
separate calculation for An. gambiae and An. arabiensis.

3.2. Parameter identification

The measured values as given in [21] are noisy and with the data
uncertainty is given in terms of confidence regions. It is thus natural to
ask what is the distribution of all model parameters fitting the data
within this noise level of measurements, and to what extent the various
model parameters can be identified by the available real data. A
common way to answer such questions is via Markov chain Monte Carlo
(MCMC) methods. The basic idea underlying MCMC techniques is to
sample the candidate parameter points from a predefined proposal
distribution and then either accept or reject them according to how
closely the model output fits the data. The fundamental technique is the
Metropolis algorithm [25]. Here, the use of adaptive methods is espe-
cially useful as there is no way to estimate a well-working proposal
distribution beforehand. Moreover, to create a reliable sample from the
underlying parameter distribution, the number of samples (the length
of the MCMC chain), i.e., the number of different parameter combina-
tions tested, must be large enough. For more details see [14–16].

The fit with the data is evaluated via a cost function, a sum of
squared residuals of the model outputs Oi and the measurements, Mi:

∑= −
=

ssum O M σ( ) /
i

N

i i i
1

2 2
f

(17)

Here Nf gives the number of measured responses to be specified sepa-
rately for the control and treated net cases in the next section. To agree
with the confidence intervals of data given in [21] we allow a roughly

30%% variation in the model output by setting the measurement error
variance σ equal to 10.

The MCMC approach produces a given number of samples, the so
called MCMC chain, from the parameter distribution. The main exten-
sion compared to traditional least squares parameter estimation pro-
ducing one ’best fitting’ point estimate that minimizes Eq. (17) is that
we create ‘all’ the parameter combinations that fit the measured data
within the limits of the confidence intervals estimated for the mea-
surements.

At this point it should be remembered that the model was calibrated
for each data set using an adaptive MCMC sampler with chain length
30,000 and each sample consisting of an average of 6 repetitions for an
agent swarm of 600 members. The total wall-clock time for such a run,
using parallel GPU calculations, was approximately 18 h when per-
formed on a CPU core-i7 2500K, GPU GetForce GTX TITAN.

4. Results

4.1. Control case

As a control case we consider experimental hut trials with an un-
treated net, modeling the summary outcomes reported by Kitau et al.
[21]. It is assumed that An. gambiae and An. arabiensis exhibit similar
host-seeking behavior in the absence of the net treatment, and the same
parameters are applicable for both species in the case of these negative
controls. The maximum time of a persistent attempt to feed on the
detected human host in the absence of any behavior modifying com-
pounds is fixed to 5 h.

In this case two parameters remain to be calibrated: the probability
of exiting the hut phut (as a hedged space) and the probability of being
blocked from feeding by the net pnet. We fit these against two measured
factors ( =N 2f ) given in [21], namely the exit rate and the percentage
of fed mosquitoes for the expression in Eq. (17).

Figs. 3 and 4 present the results of the parameter estimation by the
MCMC approach. Fig. 4 shows that the simulated fits of the model
against the measurement (the constant line in the figure) are indeed
good, and the variability of the model samples matches the given un-
certainty of data. Fig. 3 represents the samples of the model parameter
distribution that produce the fits. Both separate values for both para-
meters (the MCMC ‘chains’) are shown, with the number of samples as
the x-axis (left), and the joint 2D distribution (right). The total number
of samples was selected as 2 · 104. It can seen that both parameters are
well identified. Moreover, the 2D plot reveals no significant correlation
between the parameters.

Fig. 3. Parameter chains (left) and pairwise distribution (right) for the control case experiment when the attraction parameters are fixed.
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4.2. LLIN case

In our simulations the difference in the mosquito species appears
only in the presence of the LLIN. As discussed in the Introduction,
several options for the difference have been suggested in the literature.
We assume that after mosquito spends maximal time tmax hours in-
doors, it switches to a pure random walk without influence of the CO2

concentration. As a most simple approach, we first tried the option that
only the host seeking time t A

max of An. arabiensis was estimated together
with the other LLIN dependent factors d50, s, μp, while keeping t G

max of
An. gambiae fixed to the same value as in the control case. However, this
model variant did not produce a proper fit to the measurements.

Two slightly more complex variants were then studied. In the first
version of the model (hence force designated Version 1) the difference
between the species is achieved by estimating the host-seeking times
tmax separately for each species, while the attraction to the host is kept
the same as in the control case. The impact of the LLIN on the mortality
is estimated using the same parameter values for both species.

In the second version of the model (henceforth designated Version
2) the host-seeking time in the presence of the LLIN is estimated but
kept the same for both species. However, the attraction scaling para-
meter σacc

A1, is estimated for An. arabiensis to be larger than in the control
case, to capture a lower host-seeking persistence when confronted with
the treated net, as suggested in the literature [28].

The parameters for exiting the hut and penetrating the net (see
Table 2) are kept the same as in the control case. For the impact of the
repellent we employ the function given by Eq. (7), where parameter d50
stands for distance from the host when the chemical concentration
reaches 50%% of its total.

Next, we compare the factors obtained from our simulations with
the corresponding results from [21]. We have six measured responses
( =N 6f ) available for Eq. (17): exit rates, mortality rates (corrected for
control 10%% mortality) and percentage of fed mosquitoes, all sepa-
rately for An. gambiae and An. arabiensis. Tables (4) and (5) summarize
the parameters estimated, and the mean values of respective Monte
Carlo samples. The model outputs versus corresponding data from ex-
perimental hut trials for IconMaxx LN reported in [21] are plotted in
Figs. 5 and 6. While all of the fits are not ideal, the simulated results are
within the error bars of the measurements. Additionally, Table 3 below
indicates that both modifications of the model are capable of re-
producing the data within the confidence regions.

Next, we discuss the sampled parameter values that produce the
above fits of the model to the field data. As in the control case, we show
both the separate MCMC chains for each parameter and pairwise 2D
distributions. Note that since the chemical used (IconMaxx LN) is short-

range, we can postulate that the repelling distance is less than 10cm,
and fix accordingly the value of the parameter s that determines the
range of the effect. Fig. 7 gives the separate parameter chains for Ver-
sion 1 of the model for the remaining parameters d r μ t t, , , ,p

A G
50 max max . It

can be seen that all the parameters are bounded both from below and
from above, but relatively large variances remain. A more detailed view
is given by Fig. 8, which shows the pairwise scatter plots of the para-
meters. In particular, the 2D distribution of the values of t A

max and t G
max

should be noted. The distribution shows a clear correlation between the
values; the host-seeking time of An. gambiae is consistently larger,
roughly two times that of An. arabiensis. Moreover, for both species the
estimated values are clearly lower than that used in the control case
(5 h). It may be concluded that while the data restrict the parameter
values and can reveal some logical correlations between them, the data
are not able to accurately identify parameter values. Parameter chains
and pairwise parameter distributions for Version 2 are given in Figs. 9
and 10. Again, the parameter values are bounded from below and
above, but clear correlations remain, as well as relatively large un-
certainties for several parameters.

It can be concluded that the hut-level data used in this study only
partly restricts the model parameters, and rather different values of
short-range attraction or host-seeking times in the presence of the LLINs
are able fit the data within the reported error limits. However, the
overall impact of the LLINs, which differs for the two mosquito species
considered, is captured by the model, as shown in the next section.

4.3. Community scale simulations

In spite of the large uncertainty in the parameter distributions the
model can be used to quantify the overall impact of the LLINs: the
different model versions, simulated using randomly selected parameter
values from the MCMC chains, continue to produce essentially the same
results when extrapolated the simulations from the hut level to the
community scale, i.e., to situations containing several households and
hosts with various degrees of protection by nets and chemicals. In this
setting it is observed that the LLINs are systematically less efficient at
controlling An. arabiensis than An. gambiae.

To demonstrate the reduced efficiency of LLINs at controlling An.
arabiensis a community level example is simulated with the two mod-
ifications of the model as given in the previous section. For the simu-
lation example 20 persons are positioned in 4 households of the same
size, 5 people in each household. The households are located at a dis-
tance of no less than 10m from one another. All the results were
averaged over three simulation repetitions for both model variants,
using different parameter vectors randomly selected from the para-
meter posteriors presented in Fig. 9. The time period for the simulations
was again one night, from 6 pm to 6 am. While in the hut level ex-
periment mosquitoes can only exit from the hut into the window traps,
in the community level experiment we assume realistic village condi-
tions, where mosquitoes are able to move between huts. Note that we
only discuss the results of this one example here, but consistently si-
milar results were obtained for a large variety of settings of households
and people.

To estimate the impact of the LLINs simulations were performed
with increasing levels of LLIN coverage of the hosts, with the percen-
tage of protected individuals varying from 10%% to 100%%. In this
way, respective increasing and decreasing values for mosquito mor-
tality and mosquito-human contact rates were obtained as shown in
Fig. 11. Moreover, the reproductive number can be computed, defined
as the number of secondary cases (infections, see [31]):

= −R ma bce g/ .gη
0

2 ( ) (18)

Here g is the death rate of mosquitoes, a stands for mosquito-human
contact rate, m denotes the number of female mosquitoes per human, η
is the number of days required for sporogony (commonly 10 days for
most of species of mosquitoes), b is the probability of transmission of

Fig. 4. Model output vs data measurements from [8] for the control case experiment.
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sporozoite from an infected mosquito to a susceptible human, and c
gives the probability of transmission of the sporozoite from infected
human to mosquito. As we are interested in the relative decrease of R0

we can set = = =m b c 1. The nonlinear factors of R0, the daily mos-
quito mortality g and the mosquito-human contact rate a are given by
the averaged results of the simulations.

While the simulation results are stochastic, a clear decreasing trend
of R0 as a function of the protection can be seen from Fig. 11. Moreover,
the variability within the model versions is of the same order as the
variability between the versions. Thus, we can conclude that both
model versions produce statistically identical results for the average

Fig. 5. Sampled cost function values of Version 1 versus field observations in [21]. The LLIN is treated with IconMaxx LN treatment kit.

Fig. 6. Sampled cost function values of Version 2 versus field observations in [21]. The LLIN is treated with IconMaxx LN treatment kit.

Table 3
Model outputs for versions 1 and 2 (V1 and V2, respectively) versus field observations
reported in [21]. The LLIN is treated with IconMaxx LN treatment kit.

An. gambiae An. arabiensis

Source V1 V2 [21] V1 V2 [21]

death 72 72 74 (59–89) 46 48 45 (37–51)
exit 77 77 79 (62–89) 88 82 87 (77–92)
fed 10 10 9 (2–34) 7 5 7 (2–21)
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impact of the LLINs in a community level setting, even if the detailed
mechanisms of the impact of LLINs on short-range mosquito behavior
are not fully identified.

Although the contact rates are similar for both species, the results
reveal systematically lower mortality rates for An. arabiensis than An.

gambiae, which implies lower efficiency of LLINs in control of the
former mosquito species. Comparing the reproduction numbers R0 for
different LLIN coverage, it was observed that the minimum coverage
guaranteeing disease eradication is higher for An. arabiensis.

5. Discussion

We presented an agent-based approach to model the attraction of
mosquitoes towards a human host and calibrate the model with the
field data extracted from [21]. Several model variants were tested to
arrive at the most parsimonious version that contains the basic factors:
the movement towards host, the effects of the net and chemicals, and
mortality.

Initially, the control case of mosquito host-seeking in the presence
of an untreated bed net was simulated for An. gambiae and An. ara-
biensis. Here no difference between An. gambiae and An. arabiensis was
assumed: the same host-seeking time was used for both mosquitoes, and
similar sensitivity to a host was assumed. Next, the host-seeking in the
presence of the LLIN was modeled. Different model parameterization
versions were selected to test various hypotheses explaining the dif-
ferent host-seeking behavior of the species. In the first version of the
model maximum hosts-seeking time was estimated separately for both
species to achieve closer correspondence with the data. In the second
version the same host-seeking time was used for both species and a
minimum scaling factor was estimated for attraction of An. arabiensis
that reflects reduced host-seeking persistence when confronted with the
LLIN. In both modifications the same values for insecticide-attributable
incremental mortality and deterrence parameters were assumed for
both mosquito species. Possible model parameter values were sampled
by using extensive MCMC simulations. It was found that the available
data does not allow unanimous discrimination of all such optional
factors. However, certain trends could be extracted from the parameter
posterior distributions. For instance, regardless of the other covariate
values An. arabiensis was estimated to consistently abandon blood
feeding attempts much earlier than An. gambiae when confronted with
the treated net.

Table 4
Model parameters for the LLIN and mean values of the sampled parameter chains
(Version 1).

Parameter Parameter Values
symbols

d50 range of repellent
coverage 0.755

μp insecticide-induced
death rate −4.4·10 8

r intensity of repulsion 0.88

t A
max maximum host-seeking 1.2 h

time for An. arabiensis

t G
max maximum host-seeking 4.0 h

time for An. gambiae

Table 5
Model parameters for the LLIN and mean values of the sampled parameter chains
(Version 2).

Parameter Parameter Values
symbols

d50 range of repellent
coverage 0.755

μp insecticide-induced
death rate −4.4·10 8

r intensity of repulsion 0.88

t LLIN
max maximum host-seeking 4.0 h

time for both species

σacc
A1, minimal value −7·10 4

for the scaling
factor (An. arabiensis)

Fig. 7. Parameter chains for Version 1 for LLIN
treated with an IconMaxx LN kit.
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Different model versions were also tested in community-scale si-
mulations. It appears that the calibrated model can be used to estimate
the overall impact of the LLINs, in spite of the fact that the underlying
parameters are not uniquely identified: key factors such as the mosquito
mortality and mosquito-human contact rate under various degrees of
protection remain essentially the same even when simulated using
different parameter values from the sampled MCMC posteriors.

Moreover, the community-scale simulation indicated the reduced effi-
ciency of the LLINs in controlling of the An. arabiensis in comparison to
An. gambia, regardless of the underlying modeling assumptions. It was
concluded although the present work focuses on calibrating hut level
data, the model can be applied to simulate the impact of LLINs for
different settlement patterns.

Fig. 8. Pairwise distributions of parameters for
Version 1 for LLIN treated with an IconMaxx LN kit.

Fig. 9. Parameter chains for Version 2 for LLIN
treated with an IconMaxx LN kit.
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