Authorship, plagiarism and conflict of interest: views and practices from low/middle-income country health researchers

Anke Rohwer,1 Taryn Young,1,2 Elizabeth Wager,3,4 Paul Garner5

ABSTRACT

Objectives To document low/middle-income country (LMIC) health researchers’ views about authorship, redundant publication, plagiarism and conflicts of interest and how common poor practice was in their institutions.

Design We developed a questionnaire based on scenarios about authorship, redundant publication, plagiarism and conflicts of interest. We asked participants whether the described practices were acceptable and whether these behaviours were common at their institutions. We conducted in-depth interviews with respondents who agreed to be interviewed.

Participants We invited 607 corresponding authors of Cochrane reviews working in LMICs. From the 583 emails delivered, we obtained 199 responses (34%). We carried out in-depth interviews with 15 respondents.

Results Seventy-seven per cent reported that guest authorship occurred at their institution, 60% reported text recycling. For plagiarism, 12% of respondents reported that this occurred ‘occasionally’, and 24% ‘rarely’. Forty per cent indicated that their colleagues had not declared conflicts of interest in the past. Respondents generally recognised poor practice in scenarios but reported that they occurred at their institutions. Themes identified from in-depth interviews were (1) authorship rules are simple in theory, but not consistently applied; (2) academic status and power underpin behaviours; (3) institutions and culture strongly influence these aspects of poor practice and are important basics and norms of science and researchers at risk. Blatant misconduct such as data fabrication, data falsification and plagiarism receives most attention, both in the media and within universities.1 However, less wholesale misrepresentation is much more common and may pose a threat to the integrity of research that is at least as great a threat as blatant misconduct.2–6 One aspect of this is poor reporting practice, which includes guest or ghost authorship, not declaring conflicts of interest and redundant publication (table 1). These reflect poor practice and are important basics of reporting science, and we thus chose them to be the subject of this research.

The prevalence of research misconduct has been estimated in systematic reviews that examined misconduct in scientists across disciplines. Fanelli7 found that 1.97% (95% CI 0.89 to 4.45) of survey participants from 18 studies admitted to having fabricated or falsified data.7 Pupovac and Fanelli8 found that 1.7% (95% CI 1.2 to 2.4) of survey participants from 7 studies admitted to having

INTRODUCTION

Intellectual honesty and personal responsibility for our actions is core to research integrity and accountability, alongside institutional culture and policies to help assure best practice. Research misconduct is a threat to all researchers as it puts the trustworthiness of science and researchers at risk. Blatant misconduct such as data fabrication, data falsification and plagiarism receives most attention, both in the media and within universities.1 However, less wholesale misrepresentation is much more common and may pose a threat to the integrity of research that is at least as great a threat as blatant misconduct.2–6 One aspect of this is poor reporting practice, which includes guest or ghost authorship, not declaring conflicts of interest and redundant publication (table 1). These reflect poor practice and are important basics of reporting science, and we thus chose them to be the subject of this research.

The prevalence of research misconduct has been estimated in systematic reviews that examined misconduct in scientists across disciplines. Fanelli7 found that 1.97% (95% CI 0.89 to 4.45) of survey participants from 18 studies admitted to having fabricated or falsified data.7 Pupovac and Fanelli8 found that 1.7% (95% CI 1.2 to 2.4) of survey participants from 7 studies admitted to having

Strengths and limitations of this study

We elucidated health researchers’ views about what was acceptable practice in relation to authorship, plagiarism and conflicts of interest through scenarios and asking how common poor practice was in their experience.

Respondents were part of Cochrane, which has strong ethical values and thus may increase their awareness of reporting guidelines.

Our response rate, while about average for such research, is a study limitation.

The study is one of the first to show that guest authorship is common practice in low/middle-income countries.

Despite good knowledge of best practice, institutional and academic power relationships and culture strongly influence these aspects of poor research practice.
The research team have diverse experience and skills, including nursing and clinical epidemiology (AR), infectious diseases (PG), publication ethics (EW) and public health (TY). They are all authors on Cochrane reviews, have editorial and training roles within Cochrane and publication ethics; two team members are based at an LMIC institution, and all members have extensive experience in working in LMIC settings. AR completed formal training in qualitative interview and data analysis methods and has some experience in doing qualitative research.

Data collection
We developed a questionnaire with questions based on nine scenarios (online supplementary file 1). The nine scenarios covered guest authorship, ghost authorship, plagiarism related to translation of a text and copying of an idea, redundant publication in terms of text falsification, data fabrication and plagiarism. In LMICs, research outputs are increasing, through local and international collaborations, but national policies on research integrity are lacking and the pressure to perform and live up to global standards is rising.

Developing the science capacity in LMICs is important and is attracting increasing investment from national governments and donors. Assuring strong moral principles and honest practice is an important part of this development. We initiated research to describe health researchers’ perceptions of good and poor reporting practices and their perceptions about how common these are. Our objectives were to describe and analyse LMIC health researchers’ perceptions about best and actual practice with authorship, redundant publication, plagiarism and conflicts of interest through a survey and to explore influences on what people do in practice through in-depth interviews.

Table 1 Definitions of poor research reporting practices

<table>
<thead>
<tr>
<th>Research reporting practice</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guest authorship</td>
<td>Adding authors who did not contribute substantially to the work</td>
</tr>
<tr>
<td>Ghost authorship</td>
<td>Omitting authors who have contributed substantially to the work</td>
</tr>
<tr>
<td>Plagiarism</td>
<td>Copying text or part of a text, an idea or an image from someone else, without properly referencing the source and using it as one’s own work</td>
</tr>
<tr>
<td>Redundant publication</td>
<td>Republishing one’s own work including copying of an entire manuscript (duplicate publication), publication of parts of the results in separate papers (salami publication) and reusing of text in several publications (text recycling)</td>
</tr>
<tr>
<td>Non-disclosure of conflicts of interest</td>
<td>Not declaring a financial or non-financial (personal, political, academic, religious, institutional) interest that can potentially influence professional judgement and bias conclusions</td>
</tr>
</tbody>
</table>

For the qualitative part of the study, we recognised that the researcher’s values and morals play a part in interpreting phenomena and how knowledge is created. The research team have diverse experience and skills, including nursing and clinical epidemiology (AR), infectious diseases (PG), publication ethics (EW) and public health (TY). They are all authors on Cochrane reviews, have editorial and training roles within Cochrane and publication ethics; two team members are based at an LMIC institution, and all members have extensive experience in working in LMIC settings. AR completed formal training in qualitative interview and data analysis methods and has some experience in doing qualitative research.

METHODS
Study participants and design
Our target population was corresponding authors of Cochrane systematic reviews working in LMICs (countries defined by the World Bank). We chose this group as they were identifiable, have all contributed to a published systematic review using international standards and represented a sample frame for active medical researchers. Cochrane has strong ethical principles, so it was thought likely this group may have awareness of best practice with authorship, plagiarism, redundant publication and conflicts of interest and thus provide a more sensitive and accurate estimate of practices within their institutions.
Table 2 Examples of survey scenarios and accompanying questions

<table>
<thead>
<tr>
<th>Scenario</th>
<th>My view on this is</th>
<th>Have you ever done something like this?</th>
<th>In my current department or unit, this pattern of authorship:</th>
<th>Comments or clarifications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A junior researcher, J, adds the head of department, D, as the last author on a research paper. D provided suggestions for direction of J’s work that helped her obtain the grant, although he hasn’t contributed to the actual research or the publication.</td>
<td>This is acceptable because D should be an author. This is not best practice, but it does not really matter, as it doesn’t affect the science. This is unacceptable because D has not contributed to this paper.</td>
<td>Yes</td>
<td>Happens occasionally</td>
<td>This is acceptable because it is her own work. This is not allowed by journals, but it does not really matter, as it doesn’t affect the science. This is unacceptable behaviour.</td>
</tr>
<tr>
<td>A PhD student ‘copies and pastes’ nearly all of the introduction from a paper that she has previously published into her next manuscript, since she is doing a series of experiments on the same topic.</td>
<td>My view on this is: This is acceptable because it is her own work. This is not allowed by journals, but it does not really matter, as it doesn’t affect the science. This is unacceptable behaviour.</td>
<td>Yes</td>
<td>Happens occasionally</td>
<td>This is acceptable because it is her own work. This is not allowed by journals, but it does not really matter, as it doesn’t affect the science. This is unacceptable behaviour.</td>
</tr>
<tr>
<td>A researcher, T, is working on a diagnostic test study. The company manufacturing the test has supplied the kits for free but did not design or fund the research. T was paid for a consultancy for the same company 2 years ago. In the publication of the study, he declares that he has no conflicts of interest.</td>
<td>My view on this is: This is acceptable because T does not have a conflict of interest. This is not best practice, but it does not really matter, as it doesn’t affect the science. This is unacceptable because T should disclose his consultancy.</td>
<td>Yes</td>
<td>Happens occasionally</td>
<td>This is acceptable because T does not have a conflict of interest. This is not best practice, but it does not really matter, as it doesn’t affect the science. This is unacceptable because T should disclose his consultancy.</td>
</tr>
</tbody>
</table>
our objectives and informed by the survey results. AR conducted all the interviews between October and December 2015. Interviews lasted 45–60 min and were conducted in person or by Skype or telephone. All interviews were recorded with a digital voice recorder and notes were taken during the interviews to provide a comprehensive data set.

Data analysis
We dichotomised survey data by combining categories of potential answers and analysed it with SPSS V.24, using descriptive statistics for each scenario. We stratified results by region and compared results between regions using the chi-squared test.

We analysed interviews using the framework approach, which fits into the broader family of thematic analysis using transcriptions of the audio recordings. Three researchers (AR, TY and EW) independently coded one of the transcripts using an inductive method of coding. We compared and discussed our individual codes and developed a set of preliminary codes that could be applied to the other transcripts. We did not consider the set of codes to be exhaustive and continually added new codes until all transcripts were coded. One researcher (AR) coded all the subsequent transcripts using Atlas.ti software, V.7.5. We categorised the codes (see online supplementary file 3) and extracted illustrative quotations. Emerging themes were identified through discussions with the whole research team in an iterative process.

Ethics
The Cochrane Steering Group approved the participation of authors. Participation in the survey was voluntary, and submitting a response was taken as informed consent. Anonymity was ensured, as participants were not required to provide their names or the names of their institutions. Respondents who indicated willingness to be interviewed signed an electronic consent form before the interview. The interview transcripts contained no names to ensure anonymity of interview responses.

RESULTS
We sent 607 invitations to corresponding authors of Cochrane systematic reviews. Twenty-four were not delivered; for the remainder, the response rate was 34% (199/583), with one incomplete response that was omitted from the analysis. Similar numbers of respondents were obtained across Latin America, Sub-Saharan Africa, South and Southeast Asia and East Asia, with one-tenth from North Africa, the Middle East and Eastern Europe (table 3). We contacted all 28 respondents who provided their contact details, and 15 of these were available to be interviewed within the study period. The interview group comprised junior researchers (PhD students or those who had recently obtained their PhD; seven respondents) and senior researchers (professors who had supervised PhD students; eight respondents).

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Characteristics of survey respondents (n=199)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
<td>Value</td>
</tr>
<tr>
<td>Age, median (IQR*)</td>
<td>44 (38–52)</td>
</tr>
<tr>
<td>Years at current workplace, median (IQR)</td>
<td>10 (4.75–19.5)</td>
</tr>
<tr>
<td>% Time spent on research, median (IQR)</td>
<td>40 (20–60)</td>
</tr>
<tr>
<td>Year of first publication, median (IQR)</td>
<td>2003 (1997–2008)</td>
</tr>
<tr>
<td>No of peer-reviewed articles, median (IQR)</td>
<td>20 (7–41)</td>
</tr>
<tr>
<td>No of Cochrane reviews, median (IQR)</td>
<td>3 (1–5)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>95 (48)</td>
</tr>
<tr>
<td>Male</td>
<td>104 (52)</td>
</tr>
<tr>
<td>Highest qualification, n (%)</td>
<td></td>
</tr>
<tr>
<td>Bachelor's degree</td>
<td>14 (7)</td>
</tr>
<tr>
<td>Master’s degree</td>
<td>82 (41)</td>
</tr>
<tr>
<td>PhD</td>
<td>103 (52)</td>
</tr>
<tr>
<td>Place of work†, n (%)</td>
<td></td>
</tr>
<tr>
<td>University</td>
<td>141 (66)</td>
</tr>
<tr>
<td>Other research institution</td>
<td>40 (19)</td>
</tr>
<tr>
<td>Hospital</td>
<td>24 (11)</td>
</tr>
<tr>
<td>Other</td>
<td>10 (5)</td>
</tr>
<tr>
<td>Regions, n (%)</td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>52 (26)</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>48 (24)</td>
</tr>
<tr>
<td>South and Southeast Asia</td>
<td>44 (22)</td>
</tr>
<tr>
<td>East Asia</td>
<td>37 (19)</td>
</tr>
<tr>
<td>Other</td>
<td>18 (9)</td>
</tr>
</tbody>
</table>

*IQR, Interquartile range. †Multiple responses–total responses n=215.

Survey responses
The responses are summarised in table 4. Online supplementary file 4 has a more detailed analysis.

For the scenario of guest authorship given to the head of department, one-third of the 198 respondents thought this was acceptable or did not matter (35%). For behaviour, 24% said they had done this, while 57% had not done this but were aware of others doing it; and 77% indicated that this happened at their institution.

Adding an expert in the field who had not contributed sufficiently was similarly regarded as acceptable by one-third, 21% had done this and 71% said it happened in their institution.

Omitting an author who has contributed substantially to the research was recognised as unacceptable (99%), yet 41% reported that it happened, but mainly ‘occasionally’ (14%) or ‘rarely’ (26%), while only 2% indicated that they had done this, 42% had not done it themselves but knew of other people doing it. Responses related to acknowledging rather than giving authorship to the
Table 4 Low/middle-income country researchers’ perceptions and awareness of occurrence of health research reporting practices

<table>
<thead>
<tr>
<th>Health research reporting practice</th>
<th>Perception: acceptable or does not really matter, n (%)</th>
<th>Behaviour: have done this themselves, n (%)</th>
<th>Occurrence at institution: this happens, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adding the head of department who has not contributed sufficiently to the research*</td>
<td>69 (35)</td>
<td>48 (24)</td>
<td>153 (77)</td>
</tr>
<tr>
<td>Adding an expert in the field who has not contributed sufficiently to the research</td>
<td>64 (32)</td>
<td>42 (21)</td>
<td>140 (71)</td>
</tr>
<tr>
<td>Acknowledging a biostatistician for assistance with data analysis</td>
<td>132 (67)</td>
<td>103 (52)</td>
<td>166 (84)</td>
</tr>
<tr>
<td>Omitting an author who has contributed substantially to the research</td>
<td>3 (2)</td>
<td>4 (2)</td>
<td>81 (41)</td>
</tr>
<tr>
<td>Redundant publication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text recycling (using one’s own work from a previous publication in another)</td>
<td>57 (29)</td>
<td>22 (11)</td>
<td>118 (60)</td>
</tr>
<tr>
<td>Plagiarism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translating a text without acknowledging the original source</td>
<td>9 (5)</td>
<td>4 (2)</td>
<td>74 (37)</td>
</tr>
<tr>
<td>Copying an idea without acknowledgement of the original source</td>
<td>20 (10)</td>
<td>5 (3)</td>
<td>85 (43)</td>
</tr>
<tr>
<td>Conflicts of interest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not declaring previous financial reimbursement from a company involved in a research project</td>
<td>25 (13)</td>
<td>5 (3)</td>
<td>80 (40)</td>
</tr>
<tr>
<td>Not declaring your spouse’s link to a company involved in a research project</td>
<td>47 (24)</td>
<td>3 (2)</td>
<td>56 (28)</td>
</tr>
</tbody>
</table>

*The full scenarios can be found in online supplementary file 1.

biostatistician for assistance with data analysis were more mixed.

For redundant publication, 29% of respondents thought that text recycling was acceptable or did not matter. Eleven per cent admitted to having done this, while 60% indicated that it occurred in their institution ‘occasionally’ (25%) or ‘rarely’ (26%).

For plagiarism, almost all the respondents (96%) thought that it was unacceptable to translate a text from another language without acknowledging the original source. Only 2% indicated that they had done this, but 37% of respondents indicated that they had not done this but knew of someone who had. Respondents thought that this practice occurred at their institution ‘occasionally’ (12%) or ‘rarely’ (24%).

Copying an idea without acknowledging the original source was reported as unacceptable by 90% of respondents. Only 3% indicated that they had done this themselves, but 43% indicated that they knew of others who had done this. Respondents said that this occurred at their institution ‘occasionally’ (12%) or ‘rarely’ (30%).

Most respondents (87%) thought that failure to disclose a financial reimbursement from a company involved in a research project was unacceptable. Five respondents indicated that they had done this themselves (3%), yet 43% of respondents knew someone who had not declared known conflicts of interests. Forty per cent of respondents said that it happened at their institution ‘occasionally’ (15%) or ‘rarely’ (24%).

Most respondents (76%) thought that it was unacceptable for an author not to declare a spouse’s link to a company involved in a research project. Three respondents indicated that they had not declared this in the past, but 29% knew someone who had not declared this, while 28% said that this practice occurred at their institution ‘occasionally’ (7%) or ‘rarely’ (22%).

We explored if there were obvious differences between regions (online supplementary file 5). We found that two-thirds (67%) of respondents from East Asia thought that adding a head of department who had not contributed significantly to the paper was acceptable or did not matter, whereas most respondents (61%–87%) from
other regions thought that this practice was unacceptable. All respondents (100%) from East Asia indicated that this happened at their institution.

Interviews

Authorship was a uniform concern across all the people interviewed. People reported adding authors who had not contributed substantially to the research, omitting authors who had contributed substantially and conflicts about the order of authors. Interviewees reported they knew about plagiarism by colleagues and in their institution. At risk were students and junior researchers whose first language was not English who published the same material in different languages. Others reported not publishing results that did not show any effect. Some interviewees also said that they knew of researchers who had fabricated data, manipulated data or engaged in data dredging. Almost all commented that misconduct was probably more prevalent than was officially acknowledged.

Our analysis identified four main themes. These are described below, with illustrative quotes in box.

Theme 1: Authorship rules are simple in theory, but not consistently applied

Interviewees were mostly aware of the International Committee of Medical Journal Editors criteria. Some reported diligent application of the criteria; others were clearly frustrated with their colleagues, as ‘it should be simple’ and described it as ‘not straightforward’ with ‘blurring of lines’ in defining contribution. Most were aware of authorship decisions in their institutions based on factors other than contribution. ‘We have a lot of issues on what we call ‘add my name’. It’s very popular.’

Adding authors at a late stage who had done little or nothing was common in all regions, for a variety of reasons: a ‘favour’ and loyalty towards colleagues, family and friends; as a means of rewarding research assistants; to make a publication look better; out of respect for a senior researcher; and in return for paying open access publication fees. Sometimes authors from different disciplines or non-academics were added. In contrast to this haphazard way of assigning authorship, other researchers felt they were expected to follow ‘unwritten rules’.

Theme 2: Academic status and power underpin behaviours

Senior and junior interviewees described the ‘power play’ between senior and junior researchers. Junior researchers were described as the ‘work horses’, who had to ‘abide’ by the ‘mandatory rules’ of their bosses to avoid conflict or a ‘change in attitude’ towards them. They found it ‘very difficult to fight senior professors’ who were described as ‘arrogant’ and ‘corrupt’. All those reporting this had personal stories. In many countries, junior researchers were obliged to add the names of heads of department, bosses or supervisors to their publications even when they did not contribute. Others reported that professors or supervisors expected to be first author on a publication that was based on a student’s dissertation or junior researchers’ work. Some respondents described cases where professors published students’ research without including them as authors and sometimes even without students knowing that their work had been published. Junior researchers were frustrated about these practices, which they viewed as unfair.

It seems that students and junior researchers may have no choice but to tolerate this manipulative behaviour to complete their degrees and advance their careers. Some interviewees who had experienced this spoke vehemently about how upset they were—and recounting their experiences evoked strong emotions: anger, betrayal, frustration and hurt. They also found it difficult to stand up against seniors in these situations. Their place in the hierarchy determined whether their voice was heard or not, and they were often ‘brushed off’ by more senior people. Interviewees were concerned that researchers, especially those who are ‘not in a position of power’, were unable to raise concerns or make anonymous remarks when they suspected misconduct.

The desire for academic status was reported as a big driver. Publications are the ‘bread and butter’ of researchers—more publications lead to promotions and more power. Interviewees felt that researchers often did not care about the research itself, but rather about the number of publications they had authored and the power that comes with publication. Academics are willing to do almost anything to be ‘recognised in the scientific community’, ‘associated with high-impact publications’ and ascend the institutional hierarchy. This behaviour was described as not being ‘in the best interest of the research… but certainly in the best interests of the researcher’.

Theme 3: Institutions and culture fuel bad practices

A recurrent theme was the ‘overemphasis’ on publications, particularly the quantity required for promotion, funding and encouraging a variety of forms of misconduct. Respondents were aware of researchers who submitted papers they had ‘photo-shopped’ to include their names and affiliations for promotion or ‘set up phony journals’ where they published a reworked version of somebody else’s paper. Another described clinicians and nurses publishing fabricated data in local journals. Although researchers were aware that this was unethical, they did not really care since papers published in these journals were known to be untrustworthy. Yet such publications counted towards promotion.

Interviewees also highlighted the lack of structures and systems to support and promote research integrity in their institutions such as research integrity offices, clear policies on research misconduct and channels for whistleblowing. Interviewees thought offenders should be punished appropriately, as this might deter poor practices. While most institutions had guidelines on plagiarism, use of text-matching software was directed towards students rather than academics. Institutional guidelines on good research reporting practices were either lacking or interviewees did not know where to find them.
In addition to flawed systems, an emerging theme was the culture within institutions. Interviewees noted the lack of research integrity champions within institutions. Interviewees, especially senior researchers, reported playing an important role in promoting research integrity in their institutions. However, they often felt like ‘lone voice(s) in the wilderness’ and lacked ‘the critical mass’ to change poor practices. Awareness about research integrity among other researchers was perceived as low. Leadership was reported as an essential factor in fostering a culture of...
research integrity. The lack of positive role models and mentors at institutions was raised as a concern, and respondents noted that having a good mentor was essential to learn ‘what is right and wrong’.

Theme 4: Researchers are uncertain about what conflict of interests means and how this may influence research

Respondents expressed various views on managing and disclosing conflicts of interest. Some believed that they would not be influenced—neither by commercial companies nor by personal relationships and would just report the evidence ‘as is’. Some believed that researchers should not refuse to work with commercial companies per se, as their expertise could help in the advancement of science. Key to both points of view was being transparent and declaring funding sources and links to commercial companies. A contrasting view was that links to commercial companies would always influence researchers on some level, even if this influence was very subtle. Some interviewees supported the idea that it was better to decline participation in a research project when there was a financial or academic conflict of interest.

Uncertainty around academic conflicts of interest was frequently raised. Examples of dilemmas included examining a thesis describing research that was similar to their own, including clinical experts who had received funding from pharmaceutical companies in systematic reviews and peer-reviewing papers of colleagues without being biased.

Interviewees also questioned the validity and adequacy of declaring conflicts of interest. Some thought that declaring conflicts of interest did not mean that the research was ‘free of any kind of internal, external manipulation’, while others believed that researchers generally declared that they did not have conflicts of interest, even if they did. Interviewees were also confused about declaring personal relationships with friends, family and spouses in a scientific paper. Most interviewees thought that there was inadequate guidance on what to declare and when to declare it.

DISCUSSION

Our study was unusual, if not unique, in documenting the attitudes and experiences of health researchers from LMICs using a survey followed by in-depth interviews. Their responses highlight several areas of concern relating to poor and unacceptable research reporting practices.

We used a number of documented strategies to maximise our response rate, as a low response rate is a well-documented disadvantage and challenge of online surveys. We sent the survey to participants in individual and personalised emails, emphasising the value of participants’ knowledge and understanding of health research reporting practices, ensuring anonymity of responses and inviting them to engage in further discussions. We also sent two reminders. Despite our efforts, we only obtained a response rate of 34% for the survey. We were unable to contact non-respondents to obtain demographic information and reasons for not responding as anonymity of participants did not allow us to distinguish between respondents and non-respondents. We thus cannot rule out the possibility that non-respondents had different views from respondents. Only 28 survey respondents (14%) indicated that they were willing to participate in follow-up interviews, and 15 of those accepted the email invitation.

Authors of Cochrane reviews from LMICs perceived certain reporting practices as unacceptable but noted that these happened in their institutions. We found that guest authorship was widespread, plagiarism is a problem and there is a lack of awareness about conflicts of interest. There are several caveats that need to be considered when interpreting the results of surveys on research misconduct. It is almost impossible to eliminate social desirability bias, which refers to the tendency of survey participants to answer questions about their own values and behaviours in a way that is socially acceptable. Although having an anonymous, self-administered, online survey aims to reduce this bias, rates of self-reported misconduct might be underestimated. In addition, rates of reported misconduct in others might be overestimated, as participants from the same institution might refer to the same acts of misconduct. On the other hand, rates of misconduct in others might also be underestimated, as researchers might want to protect their colleagues and the reputation of their institution. In addition, the survey wording might have affected participants’ understanding and interpretation of the practices described. However, we aimed to standardise understanding of practices by using scenarios that portrayed certain irresponsible practices. We chose scenarios that included nuanced decisions but still had fairly clear correct answers and designed them to elicit responses that dichotomise these as right or wrong. However, we could not measure ‘overall’ knowledge and behaviour in relation to all aspects of authorship practices, plagiarism, redundant publication and conflicts of interest, so the findings should be interpreted within the specific focus and examples of research reporting we examined.

The in-depth interviews suggested that the institutions, their hierarchy and culture tended to encourage poor practice. Although our sample was small and self-selected, participants were very aware of what was happening at their institution and generally addressed the same problems. However, generalisability of our results is limited and results have to be interpreted with caution. We identified Cochrane authors as a group of researchers based in academic institutions in LMICs, who had contact with an international collaboration that promotes good scientific and reporting practice. While this restricted the size of the sample, it provided an identified sampling frame and respondents with some awareness of the aspects of research integrity that we were investigating. Survey and interview participants were from various LMICs and included junior as well as senior researchers. We
considered the possible biases such a sample might entail, since Cochrane has strong ethical principles, and the critical appraisal of research papers for systematic reviews is likely to make Cochrane authors aware of authorship issues, redundant publication, plagiarism and conflicts of interest. This awareness means that their responses are probably reasonably accurate. For those interviewed, it may be that they have volunteered because of frustration with the system they are working in or because they were upset about injustice that they had experienced themselves, but the analysis seemed to ring true and was remarkably consistent between those interviewed. However, we accept that using this sampling frame may have limited the representativeness of our respondents and that Cochrane authors may have greater understanding of publication ethics than other researchers.

Of all the irresponsible practices explored, perceptions and occurrence of guest authorship stood out. In light of the availability of international guidelines and journal requirements on contributions of authors, this result is striking, although not unexpected when considering results of other studies. A meta-analysis on the misuse of authorship found a self-reported prevalence of 55% (95% CI 45% to 64%) among health researchers from countries outside of the USA and UK, including South Africa, India and Bangladesh. A survey conducted among medical professionals in India found a high prevalence of guest authorship (65%; 101/155), while in a study conducted in Nigeria, 36% (47/133) of participating health professionals indicated that they had encountered disagreements about authorship. In our survey, 77% of respondents indicated that guest authorship occurred at their institutions.

For plagiarism, few of our respondents admitted to having translated a text or copied an idea without acknowledgement of the original source. However, they were aware of this happening in their institutions. Other studies from LMICs report much higher levels of self-reported plagiarism: 5% (n=132) among Nigerian dental researchers, 9% (n=130) among Nigerian health researchers and 73% (n=82) among medical faculty members in Pakistan. Our findings are similar to self-reported rates of plagiarism in high-income countries as found in a systematic review that reported a pooled estimate of 1.7% (95% CI 1.2 to 2.4) of survey participants admitting to any type of plagiarism. The pooled estimate for observed plagiarism in colleagues was 29.6% (95% CI 17.4 to 45.5), which is lower than our estimates of 37% and 43%. However, our scenarios referred only to translation of text and copying of an idea and not to simply copying of text, which is generally a more common understanding of plagiarism.

Our findings show that the desire for power and academic status and institutional systems and academic culture greatly influence research integrity. These findings are in line with other international publications and suggest that factors driving research misconduct are similar across low-income, middle-income and high-income countries. Of concern is the lack of mentors and role models for junior researchers. Indeed, mentoring has been shown to positively influence research career development, productivity and success and plays an important role in preventing misconduct. Junior researchers appear to know what good practices are but are discouraged from following these by seniors.

The impact of financial conflicts of interest on study results and reported conclusions is well recognised. More recently, the importance of considering non-financial conflicts of interest has been highlighted. We found that non-financial conflicts of interest were poorly understood and that participants were reluctant to report them. A recent study found that authors of systematic reviews reported non-financial conflicts of interests less frequently than financial conflicts of interests.

Our study participants felt that there was inadequate guidance on declaring financial and non-financial conflicts of interest and that a universal framework would be helpful. This need for standardised methods of reporting conflicts of interest has been recognised and some approaches proposed. However, a universal system has not been realised and the onus is on journals and institutions to provide clear policies and guidelines on the transparent reporting of conflicts of interests.

There are few published studies on irresponsible research practices among health researchers from LMICs. To our knowledge, this is the first survey followed up with in-depth interviews that includes participants from several LMICs. The use of an online survey and in-depth interviews allowed us to gather rich data that supplemented our quantitative findings. This work highlights researcher concerns about several aspects of poor reporting practice in LMICs and the belief that such practices are common in some institutions. In particular, the researchers highlighted guest authorship as something that troubled them. Limited institutional processes and systems, lack of role models and emphasising promotions and publications are important factors thought to influence research integrity in LMICs.

Future research in LMICs should explore ways to promote research integrity at various levels within institutions.

Acknowledgements We thank Mrs Tonya Esterhuizen, Centre for Evidence-based Health Care, Faculty of Medicine and Health Sciences, Stellenbosch University, for assisting with data analysis.

Contributors All authors contributed to the design of the study. AR collected and analysed data, with input from EW, TY and PG. AR drafted the manuscript. PG, TY and EW critically engaged with the manuscript and provided input. All authors have approved the final manuscript.

Funding All authors are supported by the Effective Health Care Research Consortium. This Consortium is funded by UK aid from the UK Government for the benefit of developing countries (grant: 5242).

Disclaimer The views expressed in this publication do not necessarily reflect UK government policy.

Competing interests All authors have completed the International Committee of Medical Journal Editors uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: financial support from the Effective Health Care
Research Consortium. EW is a self-employed consultant and received personal fees for training related to publication ethics outside of the study. All authors are involved with Cochrane, and EW is the author of a Cochrane systematic review on interventions to promote research integrity.

Ethisch approval Stellenbosch University Health Research Ethics Committee (N14/12/158).

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Unpublished data from the survey can be obtained upon request from AR.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

26. International Committee of Medical Journal Editors (ICMJE). Recommendations for the conduct, reporting, editing and publication of scholarly work in medical journals. 2016 http://www.icmje.org/ recommendations-
Authorship, plagiarism and conflict of interest: views and practices from low/middle-income country health researchers
Anke Rohwer, Taryn Young, Elizabeth Wager and Paul Garner

BMJ Open 2017 7:
doi: 10.1136/bmjopen-2017-018467

Updated information and services can be found at:
http://bmjopen.bmj.com/content/7/11/e018467

These include:

References
This article cites 35 articles, 7 of which you can access for free at:
http://bmjopen.bmj.com/content/7/11/e018467#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Medical publishing and peer review (78)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/