# **Accepted Manuscript**

A helicase-containing module defines a family of pCD630-like plasmids in *Clostridium difficile* 

Wiep Klaas Smits, J. Scott Weese, Adam P. Roberts, Céline Harmanus, Bastian Hornung

PII: \$1075-9964(17)30228-7

DOI: 10.1016/j.anaerobe.2017.12.005

Reference: YANAE 1818

To appear in: Anaerobe

Received Date: 18 October 2017
Revised Date: 7 December 2017
Accepted Date: 11 December 2017

Please cite this article as: Smits WK, Weese JS, Roberts AP, Céline Harmanus, Hornung B, A helicase-containing module defines a family of pCD630-like plasmids in *Clostridium difficile*, *Anaerobe* (2018), doi: 10.1016/j.anaerobe.2017.12.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



#### A helicase-containing module defines a family of pCD630-like 1

#### plasmids in Clostridium difficile 2

3

- Wiep Klaas Smits<sup>1,2,\*</sup>, J. Scott Weese<sup>3</sup>, Adam P. Roberts<sup>4,5</sup> 4
- Céline Harmanus<sup>1</sup>, Bastian Hornung<sup>1</sup> 5

6

- <sup>1</sup> Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600. 7
- 2300RC, Leiden, The Netherlands 8
- <sup>2</sup> Netherlands Centre for One Health 9
- <sup>3</sup> Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, 10
- Ontario, Canada 11
- <sup>4</sup> Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United 12
- Kingdom 13
- <sup>5</sup> Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, 14
- 15 Liverpool, United Kingdom

16

17

Running title: pCD630 plasmids in C. difficile

18

- \* Corresponding author: Department of Medical Microbiology, Leiden University Medical 19
- Center, PO Box 9600, 2300RC, Leiden, The Netherlands 20
- phone: +31-71-526 1229 21
- 22 fax: +31-71-526 6761
- 23 E-mail: w.k.smits@lumc.nl

24

Smits et al 2

| 25 | Abstract                                                                                     |
|----|----------------------------------------------------------------------------------------------|
| 26 | Clostridium difficile is a Gram-positive and sporulating enteropathogen that is a major      |
| 27 | cause of healthcare-associated infections. Even though a large number of genomes of          |
| 28 | this species have been sequenced, only a few plasmids have been described in the             |
| 29 | literature. Here, we use a combination of in silico analyses and laboratory experiments      |
| 30 | to show that plasmids are common in C. difficile. We focus on a group of plasmids that       |
| 31 | share similarity with the plasmid pCD630, from the reference strain 630. The family of       |
| 32 | pCD630-like plasmids is defined by the presence of a conserved putative helicase that        |
| 33 | is likely part of the plasmid replicon. This replicon is compatible with at least some other |
| 34 | C. difficile replicons, as strains can carry pCD630-like plasmids in addition to other       |
| 35 | plasmids. We find two distinct sub-groups of pCD630-like plasmids that differ in size        |
| 36 | and accessory modules. This study is the first to describe a family of plasmids in C.        |
| 37 | difficile.                                                                                   |
| 38 |                                                                                              |
| 39 | Keywords: Plasmid, replicon, helicase, replication                                           |
| 40 |                                                                                              |
| 41 |                                                                                              |
| 42 |                                                                                              |
| 43 |                                                                                              |

## Introduction

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

44

Clostridium difficile (Clostridioides difficile [1]) is a Gram-positive, anaerobic and sporeforming bacterium that can asymptomatically colonize the human gut [2]. It is ubiquitous in the environment, and can also be found in the gastrointestinal tract of many animals. The bacterium gained notoriety when it was identified as the causative agent of health care associated diarrhea, and is increasingly implicated in community-associated disease in many countries [2]. In hosts with a dysbiosis of the microbiome, such as patients treated with broad-spectrum antimicrobials, conditions are favorable for C. difficile germination and outgrowth [3]. C. difficile produces one or more toxins, that cause symptoms ranging from diarrhea to potentially fatal toxic megacolon [2, 4].

Over the past two decades, genetic studies of C. difficile have become possible due to the generation of shuttle plasmids that can be transferred by conjugation from Escherichia coli to C. difficile [5]. These plasmids mostly employ a replicon derived from plasmid pCD6 for replication in C. difficile [6]. In 2006, the first genome sequence of C. difficile became available, revealing the presence of another plasmid, pCD630 [7].

Despite a great number of strains having been whole genome sequenced since then, plasmid biology of C. difficile has been poorly explored. One reason is that plasmid content is variable, and most studies on the evolution and/or transmission of C. difficile focus on those genes conserved between all strains (the core genome) [8-11]. However, there is reason to assume that plasmids are common in *C. difficile*; for instance, before the advent of the currently common typing schemes [12], plasmid isolation had been proposed as an epidemiological tool [13]. The ratio of plasmid-

Smits et al 4

| 67 | containing to plasmid-free strains in this study was found to be approximately 1:2,                |
|----|----------------------------------------------------------------------------------------------------|
| 68 | suggesting that around 30% of strains of <i>C. difficile</i> may carry a plasmid. Furthermore,     |
| 69 | hybridization-based analyses of total DNA from a collection of <i>C. difficile</i> strains suggest |
| 70 | the presence of DNA with significant similarity to pCD630 open reading frames (ORFs)               |
| 71 | [14, 15].                                                                                          |
| 72 | Here, we define a family of plasmids that share a conserved helicase-containing                    |
| 73 | module and demonstrate that these plasmids are common in a diverse set of C. difficile             |
| 74 | strains.                                                                                           |
| 75 |                                                                                                    |
| 76 | Materials and methods                                                                              |
| 77 |                                                                                                    |
| 78 | Strains and growth conditions                                                                      |
| 79 | Strains used in this study are listed in <b>Supplementary Table 1</b> . For DNA isolation,         |
| 80 | strains were grown on Clostridium difficile agar (CLO) plates (bioMérieux) and a single            |
| 81 | colony was inoculated into pre-reduced brain-heart infusion broth (Oxoid) supplemented             |
| 82 | with 0.5 % w/v yeast extract (Sigma-Aldrich) and Clostridium difficile selective                   |
| 83 | supplement (Oxoid). Strains were PCR ribotyped [16] in-house for this study. For some              |
| 84 | strains a PCR ribotype could not be assigned (Supplementary Table 1).                              |
| 85 |                                                                                                    |
| 86 | Isolation of plasmid DNA from C. difficile                                                         |
| 87 | Plasmids were isolated from 2 mL of <i>C. difficile</i> overnight culture using NucleoSpin         |
| 88 | Plasmid Easypure columns (Macherey-Nagel); to increase yield, 10mg/mL lysozyme to                  |
| 89 | buffer A1 was added, as recommended by the manufacturer. Using PCR and                             |
|    |                                                                                                    |

sequencing, we found that the DNA isolated using this kit is heavily contaminated with chromosomal DNA. To isolate pure plasmid DNA, aliquots of the DNA were incubated with PlasmidSafe ATP-dependent DNase (Epicentre) that digests linear, but not circular double stranded DNA. After purification with a Nucleospin Gel and PCR Clean-up kit (Macherey-Nagel), the absence of genomic DNA was confirmed by PCR using primers targeting gluD (Supplementary Table 2). Yields were generally very low, but the plasmid was readily detectable by PCR.

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

96

90

91

92

93

94

95

Reannotation of pCD630 and identification of a pCD630-like plasmid The pCD630 sequence was obtained from GenBank (AM180356.1). CDP01 and CDP11 form a single open reading frame (ORF) and were treated as a single ORF in our analyses. Protein sequences encoded by the ORFs of pCD630 were used as BLAST queries against the non-redundant protein sequences database, limited to taxid:1496 (Clostridium difficile). This identified the 8089 bp Peptoclostridium difficile genome assembly 7032985, scaffold BN1096 Contig 85 (LK932541.1). To reconstitute the plasmid from this contig, the DNA was circularized and a single copy of the 98 bp direct repeat that was present at the terminus of the original contig was removed using Geneious R10. The resulting 7991 bp sequence now encodes a full copy of a sequence homologous to CDP07 of pCD630. Reannotation of plasmids was performed using an in-house pipeline. This pipeline incorporates the gene caller Prodigal (version 2.6.3) [17], RNAmmer (version 1.2) [18], Aragorn (version 1.2.38) [19], the CRISPR recognition tool (version 1.2) [20], dbCAN (version 5.0) [21] and PRIAM (version March

Smits et al 6

| 112 | 2015) [22]. The plasmid derived from LK932541 was submitted to GenBank as pCD-                 |
|-----|------------------------------------------------------------------------------------------------|
| 113 | ISS1 (GenBank: MG266000).                                                                      |
| 114 |                                                                                                |
| 115 | Identification of pCD630-like plasmids in short read archives                                  |
| 116 | In order to identify other pCD630-like plasmids in sequence databases, paired end              |
| 117 | Illumina sequences from study PRJEB2101 (ERR017367-ERR017371, ERR022513,                       |
| 118 | ERR125908-ERR125911) were downloaded from the short read archive of the                        |
| 119 | European Nucleotide Archive (ENA). Short reads were assembled and visualized in                |
| 120 | PLACNETw [23] to determine likely replicons. The contigs corresponding to pCD630-              |
| 121 | like plasmids were downloaded and imported into Geneious R10 software (Biomatters              |
| 122 | Ltd) for circularization and removal of terminal repeats; afterwards all plasmids which        |
| 123 | could be circularized were compared with BLASTN (version 2.40) [24] to pCD630 and              |
| 124 | the sequences were restructured to start at the base corresponding to base 2903 in             |
| 125 | pCD630. Afterwards the plasmids were annotated using the in-house pipeline as                  |
| 126 | described above, and submitted to GenBank as pCD-WTSI1 (GenBank: MG019959),                    |
| 127 | pCD-WTSI2 (GenBank: MG019960), pCD-WTSI3 (GenBank: MG019961), pCD-WTSI4                        |
| 128 | (GenBank: MG019962). Alignments of the pCD630-like plasmids were performed in                  |
| 129 | Geneious R10 (Biomatters Ltd) and the alignment figure was prepared using Adobe                |
| 130 | Illustrator CC (Adobe Systems Inc).                                                            |
| 131 |                                                                                                |
| 132 | Polymerase chain reaction                                                                      |
| 133 | Oligonucleotides used in this work are listed in <b>Supplementary Table 2</b> . To confirm the |
| 134 | presence of pCD630 in derivatives of C. difficile strain 630, PCR was performed with           |

oWKS-1629 and oWKS-1630 (targeting CDP04); oWKS-1631 and oWKS-1632 (targeting CDP07); oWKS-1633 and oWKS-1634 (targeting CDP10). As a control for chromosomal DNA, a PCR was performed targeting the gluD gene that is used as a target for *C. difficile* identification, using primers oWKS-1070 and oWKS-1071. To screen a collection of C. difficile strains for the presence of pCD630-like plasmids, a PCR was performed with primers oWKS-1651 and oWKS-1652 that targets a region of CDP07 conserved among the 6 full length plasmids identified in this work. Fragments were separated on 0.5x TAE (20 mM Tris, 10mM acetic acid, 0.5mM EDTA) agarose, stained with ethidium bromide and imaged on a Gel Doc XR system (BioRad). Images were captured using QuantityOne (BioRad) and prepared for publication using Adobe Photoshop CC (Adobe Systems Inc) and CorelDRAW X8 (Corel Corporation).

146

147

135

136

137

138

139

140

141

142

143

144

145

### **Results and discussion**

148

149

150

151

152

153

154

155

156

157

pCD630 is present in C. difficile strain 630 and some of its derivatives The most commonly used laboratory strains of *C. difficile* are derived from the reference strain 630 (PCR ribotype 012 [7]) by serial passaging and screening for loss of resistance to the antimicrobial erythromycin [25]). It was generally assumed that during this passaging the plasmid pCD630 that is present in strain 630 was lost. Indeed, our de novo assembly of the 630∆erm genome sequence using single molecule real-time (SMRT) sequencing did not report the presence of the plasmid [26]. Recently, however, one study showed the presence of reads mapping to pCD630 in a genome resequencing project of another isolate of 630Δerm [27]. This prompted us to revisit our

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

whole genome sequencing data (ENA:PRJEB7326). If the plasmid was maintained in 630Δerm, we expected to be able to find reads mapping back to the pCD630 reference sequence (GenBank: AM180356.1) in this dataset. Indeed, when we performed a reference assembly of the short reads (ENA: ERR609091) against the pCD630, we found approximately 0.8% of the reads mapping to the plasmid. The original de novo assembly overlooked the plasmid due to a low number of plasmid-mapping reads as the result of a size fractionation step (the plasmid is <8kb, and SMRT sequencing was performed on high MW DNA). Notably, both a de novo assembly of the plasmid based on a small number of SMRT reads, as well as the reference assembly using a large number of Illumina reads shows a 100% congruence with the published reference sequence for pCD630 (data not shown). This indicates that, despite the lack of selective pressure and repeated culturing under laboratory conditions, the plasmid has remained unchanged.

We confirmed the presence of pCD630 and the extrachromosomal nature of the plasmid. To do so, we performed a miniprep on a C. difficile liquid culture and treated the resulting DNA with PlasmidSafe DNase, that selectively removes linear double stranded (sheared) but not circular DNA. A PCR using primers against three ORFs of pCD630 (cdp04, cdp07 and cdp10) and one chromosomal locus (gluD) showed that the DNase treated samples were negative for the *gluD* PCR, but positive for all three plasmid loci (Figure 1A).

The results above suggest that pCD630 is stably maintained extrachromosomally. Next, we wanted to verify the presence of the plasmid in multiple derivatives of strain 630, to see if plasmid-loss could be documented. We previously

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

analyzed 630∆erm from our laboratory as well as from the laboratory where it was generated to determine the chromosomal location of the mobile element CTn5, in comparison with the ancestral strain 630 and the independently derived 630E strain [26]. We found that pCD630 was readily detected on total genomic DNA from all these strains, with the exception of the 630E isolate in our collection (Figure 1B). 630E and 630Δerm demonstrate notable phenotypic differences [25, 28] and we wondered whether these might be in part due to loss of the pCD630 plasmid. We performed a reference assembly using the whole genome sequencing data available from the study by Collery et al (ENA: PRJNA304508), that compares 630Δerm and 630E [28]. The assembly showed that both these strains contain pCD630 and indicate that the loss of plasmid is not a general feature of 630E strains. We conclude that the observed phenotypic differences are not likely due to loss of the plasmid. It was reported that the isolate of C. difficile 630 stored at in the collection of the DSMZ (www.dsmz.de) lacks the pCD630 plasmid [27, 29]. We requested both 630 (DSMZ 26845) and 630∆erm (DSMZ 27543) and checked for the presence of the plasmid. Our results confirm the absence of pCD630 from DSMZ 26485 but not DSMZ 27453 (Figure 1B), in line with the analysis of Dannheim et al [27].

In other organisms, the presence of certain replicons can negatively affect the maintenance of other replicons (plasmid incompatibility); this has not been documented for *C. difficile* to date. If pCD630 would be incompatible with other replicons (such as the pCB102 and pCD6) [5, 30], this could result in loss of the pCD630 plasmid in genetically modified *C. difficile*. We therefore tested whether pCD630 was lost in strains chromosomally modified using Clostron mutagenesis [30, 31], Allele Coupled Exchange

[32, 33] or carrying a replicative plasmid [34, 35]. We found that all of these carried pCD630, suggesting that pCD630 is compatible with pCB102 and pCD6-based replicons (**Figure 1C**). Similar results were obtained with multiple mutants (data not shown).

Together, our data clearly shows that pCD630 persists in the absence of selection, but also that pCD630 <u>can</u> be lost. Thus, care should be taken to verify plasmid content when comparing presumed isogenic laboratory strains even when they are derived from the same isolate.

A pCD630-like plasmid is present in a strain with reduced metronidazole susceptibility. We wondered whether there are more pCD630-like plasmids. As a first step, we set out to identify coding sequences with homology to pCD630 ORFs in GenBank. Using default settings, we identified a single 8089 bp contig that encodes proteins with homology to CDP01, CDP04-6 and CDP08-11 (*Peptoclostridium difficile* genome assembly 7032985, scaffold BN1096\_Contig\_85; GenBank: LK932541) (**Figure 2**).

This sequence stems from a study that compares three non-toxigenic PCR ribotype 010 strains of *C. difficile*, with differing susceptibility to metronidazole [36]. Strain 7032985 was classified as intermediate resistant to metronidazole. If we assume that the contig represents a pCD630-like plasmid, we expect DNA from this strain to remain positive in a PCR that targets the plasmid upon treatment with PlasmidSafe DNase. We found that the PCR targeting *cdp07*, but not chromosomal locus *gluD*, results in a clear signal when using a template treated with PlasmidSafe DNase (**Figure** 

**1D**). Having confirmed that the contig is extrachromosomal in nature, we will refer to the putative plasmid as pCD-ISS1 hereafter (**Table 1**).

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

To further analyze pCD-ISS1, we circularized the LK932451 contig to yield a putative plasmid of 7991bp, performed an automated annotation (GenBank: MG266000) and compared the annotated pCD-ISS1 sequence to that of pCD630 (Figure 2). Overall, the two plasmids are highly similar. Of note, the ORF that corresponds to the DEAD/DEAH helicase like protein (CDP07 in pCD630) was not annotated in the LK932541 contig due to its linear nature, but is evident in the pCD-ISS1 sequence. Similarly, we found that CDP01 (gene remnant) and CDP11 (doubtful CDS) of pCD630 are in fact a single 201bp ORF, as annotated in the LK932541 contig. A revised annotation of pCD630 has been submitted to ENA (AM180356) to reflect this. Though the pCD-ISS1 and pCD630 plasmids are co-linear, there is a single region that is divergent. The region of pCD630 encompassing the ORFs encoding CDP02 and CDP03 is absent from pCD-ISS1; the latter contains an ORF encoding a RNA polymerase sigma factor protein (Interpro:IPR013324) in this region. The pCD-ISS1 annotation does not identify an ORF encoding a homolog of CDP05 of pCD630. This is the result of a 2bp deletion; it suggests that CDP05 (previously annotated as a doubtful CDS) may not be a true coding sequence. Both pCD630 and pCD-ISS1 encode phagerelated functions. Most notably, CDP04 and its homolog encode a phage capsid protein with similarity to the HK97-like major capsid proteins of tailed phages of the Caudovirales order. Caudovirales are common *C. difficile* phages [37-40]. However, beside the phage capsid, pCD630 and pCD-ISS1 lack genes encoding other proteins required for virion formation, such as the large terminase subunit and the portal protein.

Therefore, it is highly unlikely that phage particles can be produced from these

249

268

269

270

271

250 plasmids. In line with this, we find that the genes encoding the phage proteins are 251 poorly, if at all, expressed (unpublished observations). It appears therefore that (part of) 252 a viral genome has been incorporated into the plasmid, or that the viral genome has 253 been transformed into a plasmid. 254 Together, these data suggest the existence of a plasmid closely related to 255 pCD630 in a strain from another PCR ribotype (RT010). 256 257 pCD630-like plasmids can be identified in short reads from whole genome sequence 258 projects 259 Above, we showed the existence of at least one pCD630-like plasmid. We wondered if we could extend the family by interrogating the wealth of raw, non-annotated, sequence 260 261 data in the public domain. We downloaded a selection of sequence reads from ENA, corresponding to 10 different strains (see Materials and Methods). To identify 262 extrachromosomal replicons, we used graph-based tool for reconstruction of plasmids 263 [23]. We validated this tool on our short read sequence data from our 630Δerm 264 265 sequence (ERR609091)[26] and found that readily identifies the pCD630 plasmid (data 266 not shown). 267

Surprisingly, we found only two strains with a single replicon (i.e. only the chromosome). The other 8 analyzed datasets suggested the presence of at least one other replicon. Strikingly, 6 contained a replicon that shared similarity to pCD630. Of these, 4 could be circularized due to the presence of direct repeats at the ends of the contig and therefore likely represent complete plasmid sequences, as was the case for

272 pCD-ISS1 (Table 1). These plasmids - hereafter referred to as pCD-WTSI1, pCD-273 WTSI2, pCD-WTSI3 and pCD-WTSI4 – are all significantly larger than pCD630 and 274 pCD-ISS1 (Figure 2). The smaller pCD630-like contigs without flanking repeats (that may represent either complete, or incomplete plasmids) were not further studied. 275 To gain further insight in the group of large pCD630-like plasmids, we performed 276 277 an automated annotation of plasmids pCD-WTSI1 (GenBank: MG019959), pCD-WTSI2 278 (GenBank: MG019960), pCD-WTSI3 (GenBank: MG019961) and pCD-WTSI4 279 (GenBank: MG019962). The homology with the small pCD630-like plasmids is confined to the region encoding CDP06-CDP10 of pCD630. Within this region, it is noteworthy 280 281 that the ORF encoding the Arc-type ribbon-helix-helix protein (Pfam: PF12651) CDP09 282 of pCD630 appears to be replaced with another putative DNA binding protein, a helixturn-helix XRE protein (InterPro:IPR010982) in the pCD-WTSI group of plasmids. 283 284 Further, we noted that the CDP06, that encodes a truncated homolog of CDP07. appears to be fused with CDP07 to form a hybrid protein nearly identical in size to 285 CDP07. This suggests that the CDP06-07 arrangement may be the result of an 286 287 (incomplete) gene duplication event. The proteins are putative superfamily 2 helicase 288 fused to an N-terminal CHC2 zinc finger domain, with homology to the corresponding TOPRIM domain of DnaG-like primases. They also contain a third domain of unknown 289 function C-terminal of the helicase domain. 290 291 The pCD-WTSI plasmids all contain a highly similar accessory module of ~8kb. 292 Within this module, notable functions include an integrase (Pfam: PF00589), a 293 recombinase (Pfam: PF00239), a Cro-C1-type HTH protein (Pfam: PF01381), a 294 penicillinase repressor (Pfam: PF03965), and an RNA polymerase sigma factor (Pfam:

PF08281 & Pfam: PF04542). The combination is suggestive of integration of mobile genetic element(s) into the plasmid backbone.

Using a similar strategy, we also analyzed the remaining whole genome sequences in PRJEB2101. This revealed 10 additional strains with a pCD-WTSI group plasmid (total prevalence 14%), and 1 plasmid from the pCD630 group (prevalence 1%) (data not shown). Though we cannot exclude the existence of more small pCD630-like plasmids, we consider it likely that the pCD-WTSI plasmids represent a more widely distributed form of the pCD630-like plasmid family.

pCD630-like plasmids have a modular organization

Above, we have identified 6 plasmids sharing significant homology in a region that encompasses an ORF encoding a putative helicase. Moreover, we have shown that the large and small pCD630-like plasmids are remarkably similar, but that certain genes appear to have been exchanged. Thus, the organization of these plasmids, like those of mobile elements in *C. difficile* [41, 42] and plasmids in other organisms [43], is modular.

None of the pCD630-like plasmids encodes a previously characterized replication protein; yet, it is clear that the plasmid is efficiently maintained in the absence of obvious selection (**Figure 1**). Based on the finding that all 6 plasmids contain homologs of the pCD630 CDP06-10, we propose that this region (or part of it) forms the replicon of the plasmids. The DEAD-DEAH family helicase CDP07 and its homologs, that also contain a CHC2 zinc finger domain (InterPro: IPR002694) that aligns with the corresponding domain in DnaG-like DNA primases, appear to be the most likely candidate to be the replication proteins for this family of plasmids. As noted above, in

the large pCD630-like plasmids the helicase is a CDP06-07 hybrid protein; this may underlie the signals corresponding to these ORFs in microarray and comparative genome hybridization studies, but also suggests that CDP06 itself is probably dispensable for plasmid maintenance. CDP09 is likely also not crucial for the function of the replicon, as it is replaced by another protein in the group of large pCD630-like proteins. It is conceivable that CDP09 and the HTH XTRE proteins serve a regulatory function for instance in controlling the copy number of the plasmids. The small pCD630like plasmids have an estimated copy number of 4-5, based on average read coverage for chromosomal loci and the plasmid contigs. For the large plasmids, this is 9-10. Consistent with a regulatory rather than an essential function, we noted that in a previous microarray identification more strains appear to contain homologs of CDP06-10 than any of the other pCD630 genes, and that several strains harboring CDP06-08 and CDP10 do not contain CDP09 [14]. The same study also found strains that carry homologs of CDP02-03, but not any of the other genes of pCD630. Combined with our observation that this particular region is replaced with a single ORF in pCD-ISS1, suggest that CDP02-03 have been horizontally acquired. In line with this notion, we found that CDP02 has homology to HNH endonucleases (PFAM01844.17), and genes encoding these homing endonucleases are considered as selfish genetic elements [44]. pCD630-like plasmids are common in diverse ribotypes The identification of 6 plasmids carrying a conserved putative replication module,

336

337

338

339

340

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

allowed us to determine the most conserved regions within this module. We designed primers against one such region, to be able to identify pCD630-like plasmids by PCR.

| We tested these primers in a PCR reaction on chromosomal DNA from strains 630Δerr          | n  |
|--------------------------------------------------------------------------------------------|----|
| (WKS1241), yielding a positive signal (Figure 3). Next, we tested a collection of 43       |    |
| strains of diverse PCR ribotypes to see if pCD630-like plasmids could be identified. We    | ;  |
| found DNA from 11 isolates gave a signal similar or greater than our positive control,     |    |
| 630Δ <i>erm</i> (32.6%); this includes strains of PCR ribotypes 012, 015, 017, and 081     |    |
| (Figure 3). Interestingly, strain 630 and derivatives are PCR ribotype 012 as well [7].    |    |
| Those samples that were weakly positive on total DNA, appear negative on                   |    |
| PlasmidSafe DNase treated DNA and are therefore likely false positives. Alternatively,     |    |
| these could represent isolates in which the plasmid is integrated into the chromosome.     |    |
| Isolating and characterizing these plasmids is part of our ongoing work. We noted that     |    |
| strain EK29, that presumably contains a pCD630-like plasmid [15], appears negative in      |    |
| this PCR. We interpret this to mean that the PCR likely fails to detect certain pCD630-    |    |
| like plasmids, suggesting that the actual number of strain containing pCD630-like          |    |
| plasmids may be even higher. Our data suggests that pCD630-like plasmids are               |    |
| common, and not limited to PCR ribotype 010 (strain 7032985) and 012 (strains 630          |    |
| and derivatives). Indeed, our preliminary analysis of the remaining PRJEB2101 whole        |    |
| genome sequences demonstrates that the 11 other putative pCD630-like plasmids are          |    |
| present in strains of 9 different multi-locus sequence types (other than the RT012/ST54    | .) |
| (data not shown).                                                                          |    |
| The high prevalence of pCD630-like plasmids in these strains raises some                   |    |
| interesting questions. There is little to no information on the function of these plasmids |    |
|                                                                                            |    |

in C. difficile cells. The plasmids from the pCD630-family lack characterized

determinants for antimicrobial resistance and are therefore unlikely to play a major role

in drug resistance. Instead, they appear to harbor phage remnants or (partial) mobile genetic elements. It is documented that (pro)phages can modulate the expression of the major toxins [45, 46], affect the expression of cell wall proteins [47] and are upregulated during infection [48]; a role in virulence of *C. difficile* is therefore certainly conceivable.

This study has only looked at plasmids of the pCD630 family and found that it occurs among diverse *C. difficile* strains. Based on our limited survey, we found plasmids in 5 different PCR ribotypes, and in strains of different toxinotypes (including both toxigenic and non-toxigenic strains). It will be of interest to see if the pCD630-family of plasmids is the most common, or that other plasmids are equally widely distributed. A broad survey of available genome sequences will likely reveal other families of plasmids and some of these may be limited to specific strains or clades of *C. difficile*.

The distribution of pCD630-like plasmids suggests that this family was acquired early during the evolution of *C. difficile*, or that the plasmid is capable of horizontal transfer. The pCD630-like plasmids do not encode any characterized conjugation proteins (**Figure 2**); however, they might be transferable dependent on other mobile elements or conjugative plasmids. Of note in this respect is that the mobile element ICE*Bs1* (which is related to Tn*916*, a conjugative transposon common in *C. difficile*) can mobilize plasmids [49], the pathogenicity locus of *C. difficile* can get transferred by a so far unidentified mechanism likely to rely on integrated conjugative elements [50] and in archaea vesicle-mediated plasmid transfer has been documented [51].

Smits et al 18

We found that pCD630-like plasmids are compatible with different replicons (Figure 1C). To our knowledge, no plasmid incompatibility has been described for *C*. difficile and sequence analysis did not reveal clear candidate genes for an incompatibility system in the plasmids analyzed. Considering the high plasmid prevalence (Figure 3), and the fact that existing genetic tools for *C. difficile* depend on the conjugative transfer of shuttle plasmids with a pCB102 or pCD6 replicon [5], one can wonder whether some strains are refractory to genetic manipulation due to the presence of plasmids from an incompatible plasmid group.

## **Conclusions**

In this study we showed that plasmid pCD630 from strain 630 is the paradigm of a family of plasmids that is defined by a module that encodes a conserved helicase. Most of the family members belong to a group that is larger than pCD630, and that differ in their accessory module. Plasmids from the pCD630-family are present in diverse *C. difficile* strains. Our data warrant a comprehensive analysis of laboratory strains and their derivatives for plasmid replicons and in addition a further investigation of pCD630-like plasmids – and plasmids in general - to elucidate their role in virulence and other aspects of *C. difficile* biology.

Smits et al 19

| 409 | Acknowledgements                                                                       |
|-----|----------------------------------------------------------------------------------------|
| 410 | The following people are acknowledged for helpful discussions: Y. Anvar, W. Meijer, M. |
| 411 | Krupovic and the Experimental Bacteriology laboratory of E.J. Kuijper at the LUMC. We  |
| 412 | thank the Wellcome Trust Sanger Institute for sharing unpublished raw data that was    |
| 413 | used in this work via the European Nucleotide Archive. The European Nucleotide         |
| 414 | Archive support desk is acknowledged for updating the AM180356 record to reflect the   |
| 415 | findings of this study. This work was supported by the Netherlands Organisation for    |
| 416 | Scientific Research [VIDI 016.141.310] and Departmental Funds to W.K.S.                |
| 417 |                                                                                        |
| 418 | Supplementary Material                                                                 |
| 419 | Supplementary Material is available for download from the Anaerobe website, and from   |
| 420 | Figshare (https://doi.org/10.6084/m9.figshare.5674540.v1).                             |

#### References

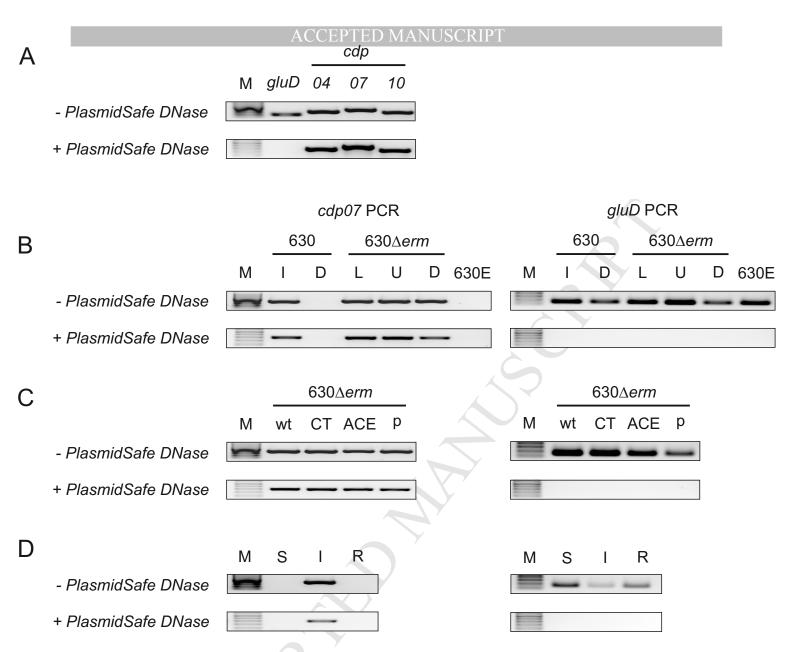
421

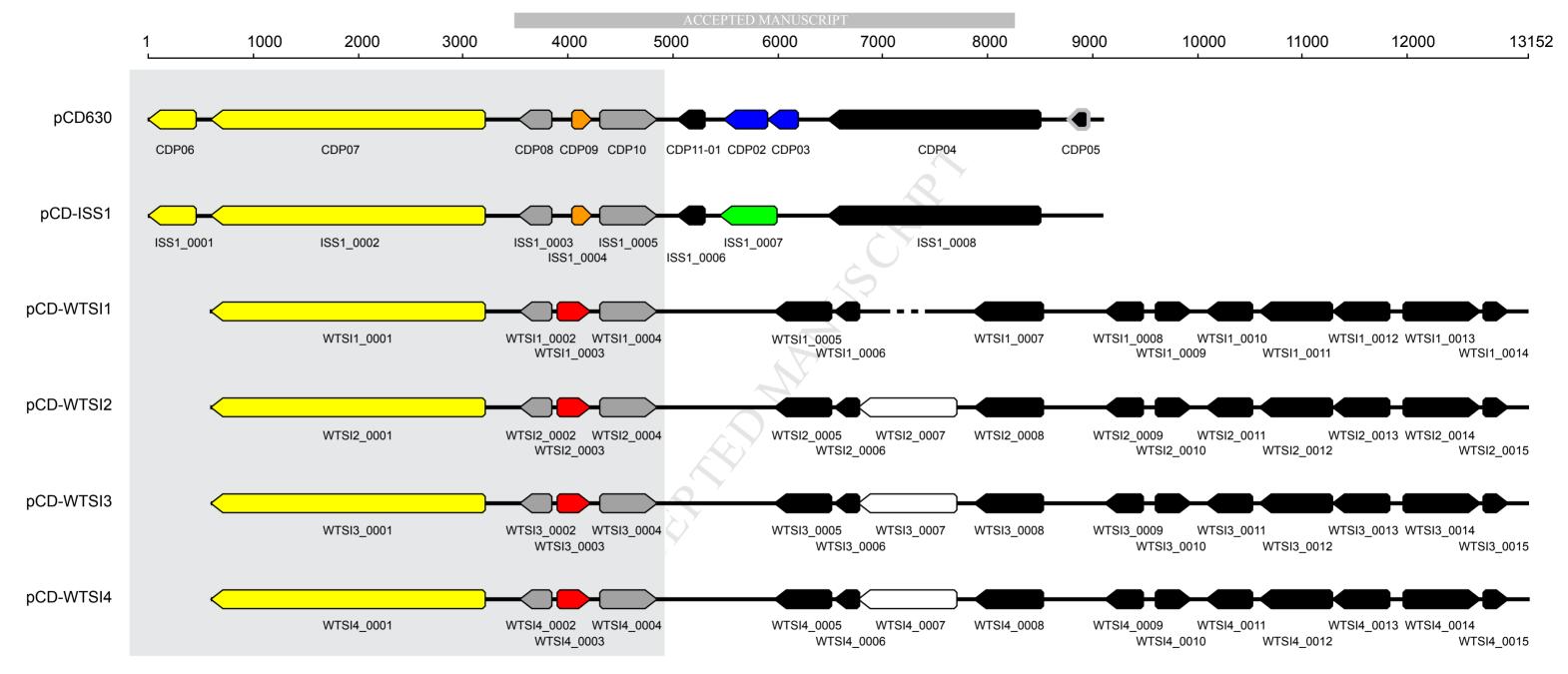
- 422 [1] P.A. Lawson, D.M. Citron, K.L. Tyrrell, S.M. Finegold. Reclassification of Clostridium
- difficile as Clostridioides difficile (Hall and O'Toole 1935) Prevot 1938. Anaerobe 40 (2016) 95-9.
- 424 [2] W.K. Smits, D. Lyras, D.B. Lacy, M.H. Wilcox, E.J. Kuijper. Clostridium difficile infection.
- 425 Nat Rev Dis Primers 2 (2016) 16020.
- 426 [3] C.M. Theriot, A.A. Bowman, V.B. Young. Antibiotic-Induced Alterations of the Gut
- 427 Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore
- 428 Germination and Outgrowth in the Large Intestine. mSphere 1 (2016).
- 429 [4] K. Aktories, C. Schwan, T. Jank. Clostridium difficile Toxin Biology. Annu Rev Microbiol 430 (2017).
- 431 [5] N. Minton, G. Carter, M. Herbert, T. O'Keeffe, D. Purdy, M. Elmore, et al. The
- development of Clostridium difficile genetic systems. Anaerobe 10 (2004) 75-84.
- 433 [6] D. Purdy, T.A. O'Keeffe, M. Elmore, M. Herbert, A. McLeod, M. Bokori-Brown, et al.
- 434 Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile
- through circumvention of the restriction barrier. Mol Microbiol 46 (2002) 439-52.
- 436 [7] M. Sebaihia, B.W. Wren, P. Mullany, N.F. Fairweather, N. Minton, R. Stabler, et al. The
- 437 multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome.
- 438 Nat Genet 38 (2006) 779-86.
- 439 [8] M. He, F. Miyajima, P. Roberts, L. Ellison, D.J. Pickard, M.J. Martin, et al. Emergence
- and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45 (2013) 109-13.
- 442 [9] N. Kumar, F. Miyajima, M. He, P. Roberts, A. Swale, L. Ellison, et al. Genome-Based
- 443 Infection Tracking Reveals Dynamics of Clostridium difficile Transmission and Disease
- 444 Recurrence. Clin Infect Dis 62 (2016) 746-52.
- 445 [10] D.W. Eyre, M.L. Cule, D.J. Wilson, D. Griffiths, A. Vaughan, L. O'Connor, et al. Diverse
- sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med 369
- 447 (2013) 1195-205.
- 448 [11] X. Didelot, D.W. Eyre, M. Cule, C.L. Ip, M.A. Ansari, D. Griffiths, et al. Microevolutionary
- analysis of Clostridium difficile genomes to investigate transmission. Genome Biol 13 (2012)
- 450 R118.
- 451 [12] C.W. Knetsch, T.D. Lawley, M.P. Hensgens, J. Corver, M.W. Wilcox, E.J. Kuijper.
- 452 Current application and future perspectives of molecular typing methods to study Clostridium
- 453 difficile infections. Euro Surveill 18 (2013) 20381.
- 454 [13] C. Clabots, S. Lee, D. Gerding, M. Mulligan, R. Kwok, D. Schaberg, et al. Clostridium
- difficile plasmid isolation as an epidemiologic tool. Eur J Clin Microbiol Infect Dis 7 (1988) 312-5.
- 456 [14] T. Janvilisri, J. Scaria, A.D. Thompson, A. Nicholson, B.M. Limbago, L.G. Arroyo, et al.
- 457 Microarray identification of Clostridium difficile core components and divergent regions
- associated with host origin. J Bacteriol 191 (2009) 3881-91.
- 459 [15] G.L. Marsden, I.J. Davis, V.J. Wright, M. Sebaihia, E.J. Kuijper, N.P. Minton. Array
- comparative hybridisation reveals a high degree of similarity between UK and European clinical
- isolates of hypervirulent Clostridium difficile. BMC Genomics 11 (2010) 389.
- 462 [16] W.N. Fawley, C.W. Knetsch, D.R. MacCannell, C. Harmanus, T. Du, M.R. Mulvey, et al.
- Development and validation of an internationally-standardized, high-resolution capillary gel-
- based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One 10 (2015)
- 465 e0118150.
- 466 [17] D. Hyatt, G.L. Chen, P.F. Locascio, M.L. Land, F.W. Larimer, L.J. Hauser. Prodigal:
- prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11
- 468 (2010) 119.

- 469 [18] K. Lagesen, P. Hallin, E.A. Rodland, H.H. Staerfeldt, T. Rognes, D.W. Ussery.
- RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35
- 471 (2007) 3100-8.
- 472 [19] D. Laslett, B. Canback. ARAGORN, a program to detect tRNA genes and tmRNA genes
- in nucleotide sequences. Nucleic Acids Res 32 (2004) 11-6.
- 474 [20] C. Bland, T.L. Ramsey, F. Sabree, M. Lowe, K. Brown, N.C. Kyrpides, et al. CRISPR
- 475 recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced
- 476 palindromic repeats. BMC Bioinformatics 8 (2007) 209.
- 477 [21] Y. Yin, X. Mao, J. Yang, X. Chen, F. Mao, Y. Xu. dbCAN: a web resource for automated
- 478 carbohydrate-active enzyme annotation. Nucleic Acids Res 40 (2012) W445-51.
- 479 [22] C. Claudel-Renard, C. Chevalet, T. Faraut, D. Kahn. Enzyme-specific profiles for
- 480 genome annotation: PRIAM. Nucleic Acids Res 31 (2003) 6633-9.
- 481 [23] L. Vielva, M. de Toro, V.F. Laza, F. de la Cruz. PLACNETw: a web-based tool for
- 482 plasmid reconstruction from bacterial genomes. Bioinformatics btx462 (2017) 1-3.
- 483 [24] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman. Basic local alignment search
- 484 tool. J Mol Biol 215 (1990) 403-10.
- 485 [25] W.K. Smits. SNP-ing out the differences: Investigating differences between Clostridium
- 486 difficile lab strains. Virulence (2016) 1-5.
- 487 [26] E. van Eijk, S.Y. Anvar, H.P. Browne, W.Y. Leung, J. Frank, A.M. Schmitz, et al.
- 488 Complete genome sequence of the Clostridium difficile laboratory strain 630Deltaerm reveals
- differences from strain 630, including translocation of the mobile element CTn5. BMC Genomics 16 (2015) 31.
- 491 [27] H. Dannheim, T. Riedel, M. Neumann-Schaal, B. Bunk, I. Schober, C. Sproer, et al.
- 492 Manual curation and reannotation of the genomes of Clostridium difficile 630Deltaerm and C.
- 493 difficile 630. J Med Microbiol 66 (2017) 286-93.
- 494 [28] M.M. Collery, S.A. Kuehne, S.M. McBride, M.L. Kelly, M. Monot, A. Cockayne, et al.
- What's a SNP between friends: The influence of single nucleotide polymorphisms on virulence
- and phenotypes of Clostridium difficile strain 630 and derivatives. Virulence (2016) 1-15.
- 497 [29] T. Riedel, D. Wetzel, J.D. Hofmann, S. Plorin, H. Dannheim, M. Berges, et al. High
- 498 metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates. Int J
- 499 Med Microbiol 307 (2017) 311-20.
- 500 [30] J.T. Heap, S.T. Cartman, S.A. Kuehne, C. Cooksley, N.P. Minton. ClosTron-targeted
- 501 mutagenesis. Methods Mol Biol 646 (2010) 165-82.
- 502 [31] D. Bakker, A.M. Buckley, A. de Jong, V.J. van Winden, J.P. Verhoeks, O.P. Kuipers, et
- al. The HtrA-like protease CD3284 modulates virulence of Clostridium difficile. Infect Immun 82 (2014) 4222-32.
- 505 [32] S.T. Cartman, M.L. Kelly, D. Heeg, J.T. Heap, N.P. Minton. Precise manipulation of the
- Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 78 (2012) 4683-90.
- 508 [33] P.T. van Leeuwen, J.M. van der Peet, F.J. Bikker, M.A. Hoogenkamp, A.M. Oliveira
- Paiva, S. Kostidis, et al. Interspecies Interactions between Clostridium difficile and Candida
- 510 albicans. mSphere 1 (2016).
- 511 [34] R.P. Fagan, N.F. Fairweather. Clostridium difficile has two parallel and essential Sec
- 512 secretion systems. J Biol Chem 286 (2011) 27483-93.
- 513 [35] A.M. Oliveira Paiva, A.H. Friggen, S. Hossein-Javaheri, W.K. Smits. The Signal
- 514 Sequence of the Abundant Extracellular Metalloprotease PPEP-1 Can Be Used to Secrete
- 515 Synthetic Reporter Proteins in Clostridium difficile. ACS Synth Biol 5 (2016) 1376-82.
- 516 [36] I. Moura, M. Monot, C. Tani, P. Spigaglia, F. Barbanti, N. Norais, et al. Multidisciplinary
- analysis of a nontoxigenic Clostridium difficile strain with stable resistance to metronidazole.
- 518 Antimicrob Agents Chemother 58 (2014) 4957-60.

- 519 [37] K.R. Hargreaves, M.R. Clokie. A Taxonomic Review of Clostridium difficile Phages and
- 520 Proposal of a Novel Genus, "Phimmp04likevirus". Viruses 7 (2015) 2534-41.
- 521 [38] K.R. Hargreaves, M.R. Clokie. Clostridium difficile phages: still difficult? Front Microbiol 5 522 (2014) 184.
- 523 [39] O. Sekulovic, L.C. Fortier. Characterization of Functional Prophages in Clostridium
- 524 difficile. Methods Mol Biol 1476 (2016) 143-65.
- 525 [40] O. Sekulovic, J.R. Garneau, A. Neron, L.C. Fortier. Characterization of temperate
- 526 phages infecting Clostridium difficile isolates of human and animal origins. Appl Environ
- 527 Microbiol 80 (2014) 2555-63.
- 528 [41] M.S. Brouwer, A.P. Roberts, P. Mullany, E. Allan. In silico analysis of sequenced strains
- of Clostridium difficile reveals a related set of conjugative transposons carrying a variety of
- accessory genes. Mob Genet Elements 2 (2012) 8-12.
- 531 [42] M.S. Brouwer, P.J. Warburton, A.P. Roberts, P. Mullany, E. Allan. Genetic organisation,
- mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced
- strains of Clostridium difficile. PLoS One 6 (2011) e23014.
- 534 [43] R. Fernandez-Lopez, M.P. Garcillan-Barcia, C. Revilla, M. Lazaro, L. Vielva, F. de la
- Cruz. Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid
- 536 evolution. FEMS Microbiol Rev 30 (2006) 942-66.
- 537 [44] D.R. Edgell. Selfish DNA: homing endonucleases find a home. Curr Biol 19 (2009)
- 538 R115-7.
- 539 [45] R. Govind, G. Vediyappan, R.D. Rolfe, B. Dupuy, J.A. Fralick. Bacteriophage-mediated
- toxin gene regulation in Clostridium difficile. J Virol 83 (2009) 12037-45.
- 541 [46] O. Sekulovic, M. Meessen-Pinard, L.C. Fortier. Prophage-stimulated toxin production in
- 542 Clostridium difficile NAP1/027 lysogens. J Bacteriol 193 (2011) 2726-34.
- 543 [47] O. Sekulovic, L.C. Fortier. Global transcriptional response of Clostridium difficile carrying
- the CD38 prophage. Appl Environ Microbiol 81 (2015) 1364-74.
- 545 [48] M. Meessen-Pinard, O. Sekulovic, L.C. Fortier. Evidence of in vivo prophage induction
- 546 during Clostridium difficile infection. Appl Environ Microbiol 78 (2012) 7662-70.
- 547 [49] C.A. Lee, J. Thomas, A.D. Grossman. The Bacillus subtilis conjugative transposon
- 548 ICEBs1 mobilizes plasmids lacking dedicated mobilization functions. J Bacteriol 194 (2012)
- 549 3165-72.
- 550 [50] M.S. Brouwer, A.P. Roberts, H. Hussain, R.J. Williams, E. Allan, P. Mullany. Horizontal
- 551 gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat
- 552 Commun 4 (2013) 2601.
- 553 [51] S. Erdmann, B. Tschitschko, L. Zhong, M.J. Raftery, R. Cavicchioli. A plasmid from an
- 554 Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-
- 555 free cells. Nat Microbiol (2017). 556

| 558 | Figure Legends                                                                                 |
|-----|------------------------------------------------------------------------------------------------|
| 559 | Figure 1. 630 and derivatives can contain pCD630. A. C. difficile 630∆erm [26]                 |
| 560 | contains the pCD630 plasmid. <b>B.</b> Some, but not all, 630-derived strains contain          |
| 561 | pCD630. I=ISS D=DSMZ L=LUMC U=UCL [26]. <b>C.</b> Genetically modified 630Δ <i>erm</i>         |
| 562 | strains still contain pCD630. wt = wild type, CT = Clostron mutant [30, 31], ACE = allelic     |
| 563 | coupled exchange mutant [32, 33], p = containing a replicative plasmid [34, 35]. <b>D</b> .    |
| 564 | Strain 7032985 (intermediate metronidazole susceptible; I) contains a pCD630-like              |
| 565 | plasmid but strains 7032994 (metronidazole susceptible; S) and 7032989                         |
| 566 | (metronidazole resistant; R) do not. For oligonucleotides used, see Materials and              |
| 567 | Methods. M = marker.                                                                           |
| 568 |                                                                                                |
| 569 | Figure 2. Schematic representation of an alignment of pCD630-like plasmids. Full-              |
| 570 | length plasmids identified in this study were aligned. pCD-ISS1 is based on                    |
| 571 | GenBank:LK932541. pCD-WTSI-1 to pCD-WTSI4 are based on short read sequences                    |
| 572 | from ENA:PRJEB2101. The most striking differences are indicated with differently               |
| 573 | colored ORFs. The conserved module encompassing the gene encoding a helicase is                |
| 574 | boxed, the accessory module is indicated with black ORFs. The gray outline of CDP05            |
| 575 | indicates it is annotated in AM180356.1 but is not predicted in our analysis.                  |
| 576 |                                                                                                |
| 577 | Figure 3. pCD630-like plasmids are present in diverse <i>C. difficile</i> strains. A PCR       |
| 578 | was performed against a conserved target region in the putative helicase protein using         |
| 579 | oWKS-1651 and oWKS-1652. The presence of a pCD630-like plasmid results in a                    |
| 580 | positive signal in this PCR. M = marker, EK = EK29 [15], $\Delta erm$ = 630 $\Delta erm$ [26]. |
|     |                                                                                                |


Smits et al 24


582 Tables.

583 584


Table 1. Full length pCD630-like plasmids.

| Name      | Source         | Accessions                      | Size     | Reference        |
|-----------|----------------|---------------------------------|----------|------------------|
| pCD630    | Strain 630     | GenBank: AM180356               | 7881 bp  | [7]; this study  |
| pCD-ISS1  | Strain 7032985 | GenBank: LK932541 (contig)      | 7991 bp  | [36]; this study |
|           |                | GenBank: MG266000 (plasmid)     | 4        | R                |
| pCD-WTSI1 | Not specified  | ENA: ERR017368 (Illumina reads) | 11777 bp | This study       |
|           |                | GenBank: MG019959               |          |                  |
| pCD-WTSI2 | Not specified  | ENA:ERR022513 (Illumina reads)  | 12526 bp | This study       |
|           |                | GenBank: MG019960               |          |                  |
| pCD-WTSI3 | Not specified  | ENA: ERR125910 (Illumina reads) | 12525 bp | This study       |
|           |                | GenBank: MG019961               |          |                  |
| pCD-WTSI4 | Not specified  | ENA: ERR125911 (Illumina reads) | 12488 bp | This study       |
|           |                | GenBank: MG019962               |          |                  |





pCD630-family conserved region



## Highlights

- pCD630 is a member of a larger family of plasmids
- The family is defined by a conserved helicase and is modular
- pCD630-like plasmids are common in diverse C. difficile strains
- pCD630 is not present in all strains derived from the reference strain 630