Submitted to Proceedings of the Royal Society B: For Review Only

PROCEEDINGS OF
THE ROYAL SOCIETY B

BIOLOGICAL SCIENCES

Mosquito bite heterogeneity influences lymphatic filariasis
prevalence, intensity and opportunities for control

Journal:

Proceedings B

Manuscript ID

RSPB-2017-2253.R1

Article Type:

Research

Date Submitted by the Author:

n/a

Complete List of Authors:

Irvine, Michael; University of Warwick, School of Life Sciences; University
of British Columbia, Mathematics

Kazura, James; Case Western Reserve University, Center for Global Health
and Diseases

Hollingsworth, T Deirdre; University of Warwick, School of Life Sciences;
University of Oxford, Big Data Institute

Reimer, Lisa; Liverpool School of Tropical Medicine, Department of Vector
Biology

Subject:

Health and Disease and Epidemiology < BIOLOGY

Keywords:

lymphatic filariasis, bite heterogeneity, vector control, geospatial model,
spatial heterogeneity

Proceedings B category:

Ecology

Note: The following files were submitted by the author for peer review, but cannot be converted to
PDF. You must view these files (e.g. movies) online.

Heterogeneity_paper_postsubmission.tex

ARONE”

http://mc.manuscriptcentral.com/prsb




Page 1 of 21

Submitted to Proceedings of the Royal Society B: For Review Only

Understanding heterogeneities in mosquito-bite exposure and
infection distributions for the elimination of lymphatic filariasis

Michael A Irvine*!?, James W Kazura '3, T Deirdre Hollingsworth*', and Lisa J
Reimer$?

1School of Life Sciences, University of Warwick, UK
Institute of Applied Mathematics, University of British Columbia, Canada
3Center for Global Health and Disease, Case Western Reserve University, Cleveland,
USA
1Big Data Institute, Nuffield Department of Medicine, University of Oxford, UK
®Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK

December 20, 2017

Abstract

It is well known that individuals in the same community can be exposed to a highly
variable number of mosquito bites. This heterogeneity in bite exposure has consequences for
the control of vectorborne diseases because a few people may be contributing significantly to
transmission. However, very few studies measure sources of heterogeneity in a way which is
relevant to decision making. We investigate the relationship between two classic measures of
heterogeneity, spatial and individual, within the context of lymphatic filariasis, a parasitic
mosquito-borne disease. Using infection and mosquito bite data for five villages in Papua
New Guinea, we measure biting characteristics to model what impact bed-nets have had on
control of the disease. We combine this analysis with geospatial modelling to understand
the spatial relationship between disease indicators and nightly mosquito bites. We found a
weak association between biting and infection heterogeneity within villages. The introduc-
tion of bed-nets increased biting heterogeneity, but the reduction in mean biting more than
compensated for this, by reducing prevalence closer to elimination thresholds. Nightly biting
was explained by a spatial heterogeneity model, however parasite load was better explained
by an individual heterogeneity model. Spatial and individual heterogeneity are qualitatively
different with profoundly different policy implications.

Introduction

Heterogeneities in disease transmission play an important role in the epidemiology of vector-
borne diseases and influence opportunities for control. The heterogeneous exposure to mosquito
bites can drive vector-borne disease hotspots [1], and is a crucial factor in the optimal design
of disease control intervention [2]. The degree of exposure heterogeneity can be as important
as mean transmission rates in driving patterns of disease [3], but methods for measuring this
heterogeneity vary and are rarely compared in the same setting [2, 4, 5]. It is also unclear how
best to evaluate the heterogeneity of exposure within individuals in order to inform modelling
and policy [6].
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There are multiple levels of heterogeneity that contribute to the aggregation patterns of dis-
ease observed within a community - spatial heterogeneity, which is largely governed by ecological
variation and environmental conditions [7], and individual heterogeneity, which is governed by
many factors such as socioeconomic, behavioural and physiological variation among hosts [8, 9].
In the context of heterogeneous exposure to mosquito bites, spatial heterogeneity may be due
to landscape, rainfall, breeding site productivity, insecticide use, household size or urbanicity
[1, 10, 11, 12, 13, 14]. Individual attractiveness to mosquitoes will differ by sex, age, size and
variability in human odours [15, 16, 17]. Spatial variation exists at multiple scales [9, 18, 14] -
with different transmission dynamics between neighbouring villages and even between households
[19]. These are rarely studied in the same place or through multiple measures. The transmission
of lymphatic filariasis (LF), a mosquito-borne helminth infection, provides the opportunity to
explore both heterogeneity in bite exposure as well as in parasite burden,. LF affects over 120
million people worldwide but is currently targeted for elimination. Our aim is to evaluate the
multiple sources of heterogeneity which could undermine the LF elimination campaign.

Global efforts to eliminate LF through the mass distribution of ant-helminthic drugs have
resulted in a large-scale reduction of prevalence [20]. However, there are numerous challenges to
achieving LF elimination targets using community-wide treatments. Top down, uniform strate-
gies which aim for a specific intervention coverage or duration, are unlikely to achieve elimination
without appreciation for the significant heterogeneity driving transmission and extinction dy-
namics [21, 22]. For LF, the target of less than 1% mf prevalence set by WHO as a mark of
success gives poor confidence in the probability of elimination [21]. While the recommended
strategy may be sufficient in some areas [23], other areas can require many more rounds [24].
The true threshold prevalence below which transmission cannot be sustained depends on compe-
tence of the dominant vector, vector biting rates and microfilaria intensity [25]. Failure to break
transmission would require community-wide MDA for the duration of the adult worm’s lifespan,
or direct testing and treatment, both of which may be prohibitively costly for a scaled down LF
programme. For successful elimination we require clear targets of the mass drug administration
(MDA) coverage and duration needed to break transmission.

Vector control can increase the likelihood that an elimination campaign of recommended cov-
erage and duration, will achieve local elimination. The breakpoint prevalence of a vector-borne
parasitic disease, below which transmission cannot be sustained, is dependent on vector biting
density [26, 27, 28], so vector control will help to raise the threshold microfilaria prevalence.
Supplementing MDA with vector control was recommended in countries where the burden is the
heaviest [29], and evidence is mounting that vector control should be an essential component of
the global elimination strategy [30]. In addition to reducing vector-borne disease transmission,
vector-based interventions may also influence the spatial patterns of exposure and risk. For
preventive chemotherapy vector-borne diseases such as LF, onchocerciasis and schistosomiasis,
the success of community-wide coverage will be influenced by the degree of aggregation. For
example, higher intervention coverage will be required in communities with highly aggregated
bite risk to ensure appropriate coverage of hotspots [28]. If aggregation in biting differs signif-
icantly from village to village, a uniform strategy may underestimate the coverage required to
break transmission across the implementation area (See Table 1).

Statistical models can be used in order to determine both spatial and individual heterogeneity
within a count distribution [18] (Fig. 1). When individual heterogeneity is high, the count
distribution is heavy-tailed and an individual’s parasite count can be far from the mean. When
the individual heterogeneity is low, the count distribution has a variance similar to the mean.
When both spatial and individual heterogeneities are high, a highly over-dispersed distribution
is produced with a greater than expected number of zeros observed compared to when the
distribution is more spatially homogeneous. The result of the aggregation observed under high
heterogeneity implies that an intervention that does not obtain good geographic coverage and
population coverage may not be able to achieve targets in reduction or elimination. These
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differences in the type of heterogeneity have profound impact on the control and elimination of
parasitic disease, Table 1 outlines the policy implications for each of these scenarios.

Our understanding of the sources of heterogeneity within a vector-borne disease transmission
system is crucial for control and elimination because high heterogeneity is often associated with
a higher basic reproduction number (Rp) and a hard-to-reach threshold at which elimination can
be achieved [31, 22]. However, the effect of heterogeneity on disease prevalence will depend on
numerous factors, including the transmission dynamics of the parasite or pathogen. Malaria par-
asites are cyclopropagative in the mosquito vector, while filarial worms are cyclodevelopmental
with sexual reproduction occurring in the vertebrate host. Malaria transmission is highly effi-
cient and one infective mosquito could successfully transmit malaria to multiple people. Filariasis
transmission on the other hand is inefficient, requiring continuous high exposure to the infective
stage larvae (up to 15 500 bites in one setting [32]) for a patent infection. Filariasis transmission
models show that heterogeneous exposure results in a higher disease prevalence at low mean
biting rates compared to homogeneous exposure, but this relationship changes at higher biting
densities [28]. The threshold biting rate, leading to a non-zero endemic equilibrium, is signifi-
cantly lower with heterogeneous biting [28]. In other words, heterogeneous exposure can sustain
transmission at a comparatively lower prevalence, making it more difficult to break transmission
with community-based interventions. Universal coverage of community-based interventions in a
heterogeneous system may be inefficient, even leading to greater heterogeneity, and not protect-
ing the high risk households [33]. The spread of infection to the broader community from these
households is a threat to elimination programmes and may require the integration of targeted
interventions [34]. Properly implemented targeted control can result in impacts up to 4-fold
higher than untargeted control [5, 33].

Study aims

For elimination programmes to succeed, we must achieve the appropriate coverage, continuity
and combination of interventions to break transmission and prevent resurgence. However, the
approach and target coverage will depend on the aggregation of exposure and disease. It is
therefore imperative to understand the impacts of heterogeneity on disease breakpoints to bet-
ter tailor interventions and elimination campaigns. The aims of this study are twofold: 1) to
determine what drives the heterogeneity in LF prevalence and intensity and 2) to determine
how aggregated biting patterns are influenced by vector control and the implications for LF
elimination. The first aim compares the spatial relationships between breeding sites, anopheline
biting rates and infection prevalence and intensity to determine whether heterogeneity in disease
status is driven by heterogeneity in either spatially-dependent bite exposure or through individ-
ual variation. The second aim considers heterogeneity on a village scale by quantifying spatial
aggregation of mosquito biting in five neighbouring villages before and after bed-net distribu-
tion. The fitted village biting heterogeneities are then used to parameterise an individual-based
transmission model to estimate the implications of bed-net introduction on the sustainability of
ongoing transmission. More broadly, this study aims to evaluate which of our standard mea-
sures and analyses of heterogeneity are most appropriate to evaluate heterogeneities which are
relevant for infectious-disease control.

Figure 1

Methods

In order to understand the causes and effects of heterogeneity on the prevalence of LF and
its underlying intensity we consider two approaches to analyse the heterogeneity of risk and
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Spatial High Low

heterogeneity
Different villages may have Use of sentinel sites can be
drastically different preva- justified. Reduction in one
lence, one cannot be com- village comparable to reduc-
pared to the other tion in another with the same

intervention.
Individual High Low
heterogeneity

Small group of individuals
highly burdened and dispro-
portionately contributing to-
wards ongoing infection. Tar-
geted treatment may be nec-
essary.

Low wvariation in individu-
als implies blanket coverage
would be equally effective.
No small subset of population
driving disease implying sys-
tematic non-adherence less of

an issue

Table 1: Policy consequences for different types of heterogeneity

infection. The first approach considers the non-spatial heterogeneity in bites and mf count by
fitting these distributions by village to an over-dispersed distribution and measuring the amount
of overdispersion for each fit. These fitted distributions for biting density are then applied to an
individual-based model of LF transmission in order to understand how vector control impacts
the ongoing transmission of LF.

The second approach considers how these indicators vary spatially and what the spatial
association is between them in order to understand whether the heterogeneity in disease status
or intensity is driven by spatial heterogeneity, individual heterogeneity or both. This was done by
first fitting a model of individual and spatial variation to each disease outcome (mf prevalence,
mf intensity and antigenic prevalence) in turn. A combined model was then used where the
spatial variation is dependent on the biting density.

Figure 2

Study Sites

Five villages in the East Sepik Province of Papua New Guinea have been the focus of extensive
research into filariasis epidemiology and transmission [35, 36, 37, 21]. These villages received
annual mass drug administration from 1993 through 1998, with no further interventions until
LLINs were distributed in August 2009. Self reported LLIN use ranged 75%-90% [38].

Infection Prevalence

Antigen prevalence and microfilaria prevalence were measured in these communities in 2008 as
part of the post-MDA evaluation [38]. This was done by BinaxNow filariasis antigen test and
by microscopic evaluation of 1 mL filtered venous blood, collected at night (2100 - 0300). The
age and sex of participants were recorded as well as the time of blood collection. The GPS
coordinates of all households were recorded.
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Mosquito Collection

Mosquitoes were collected monthly by the human landing catch method from July 2007 through
July 2010 as described by [38]. Villages were divided into four quadrants and houses were chosen
from each quadrant every month for even sampling across the village. Mosquitoes were collected
in the front of the house from July 2007 through July 2010. Quarterly collection continued in
Nanaha and Yauatong through December 2011. The total collection effort ranged between 40
and 48 collection nights. All host-seeking anophelines were included in the density summary.
Anopheles punctulatus comprised the majority of mosquitoes collected, additional members of
the An. punctulatus group included An. koliensis, An. hinesorum, An. farauti 4 and An. farauti
s. s. [39].

All temporary and permanent breeding sites were geolocated. These breeding sites were
further categorized as confirmed or potential depending on the presence of anopheline larvae at
the time of the survey.

Non-spatial modelling

To determine the heterogeneity at each village before and after the distribution of bed-nets, a
negative binomial distribution was fitted to both the mf count & bite data, parameterised by the
mean m, and the heterogeneity parameter k. Here, a smaller k£ indicates a more over-dispersed
distribution and a higher £ indicates a less dispersed or more Poisson-like distribution. For a
count n the probability distribution is defined as

P(N =n) = m (% + 1)_k_” (%)" (1)

The negative-binomial distribution was fitted to each village-level count data using a maximum
likelihood approach. For the nightly mosquito catches, the data were stratified before and after
LLINs were distributed as a further measure of the impact of vector control on heterogeneity.

Infection transmission model

In order understand the fitted heterogeneity k& and mean biting density before and after the
introduction of bed-nets in the context of disease transmission, the results were compared to an
established model of LF transmission, TRANSFIL [28]. The model is a multi-scale stochastic
simulation of individuals with worm burden, microfilaraemia and other demographic parameters
relating to age and risk of exposure. Humans are modelled individually, with their own male
and female worm burden. The density of mf in the peripheral blood is also modelled for each
individual and is dependent on the number of female worms. The total mf density in the popu-
lation contributes towards the instantaneous density of L3 larvae in the human-biting mosquito
population. This density combined with the mosquito biting rate and an intrinsic factor that
varies between individuals determines the probability of an individual being infected with a new
adult worm. See [28] for a full model description.

Spatial modelling

In order to determine how much spatial variation and individual variation contribute towards
differences in disease status between individuals a number of geospatial models were imple-
mented. These models take into account for distance to breeding sites, anopheline biting rates
and infection prevalence and intensity. The first group of models compare the measured disease
statuses dependent on a random spatially-varying risk. The second group of models combine
together the biting density and disease status, by assuming that spatial variation in status is
determined by the biting density alone.

http://mc.manuscriptcentral.com/prsb
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Gaussian Process The underlying spatial variability (in mosquito bites, mf intensity, para-
sitaemia and antigenaemia) is modelled using a Gaussian process S(x;) for each spatial location
x;. A Gaussian process describes the spatial relationship between different spatial locations and
is defined as, given a set of locations {z;}, the probability of observing the set {S(x;)} is a mul-
tivariate Gaussian probability with zero mean and a defined covariance function. For flexibility
and computational reasons a Matérn covariance function was used, which is defined as

0_2

Cov(S(@i), S(2))) = 577

(Kl — 251)" Ko (Kll2: — 41)), (2)

where K, is a modified Bessel function of the second kind and order v > 0. The Matérn
covariance function has three free parameters which control the marginal variance, the distance
of spatial correlation and the sharpness of the function. These parameters can be combined to
give the distance at which there is less than 10% correlation between two points, which is given
as v/8v/k. This is referred to as the practical range.

Modelling distance to breeding sites A second set of data includes the spatial locations of
sites that may contribute to mosquito breeding. These sites include pig houses, creeks, gardens
and garden houses. Although the locations for these data and for the household bite data do not
match up in terms of their geolocations. In order to circumvent this problem, we may instead
use the minimum distance to a breeding site as a covariate to inform the models. All breeding
sites are assumed to be equivalent, whether they contained anopheline larvae or not, as there
are only a limited number of sites and so as to increase power of the covariate.

Random walk latent model for breeding site distance The relationship between mini-
mum distance to breeding sites and the number of bites was found to be non-linear (See supple-
mentary). In order to capture the full complexity observed in this relationship a more general
functional form of the distance d; was used i.e. f(d;). For this functional form, distances were
split into a discrete lattice of points. Each lattice point &, then has a corresponding coefficient xy,
related to the the nightly bites through the log intensity in the negative-binomial. The assumed
model was a random walk of length one, i.e. zx41 ~ N(z,02). The fitted function f(d;) then
returns the coefficient , corresponding to the nearest lattice point to the actual distance d;.

Infection status and mosquito catch models Both the infection status of each individ-
ual and the mosquito nightly bites were modelled separately using a generalized linear model
including fixed effects for each observed variable (supplementary Fig. 1). The general form of
the model is, given a set of observations {y;} at spatial locations {z;}, the outcomes y; have the
distribution

Yilm; ~ X (m;) (3)

For a general random variable X, with underlying mean m;. The mean is also a random variable
with the following structure

f(mg) ~ Zﬁj%’j + S(w;), (4)

where f is a link function transforming the mean from the positive numbers to the entire real
line. z;; is the j-th covariate for the i-th data-point and 3; is the regression coefficient for the
j-th covariate, which also includes an intercept. S(z;) is the Gaussian process as previously
defined.

For both the mosquito bite model and the mf count model, the random variable X that the
observations are drawn from is assumed to be negative binomial with aggregation (heterogeneity)
parameter k. The microfilaraemia and antigenaemia models have observations that are either
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positive (1) or negative (0) and hence the observations are assumed to be drawn from a Bernoulli
random trial, i.e.
P(X = zlm) = m®(1 —m)'™*. (5)

The link function for the negative-binomial models was taken to be log and the link function
for the Bernoulli models was taken to be logit.

The fixed effects for each model considered for the infection status models were the distance
to breeding site, age of the individual and the sex of the individual. For the mosquito bite model
the covariates included were the presence or absence of bed-nets and the distance to breeding
site.

Combined model The models for the infection status were generalised to have this Gaussian
process derived from the mosquito catch data, rather than including an independent spatial
Gaussian process. The two-level hierarchical structure incorporates both the disease status for
an individual Y; and the bites at household locations B;. Both observations are drawn from their
own random variables X and Y, with underlying means m; and n; respectively. The random
variables are connected through a linear model structure of these two means with their covariates
combined with a GP fitted to the transformed bite means. This GP is related to the infection
status mean through the coefficient 7, which measures the dependency of the infection status
mean on the underlying spatial distribution of bites conditioned on the fixed effects of the bites.
Mathematically, the model is defined as

Yilmi ~ X (mi), (6)
f(mi) ~ ) Bizig +nS (i) + uiy (7)
J
g(ng) ~ > Gizrg + S(u)- (9)
J

Here the underlying Gaussian process is assumed to capture the distribution of bites and is fitted
to both the bites and infection status simultaneously. 7 gives the strength of the dependency
on the underlying spatial structure of bites on infection status and wu; is a random effect with
variance o2 used to capture the variation observed in the infection status that isn’t capture by
the bite data.

Model fitting The model fitting was performed using the R-INLA package [40]. This imple-
ments an Integrated Nested Laplace Approximation (INLA) method, which is a faster alternative
to Markov Chain Monte Carlo (MCMC) for certain classes of models. The package also approxi-
mates the Gaussian process as a Gaussian Markov Random Field (GMRF'), which approximates
the continuous space used in GP, by a discretisation of space using a triangulation based on
the spatial location of the data points [41, 42, 43]. The spatial model fitting also provides an
estimate of the underlying mean and variation across space.

Model comparison In order to systematically compare the spatial and non-spatial variants
of the mosquito nightly catches (bites) and mf, the Akaike Information Criterion (AIC) was used
to assess which model produce a better fit to the data [44]. This is defined as

AIC = 2k — 2log(L), (10)
where L is the maximum likelihood of the model and & is the number of model parameters. Two

AIC were compared by taking the difference of the two.
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Results

Lymphatic filariasis antigen prevalence, microfilaria prevalence and intensity were collected from
all consenting community members (n=1046 individuals). Nightly biting data were collected
from 170 households with 2180 sampling nights total.

Heterogeneity within villages

Figure 3

A negative-binomial distribution was fitted independently to bite counts in each village
before and after the introduction of bed-nets (LLIN) (Fig.-3a). There is significant variation in
the heterogeneity between villages pre-LLIN. A reduction in k, corresponding to an increase in
heterogeneity is observed across most villages. Where this reduction is significant is in Albulum,
Nananha, Ngahmbule and Yauatong. For Peneng, there is observed a reduction in the maximum
likelihood estimate of k, although the confidence intervals of the estimate overlap.

To determine whether aggregated biting patterns were associated with an aggregated parasite

Page 8 of 21

population, we compared the pre-LLIN bite rate heterogeneity with the mf count heterogeneity(Fig.-

3b). There was observed a large amount of variation in the mf count heterogeneity, with Nanaha
and Nghambule less than 0.0125 and Peneng, Yauatong and Albulum with heterogeneity greater
than 0.03. The heterogeneity in the mf counts is significantly greater than the bites in all cases.
There is a positive relationship between the two heterogeneities, although the correlation is
extremely weak (correlation coefficient 0.012).

Impact on elimination

Figure 4

How the change in the vector to host ratio and the heterogeneity in bites after the intervention
of bed-nets was explored using the stochastic model of LF transmission TRANSFIL [28]. The
number of rounds to 1% microfilaraemia (which is used as an assessment for halting MDA [45])
and the prevalence at baseline before the start of any intervention were calculated across a range
of bite heterogeneity and vector to host ratio values (Fig. 4). The threshold at which transmission
is broken and infections are no longer sustained in the population was also calculated from these
simulations. For increased heterogeneity, a smaller vector to host and therefore mean monthly
bite rate can sustain transmission. However, for decreased heterogeneity the vector to host ratio
required to sustain infection increases. The effect of bed-nets can be seen to both reduce the
vector to host ratio as well as increase the heterogeneity of bites, although for the villages in the
study, the reduction in the vector to host ratio more than offsets the increased heterogeneity.
Fig. 4b highlights the number of rounds required to pre-TAS without any prior intervention.
For high heterogeneity many more rounds would be required than for the equivalent bite rate at
smaller heterogeneity. The impact of bed-nets can clearly be seen to rapidly reduce the number
of rounds required in each village. The range in predicted rounds between villages is also large,
this is however reduced by the introduction of bed-nets.

Spatial modelling

With a weak but positive association between heterogeneous biting and heterogeneous infection,
we sought to determine whether this pattern could be interpreted due to spatial variation.
Spatial heterogeneity was therefore explored for both the bite distribution and distribution of
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mf count, microfilaraemia and antigenaemia. The fixed effects considered for each of the infection
status spatial models were sex of the individual, age of the individual and the minimum distance
to breeding site. For the spatial mosquito catch model, both the presence of LLIN and distance
to breeding site were considered as fixed effects. There was found to be no significant seasonal
trend in bites and hence month at which bite survey was conducted was not included. There
was also found to be no significant trend in the time at which bleeds were taken and hence this
was also not included.

For the infection status models, age was found to be statistically significant in all cases
(p < 0.001), although with a small effect in all cases. Sex of the individual was found to only
be marginally significant (p = 0.15,0.05,0.02 for microfilaraemia, antigenaemia and mf count
respectively), with males having an increased risk of microfilaraemia, antigenaemia and mf count.
The distance to breeding site was not found to be significant for any of the cases.

For the spatial mosquito catch model the presence of LLIN was found to be statistically
significant, with the presence of bed-nets decreasing the coefficient by 76%. The distance to
breeding site were both not statistically significant and had very small effect compared to the
intercept. The overall calculated k for the infection status mf count model was estimated at 0.05,
with a standard deviation of 0.0043 and the k for the bites model was estimated to be 0.73 with
a standard deviation of 0.035. The overall heterogeneity in both cases was therefore broadly in
keeping with the estimates of the villages separately, where the mf count heterogeneity varied
between 0.05 and 0.01 and the heterogeneity of bites for the villages where the mf surveys were
conducted was between 0.9 and 0.3.

The fitted spatial model also provides an estimate of the mean intensity for infection status
and bites across space (Fig. 3c&d). The estimated bite rate intensity is distributed around
Yauatong, with a maximum bite rate of around 60 (Fig. 3d). This decreases smoothly to zero
out towards Ngahmbule to the South-East and Peneng to the North-West. By contrast, both the
prevalence of antigen and mf have the highest intensity around Peneng in the North-West, with
a smooth decrease down towards Ngahmbule. Both prevalence spatial patterns exhibit different
underlying intensity. There is a significant increase in antigenaemia around Yauatong, with a
similar, but less pronounced increased risk of microfilaraemia. The uncertainty in prevalence of
mf is high for Peneng, Albulum and Yauatong in the North-West and small in the South-West
(near Yauatong), where the mean prevalence is around 40%. The mf count mean is more varied
than for the other distributions, with high intensity areas around the southern part of Yauatong,
Albulum and the South-East perimeter of Peneng. Ngahmbule and Nanaha have the lowest mf
count matching with the lowest villages for antigenaemia and bite rate. Peneng has high levels
of antigenaemia and mf count, however is the lowest for bites.

In order to understand the difference in spatial scale between infection status and bites, the
fitted covariance structure from the mf count spatial model was compared to the structure from
the bite model (supplementary Fig. 1). The practical range for the mf spatial correlation was
smaller than the range for the bites (0.014° to 0.008° or ~ 1.5km to ~ 0.9km). The difference
in the marginal (non-spatial) variance is also great, with the variance for the mf field 0 = 38
and the variance for the bites, 02 = 5. there was found to be no significant difference between
the fitted x (sharpness of covariance) between the mf and bite count.

The change in AIC between the spatial and non-spatial model for mf was 1308.26, whereas
for the bites model was -352.03 indicating the bite distribution is better explained by a spatial
model and mf count is better explained by a non-spatial model.

Combined model In the final analysis the bite data and infection status data were combined
to produce a bite count dependent spatial field that is also used to predict the distribution
of mf count, antigenaemia and microfilaraemia separately. The fixed effects used in the first
spatial analysis were kept for the combined model. All fixed effects were found to have a similar
strength and significance as in the separate models. The coefficient that described the strength
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of the bite rate spatial field on the outcome of the disease status spatial distribution was also
calculated. These coefficients were found to be significant for mf count, microfilaraemia and
antigenaemia. The largest dependency was for mf count (1.71 (1.38, 2.06) ), with antigenaemia
the second strongest (1.17 (1.13, 1.21)) and microfilaraemia the weakest (1.00 (0.96, 1.00) ).
A spatially-independent random effects term was also included in the model to account for all
variation not already accounted for by the fixed effects or the spatial distribution produced by
the bites model. These were found to be negligible in all cases.

Discussion

The primary aim of the study was to determine whether heterogeneous biting activity drives
the observed heterogeneity in Lymphatic filariasis (LF) prevalence and intensity. We observed
a much more complex picture than previously expected, with heterogeneity being driven by
both spatial biting patterns and individual processes. The secondary aim was to determine how
aggregated biting patterns are influenced by vector control and determine the implications for
LF elimination. Combining a statistical and modelling approach, we demonstrate that vector
control increases heterogeneity while also uniformly reducing biting. This resulted in decreased
variability in the predicted number of years required to achieve elimination between neighbouring
villages in Papua New Guinea.

Heterogeneity poses numerous challenges to global elimination programmes that rely on
broad scale mapping to inform distribution of community-wide interventions. Heterogeneities in
exposure and infection are well-known drivers of persistent disease transmission. Diseases such
as LF have complex ecological interactions that can lead to threshold behaviour, where sustained
transmission is dependent on biting density or parasite load [25]. The basic reproduction number,
Ry is expected to be greater under heterogeneous biting [46]. The probability of re-introduction
of a disease in a fully susceptible population can also have a non-linear relationship with the
basic reproductive number of the infection [47]. The potential for transmission can be dependent
on heterogeneous exposure (some people bitten by mosquitoes more than others), poor mixing
(non-random contacts between hosts and mosquitoes), and finite population sizes (each host can
contribute at most one new infection towards the population total) [48].

Heterogeneities in infection can complicate disease surveillance programmes since public
health infection mapping is usually performed at village/town level, while interventions are often
implemented on a broader administrative level. Data aggregated by population can hide the
true patterns which are more apparent when data are considered in a spatially-explicit fashion.
It is therefore imperative to understand the relationship between the underlying heterogeneity
for these scales and how this heterogeneity impacts the efficacy of interventions [18]. Spatial
and individual heterogeneity should be considered in order to ensure implementation policy is
appropriate to local transmission and epidemiology (Table 1).

Individual heterogeneity of infection in a population reduces the likelihood that community-
wide interventions are protecting the highly exposed. As a result there is a lower threshold mf
prevalence required to break transmission and a greater likelihood that high density infections
in a few individuals can seed new infections. (Fig. 1). Spatial heterogeneity can also conflate an
elimination campaign, as there may be regions of high disease burden adjacent to regions with
low rates of transmission. This poses a significant challenge when sentinel and spot-check sites
are used to determine the prevalence for an entire region for the purposes of implementation
[49]. This may lead to limited resources being wasted on MDA distribution in villages that have
lower than threshold prevalence, while possibly missing areas that will require a longer duration
of MDA to break transmission.

We observed a strong spatial correlation between biting density and antigenemia, which
captures current or prior presence of adult worms, including amicrofilaremic infections. While
biting density was also significantly associated with microfilaria intensity, this association was
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weaker than for either antigen or microfilaria prevalence, indicating a weak relationship between
high exposure to mosquito bites and intensity of infection. Although the distance to breeding site
was not statistically significant for infection status or bites, there is a stronger mean effect from
the bite counts than from the infection status. The distance to breeding site would naturally
be more associated with biting density, whereas infection status is more strongly dependent on
other factors and hence the weaker regression effect. As current microfilaria intensity is the
result of fecund adult worms that have established after years of exposure to infective bites,
long-term changes in the mosquito population may not be taken into account from the current
distribution of breeding sites. Previous studies in these study villages has shown that high
density infections are associated with reduced strain variation, and are not necessarily due to
multiple adult worms [50]. Host immunity or W. bancrofti strain fecundity likely play a greater
role in the intensity of microfilariae.

In our study heterogeneity in bite exposure varied substantially from village to village before
the LLIN distribution, and this was associated with wide-ranging predictions on the number
of rounds of MDA required to break transmission. Heterogeneity increased significantly after
the introduction of LLINs in all villages except the one village with very low pre-LLIN biting
rates, resulting in a very similar heterogeneity parameter across the five villages. The greater
heterogeneity observed post-LLIN in all communities is associated with a transmission threshold
at a lower mean biting rate. In this particular transmission system, the reduction in vector
density caused by the LLIN distribution compensated for this change in threshold biting rate.
However, it does highlight the extreme importance of considering heterogeneity in elimination
strategies, because changes in heterogeneity cause elimination targets to move. Globally there
are b4 countries engaging in preventative chemotherapy for the elimination of LF [51] and each
of these countries will need to decide when to stop MDA and switch to long-term surveillance.
That decision will be made based on the available evidence that microfilaria prevalence has fallen
below 1% in sentinel villages but there is a risk that the minimum duration of MDA will differ
significantly between neighboring villages.

Statistical models can help shed light onto the complex factors that contribute towards het-
erogeneity in disease-burden and transmission [52]. While heterogeneity in the vector population
can lead to a particular aggregated exposure, there is an assumption that aggregated exposure
leads to an aggregated burden of infection. In transmission models for macroparasites, there
is usually an explicit distribution of risk across individuals in the same community, but it is
often parameterised against the resulting distribution of infection burden rather than vector
data [53, 54, 28]. Here we have demonstrated that factors including individual and spatial
heterogeneity can all contribute towards the perceived variation in the aggregated distribution
(Fig. 1). Although here bites are measured at the household as opposed to the individual-level,
these results suggest that modelling should more explicitly take into account other aspects that
lead to the final distribution, such as strength of infection-blocking immunity. However, we
acknowledge that variation in infection burden has been much more frequently measured than
variation in vector biting rates, due to understandable practical challenges, and therefore this
may be the best way to proceed in the absence of more vector data. In other vector-borne
disease, heterogeneity in exposure is rarely explicitly included in transmission models, despite
a number of measurements and theoretical studies highlighting its importance [1, 3, 5, 7]. Our
study once again demonstrates the likely impact of these heterogeneities and the need for more
epidemiological and entomological studies performed at the same time and in the same place.
While these data are challenging to interpret, larger studies would allow us to identify the right
correlates of current transmission rates and the likely impact of control.
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Conclusion

Understanding the sources of heterogeneity is important in both disease modelling and ultimately
in the control and elimination of a disease. We have comprehensively demonstrated here that
individual and spatial heterogeneity can impact disease prevalence and intensity in different
ways and has direct implications to policy. There are many logistical and financial challenges to
sustaining long term MDA campaigns in a setting like Papua New Guinea, where communities
are hard to reach and Departments of Health have competing priorities. The risks of resurgence
if programmes fail to break transmission thresholds would compromise the gains already made
by global elimination efforts. Therefore, knowledge of the degree of heterogeneity is necessary to
understand where transmission thresholds lie, and understanding the sources of heterogeneity is
essential to designing and delivering interventions with the greatest chance of success.
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Figure legends

Figure 1. Teasing apart different types of heterogeneity. Size of houses represent relative risk
in space and size of people represent relative risk in individuals. A Gaussian process is used to
simulate the mean rate (e.g. biting rate) across space, with both high (left-hand side) and low
(right-hand side) variance. Compounding this is the variance around the mean at each spatial
location, which is referred to as intrinsic heterogeneity. Example probability distributions with
a mean of 10 and high and low heterogeneity are shown across the middle. Example outcomes
for the four cases are given in the bottom row. How count data is aggregated and whether there
is heterogeneity amongst individuals (individual) and/or amongst space leads to qualitatively
different forms of count distributions. Policy implications for each of these situations are de-
scribed in table 1.

Figure 2. Overview of heterogeneity data used in the study. (a) Nightly bite total by village.
(b) Distribution of mf count by village. (c) Spatial distribution of bites with colours on a log
scale (distance approximately 13kmx6km). (d) Spatial distribution of mf intensity with colours
on a log scale (distance approximately 13kmx6km). The spatial data indicates Yauatong is a
hotspot for biting and Albulum and Yauatong are a hotspot for the presence and intensity of mf.
Grey values in ¢ & d indicate zero values for the nightly bites and mf concentration respectively.

Figure 3. Comparing heterogeneity of disease and mosquito bites at village and spatial lev-
els. (a) Comparison of the heterogeneity as measured from the negative-binomial distribution
for before and after bed-nets and (b) bites pre-LLIN compared to heterogeneity in mf count
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amongst individuals in the village population. The maximum likelihood estimates for each are
given as points with 95% confidence intervals given as error bars. Spatial fits of hierarchical
model for (¢) mf count and (d) nightly bite rate.

Figure 4. Comparison between the theoretically predicted (a) prevalence at baseline and (b)
number of rounds until reaching pre-TAS levels for varying heterogeneity and vector to host ra-
tio. The red and yellow dots represent the fitted bite data before and after bed-nets respectively.
The theoretical threshold for the break in transmission is shown as a red dotted line. LLINs
caused a reduction in biting density and an increase in heterogeneity, which is associated with
fewer rounds of MDA to cross the threshold.
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