Supplementary Material: Model-based Inference From Multiple Dose, Time Course Data Reveals *Wolbachia* Effects on Infection Profiles of Type 1 Dengue virus in *Aedes aegypti*.

Caetano Souto-Maior^{1@¤*}, Gabriel Sylvestre^{2®}, Fernando Braga Stehling Dias³, M. Gabriela M. Gomes^{4,5} Rafael Maciel-de-Freitas²

 Instituto Gulbenkian de Ciência, Oeiras, Portugal
Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
Gabinete da Presidência, Fiocruz, Rio de Janeiro, Brazil
CIBIO-InBIo, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
Liverpool School of Tropical Medicine, Liverpool, United Kingdom.

These authors contributed equally to this work.
¤current address: National Heart, Lung, and Blood Institute, Bethesda, MD, USA
* correspondence: caetanosoutomaior@protonmail.com

Mosquito numbers and subgrouping data tables

A total of 616 mosquitoes were divided by symbiont status (absent, $w \text{Mel}\,TET$ colony, and present w MelBR) into two groups of approximately half that size, and challenged with five different DENV-1 doses plus mock-infected controls injected with culture medium. These numbers are shown in table A.

		dose $(TCID_{50}/ml)$						
	time point	10^{4}	10^5	10^{6}	10^{7}	10^{8}	ctrl	total
$w \operatorname{Mel} TET$	all	54	51	55	49	57	38	304
chanenged	2 d n i	0	9	0	10	0	0	10
	3 d.p.1.	9	3	8	12	8	8	48
$w \operatorname{Mel} TET$	7 d.p.i.	12	3	8	10	9	1	43
qPCR	14 d.p.i.	4	3	7	6	14	3	37
assayed	all	25	9	23	28	31	12	128
	(row sum)							
$w \mathrm{Mel} BR$	الد	51	57	55	54	55	40	319
challenged	an	01	51	00	94	00	40	512
	3 d.p.i.	12	11	9	9	13	11	65
$w \mathrm{Mel} BR$	7 d.p.i.	6	10	10	10	10	6	52
qPCR	14 d.p.i.	7	4	8	10	14	6	49
assayed	all	25	25	27	29	37	23	166
·	(row sum)							

Table A. Number of mosquitoes challenged and assayed for viral titers

Linear regression for factor effects

We use a generalized linear model as a baseline for significance of the factors included in the experimental design: dose, time, and presence or absence of the *Wolbachia* symbiont. The model is of the following form:

$$log\mu = dose + time + symbiont \tag{1}$$

errors are assumed to follow a Poisson distribution, like the main model, and significances of the factors were computed with a likelihood ratio test between the model shown above, and a model that does not include any of the terms for which the significance is being tested (e.g. $log\mu = dose + time$ is used as a reduced model to test significance of symbiont presence). All factors showed high significance (p < 0.001) under this linear model.

Fig A. Viral levels in symbiont-carrying mosquitoes. DENV-1 viral titer data for w MelBR group (colors) overlaid to that of the w MelTET group (light gray)

Fig B. *Wolbachia*/**DENV-1** level correlation. Correlations between DENV-1 and *Wolbachia* titers displayed as per-dose subsets in separate panels for each dose and time point – color code follows that of the raw data.