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15 ABSTRACT

16 The ability to manipulate the Anopheles gambiae genome and alter gene expression effectively and 

17 reproducibly is a prerequisite for functional genetic analysis and for the development of novel control 

18 strategies in this important disease vector. However, in vivo transgenic analysis in mosquitoes is 

19 limited by the lack of promoters active ubiquitously. To address this, we used the GAL4/UAS system 

20 to investigate the promoter of the An. gambiae Polyubiquitin-c (PUBc) gene and demonstrated its 

21 ability to drive expression in mosquito cell culture before incorporation into An. gambiae transgenic 

22 driver lines. To generate such lines, piggyBac-mediated insertion was used to identify genomic 

23 regions able to sustain widespread expression and to create φC31 docking lines at these permissive 

24 sites. Patterns of expression induced by PUBc-GAL4 drivers carrying single intergenic insertions were 

25 assessed by crossing with a novel responder UAS-mCD8:mCherry line that was created by φC31-

26 mediated integration. Amongst the drivers created at single, unique chromosomal integration loci, two 

27 were isolated that induced differential expression levels in a similar multiple-tissue spatial pattern 

28 throughout the mosquito life cycle. This work expands the tools available for An. gambiae functional 

29 analysis by providing a novel promoter for investigating phenotypes resulting from widespread multi-

30 tissue expression, as well as identifying and tagging genomic sites that sustain broad transcriptional 

31 activity. 
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36 1 Introduction 

37 Anopheles gambiae mosquitoes are the major vectors of malaria in the sub-Saharan Africa which 

38 accounts for most of the global malaria cases and related deaths (WHO, 2016). While a remarkable 

39 reduction in malaria incidence and mortality has been achieved in recent years (Bhatt et al., 2015), 

40 the spread of resistance to insecticides and antimalarial drugs poses a major challenge, and the latest 

41 report suggests that progress has stalled (WHO, 2017). Therefore, innovative methods for malaria 

42 control based on genetically-modified mosquitoes open a promising prospective (Hammond et al., 

43 2016). Such strategies are enabled by the growing abundance of genomic and transcriptomic data 

44 combined with the ability to effectively reprogram gene expression in An. gambiae. Nevertheless, 

45 tools for in vivo functional analysis to examine the role of genes in affecting a phenotype are limited, 

46 and mosquito transgenic analysis remains a demanding task due to the labor-intensive husbandry of 

47 continuous lines.

48 Binary systems such as the GAL4/UAS (Brand and Perrimon, 1993) can be used in insects for ectopic 

49 gene expression or silencing in spatially and/or temporally controlled patterns. The GAL4/UAS system 

50 comprises two transgenic components, a driver or GAL4 and a responder or UAS, inserted in 

51 separate transgenic lines (Fig. 1A). The driver line carries the yeast transcription activator GAL4 

52 under the control of a specific promoter; the responder line contains an Upstream Activating 

53 Sequence (UAS) that serves as GAL4 binding site and activates the transcription of a target gene 

54 located downstream. Expression occurs only in the progeny resulting from the cross of driver and 

55 responder lines in the transcription pattern dictated by the selected promoter. The modular nature of 

56 the system offers several advantages compared to linear transgene expression including amplification 

57 of gene expression, creation of lines bearing toxic genes, and repeated use of lines for combinational 

58 crosses. Since the first applications in Drosophila melanogaster (Brand and Perrimon, 1993; Piccin et 

59 al., 2001), the GAL4/UAS system has been applied to Bombyx mori (Imamura et al., 2003), Tribolium 

60 castaneum (Schinko et al., 2010), Aedes aegypti (Kokoza and Raikhel, 2011), An. stephensi 

61 (O’Brochta et al., 2012), as well as An. gambiae (Lynd and Lycett, 2011) for gene overexpression 

62 (Lynd and Lycett, 2012).

63 However, gene functional analysis using the GAL4/UAS system is restricted by the limited set of 

64 functionally-characterized promoters incorporated in An. gambiae driver lines. Indeed, while 

65 promoters specific for several mosquito tissues have been characterized [midgut (Moreira et al., 2000; 

66 Kim et al., 2004; Abraham et al., 2005; Nolan et al., 2011), testes (Catteruccia et al., 2005), salivary 

67 glands (Lombardo et al., 2000, 2005), germline (Papathanos et al., 2009), fat body (Volohonsky et al., 

68 2015 and 2017), and olfactory receptors (Riabinina et al., 2016)], to date only the An. gambiae 

69 carboxypeptidase promoter has been used to establish a midgut-specific GAL4 line (Lynd and Lycett 

70 2012). Most notable is the lack of a characterized endogenous ubiquitous promoter in An. gambiae, 

71 which greatly limits our understanding of phenotypes resulting from genes expressed in a multi-tissue 

72 manner. In an effort to obtain ubiquitous-like expression, promoters of highly conserved housekeeping 

73 genes such as Polyubiquitin (PUB) have been investigated in insects. Amongst these, the D. 
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74 melanogaster PUB promoter drives widespread expression in transgenic D. melanogaster (Handler 

75 and Harrell, 1999), Anastrepha suspensa (Handler and Harrell, 2001), Lucilia cuprina (Heinrich et al., 

76 2002), and the mosquito An. albimanus (Perera et al., 2002). A similar phenotype was described for 

77 the Tribolium castaneum PUB regulatory region in transgenic beetles (Lorenzen et al., 2002). Finally, 

78 the promoter of the Ae. aegypti PUB gene drives widespread expression across all mosquito 

79 developmental stages (Anderson et al., 2010). 

80 Achieving the desired expression pattern of transgenes, however, does not solely depend on 

81 identifying the regulatory region that will produce the intrinsic spatio-temporal pattern required, but it is 

82 affected by the genomic environment into which it is inserted. This has been observed previously 

83 examining potential ‘ubiquitous promoters’ in An. gambiae, most notably the α-tubulin-1b promoter 

84 (Lycett et al., 2012) in which a core expression profile in a limited number of tissues was overlaid by 

85 unique temporal and spatial expression patterns in each of the 9 isofemale lines examined. Positional 

86 effect is a consequence of the essentially random integration mediated by transposons and results in 

87 the laborious process of creation of multiple lines and their assessment for appropriate or ‘desired’ 

88 gene expression and fitness (Handler, 2002). In general, defining universally permissive expression 

89 sites is challenging as the properties of any DNA sequence are likely to be affected by its relocation in 

90 the genome, yet it is desirable as these active sites would represent an established context for future 

91 comparative experiments. By including docking sites in the constructs used to define these locations, 

92 characterized lines can be established that bear reusable transcriptionally active sites. From such 

93 docking strains it is possible to create a great variety of other lines by integrating the target DNA 

94 alongside the existing construct or by replacing the existing cassette with a donor cargo via 

95 recombinase-mediated cassette exchange (RMCE) (Bateman et al., 2006), the latter having the 

96 advantage of integrating only the desired construct without the plasmid backbone. To date, while 

97 φC31-mediated integration (Meredith et al., 2011; Pondeville et al., 2014, Volohonsky et al., 2015) 

98 and RMCE (Hammond et al., 2016) have been applied to An. gambiae, a very limited number of 

99 docking strains has been created.

100 Here, we use the GAL4/UAS system to characterize the regulatory regions of the An. gambiae 

101 Polyubiquitin-c (PUBc) gene, orthologue of Ae. aegypti AAEL003877 (Anderson et al., 2010), as a 

102 promising candidate for driving ubiquitous expression in transgenic mosquitoes. Driver lines carrying 

103 a PUBc-GAL4 cassette were created using the piggyBac transposon and assessed to identify unique 

104 genomic locations able to sustain multi-tissue expression to be exploited for subsequent φC31-

105 mediated integration and cassette exchange. To validate GAL4 expression patterns, a unique UAS-

106 mCD8:mCherry responder line was also created by site-specific integration and used to examine 

107 expression patterns in the progeny of crosses to PUBc-GAL4 driver lines.

108
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109 2 Materials and Methods 

110 2.1 Plasmid construction

111 To obtain the PUBc-GAL4 driver plasmid, primers were designed from the annotation in the PEST 

112 genome. PUBc5 consists of 2005 bp upstream of the predicted start codon and includes the intron, 

113 the 5’UTR and the intergenic space that separates PUBc (AGAP001971) from the previous gene 

114 (PUBb, AGAP001970). PUBc3 includes the intergenic space (407 bp) between the stop codon of 

115 PUBc and the following gene (TSR4 protein, AGAP001972). Plasmid components were individually 

116 amplified and ligated into pSLfa1180fa by Gibson cloning (Gibson et al., 2009, 2010) to create pSL-

117 Gyp:PUBc5:GAL4 and pSL-PUBc3:Gyp:attP. The PUBc3:Gyp:attP cassette was then inserted into 

118 the BglII/NotI sites of pSL-Gyp:PUBc5:GAL4 to generate pSL-Gyp:PUBc5:GAL4:PUBc3:Gyp:attP. 

119 The Gyp:PUBc5:GAL4:PUBc3:Gyp:attP fragment was finally cloned into the AscI sites of 

120 pBAC:attP:eCFP:LRIM to replace LRIM and obtain the final plasmid 

121 pBAC:attP:eCFP:Gyp:PUBc5:GAL4:PUBc3:Gyp:attP (pPUBc-GAL4). All primers and templates used 

122 are reported in Table S1.  

123 The UAS-mCD8:mCherry responder plasmid was designed to carry an attB site for site-specific 

124 integration into an attP docking line, an enhanced yellow fluorescent protein (eYFP) driven by the 

125 3xP3 promoter, and a fluorescent mCD8:mCherry membrane marker under the control of 10x 

126 upstream activating sequences (UAS). In a first step, attB-EcoRI from pTA-attB (gift from M. P. Calos, 

127 Addgene plasmid #18937 (Groth et al., 2000)) was cloned into pBAC[3xP3-eYFPafm] (obtained from 

128 E. Wimmer). The cassette 3xP3-eYFPafm-attB was further amplified and cloned into pGEM-T Easy 

129 Vector (Promega) to create a recipient plasmid pGEM-T[3xP3-eYFPafm-attB]. A second recipient 

130 plasmid pSLfa-MF3 was created by cloning the cassette NotI-10xUAS-MCS-ftzintron-SV40-BamHI 

131 (from pMF3, DGRC) into pSLfa (obtained from E. Wimmer). mCD8:mCherry was amplified from 

132 pUAS-mCD8:mCherry (obtained from F. Schnorrer) and further cloned into pSLfa-MF3. The AscI-

133 10xUAS-mCD8:mCherry-ftzintron-SV40-FseI cassette was cloned into pGEM-T[3xP3-eYFPafm-attB] 

134 to obtain the final plasmid pGEM-T[3xP3-eYFPafm-10xUAS-mCD8:mCherry-ftzintron-SV40-attB] 

135 (pUAS-mCD8:mCherry). All primers and templates used are reported in Table S1.  

136 2.2 An. gambiae mosquito cells transfection and luciferase assay 

137 The hemocyte-like An. gambiae cell line Sua5.1 (Müller et al., 1995) was used as described in Lynd 

138 and Lycett, 2012 to perform cell transfection and luciferase assay using Effectene® Transfection 

139 Reagent (Qiagen) and Dual-Luciferase® Reporter Assay System (Promega) respectively. DNA 

140 samples consisted of 100 ng of pPUBc-GAL4 driver plasmid, 100 ng of a 14xUAS responder plasmid 

141 driving the expression of firefly luciferase (pUAS-Luc) (Lynd and Lycett, 2012), and 2 ng of Actin 

142 Renilla plasmid to normalize for efficiency of transfection. The pPUBc-eGFP plasmid (Lycett, 

143 unpublished), which expresses cytoplasmic eGFP under the control of a shorter version of the PUBc 

144 promoter sequence used in this study, was used to visually monitor transfection efficiency and 

145 measure background activity (blank) in the absence of a GAL4 driver. Relative light units (RLU) 
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146 measurements were obtained from 6 replicate wells, normalized by Renilla activity (RLULuc / RLURen) 

147 and adjusted for the activity of the blank (RLUsample – RLUblank). One-way ANOVA with Tukey’s 

148 multiple comparison analysis was performed to determine statistical significant differences (P < 0.05).

149 2.3 Transgenic lines 

150 The PUBc-GAL4 transgenic line was produced using the piggyBac transposon as previously 

151 described (Lycett et al., 2012; Lombardo et al., 2009). G3 strain embryos were microinjected with 350 

152 ng/µl of GAL4 driver plasmid and 150 ng/µl of transposase helper plasmid pHSP-pBac (Handler and 

153 Harrell, 1999). F0 L1 larvae expressing eCFP transiently in the anal papillae were reared separately 

154 and backcrossed in sex-specific cages. F1 progeny was assessed for eCFP stable inheritance with 

155 positive females then backcrossed to wild type and allowed to lay in individual tubes. F2 isofemale 

156 lines were scored for inheritance of the eCFP marker. Lines yielding a percentage of transformants 

157 not compatible with a single insertion (i.e >50% fluorescent progeny) were discarded, while isofemale 

158 lines showing ~50% of transgenic progeny were interbred to create stable lines.

159 The transgenic line UAS-mCD8:mCherry was created by injecting embryos of the E φC31-docking 

160 line (Meredith et al., 2011) with 250 ng/µl of UAS-mCD8:mCherry plasmid and 800 ng/µl of mRNA 

161 encoding an insect codon optimized mutant φC31 integrase (obtained from A. A. James). Of the F0 

162 adults recovered, pools of 10 females were backcrossed to 50 males, while all males were crossed 

163 with 5x females of the E line. Microinjections, screening and stable homozygous line generation were 

164 carried out as described by Pondeville et al. (2014).

165 2.4 Inverse-PCR

166 Inverse PCR was conducted as described by Lycett et al., 2012. Genomic DNA was extracted from 

167 pools of 20 F2 transgenic adults from selected isofemale lines using Qiagen Genomic tips (Qiagen). 1 

168 μg of gDNA was then digested with BfuCI or TaqαI, self-ligated, and PCR was performed to amplify 

169 DNA regions flanking the piggyBac arms at the site of insertion (primers ITRL1F and ITRL1R for 

170 piggyBac left arm, ITRR1F and ITRR1R for right arm, Table S1). PCR products were sequenced and 

171 genomic location of insertions identified using the BLAST tool integrated in VectorBase (Giraldo-

172 Calderón et al., 2015).

173 2.5 Dissections

174 Dissections were performed on 2-5-day-old GAL4/UAS adult females in PBS supplemented with 

175 EDTA-free protease inhibitor cocktail (Roche). Body parts were incubated in fixing solution (4% 

176 paraformaldehyde, 1X PBS pH 7.4, 2 mM MgSO4, 1 mM EGTA) for 30-45 minutes, washed in PBS 

177 and mounted on a microscope slide using Vectashield mounting medium (Vector Laboratories). For 

178 preparation of abdomens, after removing internal organs, they were incubated in methanol for 2 

179 minutes before fixing. 

180
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181 3 Results 

182 3.1 An. gambiae PUBc regulatory regions drive expression in mosquito cells

183 To examine the activity of the regulatory regions surrounding PUBc, the entire intergenic sequences 

184 upstream and downstream of the coding region were used to flank the GAL4 gene. This transcription 

185 unit was placed between gypsy insulators (Cai and Levine, 1995) to potentially reduce position effect 

186 variation, and flanked by inverted φC31 attP repeats to generate RMCE docking sites. Finally, the 

187 construct was inserted in a piggyBac transformation vector marked with 3xP3-eCFP (Fig. 1B). 

188 Initially, the ability of PUBc to activate GAL4-mediated expression was investigated in An. gambiae 

189 SUA5.1 cells. When co-transfected with a responder plasmid expressing UAS-regulated luciferase 

190 (pUAS-Luc) (Lynd and Lycett 2012), pPUBc-GAL4 showed ~4000-fold higher activity than control 

191 transfections with pUAS-Luc only (P < 0.003) (Fig. 1D). Additionally, background activity from a 

192 PUBc-eGFP construct without the luciferase gene (blank) was not significantly different to the pUAS-

193 Luc control (P = 0.16), indicating limited leakiness in UAS-regulated expression (Fig. 1D).

194

195 3.2 Generation and characterization of transgenic lines 

196 3.2.1 PUBc-GAL4 driver lines 

197 The piggyBac transposon was used to create a series of driver lines carrying the PUBc-GAL4 

198 cassette in single, unique genomic locations. From 180 An. gambiae G3 strain embryos injected, 113 

199 (63%) larvae hatched, 77 (68%) of which showed eCFP transient expression in the anal papillae. 97 

200 F0 adults (54%) were obtained and pooled into 6 sex-specific F0 founder cages (A-F) (Table 1). 

201 Transgenic F1 progeny was recovered from each F0 cage established from founders showing 

202 transient expression (A-D), while no transformants were recovered from negative founders (cages 

203 E,F) (Table 1).  21 F1 transgenic females were backcrossed with wild-type and F2 progeny from 

204 individual females were assessed for inheritance of the fluorescent marker as a proxy for transgene 

205 copy number. We identified 14 isofemale lines showing 47-53% transgene inheritance (A2, A3, A6, 

206 A7, A8, A10, A11, A12, A15, B3, B8, C1, C2, D2), suggestive of single insertions (Table 1). Upon 

207 verification of copy number and location of integration sites by inverse-PCR we found several 

208 instances of identical integration sites in distinct isofemale lines from the same founder cage (Fig. S1). 

209 Replicate lines were discarded thus overall the final analysis was consistent with the isolation of 7 

210 isofemale lines carrying separate single integration sites (Table 2). Four lines (A8=A15, A10=A12, B3, 

211 C1), carried intergenic insertions, one line (A3=A6=A7=A11) carried an insertion within the open 

212 reading frame of Cyp6m4 (AGAP008214), and two (A2 and D2) carried insertions within highly 

213 repetitive regions that precluded their exact localization in the genome (Table 2). iPCR failed to 

214 amplify the region flanking the piggyBac right arm of lines A8 and A10 and location in these lines was 

215 confirmed using primers designed on the genomic DNA flanking the insertion site predicted from the 

216 sequencing data obtained from the left arm (Fig. S2). All sites of integration characterized occurred at 
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217 piggyBac canonical TTAA integration sites (Table 2). Overall, we achieved a minimum transformation 

218 efficiency of 7% (i.e. number of independent insertions / total F0 survivors). All 7 lines were interbred 

219 and underwent preliminary assessment of in vivo promoter activity in larvae. 

220 3.2.2 UAS-mCD8:mCherry line 

221 The responder plasmid was designed to carry an attB site for φC31-mediated site-specific integration 

222 into the E docking line (Meredith et al., 2011), an enhanced yellow fluorescent protein (eYFP) driven 

223 by the 3xP3 promoter, and a fluorescent mCD8:mCherry membrane marker under the control of 10x 

224 UAS (Fig. 1C). From the 1182 E line embryos injected, 374 F0 adults (32%) were recovered, 185 

225 females and 189 males, which were backcrossed to individuals of the E line. A total of 23 transgenic 

226 F1 larvae were recovered from the F0 males only and from which the line was established. Crosses of 

227 the UAS-mCD8:mCherry responder line with a carboxypeptidase-GAL4 An. gambiae line (Lynd and 

228 Lycett 2012) showed the expected adult midgut specific expression of red fluorescence (Fig. S3) in 

229 the progeny.

230 3.3 PUBc drives widespread expression in transgenic An. gambiae mosquitoes

231 To investigate the pattern of expression driven by PUBc and identify unique insertion sites able to 

232 sustain ubiquitous expression, profiles generated by transgenic PUBc-GAL4 isofemales lines (A2, A3, 

233 A8, A10, B3, C1 and D2) and mixed male pools were assessed and compared after crossing with the 

234 responder line UAS-mCD8:mCherry. Preliminary analysis of the larval expression profiles driven by 

235 individual PUBc-GAL4 lines differed in terms of signal intensity and distribution: A10 and D2 derived 

236 progeny had similar intense and widespread mCherry signal throughout the whole body; A8 produced 

237 symmetrically patterned fluorescent signal along the abdomen that was noticeably weaker than A10 

238 and D2 but with intense reporter expression in the head and mouthparts; A3 and C1 progeny 

239 displayed asymmetrical mCherry signal along the abdomen, in the head and mouthparts, whereas in 

240 A2 and B3 derived progeny mCherry signal was largely limited to the terminal part of the abdomen, 

241 and intense signal in the brain and mouthparts respectively. Unfortunately, these profiles were not 

242 documented as images (data not shown). We were unable to detect distinct phenotypes from the 

243 mixed male pool progeny (Fig. S4) which were not also observed from the single isofemales lines, 

244 and therefore our further analysis focused on female derived lines.    

245 A8 and A10 were chosen for further in depth analysis as they displayed a similar temporal and spatial 

246 distribution, yet displayed distinct intensities of reporter gene expression, with A10 being generally 

247 higher in most tissues. In larval progeny from both drivers, mCherry fluorescence was evident in the 

248 mouthparts, brain, fat body, muscles surrounding the aorta and the heart (Fig. 2A,B), developing 

249 thoracic imaginal discs, and central nerve cord (Fig. 2C,D). Signal in A10/UASmCherry (A10/ch) 

250 larvae (Fig. 2A) was more intense compared to A8/ch larvae (Fig. 2B), with the exception of the 

251 mouthparts. Furthermore, while A10/ch individuals displayed a very bright and widespread signal 

252 throughout the larval body (Fig. 2A,C), in A8/ch larvae a distinct symmetrical expression pattern was 

253 detected dorsally and ventrally in each abdominal segment (Fig. 2B,D), most likely derived from the 
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254 integument. In pupae, the differences in signal intensity and the distinct abdominal pattern of 

255 expression were maintained, and strong fluorescence was detected in the developing antennae in 

256 both A10/ch (Fig. 2E) and A18/ch pupae (Fig. 2F). At adult stage, mCherry was widespread in intact 

257 females (Fig. 2 G,H) and males (Fig. 2 I,J) of both A10 and A8 crosses with A10/ch displaying a 

258 brighter signal than A8/ch mosquitoes. Fluorescence was widely detected in the thorax and along the 

259 abdomen with bright signal visible through the non-sclerotized areas of the cuticle. In both crosses, 

260 fluorescence was detected in all of the appendages including legs, veins of the wings, antennae, 

261 palps, and proboscis/labium (Fig. 2G to J). Expression was also robust at the base of the antennae in 

262 the pedicel, which hosts the Johnston's organ, and in the brain (Fig. 2G to J). A10/ch adults showed 

263 expression in some but not all of the ommatidia, while in A8/ch individuals this was less evident and 

264 occurred in fewer ommatidia (Fig. 2G to J). 

265 In dissected abdomens of both crosses expression was detectable in all of the tissues present in the 

266 integument including the epidermis, fat body, oenocytes, lateral muscles and nerve cord (Fig. 3A,C). 

267 Here, besides displaying a lower signal intensity, A8/ch abdomens showed a mosaic pattern of 

268 expression in muscular tissues (Fig. 3C). A comparable level of fluorescence was detected in A10/ch 

269 (Fig. 3E) and A8/ch (Fig. 3G) mosquitoes along the majority of trachea surrounding the internal 

270 organs including the foregut, midgut, hindgut and Malpighian tubules of unfed females; however, no 

271 expression was detectable in the midgut or Malpighian tubule epithelium. PUBc was active in the 

272 salivary glands of A10/ch (Fig. 3I) with mCherry fluorescence detected in all lobes, while signal was 

273 weaker in A8/ch salivary glands (Fig. 3K). Ovaries (Fig. 3 M,O) of sugar-fed A10/ch females showed 

274 bright oviducts and follicles, and fluorescence was also strongly detected 24-48 h after blood meal in 

275 the developing oocytes; while fluorescence in A8/ch mosquitoes was weaker (not shown). In male 

276 reproductive system, signal was moderately detected in the testes (not shown). Finally, hemocytes 

277 attached to tissues and circulating in the hemolymph had detectable mCherry expression (not shown).

278

279 4 Discussion 

280 To expand the available tools for functional genetic analysis of An. gambiae, we have isolated and 

281 characterized the regulatory regions of the An. gambiae Polyubiquitin-c gene and validated their 

282 ability to drive robust expression in cultured mosquito cells and widespread multi-tissue expression in 

283 all life stages of transgenic mosquitoes. This activity was tested in the context of the GAL4/UAS 

284 system to allow flexible use of the generated lines in future analysis. As part of the validation, we also 

285 established and tested a new UAS reporter construct that yields bright mCherry expression with all of 

286 the GAL4 lines so far examined.  

287 The generation of piggyBac GAL4 driver lines was achieved with an efficiency equal to or higher than 

288 reported elsewhere using a variety of promoter/effector combinations (Grossman et al., 2001; Kim et 

289 al., 2004; Lobo et al., 2006; Lombardo et al., 2009; Lycett et al., 2012; Meredith et al., 2013). This 

290 would suggest that any potential toxicity of widespread GAL4 expression does not manifest as 
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291 reduced transformation efficiency. Furthermore, as reported elsewhere (Pondeville et al., 2014), 

292 transgenic progeny was only obtained from F0 mosquito pools that had showed transient episomal 

293 expression of the transformation marker in larval stages, not only suggesting that effective screening 

294 in future could be confined to progeny from these pools, but that concurrent episomal expression of 

295 GAL4 in the F0 is readily tolerated. Homozygous A8 and A10 are viable during inbreeding of the stock 

296 colonies, and we have created a true breeding homozygous A10 line that continues to be stable over 

297 multiple generations. However, routine observation suggests reduced longevity in relation to the 

298 parental G3 line, and although we haven’t performed detailed life table analysis, there may be a 

299 fitness cost associated with high levels of GAL4 expression achieved in the homozygous A10 line. 

300 This will be explored further when the Gal4 driver is removed from these lines by RMCE.

301 PiggyBac-mediated integration occurs essentially randomly at TTAA genomic sites and can lead to 

302 insertion of the transgenic construct in multiple sites of an individual genome (Lombardo et al., 2009). 

303 The selection strategy used here aimed at maximizing the identification of lines carrying insertions at 

304 single intergenic genomic sites, desirable for docking lines, as well as identifying insertion sites that 

305 gave the broadest tissue expression of GAL4, whilst limiting workload. To do so, we performed 

306 expression profiling and molecular characterization of insertion site on isofemale lines derived from F1 

307 females, while F1 males were used as a backup, crossed in pools to UAS-mCD8:mCherry and 

308 screened en masse to recover any distinct expression profiles (and thus different insertion sites) not 

309 observed in female lines. However, no distinct phenotypes were recovered in the F2 male progeny, 

310 suggesting they originated from the same F0 individuals as the females. 

311 Although differences in the expression of the 3xP3-eCFP marker from the piggyBac transposon were 

312 detected in different F1 isofemale lines, these were minor and did not readily correlate with the 

313 extensive variegation observed in the GAL4 driven mCherry signal, suggesting that not all genomic 

314 sites supportive of robust neuronal expression from 3xP3 are capable of sustaining widespread 

315 expression driven by other regulatory regions. This is supported by findings in Ae. aegypti, where 

316 3xP3 was an unreliable promoter for inferring efficiency of gut specific transgene expression at 

317 distinct genomic locations (Franz et al., 2011). 

318 Position variegation derived from our PUB-GAL4 lines also suggests that the inclusion of gypsy 

319 insulators flanking the GAL4 cassette did not overcome the influence of nearby effectors and/or 

320 chromatin status on transgene expression. Gypsy insulators (Roseman et al., 1993) have been 

321 previously reported to repress the action of nearby suppressors in D. melanogaster and An. stephensi 

322 (Sarkar et al., 2006; Carballar-Lejarazú et al., 2013). Yet, no quantitative study has been conducted in 

323 An. gambiae when the GAL4/UAS system is used. When insulating UAS cassettes in D. 

324 melanogaster, gypsy insulators have proven useful to mitigate positional effect, but efficiency of 

325 insulation was still dependent on genomic locus (Markstein et al., 2008). In the first analysis of 

326 GAL4/UAS in An. gambiae, gypsy sequences were used to flank the UAS-reporter cassette, and all 

327 combinations of carboxypeptidase-GAL4 driver lines crossed to 6 UAS reporter lines drove robust 

328 midgut-specific expression regardless of location of insertion (Lynd and Lycett 2012). There may be, 

329 thus, a difference in the insulation capacity of gypsy sequences when flanking UAS compared to 
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330 GAL4 cassettes or depending on the regulatory regions used. It should be noted though that RMCE 

331 will remove the gypsy sequences from these loci, and so depending on the nature of the transgenics 

332 being produced it may be necessary to include gypsy sequences in the exchanged cassette to 

333 recreate a similar sequence context.

334 Overall, visual assessment of progeny derived from selected PUBc driver lines (A10 and A8) crosses 

335 with UAS-mCD8:mCherry individuals, revealed that the regulatory regions identified for PUBc are 

336 active in a variety of tissues and organs in all mosquito life stages examined and presumably in 

337 embryonic stages too, as neonate larvae are fluorescent. In adults, these tissues include: eyes, brain, 

338 and ventral nerve cord; muscles of the aorta and heart; trachea surrounding the digestive tract and 

339 the Malpighian tubules; salivary glands; sugar-fed and blood-fed ovaries and developing oocytes; fat 

340 body; appendages (legs, palps, antennae, proboscis); and hemocytes. Tissues where expression was 

341 not readily visible include the epithelium of the digestive tract and Malpighian tubules, although it 

342 cannot be excluded that expression occurs in these tissues at a level that is not detectable by 

343 fluorescence. However, it should be noted that robust midgut epithelium expression of mCherry was 

344 observed in crosses with carboxypeptidase-GAL4 lines.

345 The An. gambiae PUBc-derived expression pattern largely overlaps those described for promoter 

346 fragments derived from other insect PUB genes (Handler and Harrell, 2001; Heinrich et al., 2002; 

347 Perera et al., 2002) and, more specifically, with that of the Ae. aegypti PUB promoter described by 

348 Anderson et al. (2010) where expression was robust and widespread throughout the mosquito body 

349 from larvae to adults. Nevertheless, we found that the A10 line drives strong fluorescence in the 

350 salivary glands, while in Ae. aegypti these tissues displayed little fluorescence and lacked mRNA 

351 signal. Conversely, strong fluorescence was seen in Ae. aegypti midguts, whilst it was observed only 

352 in the trachea surrounding the digestive tract but not the midgut epithelium in An. gambiae. These 

353 differences may be due to innate variation in promoter activity from the region selected in the two 

354 species or they may be the result of positional effect. Nonetheless, the widespread core expression 

355 pattern described here for PUBc is unprecedented for an An. gambiae endogenous promoter.

356 Previous work analyzing a potential endogenous ‘ubiquitous’ promoter directly with an eGFP reporter 

357 gene, had indicated that positional effects can be extremely frequent in An. gambiae transgenics 

358 (Lycett et al., 2012). Each line produced had a core expression profile in the same limited tissues, 

359 including nerve cord and chordotonal organs, but different patterns of expression in other tissues 

360 were observed in each of the 9 isofemale lines analyzed. In the current study, we reasoned that by 

361 using the GAL4/UAS system to generate and follow the expression pattern conferred by putative 

362 regulatory regions, then selected GAL4 lines that gave a desired expression pattern could be archived 

363 for future functional genetic studies. The two lines thus retained (A10 and A8) will be used to compare 

364 different UAS-regulated transgenes and monitor resultant phenotypes based on a consistent, defined 

365 and robust expression pattern. If the UAS transgenes are created through φC31 site-directed insertion 

366 into the same genomic location (Pondeville et al., 2014), then such work can be performed in similar 

367 genetic backgrounds to allow accurate phenotypic comparison. 
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368 Since the number of docking strains for φC31 integrase in An. gambiae is limited, we also included 

369 attP sites into the PUB-GAL4 transformation construct so that these lines can also be used as 

370 docking lines for RMCE or integration. Indeed, in the presence of two inverted attP sites, cassette 

371 integration also occurs in some individuals as a result of a single crossover event, rather than the 

372 double crossover that generates cassette exchange. As such, F1 progeny can be selected by 

373 screening for the presence of single or double markers respectively. RMCE allows complete 

374 swapping of transgene cargoes for phenotypic analysis (Bateman et al., 2006). For example, the 

375 activity of other promoters could be assessed and directly compared to that of PUBc; similarly, 

376 different UAS cassettes could be exchanged into these sites, and then crossed to parental or other 

377 GAL4 driver lines. In other instances, integration may be desirable, such as inserting a UAS construct 

378 next to the PUBc-GAL4 in order to create stable GAL4/UAS lines without the need of crossing, and 

379 thus to readily generate homozygous GAL4/UAS lines. Although the φC31 system may be the most 

380 convenient way to exploit these genomic sites, they can also be targeted by CRISPR/Cas9 

381 approaches in which transgenes can be targeted to defined transcriptionally permissive sites.

382 The A10 and A8 driver lines established as part of this work sustain widespread gene expression at 

383 different levels and will prove valuable and versatile tools for gene functional analysis in An. gambiae 

384 using the GAL4/UAS system. Their potential uses include gain- or loss-of-function of any gene 

385 located in corresponding UAS lines. Owing to its multi-tissue expression, the PUBc promoter could 

386 provide more reliable expression of transformation markers than 3xP3 and would be useful for 

387 efficient mass screening of large numbers of transgenic individuals at lower magnification or by 

388 automated screening systems (Marois et al., 2012; Volohonsky et al., 2015). It could also be used to 

389 create a transgenic line that stably produces broad expression of Cas9, which can be transiently 

390 modified by injection with guide RNAs or crossed with transgenic lines expressing guide RNAs. 
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560 FIGURE CAPTIONS
561
562
563
564 Figure 1. Constructs used for transgenic line creation and analysis of cell line activity of 
565 PUBc regulatory regions. 
566 A) Schematic of the GAL4/UAS bi-partite system for ectopic gene expression (adapted from Lynd 

567 and Lycett, 2011). The driver construct consists of a promoter that induces expression of the 

568 transcription activator factor GAL4. The responder construct contains the GAL4 binding site UAS 

569 (Upstream Activating Sequence) located upstream of the gene of interest. B) Schematic of the 

570 PUBc-GAL4 construct inserted in the driver lines. Grey arrows: piggyBac inverted terminal repeats. P 

571 orange arrows: φC31 attP sites for RMCE; 3xP3: neuronal promoter. eCFP: enhanced cyan 

572 fluorescent protein. Black arrows: Gypsy insulators. PUBc5’: PUBc gene 5’ region cloned upstream 

573 of the GAL4. PUBc3’: PUBc gene 3’ region cloned downstream of the GAL4. C) Schematic of the 

574 responder plasmid driving the 14xUAS-regulated expression of luciferase (Lynd and Lycett, 2012) 

575 used to co-transfect mosquito cells. UAS(14x): 14 repeats of the Upstream Activating Sequence. 

576 Luc: firefly luciferase gene. D) Schematic of the plasmid used to measure background activity 

577 (blank). The PUB5’ region present in this plasmid is a shorter version of the PUBc promoter 

578 sequence incorporated in the driver construct fused to eGFP (enhanced green fluorescent protein) 

579 gene and SV40 terminator sequences derived from PTubGFP (Lycett et al, 2012) E) Schematic of 

580 the responder construct present in the UAS-mCD8:mCherry line obtained by φC31-mediated site-

581 specific integration into the E docking line. Orange R and L boxes: attR and attL sites resulting from 

582 the recombination of attB and attP site. UAS(10x): 10 UAS repeats. mCD8:mCherry: mCherry 

583 fluorescent marker directed to the cell membrane. F) Activity of PUBc regulatory regions in An. 

584 gambiae SUA5.1 cells. Promoter activity is shown as luciferase expression (Relative Lights Units – 

585 RLU) after co-transfection of the driver plasmid pPUBc-GAL4 with the pUAS-Luc responder plasmid. 

586 Top bars represent standard error from mean. Significant differences (****: P < 0.0001, ns: P > 0.05) 

587 were calculated using one-way ANOVA with Tukey's multiple comparisons test on six replicates. 

588

589 Figure 2. Expression profiles driven by the PUBc regulatory regions in A10/mCherry (left) and 
590 A8/mCherry (right) whole mosquitoes.
591 A-B) L3-4 larvae dorsal view. m: mouthparts; b: brain; ms: muscles; fb: fat body. C-D) L3-4 larvae 

592 ventral view. nc: nerve cord; id: imaginal discs. E-F) Female pupae. an: antenna. G-H) Adult females 

593 ventral view. p: palps; an: antenna; om: ommatidia; l: leg; t: thorax; ab: abdomen. I-J) Adult males 

594 ventral view. mCherry signal was detected at 650 nm. Numbers show seconds (s) of exposure. 

595
596
597 Figure 3. Expression profiles driven by the PUBc regulatory regions in dissected and fixed 
598 female tissues from A10/mCherry and A8/mCherry mosquitoes. 
599 PUBc-driven expression in A10/mCherry (A,E,I,M) and A8/mCherry (C,G,K,O) female adult abdomen 

600 (A-D), digestive tract (E-H), salivary glands (I-L), ovaries (M-P). A,C,E,G,I,K,M,O represent mCherry 

601 signal at 650 nm; numbers show milliseconds (ms) or seconds (s) of exposure. B,D,F,H,J,L,N,P are 
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602 the corresponding bright fields. fb: fat body; ms: muscles; nc: nerve cord; tr: trachea; f: follicles; ov: 

603 oviduct.

604

605 Table 1. Selection strategy to isolate stable transgenic driver lines carrying a single 

606 insertion of the PUBc-GAL4 cassette.

607

F0 pool F0 adults
Number and sex

Transient eCFP
expression

Number of F1 
eCFP + Adults

(sex)

% eCFP + F2 larvae
(Number eCFP 

+/total)

A 2 – 49% (84/173)
A 3 – 48% (74/154)
A 5 – 62% (5/8)
A 6 – 42% (80/190)
A 7 – 50% (52/103)
A 8 – 49% (67/136)
A 10 – 47% (65/139)
A 11 – 52% (63/121)
A 12 – 53% (102/193)

A 13 F + 34
(17 F, 17 M)

A 15 – 51% (93/181)

B 1 – 73% (8/11)
B 2 – 58% (18/31)
B 3 – 44% (31/71)
B 7 – 59% (69/116)

B 14 M + 3
(3 M)

B 8 – 53% (62/116)

C 1 – 47% (28/59)C 18 F + 5
(2 F, 3 M) C 2 – 47% (73/155)

D 20 M + 3
(2 F, 1 M) D 2 – 46% (53/115)

E 23 M – 0 N/A

F 9 F – 0 N/A

608
609 F0 pool: designation given to cage of surviving F0 adults; F0 adults: the number and sex of F0 adults 
610 crossed with wild type; Transient eCFP expression: F0 adults either displayed (+) or lacked (-) transient 
611 eCFP expression at larval stage; Number of F1 eCFP + Adults: total number and sex of adults derived 
612 from eCFP + larvae from F0 cage cross; % eCFP + F2 larvae: % of eCFP + larvae derived from 
613 isofemale lines originated from F1 adults.
614 F: female, M: male. N/A: not applicable. 
615 Other isofemales: A1: dead (mosquito died without laying eggs). A4, B9: not mated (eggs did not hatch). 
616 A9, A13, A14, B4, B5, B6, B10, D1: sterile (mosquito did not lay eggs).
617
618
619
620
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Table 2. Molecular characterisation of transgenic lines carrying single insertions by inverse-PCR.

Line
pBAC
arm

Enzyme Sequence
GenBank 

ID
Query 
length

Alignment 
length

Identity 
%

PEST
Chromosome 

Position

Left TaqαI TTAAATGGATAGCGGTAGCT MG934563 795 653-6 95-96
A2

Right BfuCI CCGGTGAGTGCGTAGCTTAA -- 79 79 100
Multiple hits Undetermined

Left BfuCI TTAAACTGTTTGCCGGCCGC -- 75 75 96
A3

Right BfuCI GTCCTCCAGGTAGTCTTTAA -- 33 31 100
3 R

6,934,418

6,934,415

Intragenic

AGAP008214

A8
Left

Right

TaqαI

*

TTAATCTCGGTTCTCGGTAT

ATATTTACGCAGATTCTTAA

MG934564

--

323

53

323

42

100

90.5
2 R

32,162,290

32,162,293
Intergenic

A10
Left

Right

TaqαI

*

TTAAAGAACTGATCAATACA

CAAACGCACAGTACCATTAA

MG934565

MG934566

404

368

329**

353

99.1

98.9
2 R

5,816,202

5,816,199
Intergenic

Left BfuCI TTAAAGCTCGTTCATACTCT MG934567 221 221 98.2
B3

Right BfuCI GAAGCTGTAAAAAGCTTTAA -- 192 191 95.8
3 R

32,092,431

32,092,428
Intergenic

Left TaqαI TTAAAAGAGATCCCGCGAGG MG934568 652 648 99.2
C1

Right BfuCI TAGGTCGATGAACTCCTTAA -- 102 102 100
X

21,936,498

21,936,501
Intergenic

D2 Left TaqαI TTAAAGTGCTTTCAACGTTA MG934569 700 700
98.6-

99.4
Multiple hits Undetermined

Enzyme refers to the enzyme used for genomic DNA cleavage prior to iPCR; sequence refers to the first 20 bp directly adjacent to the TTAA of the insertion site (--: sequence 
shorter than 200 bp and thus not submitted to GenBank); PEST Chromosome indicates the chromosome of transgene insertion; position indicates the co-ordinates of insertion 
with reference to the PEST genome sequence AgamP4 reported in VectorBase (Giraldo-Calderón et al 2015). 
* the genomic position flanking this arm was obtained by amplification of genomic DNA using primer sequences deduced from the position of the left arm.
** there is an insertion in the PEST sequence that is not present in A10, Pimperena strain or An. coluzzii.
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Figure S1. Agarose gel electrophoresis showing results for inverse-PCR on regions flanking the 

piggyBac arms after BfuCI digestion and self-ligation of genomic DNA isolated from isofemale lines. 

Among the isofemale lines derived cage A, those sharing the same PCR product size originated from 

the same F0 founder individual and thus bear an insertion in the same genomic location. Six different 

single insertions are shown: 1) A2; 2) A3 = A6 = A7 = A11; 3) A8 = A15; 4) A10 = A12, 5) B3; 6) C1. 

Ladder is GeneRuler 1 kb Plus (Thermo Scientific). 
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Figure S2. Agarose gel electrophoresis confirming insertion sites in A8 and A10 lines by PCR using a 

primer designed against regions near the predicted genomic insertion sites and the other annealing to 

conserved region of the integrated construct. A10: genomic regions external to the left (L) and right (R) 

piggyBac arms at the insertion site in the A10 line. A8: genomic regions external to the left (L) and 

right (R) piggyBac arms at the insertion site in the A8 line. Ladder is GeneRuler 100 bp (Thermo 

Scientific).  
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Figure S3. Combined Z stacks from confocal microscopy to include whole midgut from an adult 

female of the carboxypeptidase-GAL4/mCD8:mCherry line. Fixed midguts were stained with DAPI 

(white) and phalloidin 488 (green). Red signal shows the endogenous expression of mCD8:mCherry. 

Scale bar is 250 µm. Inset shows an individual midgut cell expressing mCD8:mCherry at the cell 

membrane.  
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Figure S4. Example of phenotype variegation in the PUBc-GAL4 lines. mCherry phenotypes 

in L2-3 larvae derived from PUBc-GAL4 F1 transformant males. These are also 

representative of the phenotypes observed in the progeny of single laying females. 

 

 

 



5 
 

Table S1. Primers used in this study. 

 

Primer  Fragment Template Sequence 5’→3’ 
pSL-Gypsy1-FW Gypsy1 attB:UAS:Cyp6m2 GAGGTAATTATAACCCGGGCCCTATATATGACTAGAATTGATCGGCTAAATGGTATGGCA 
Gypsy1-PUBc5-RV GAAATATTTTTTTATTCGCTAGCCAATGTATCTTAACTACTCACGTAATAAGTGTGCG 
Gypsy1-PUBc5-FW PUBc5 Kisumu gDNA GAGTAGTTAAGATACATTGGCTAGCGAATAAAAAAATATTTCTTAATAATATTCTAAC 
PUBc5-GAL4-RV GAAGACAGTAGCTTCATATTTTATCTGTAAATATAAACGAAAACAAC 
PUBc5-GAL4-FW GAL4 attB:GAL4:DsRed GTTTTCGTTTATATTTACAGATAAAATATGAAGCTACTGTCTTCTATCGAACAAGCATG 
GAL4-pSL-RV CAGCTGCAGGCGGCCGCCATATGCAAGATCTTTACTCTTTTTTTGGGTTTGGTGGG 
pSL-PUBc3-FW PUBc3 Kisumu gDNA TAATTATAACCCGGGCCCTATATATGAGATCTTTCGTTGAATAAAGCATATTGAAGCTTC 
PUBc3-Gypsy2-RV AGCCGATCAATTCTAGTCATATGCCGTCGAAATTGTTTTACAATGACAATTTT 
PUBc3-Gypsy2-FW Gypsy2 attB:UAS:Cyp6m2 GTAAAACAATTTCGACGGCATATGACTAGAATTGATCGGCTAAATGGTATGGCA 
Gypsy2-attP-RV GTCAGTCGCGCGAGCGCGCCGCGGCAATGTATCTTAACTACTCACGTAATAAGTGTGCG 
Gypsy2-attP-FW attP pBAC:attP:eCFP AGTAGTTAAGATACATTGCCGCGGCGCGCTCGCGCGACTGACGGTCGTAAGCAC 
attP-pSL-RV AGCTGCAGGCGGCCGCCATATGCACGAAGCCCCGGCGGCAACCCTCAGCG 
3P3-FW 3xP3-eYFPafm-attB pBAC[3xP3-eYFPafm] GTCATCACAGAACACATTTG 
attB-RV CAGGTACCGTCGACGATGTAG 

BglII-mCD8-FW mCD8:cherry pUAS-mCD8:cherry TAGCAGCCAGATCTGTCGACGGTATCGATAAGC 
XbaI-cherry-RV TAGCAGCCTCTAGATTACTTGTACAGCTCGTCCATGC 

ITRL1F -- -- ATCAGTGACACTTACCGCATTGACA 

ITRL1R -- -- TGACGAGCTTGTTGGTGAGGATTCT 

ITRR1F -- -- TACGCATGATTATCTTTAACGTA 

ITRR1R -- -- GATGTTTTGTTTTGACGGACCCC 
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