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• CNVs are a major source of polymorphism in genomes and arise frequently 

• Copies may be heterogeneous (duplications) or homogeneous (amplifications)  

• AChE gene CNV in An. gambiae is of primary applied importance, but is complex 

• Correspondence between CNV appearance and dynamics and insecticide application 

• Whole genome analyses are beginning to revolutionise understanding of CNVs  

 

Abstract 

Copy number variation (CNV) in insect genomes is a rich source of potentially-adaptive 

polymorphism which may help overcome the constraints of purifying selection on conserved genes 

and/or permit elevated transcription. Classic studies of amplified esterases and acetylcholinesterase 

duplication in Culex pipiens quantified evolutionary dynamics of CNV driven by insecticidal selection. 

A more complex and potentially medically-impactful form of CNV is found in Anopheles gambiae, 

with both heterogeneous duplications and homogeneous amplifications strongly linked with 

insecticide resistance. Metabolic gene amplification, revealed by shotgun sequencing, appears 

common in Aedes aegypti, but poorly understood in other mosquito species. Many methodologies 

have been used to detect CNV in mosquitoes, but relatively few can detect both duplications and 

amplifications, and contrasting methods should be combined. Genome scans for CNV have been rare 

to date in mosquitoes, but offer immense potential to determine the overall role of CNV as a 

component of resistance mechanisms. 

 

Introduction 

Duplication of genes and genomes is a major source of long-term evolutionary novelty [1], and is 
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increasingly recognised as a key component of shorter-term adaptive responses [2]. Most 

duplication events are thought to be deleterious and subject to purifying selection as a result of gene 

expression that is either wasteful or causes imbalance in pathways [2], unless dosage is down-

regulated in gene copies [3]. Genome scanning has revealed copy number variation (CNV) to be 

common in Drosophila melanogaster, and over half of CNVs to affect genes [4]. However, a survey of 

diverse fly lines found that only nine of 500 duplications surveyed were at high frequency, 

suggesting that unless under near-immediate positive selection duplicated genes are unlikely to 

spread [5]. Insecticidal selection is a source of strong pressure driving rapid phenotypic change [6], 

thus providing an excellent model for studying evolution on human timescales, but also serious 

challenges for food production and disease control programmes. Here we review how gene CNV 

influences insecticide resistance in mosquito disease vectors. Whilst the identification of gene CNV 

impacting insecticide resistance have risen markedly [7], it is currently unclear whether resistance-

associated duplications are being increasingly identified because of awareness and/or 

methodological advances, or are genuinely becoming increasingly widespread. 

Scope and definitions 

We focus specifically on recent evolutionary innovation by CNV, rather than on groups of resistance 

genes which have arisen by duplication and are involved in insecticide resistance, which would apply 

to general expansions of detoxification gene families [8]. We adopt the terminology suggested by 

Feyereisen et al. [9] of ‘duplication’ to distinguish heterogeneous gene copies that are functionally-

related but distinguishable at the protein level, from homogeneous ‘amplification’ which we define 

as two or more gene copies that produce identical proteins, since the functional consequences of, 

and selection operating on each type of CNV are likely to be different. We first focus on genes that 

are the target of insecticides, then move to the more complex area of genes involved in components 

of detoxification. A summary of methods used to identify CNV are shown in Box 1. 
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Box 1: Methods for detecting gene duplications (D) or amplifications (A), and the type of material 

required [DNA, protein, live mosquitoes - in laboratory crosses and selection regimes] 

Heterozygote excess at locus of interest (D) (i) natural populations: ideally should genotype additional markers to 

demonstrate signal is not demographic; scoring errors should also be ruled out. Sample sizes must be adequate to 

allow appropriately-powered Hardy-Weinberg tests. Useful indicator but not definitive because of possibility of 

selection for heterozygotes in field. [DNA] (ii) offspring from parents of known genotypes in a laboratory cross: 

assumes that differential mortality of homozygous offspring genotypes can be ruled out. Potentially reliable but 

not scalable and not tractable for field mosquito populations which are often difficult to colonise. [DNA, live 

mosquitoes] 

Altered/mixed enzyme activity (D): biochemical detection of sensitive (wild type) and insensitive (resistant) 

enzymes, at a ratio deviant from 100% or 50% using inhibitor dose-response assay, which suggests an uneven 

mixture of alleles. Traditional technique lacking sensitivity which has been superseded by more tractable DNA-

based methodologies. [protein] 

Calibrated phenotypic assays of resistance (D): laboratory crossing/backcrossing to produce heterozygote 

genotypes for which reduced mortality can be demonstrated. Requires known single-copy lines and precise 

calibration of expected genotype-phenotype mortality. Time-consuming and unreliable because of potential for 

other sources of variation in mortality. [live mosquitoes, DNA] 

Allele cloning + sequencing (D) detection of >2 distinct alleles. Only provides a one-way test (positive/unclear) 

unless many clones sequenced. Prone to false positives: must have safeguards such as detection in multiple clones 

obtained from entirely independent batches of cloned and sequenced amplicons. [DNA] 

Intermediate patterns in genotyping assays (D); assay must be quantitative (i.e. not simply detect homo- or 

heterozygotes). Useful semi-quantitative indicator but not very reliable as a standalone without extensive assay 

calibration and positive controls. [DNA] 

Southern blotting (A) traditional technique typically for qualitative analysis [DNA] 

Standard gDNA qPCR (A): suitable single-copy calibrator genes required and usually a single copy reference 

population, but will not indicate which allele in elevated copy. Quantitatively imprecise. [DNA] 

Droplet digital gDNA qPCR (D, A): excellent but expensive technique; requires calibrator genes to detect 

amplifications. [DNA] 

Fluorescent in situ hybridisation, FISH. (D) Gives an indication of the relative location of duplicates but not fine-

scaled resolution when in tandem copies. Technically-challenging. [DNA; requires chromosomal preparation] 

Elevated read coverage in genome sequences (D, A): can be whole or targeted; qualitative and quantitative; and 

can identify the size of the copied genomic region, and previously unknown CNVs. Potentially very reliable if 

appropriate algorithm used. [DNA] See Figure 1c. 

Discordant read pair mapping in genome sequence data (D, A). Can identify the structure of duplications or 

amplifications, but does not inform on the number of copies. [DNA] See Figure 1a,b.  

Long-read ‘third generation’ sequence based CNV detection (D, A). Potential to detect presence, copy number, 

sequence, and genomic location(s) of known or unknown variants. Promising, but very few applications to date in 

any organism. [DNA]  
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Duplication and amplification: insecticide target site genes 

For insecticides to be effective against a broad range of arthropod pests, their target sites must be 

conserved proteins, exhibiting little protein polymorphism within or between species. This has led to 

the popularity of neurotoxic insecticides, which are fast-acting and target sites that are highly 

conserved, as a result of strong purifying selection; this severely constrains the evolution of 

resistance by point mutation(s) [10,11]. Although after prolonged selection of a major resistance 

point mutation, amplifier or compensatory mutations may accrue [12,13], gene amplification may be 

less constrained, and a relatively rapid rate of copy number generation can provide a rich source of 

potentially-adaptive polymorphism [14].  

Duplications of the two most important insecticide target sites - the voltage-gated sodium channel 

(Vgsc) and acetylcholinesterase (Ace-1) gene – have been detected in mosquitoes. Duplication of the 

Vgsc has been reported in the major arbovirus vector Aedes aegypti in Brazil [15] and in the 

lymphatic filariasis vector Culex quinquefasciatus in Tanzania [16]. In both cases, the duplication 

appears to involve pairing of distinct alleles, but neither appear widespread or at high frequency, 

and consequences for resistance are unclear at present.  

In contrast, the evolutionary dynamics and fitness consequences of duplications at the Ace-1 locus 

have been studied intensively in mosquitoes. Many resistance-associated AChE substitutions are 

known in insects [9], but only three mutant codons are found in mosquitoes, G119S, F290V, and 

F331W. The most important is the G119S polymorphism found in Cx. pipiens pipiens, Cx. p. 

quinquefasicatus [17], Cx. vishnui [18], the African malaria vectors Anopheles gambiae and An. 

coluzzii [19] and the Latin American malaria vector An. albimanus, in which, unusually additional 

variants exist at the 119 codon [20]. Reported discovery of the G119S mutation in another major 

malaria vector, An. arabiensis from a single West African locale [21] has yet to be replicated in any 

location. The F290V polymorphism is found at low frequency in Mediterranean populations of Cx. 

pipiens [22], and the F331W polymorphism is present at very high frequency in Chinese populations 

of the Japanese encephalitis vector, Cx. tritaeniorhynchus [18], but no other species to date. In both 

Anopheles and Culex, the 119S mutation confers very strong resistance to multiple carbamate and 

organophosphate (OP) insecticides at both larval and adult stages, but crucially, results in a relatively 

inefficient enzyme, with only ≤1/3 of the activity of the wild type 119G allele [23-25]. This balance of 

a major fitness advantage in the presence of insecticide, but a major cost in insecticide-free 

environments has driven spatial and temporal variation in relative frequencies of 119G and 119S 

alleles in Cx. pipiens [26], and also selected for gene duplication [27].  

Ace-1 duplications in Cx. pipiens subspecies, whether involving G119S or F290V, appear to 
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ubiquitously involve linkage of a resistant and wild type copy, probably in tandem (no recombination 

seems to occur between copies) to create permanent ‘heterozygotes’ which exhibit both resistance 

to carbamate and organophosphate insecticides, and a reduction of fitness costs [17,28]. 

Chromosomes with duplicated alleles can pair with other duplicants or with a single copy, leading to 

a range of possible genotypes. Thirteen independent duplicated genotypes have been identified to 

date in Cx. p. pipiens and Cx. p. quinquefasicatus [29], of which some provide similar levels of 

resistance to resistant (119G/G) homozygotes but with little detectable cost [27]. Studies of 

temporal dynamics in Cx. pipiens from southern France have demonstrated replacement of single 

copy resistant alleles with duplicated (Ace-1D) alleles, and spatio-temporal variation in frequencies 

of particular duplicates [27]. In France the duplications were first detected in the mid-1990s; being 

apparently very rare or absent previously [30], and in Martinique and Cuba, duplications were 

detected 4 and 14 years respectively post-OP spraying [31].   

Owing to their major importance as disease vectors, the discovery of Ace-1 duplication in West 

African An. gambiae and An. coluzzii, which paired a resistant with a susceptible G119S allele, was 

extremely concerning because - following the model from Cx. pipiens - it suggested potential for 

reduced fitness costs and the spread of Ace-1 119S-based resistance [19,32]. All resistant alleles in 

the An. gambiae and An. coluzzii are identical, suggesting a single recent origin and introgression 

from one species to the other, although directionality cannot be determined [19]. In Tiassalé, 

southern Côte d’Ivoire, where the An. coluzzi population exhibits resistance to all major adulticide 

classes available [33], the situation appears extreme, with all or most individuals heterozygous for 

G119S and resistance to bendiocarb correlating with 119S copy number [34]. 

Further molecular investigation revealed Ace-1 duplications to be widespread in West Africa, and 

encompass a full range of genotype groups differing in their balance of resistant to susceptible 

alleles. In contrast to the situation in Cx. pipiens, these included amplified resistant homozygotes, 

with up to 10 identical alleles present [11,35]. Analysis of archived G119S heterozygotes from Accra, 

Ghana in 2002, when 119S was very rare (<5% frequency) indicated that all were duplicated [11], a 

finding substantiated by wider-scale analysis of specimens from across West Africa [24]. Very strong 

purifying selection was detected acting on Ace-1 in Accra populations, centred on the G119S 

position, but with a huge selective sweep region of up to 2 megabases, which, coupled with, a rapid 

local increase in 119S frequency demonstrates extremely strong directional selection [11]. However, 

the genomic footprint detected was unexpectedly heterogeneous and asymmetrical, leading to a 

hypothesis that the duplicated region was at least 10-times larger than the Ace-1 gene it 

encompassed [11]. Genome sequence analysis has recently demonstrated that the copied region 

exceeds 200 kilobases and encompasses 11 additional genes, although intriguingly in some 
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individuals a large portion of this duplicated/ amplified region is deleted, leaving only Ace-1 [24]. 

Importantly, acetylcholinesterase activity scales with copy number suggesting that all Ace-1 copies in 

An. gambiae or An. coluzzii appear to be expressed, as also observed in Culex [29]. Similarly, both 

resistance and, to a lesser extent fitness costs, correlate with 119S copy number [24], though the 

fitness costs in individuals with only amplified resistant alleles might be at least partially reduced by 

production of more low-activity enzyme [36]. The geographical distributions and selective drivers of 

each form of CNV - heterogenous duplication vs. homogeneous amplification - require further 

investigation as a major priority because of the current importance of the OP pirimiphos methyl for 

indoor residual spray-based control of malaria in Africa [37]. 

Duplication and amplification: genes involved in detoxification pathways 

As with target sites, CNVs in metabolic genes can influence insecticide resistance by amplifying 

expression [38] or by providing the potential for neo-functionalisation of one copy without 

sacrificing the original gene [39]. Examples reported so far in mosquitoes constitute an association 

with increased gene expression.  

The classic example of gene amplifications causing increased insecticide metabolic resistance comes 

from Cx. pipiens in which amplified esterase genes, Est2 and Est3, have spread across the globe, 

providing resistance to organophosphates [40]. Multiple alleles at this locus are linked to increased 

esterase levels have been reported, most of which are gene amplifications of both Est2 and Est3 or 

Est2 alone; copy levels range from a few- to 100-fold [40,41]. While the same genes (Est2 and Est3) 

are amplified in each case, other differences exist between these alleles that lead to divergent 

responses to selection. For example, in southern France, the amplified esterase alleles ‘A2-B2’ and 

‘A4-B4’ are both present, yet have markedly different histories: A4-B4 showed a dramatic increase in 

frequency after its appearance in the 1980s, while A2-B2 remained at consistently low frequencies 

throughout the 1990s [42]. The nature of these differences and how they affect the relative success 

of the different alleles remains to be elucidated. 

Amplification of esterases has also been implicated in larval resistance to the organochloride 

temephos in the Asian tiger mosquito Ae. albopictus, with the genes CCEae3a and CCEae6a being 

amplified around 10-fold in pooled cDNA from a resistant compared to a susceptible strain [43]. As 

with Cx. pipiens, amplifications are not geographically restricted, being found in populations from 

both Greece and Florida [44].  

In Cx. quinquefasciatus, metabolic resistance to permethrin is mediated by overexpression of the 

cytochrome P450 Cyp9M10 both in laboratory strains [45] and in the wild [46]. Overexpression is 

primarily caused by cis-acting regulatory changes, but a duplication of the region comprising both 
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the gene and its regulatory region further increases expression and resistance levels [47,48]. 

Interestingly, the expression differences between the duplicated and unduplicated forms are greater 

than can be explained by the duplication alone [47], indicating that further cis-regulatory differences 

must exist.   

The above examples of metabolic gene amplification were detected by studies focused on individual 

genes to which attention was drawn by their high levels of expression [43,48,49]. Increasingly, next 

generation sequencing combined with computational methods for detecting CNVs from sequencing 

data allow systematic population-scale studies searching across genomes for amplifications and 

possible links to insecticide resistance. The many computational tools available for detecting CNVs 

from sequencing data have been reviewed in detail [50], but the majority rely on one of two basic 

principles: (1) detecting changes in the amount of DNA coming from the amplified region, and (2) 

detecting the alignment of reads on or around the CNV breakpoint. A gene duplication in a region 

will increase the number of sequencing reads aligning to that region on the (unduplicated) reference 

genome, thus increasing the sequencing coverage in that region. Detecting this anomalous coverage 

indicates the presence of a CNV and gives an idea of the number of copies involved in a duplication 

event. Identifying reads that map across breakpoints, or pairs of reads mapping either side of a 

breakpoint (Figure 1), provides accurate information on the start and end points of the CNV and can 

provide base-pair level resolution of the breakpoint position.  
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In the world’s most important arbovirus vector, Aedes aegypti, a targeted deep-sequencing analysis 

of 763 candidate genes was used to compare sequencing coverage between laboratory strains, 

which were resistant or susceptible to insecticides [51]. Forty-one genes showed evidence of more 

amplification in resistant than susceptible mosquitoes. Among amplified genes, P450s were 

significantly over-represented, suggesting a possible association between these gene amplifications 

and metabolic resistance. Furthermore, some of the amplifications were shown to be correlated 

with gene expression [51,52]. However, this targeted sequencing was neither able to describe the 

Figure 1. Detecting a tandem gene duplication (or amplification) using discordant read alignment (a,b), or 

an amplification from read coverage irrespective of relative genomic positions. a) Example of concordant 

read alignment. Paired end sequencing of a DNA fragment produces a pair of reads (blue arrows) which 

map facing towards each-other when aligned to the reference genome (red arrows). b) Example of 

discordant read alignment. Paired end sequencing of a DNA fragment that overlaps the duplication break 

point produces a pair of reads which map facing away from each other at either end of the duplication 

when aligned to the reference genome. c) Simulated data showing patterns used to detect CNVs using 

sequencing coverage. Each point represents a genomic window (usually in the order of a hundred or 

more base pairs) over which coverage was calculated and normalised such that 1 represents the 

unduplicated state. The red line indicates the true underlying copy number state. The CNV is visible as a 

marked transient increase in normalised coverage (here from 1 to 2).  
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structure of the duplications in detail, nor identify independent duplication events that might be 

tracked across populations. In contrast, using untargeted whole-genome sequencing increases the 

chances that the breakpoints of the duplication are included in the sequenced regions, thus 

permitting precise and accurate identification of the extent of a duplication and matching of 

duplication types between individuals. Such research is currently under-way using data resources 

from the Anopheles gambiae 1000 genomes (Ag1000G) project [13] 

(https://www.malariagen.net/projects/ag1000g).   

 
Conclusion: copy number variation is an increasing problem for mosquito control 

 

Studies of Cx. pipiens subspecies provided a template for understanding CNV-mediated resistance at 

one of the most important insecticide target sites and major-effect metabolic resistance loci. In both 

cases the superb long-term datasets combined with classical laboratory and population genetic 

analysis techniques yielded results which clearly indicate that duplications appear to rise in 

frequency as a result of insecticide application. With the widespread removal of OP-use from most 

of the range where Cx. pipiens are a major vector, however, the applied importance has greatly 

diminished. A far greater current threat comes from the recently-increasing CNVs in the An. gambiae 

species pair, the consequences of which are not yet fully understood for Ace-1 (but appear of major 

concern), and are all-but unknown for metabolic genes. An. gambiae Ace-1 CNV evolution is very 

different from that of Culex, and appears to perfectly track Ace-1 resistant allele increases from a 

point of extreme rarity about 15 years ago [11]. The causal element which generated an increase in 

gene duplication/ amplification from this time-point is unknown. A notable feature of major 

methods for detecting CNV (Box 1) is that many are capable of detecting heterogeneous 

duplications, typically at single known candidate genes of interest. Recent studies from An. gambiae 

[11,24] and Ae. aegypti [51] have shown how extending the region scanned beyond the mutation, 

gene or immediate genomic locale can bring insights into selection, CNV size and identification of 

novel CNVs, including amplifications. Population genomic whole genome sequencing projects, 

especially those targeting sampling areas with anti-vector interventions via time-series should soon 

generate a vastly improved understanding of both the extent and importance of CNVs as part of the 

mosquito insecticide resistance armoury.  
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