JCM Accepted Manuscript Posted Online 25 April 2018 J. Clin. Microbiol. doi:10.1128/JCM.00386-18 Copyright © 2018 Adams et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

1 Development and evaluation of a novel LAMP assay for the diagnosis of Cutaneous and Visceral

2 Leishmaniasis.

- 3 Emily Rebecca Adams^{1*}, Gerard Schoone², Inge Versteeg², Maria Adelaida Gomez³, Ermias Diro⁴,
- 4 Yasuyoshi Mori⁵, Desiree Perlee², Tim Downing⁶, Nancy Saravia³, Ashenafi Assaye⁷ Asrat Hailu⁷,
- 5 Audrey Albertini⁸, Joseph Mathu Ndung'u⁸, Henk Schallig²
- ⁶ ¹ Research Centre for Drugs and Diagnostics, Parasitology Department, Liverpool School of Tropical
- 7 Medicine, Parasitology department, Pembroke Place, Liverpool, L3 5QA, UK
- 8 ² Academic Medical Centre, Department of Medical Microbiology, Parasitology Unit, Meibergdreef 9,
- 9 Amsterdam, 1105 AZ, The Netherlands
- 10 ³Centro Internacional de Entrenamiento e Investigaciones Médicas, CIDEIM, Cra 125 # 19-225 Cali,
- 11 Colombia
- 12 ⁴ University of Gondar, Ethiopia
- 13 ⁵ Eiken Chemical Company, Tokyo, Japan
- 14 ⁶ Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton
- 15 CB10 1SA, United Kingdom. Current address: Infection Genomics, School of Biotechnology, Dublin
- 16 City University, Dublin 9, Ireland
- 17 ⁷ University of Addis Ababa, School of Medicine, Ethiopia
- 18 ⁸ Foundation for Innovative New Diagnostics, Geneva, Switzerland
- 19
- 20 * corresponding author email: <u>Emily.adams@lstmed.ac.uk</u>
- 21

22 <u>Abstract</u>

23	Introduction: A novel Pan-Leishmania LAMP assay was developed for diagnosis of Cutaneous and
24	Visceral Leishmaniasis (CL & VL) which can be used in near-patient settings.
25	Methods: Primers were designed on the 18S rDNA and the conserved region of minicircle kDNA
26	selected on the basis of high copy number. LAMP assays were evaluated for CL in a prospective
27	cohort trial of 105 patients in South-West Colombia. Lesion swab samples from CL suspects were
28	collected and tested using LAMP and compared to a composite reference of microscopy AND/OR
29	culture to calculate diagnostic accuracy. LAMP assays were tested on 50 VL suspected patients from
30	Ethiopia, including whole blood, peripheral blood mononuclear cells, and buffy coat. Diagnostic
31	accuracy was calculated against a reference standard of microscopy of splenic or bone marrow
32	aspirates. To calculate analytical specificity 100 clinical samples and isolates with fever causing
33	pathogens including malaria, arboviruses and bacterial infections were tested.
34	Results & Conclusions: The LAMP assay had a sensitivity of 95% (95% CI: 87.2% - 98.5 %) and a
35	specificity of 86% (95% CI: 67.3% -95.9 %) for the diagnosis of CL. On VL suspects the sensitivity was
36	92% (95% CI: 74.9 – 99.1%) and specificity of 100% (95% CI: 85.8-100%) in whole blood. For CL,
37	LAMP is a sensitive tool for diagnosis and requires less equipment, time and expertise than
38	alternative CL diagnostics. For VL, LAMP is sensitive using a minimally invasive sample as compared
39	to the gold standard. The analytical specificity was 100%.

40 Introduction:

41	Infection with Leishmania parasites causes a spectrum of diseases from self-healing skin ulcers,
42	cutaneous leishmaniasis (CL), to the potentially fatal form, visceral leishmaniasis (VL) affecting
43	internal organs, in particular spleen, liver, bone marrow and lymph nodes. Accurate and opportune
44	laboratory diagnosis followed by appropriate treatment is crucial in patient management, and to
45	decrease transmission (1). Parasitological confirmation by microscopy of biopsies, sometimes in
46	combination with culture techniques, remains the reference standard laboratory diagnosis for both
47	VL and CL. For VL serological diagnostics are available in the form of rapid diagnostics tests (RDTs)
48	and ELISAs optimally based on rK39 (2, 3), the Direct Agglutination Test (DAT)(4), and
49	immunofluorescent antibody tests (IFA/IFAT). However, due to poor specificity, these tests are only
50	recommended for use after prolonged fever, most commonly taken as more than 14 days of fever
51	(3). No alternative serological diagnostic test exists for CL due to low concentrations of circulating
52	antibodies; as regards molecular tools, several diagnostic protocols have been validated for CL but
53	no reference standards are currently available.
54	Reference standard diagnostic tests suffer from challenges; microscopy can be poorly sensitive, lack
55	standardisation of tissue collection, requires quality control and invasive sample types. The rK39
56	RDTs lack specificity and also sensitivity in certain regions, and culture methods require time,
57	expertise and considerable infrastructure.
58	A recent advance in nucleic acid-based diagnostics has been the development of loop-mediated
59	isothermal amplification (LAMP) of DNA. LAMP diagnostic kits have been developed for a variety of
60	infectious diseases, including tuberculosis (5, 6), human African trypanosomiasis (HAT) (7) and
61	malaria (8, 9). This nucleic acid amplification technique (NAAT) uses only one enzyme (Bst DNA
62	polymerase) and is able to amplify large amounts of DNA within 40 minutes by the intricate design of
63	primers and auto-strand displacement DNA synthesis. A thermocycler is not required because the
64	enzyme works under isothermal conditions, reagents are dried-down with no requirement of a cold-

lournal of Clinical Microbioloay 66 makes LAMP a powerful diagnostic test for disease endemic settings, bringing molecular diagnostics

chain. Results can be read visually, and there is no post-amplification handling or processing. This

67 closer to the patient.

65

68 Recent modelling data for VL diagnostics shows that early diagnosis and treatment of patients has

69 the potential to greatly reduce transmission of disease in elimination areas (1). Diagnostics that can

70 specifically identify and allow treatment of patients earlier than is currently possible have the

71 potential to reduce transmission.

72 There have been previous attempts to develop a LAMP test for Leishmaniasis (10, 11). However,

these were in-house assays rather than diagnostic kits, and should not be considered for quality-

74 controlled, standardised use. In addition, the design of some LAMP primer sets is geographically

focused and therefore not suitable for all Leishmania endemic areas (11). Here we describe the

76 development of a novel LAMP assay, with the advantages of quality control and standardisation that

77 comes with product development. Data collected during development of the assay from cohorts of

78 suspected CL patients in Colombia, and suspected VL patients from Ethiopia, are presented.

79 Material and Methods:

- 80 Target selection: A combination of literature searches and sequence alignment identified potential
- 81 target genes conserved within the genus Leishmania that had low homology (<80%) to other targets,
- 82 including the *Trypansoma* as the nearest taxonomic pathogen to *Leishmania*, and human DNA. The

83 Leishmania were represented by the five reference genomes of *L. major*

84 MHOM/IL/1981/Friedlin(12), L. braziliensis MHOM/BR/1975/M2904 (13), L. mexicana

85 MHOM/GT/2001/U1103cl25 (14), L. donovani MHOM/NP/2003/BPK282/0cl4 (15) and L. infantum

- 86 (JPCM5) MCAN/ES/1998/LLM-87 (13). To exclude targets that could be amplified due to
- 87 trypanosomiasis, the Trypansoma were represented by T. cruzi CL Brenner (TcVI) (16), T. cruzi Sylvio
- 88 ×10/1 (Tcl) (17), T. vivax Y486 (18), T. brucei TREU927 (19), and T. congolense IL3000 (20). Sequence
- 89 conversation and suitability as a LAMP target were assessed using genome-wide sequence alignment

91	CDS regions with Genscan, and measured orthology with BLAT and MUMmer. Sequences totalling 21
92	Mb in length were present in all five Leishmania (average ~32 Mb) and absent in all five Trypansoma
93	14,030 candidate LAMP targets of >200 bp were identified - these spanned 7,942 Kb of sequence.
94	Gene length, GC content and in silico copy number were evaluated using read information with
95	Samtools v0.1.11 (23). Gene length, GC content and in silico copy number were evaluated using read
96	information with Samtools v0.1.11 (23) and a priority list of targets for primer design was made.
97	Further sequence alignment showed only 18 substitutions at the 2,190 bp 18S rDNA gene using
98	GenBank PopSet 254847845 (24) across nine Leishmania species (the five above plus L. amazonensis,
99	L. guyanensis, L. panamensis and L. tropica). The 3' end (1954-2190) of the 18S rDNA gene showed
100	some homology to Trypanosoma.
101	Copy-number calculation: In order to rank genes in priority for LAMP primer design, the copy
102	number of each potential target was experimentally calculated as follows. Promastigotes were
103	cultivated in RPMI-1640 culture medium containing 10% Fetal calf serum, at 27°C. DNA from 8
104	Leishmania species were extracted using the DNeasy extraction kit (Qiagen) at the log phase. For the
105	purposes of this study we refer to VL causing species (L. donovani and L. infantum) and CL causing
106	species (L. tropica, L. major, L. braziliensis, L. mexicana, L. panamensis, L. guyanensis). Alignments
107	were made using T coffee software (<u>www.tcoffee.crg.cat/</u>) for all target genes except the kDNA
108	where existing primer sets from Cavalcanti et al. (25) were used. Each target gene was amplified
109	with HotStar Taq polymerase, using the following protocol: 94°C 10min., followed by 40 cycles of
110	94°C for 30s., 52°C, 55°C or 58°C for 30s and 72°C for 30S, and final hold of 72°C for 10 min.
111	Resultant fragments were cloned as single copy vectors using TOPO TA cloning kit (Invitrogen).
112	Colony PCR was used to select colonies containing the insert, and transformants were cultured in LB
113	medium containing ampicillin (50 μ g/mL). DNA was extracted using the Qiagen plasmid midi kit, and
114	DNA digestion was performed for 2 hours at 37°C with EcoRI and HINDIII/XBA restriction enzymes. A
115	sybr green qPCR was performed for each target gene: 95°C 5 min. followed by 40 cycles of 95°C for

with MAVID (21) following construction of an orthology map with Mercator (22), which identified

116	10s and 60°C for 40s. A 10 fold dilution series of vector DNA was used as a standard curve, where the
117	vector was known to contain a single copy of the target gene, and the weight of the vector was
118	known. Additionally, a 5 fold dilution series of promastigote DNA was included, whereby the weight
119	of the whole genome was known (14). The DNA concentrations of the vector and genomic DNA were
120	determined using the ThermoScientific nanodrop 1000 spectrophotometer. The Cycle threshold (Ct)
121	of genomic DNA was compared with the Ct of vector DNA and copy number was calculated by the
122	standard formula:
123	Copy number = Known Concentration of Vector DNA (ng/µl)/Vector weight (ng)
124	Concentration genomic DNA (ng/ul) calculated by qPCR/Genome weight (ng)
125	The gene 7SL, was used as a control as a known single-copy gene (26).
126	Primer design: Genes 18S rDNA, Histone H3 and kDNA (Table 1) were chosen for primer design
127	based on their high copy-number. PrimerExplorer version 4.0 software
128	http://primerexplorer.jp/elamp4.0.0 was used to design LAMP primers on all 3 targets. Targets with
129	highest copy number were multiplexed to optimise sensitivity.
130	Limit of Detection: In order to determine the limit of detection (LOD) of each of the prototype LAMP
131	primer sets, serial dilutions of DNA from 8 species (see above) from different geographical areas,
132	including Asia and Africa were tested; this included 2 strains for CL causing species and 4 strains for
133	VL causing species, L. infantum and L. donovani. Cultured promastigotes of Leishmania species were
134	prepared, and DNA extracted using phenol/chloroform extraction method. A 10-fold dilution series
135	was tested from 1,000 parasites per μ l to 0.001 p/ μ l. To ensure there was no cross reactivity of the
136	LAMP primer sets they were tested with serial dilutions of DNA from Trypanosoma brucei, T. cruzi,
137	Plasmodium falciparum, human cell lines THP1 and U937, salmon sperm, human whole blood and
138	buffy coat.
139	Bank of pathogen samples: In order to ensure the specificity of the LAMP assay, 50 clinical samples
140	or cultured isolates were tested. These included high, medium and low concentration samples of

141	Plasmodium falciparum, P. vivax, Trypanosome brucei brucei, Trypanosoma cruzi, Giardia lamblia,
142	Cryptosporidium parvum; and 50 isolates of high, medium and low concentration dengue,
143	chikungunya, Zika and bacterial species including Escherichia coli and Klebsiella pneumoniae.
144	Cutaneous Leishmaniasis clinical samples: A prospective collection of samples from suspected CL
145	patients from CIDEIM, Colombia (27) was used to estimate the diagnostic sensitivity of the
146	developed prototype multiplex LAMP kit (kDNA plus 18S rDNA primers). One lesion swab sample
147	(Isohelix DNA buccal swabs, SK-1S) was taken per suspected patient by gently rubbing a swab over
148	the ulcer ~10 times, and then stored at -20°C. Qiagen DNAeasy blood and tissue kit (Qiagen, USA)
149	was used to extract DNA according to manufacturer's instructions and eluted in $50\mu l$ distilled water.
150	Diagnostic performance of LAMP was compared with a composite reference standard of microscopy
151	AND/OR culture positivity. Briefly, two slides with three lesion smears on each slide were
152	microscopically examined for amastigotes; parasite isolation in semisolid culture medium was
153	attempted from 4 independent lesion aspirates from each participant. Parasite isolation was traced
154	for a maximum of one-month post-inoculation.
154 155	for a maximum of one-month post-inoculation. <i>Ethics:</i> This study was approved and monitored by the Centro Internacional de Entrenamiento e
154 155 156	for a maximum of one-month post-inoculation. <i>Ethics:</i> This study was approved and monitored by the Centro Internacional de Entrenamiento e Investigaciones Médicas institutional review board for ethical conduct of research involving human
154 155 156 157	for a maximum of one-month post-inoculation. <i>Ethics:</i> This study was approved and monitored by the Centro Internacional de Entrenamiento e Investigaciones Médicas institutional review board for ethical conduct of research involving human subjects
154 155 156 157 158	for a maximum of one-month post-inoculation. <i>Ethics:</i> This study was approved and monitored by the Centro Internacional de Entrenamiento e Investigaciones Médicas institutional review board for ethical conduct of research involving human subjects <i>Visceral Leishmaniasis clinical samples:</i> Blood was collected from 50 VL suspected patients from
154 155 156 157 158 159	for a maximum of one-month post-inoculation. <i>Ethics:</i> This study was approved and monitored by the Centro Internacional de Entrenamiento e Investigaciones Médicas institutional review board for ethical conduct of research involving human subjects <i>Visceral Leishmaniasis clinical samples:</i> Blood was collected from 50 VL suspected patients from University of Gondar Hospital, Amhara Regional State, Northern Ethiopia, in 2013. In order to
154 155 156 157 158 159 160	for a maximum of one-month post-inoculation. <i>Ethics:</i> This study was approved and monitored by the Centro Internacional de Entrenamiento eInvestigaciones Médicas institutional review board for ethical conduct of research involving humansubjects <i>Visceral Leishmaniasis clinical samples:</i> Blood was collected from 50 VL suspected patients fromUniversity of Gondar Hospital, Amhara Regional State, Northern Ethiopia, in 2013. In order todetermine the optimal extraction method with respect to parasite numbers, we compared the
154 155 156 157 158 159 160 161	for a maximum of one-month post-inoculation. <i>Ethics:</i> This study was approved and monitored by the Centro Internacional de Entrenamiento eInvestigaciones Médicas institutional review board for ethical conduct of research involving humansubjects <i>Visceral Leishmaniasis clinical samples:</i> Blood was collected from 50 VL suspected patients fromUniversity of Gondar Hospital, Amhara Regional State, Northern Ethiopia, in 2013. In order todetermine the optimal extraction method with respect to parasite numbers, we compared theisolation of peripheral blood mononuclear cells (PBMC) with buffy coat, and with whole blood stored
154 155 156 157 158 159 160 161 162	for a maximum of one-month post-inoculation. <i>Ethics:</i> This study was approved and monitored by the Centro Internacional de Entrenamiento eInvestigaciones Médicas institutional review board for ethical conduct of research involving humansubjects <i>Visceral Leishmaniasis clinical samples:</i> Blood was collected from 50 VL suspected patients fromUniversity of Gondar Hospital, Amhara Regional State, Northern Ethiopia, in 2013. In order todetermine the optimal extraction method with respect to parasite numbers, we compared theisolation of peripheral blood mononuclear cells (PBMC) with buffy coat, and with whole blood storedin heparin tubes from the same patient samples. PBMC were isolated by slowly layering two ml
154 155 156 157 158 159 160 161 162 163	for a maximum of one-month post-inoculation. <i>Ethics</i> : This study was approved and monitored by the Centro Internacional de Entrenamiento e Investigaciones Médicas institutional review board for ethical conduct of research involving human subjects <i>Visceral Leishmaniasis clinical samples:</i> Blood was collected from 50 VL suspected patients from University of Gondar Hospital, Amhara Regional State, Northern Ethiopia, in 2013. In order to determine the optimal extraction method with respect to parasite numbers, we compared the isolation of peripheral blood mononuclear cells (PBMC) with buffy coat, and with whole blood stored in heparin tubes from the same patient samples. PBMC were isolated by slowly layering two ml
154 155 156 157 158 159 160 161 162 163 164	for a maximum of one-month post-inoculation. <i>Ethics:</i> This study was approved and monitored by the Centro Internacional de Entrenamiento e Investigaciones Médicas institutional review board for ethical conduct of research involving human subjects <i>Visceral Leishmaniasis clinical samples:</i> Blood was collected from 50 VL suspected patients from University of Gondar Hospital, Amhara Regional State, Northern Ethiopia, in 2013. In order to determine the optimal extraction method with respect to parasite numbers, we compared the isolation of peripheral blood mononuclear cells (PBMC) with buffy coat, and with whole blood stored heparin tubes from the same patient samples. PBMC were isolated by slowly layering two ml heparin blood on top of an equal volume of Histopaque (Sigma, Aldrich), the sample was centrifuged for 30 minutes at 2000 rpm. The PBMC fraction was removed and suspended in 600 µl PBS, and once
154 155 156 157 158 159 160 161 162 163 164 165	for a maximum of one-month post-inoculation. <i>Ethics:</i> This study was approved and monitored by the Centro Internacional de Entrenamiento e Investigaciones Médicas institutional review board for ethical conduct of research involving human subjects <i>Visceral Leishmaniasis clinical samples:</i> Blood was collected from 50 VL suspected patients from University of Gondar Hospital, Amhara Regional State, Northern Ethiopia, in 2013. In order to determine the optimal extraction method with respect to parasite numbers, we compared the isolation of peripheral blood mononuclear cells (PBMC) with buffy coat, and with whole blood stored in heparin tubes from the same patient samples. PBMC were isolated by slowly layering two ml heparin blood on top of an equal volume of Histopaque (Sigma, Aldrich), the sample was centrifuged for 30 minutes at 2000 rpm. The PBMC fraction was removed and suspended in 600 µl PBS, and once again centrifuged for 1 minute at 8000 rpm. The cells were re-suspended in 180µl PBS. The buffy

JCM

- 166 coat fraction was isolated by centrifuging two ml heparin blood for 5 minutes at 8,000 rpm. The buffy coat fraction was removed and suspended in PBS to a total volume of 180 µl. All PBMC, buffy 167 168 coat and plain heparin blood samples (180 µl volumes) were mixed with an equal volume of AS1 169 buffer (Qiagen). DNA was extracted with Qiagen mini blood and tissue extraction kit according to protocol and resultant samples stored at -20°C. LAMP and gPCR were compared to microscopy of 170 171 either bone-marrow or spleen-aspirate as the gold standard. 172 Ethics: This study was approved and monitored by the University of Gondar Institutional Review 173 Board, Ethiopia, (Ref R/C/S/V/P/05/664/2013). Written informed consent was obtained from 174 patients for the use of their specimens in the study. 175 Molecular methods: 176 LAMP: LAMP (Eiken Chemical, Japan) was performed as per manufacturer's instructions. 3µl 177 extracted DNA was added to a LAMP tube plus 27µl water. Tubes were turned upside down for 2 178 minutes to release the dried-down reagents in the cap of the tube. Samples were briefly centrifuged 179 and then placed in a real-time turbidimeter (Eiken) at 65°C for 40 minutes, and then 80°C for 2 180 minutes. A LAMP reaction was considered positive for Leishmania if fluorescence was observed 181 visually and if a positive reaction was observed in the turbidimeter. Discrepancies between these 182 two methods were recorded.
 - 183 qPCR: qPCR was performed on DNA extracted from swab samples as described in Adams et al. 2014,
- 184 based on amplification of the 18S rDNA gene for amplification of CL (27). kDNA qPCR was performed
- on all VL patient samples (N=50). 1.2 µL of DNA was added to 11.3 µL amplification mix containing 185
- 186 6.25 μL iQ Supermix (Bio-Rad, cat.no. 170-8862),0.25 μM forward primer kDNA(5'-
- TCCCAAACTTTTCTGGTCCT-3'), 0.25 μM reverse primer kDNA(5'-TTACACCAACCCCCAGTTTC-3'), 0.12 187
- 188 μM probe kDNA (5' FAM- TTCTGCGAAAAACCGAAAAATGGGTGC-BHQ 3'). The qPCR protocol (Bio-Rad
- 189 CFX-96) was as follows: 5 minutes at 95°C followed by 40 cycles of 10 s at 95°C and 40 s at 54°C.

Journal of Clinica

190 qPCR was used in this programme as a comparator molecular method to LAMP to understand results 191 fully. Diagnostic accuracy of data, including sensitivity and specificity, was calculated for LAMP and 192 qPCR. This study followed the STAARD guidelines, including blinding of index and reference 193 diagnostic tests.

194

195 Results:

196 Target selection: The relative copy number of nine different target genes was calculated for the 8 197 Leishmania species tested, with an average across two strains. Results are shown for the highest 198 copy number targets in Table 1, relative to the known single copy target of the 7SL gene. 199 Prototype primer sets: Primer design was attempted on 3 target genes, the 18S rDNA and the 200 Histone 3 for pan-Leishmania assays and the kDNA for a VL specific assay. Each primer set was 201 tested for the Limit of Detection (LOD) using a real-time LAMP turbidimeter. The kDNA had the 202 lowest LOD at 0.0001 p/ μ l on L. donovani and L. infantum, and no amplification with other CL 203 causing Leishmania species. The 18S rDNA had the next lowest LOD at 0.01-0.001 p/µl. The Histone 204 LAMP primers had a similar LOD to the 18s rDNA at 0.01 p/ μ l, but could not amplify all *L. guyanensis* 205 and L. braziliensis, indicating low sequence homology to some South American strains. The targets 206 18S rDNA and kDNA, were multiplexed to optimise sensitivity for detecting VL, and ability to detect 207 all Leishmania species that cause CL; LOD was not affected by multiplexing. All testing of primer sets 208 was performed using the dried-down LAMP assay developed by Eiken. No cross-reaction was 209 observed with serial dilutions of DNA from T. brucei, T. cruzi, P. falciparum, salmon sperm, human 210 cell lines THP1 and U937, human whole blood and buffy coat. 211 Bank of pathogen samples: Of 100 clinical samples and cultured isolates from different pathogens, 212 none were positive with the Leish LAMP kit, showing an analytical specificity of 100%. 213 Cutaneous Leishmaniasis samples: 105 clinical suspects were enrolled. A complete description of

214 demographic and clinical characteristics of study participants and Leishmania species is reported in

215	Adams et al., 2014. Parasites were isolated and identified in 64% of the participants; L. panamensis
216	predominated overall, with representation from the Viannia and Leishmania subgenera. Compared
217	to the reference standard of microscopy AND/OR culture, LAMP (kDNA + 18S rDNA) was 95%
218	sensitive (95% CI: 87.22 % to 98.53 %) and 86% specific (95% CI: 67.32 % to 95.88 %). This compared
219	well with qPCR data on the same samples, which showed a sensitivity of 97% (95% CI: 91%-100%)
220	and specificity of 84% (95% CI: 64%-95%).
221	Visceral Leishmania samples: In this study, 50 VL suspects were enrolled, of which 26 were positive
222	for VL by microscopy of the splenic (n=19 positive) or bone marrow (n=7 positive) aspirates. Of the
223	26 VL positive individuals 27% (n=7) were also positive for HIV.
224	Parasite load was quantified by qPCR in order to compare the extraction efficiency of the different
225	sample types (whole blood, buffy coat and PBMCs). Of the 26 VL parasitologically positive
226	individuals, the highest parasite load as determined by <i>ct</i> threshold on kDNA qPCR, was found in
227	whole blood (n=19) followed by buffy-coat (n=5) and PBMC (n=1) of 25 qPCR positive individuals.
228	On VL suspects from Ethiopia, the sensitivity from whole blood was 92% (95% CI: 74.9 – 99.1%) and
229	specificity of 100% (95% CI: 85.8-100%). The sensitivity of kDNA qPCR was 96% (95% CI: 80.1-99.9%)
230	and specificity of 92% (95% CI: 73-99%). The sensitivity of both tests was the same on buffy coat
231	samples but this decreased to 89% in PBMCs samples (see Table 2). The specificity was highest on
232	LAMP from whole blood at 100% dropping to 96% on other sample types (see Table 2). qPCR had a
233	specificity of between 92% and 95% depending on sample type. However, sample numbers are
234	limited and confidence intervals overlap. Notably, all HIV positive patients (n=7) were positive for
235	both qPCR and LAMP in all sample types.
236	
237	No discrepancies were reported between the visual analysis of the LAMP tubes for fluorescence and
238	the real-time turbidimeter data.

239

Discussion:

241	and CL. Target genes were chosen based on high copy number and conservation across multiple
242	strains and species of Leishmania across geographic areas. 18S rDNA and kDNA primer sets were
243	multiplexed to ensure a sensitive reaction for VL (kDNA) and the capability to detect all species
244	causing CL (18S rDNA). Since the differential diagnosis and sample types of VL and CL does not
245	overlap, the combination of primers is considered appropriate. Testing was performed on
246	geographically distinct strains and species of Leishmania to ensure production of a robust and
247	reliable test. The multiplex LAMP was highly sensitive and specific, with a limit of detection between
248	0.01-0.001 parasites per μl for CL causing species, and 0.0001 parasites per μl for VL causing species
249	on purified DNA. LAMP was 100% specific when tested on a range of fever causing organisms with
250	overlapping epidemiology as Leishmania; this included, bacterial infections, malaria, arboviruses and
251	other protozoan infections. LAMP was taken forward for testing on prospective clinical sample
252	collections. In a cohort of suspected CL patients from South West Colombia LAMP was 95% sensitive
253	(95% CI: 87.2%-98.5%) and 86% specific (95% CI: 67.3%-95.9%). In a study on 50 suspected VL
254	patients the LAMP showed a sensitivity of 92.3% (95% CI: 74.9%-99.1%) and a specificity of 100%
255	(95% CI: 86.7%-100%) on whole blood. Due to the reduced number of sample handling steps and
256	reduced ct values, the whole blood sample type is preferable for VL compared with PBMCs and buffy
257	coat.
258	For CL samples, the LAMP test showed overlapping confidence intervals with qPCR, and was more
259	sensitive than culture and microscopy alone. The lower specificity of both qPCR and LAMP may
260	represent patients not detected by the composite reference standard, as no perfect gold standard
261	test for CL exists. Multiple studies including (27, 28), have concluded that the molecular tools are
262	more sensitive for diagnosing CL, and therefore, false positives in molecular tools may be considered

- 263 truly positive patients. Follow-up studies of participants needs to be conducted to determine
- 264 whether this is the case. Swab sampling on lesions was an appropriate collection method, although

This study presents data on the development of a LAMP diagnostic kit capable of detecting both VL

265 this would need adaptation to areas where non-ulcerated lesions of CL are prevalent.

240

Downloaded from http://jcm.asm.org/ on May 11, 2018 by LIVERPOOL SCH OF TROPICAL MED

266	In VL samples, LAMP performed on DNA extracted from whole blood showed good sensitivity
267	compared to microscopy of highly invasive biopsy samples. The kDNA qPCR was only slightly more
268	sensitive (96%) as compared to LAMP (92%) in the Ethiopian collection. The extraction of DNA from
269	whole blood resulted in a higher parasite load in qPCR than either processing PBMC or buffy-coat in
270	spite of the fact that, for the latter two methods, ten times more blood was used for extraction (200
271	μl vs 2 ml). Using plain heparin blood for extraction is favourable since a smaller volume of blood is
272	required, and the processing of this sample type requires fewer handling steps. Microscopic
273	examination on bone-marrow or spleen aspirates will remain the gold standard because parasite
274	numbers are high in these sample types. However, based on these results, LAMP could potentially
275	be used to confirm infection in the majority of patients, and then aspiration performed in those that
276	are LAMP negative but who remain VL suspects. This would circumvent aspiration in the majority of
277	patients. Also in areas where it is not possible to take biopsy samples due to lack of appropriate
278	medical facilities LAMP may be used as to confirm infection.
279	Modelling studies have suggested the use of highly specific diagnostic tools for the detection of VL in
280	elimination zones (1). This would enable treatment of cases earlier than is currently possible in the
281	diagnostic algorithm. Results for VL suspects in Ethiopia show a high specificity of 100% (95%
282	CI: 85.8-100%), intimating that LAMP may be a suitable tool for this purpose.
283	LAMP has been developed as a platform diagnostic tool and is now available for malaria,
284	tuberculosis and HAT, as well as a range of viral and bacterial infections. Here, this powerful
285	diagnostic tool has now been designed for Leishmaniasis, and tested on Leishmania suspects from
286	Colombia and Ethiopia. LAMP is simple and does not require expensive equipment and therefore can
287	be used in basic laboratory facilities with minimal DNA extraction facilities. Further development
288	work and evaluation data is required. For CL it would be useful to follow up patients with (false)
289	positive LAMP reactions to see if they become positive with the gold standard. As alternative
290	diagnostics exist for VL, the use of LAMP may be to confirm suspected patients in areas with poor
291	infrastructure, and before 14 days of fever has passed.

292 <u>Acknowledgements:</u>

- 293 We would like to thank all the local staff in Colombia and Gondar LRTC for enrolling patients,
- 294 processing samples and performing reference standard diagnostic tests, especially Ruby Rios,
- 295 Ricardo Marquez and Alexandra Cossio. We would also like to thank all the patients for their time
- and participating in this study.
- 297
- 298 <u>References:</u>

299

300	1.	Medley GF, Hollingsworth TD, Olliaro PL, Adams ER. 2015. Health-seeking behaviour,
301		diagnostics and transmission dynamics in the control of visceral leishmaniasis in the Indian
302		subcontinent. Nature 528:S102-108.
303	2.	Cunningham J, Hasker E, Das P, El Safi S, Goto H, Mondal D, Mbuchi M, Mukhtar M,
304		Rabello A, Rijal S, Sundar S, Wasunna M, Adams E, Menten J, Peeling R, Boelaert M,
305		Leishmaniasis WTV. 2012. A Global Comparative Evaluation of Commercial
306		Immunochromatographic Rapid Diagnostic Tests for Visceral Leishmaniasis. Clinical
307		Infectious Diseases 55:1312-1319.
308	3.	Boelaert M, Verdonck K, Menten J, Sunyoto T, van Griensven J, Chappuis F, Rijal S. 2014.
309		Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease.
310		Cochrane Database Syst Rev 6:CD009135.
311	4.	Chappuis F, Rijal S, Soto A, Menten J, Boelaert M. 2006. A meta-analysis of the diagnostic
312		performance of the direct agglutination test and rK39 dipstick for visceral leishmaniasis. BMJ
313		333 :723.
314	5.	Mitarai S, Okumura M, Toyota E, Yoshiyama T, Aono A, Sejimo A, Azuma Y, Sugahara K,
315		Nagasawa T, Nagayama N, Yamane A, Yano R, Kokuto H, Morimoto K, Ueyama M, Kubota
316		M, Yi R, Ogata H, Kudoh S, Mori T. 2011. Evaluation of a simple loop-mediated isothermal
317		amplification test kit for the diagnosis of tuberculosis. International Journal of Tuberculosis
318		and Lung Disease 15: 1211-1217.
319	6.	Boehme CC, Nabeta P, Henostroza G, Raqib R, Rahim Z, Gerhardt M, Sanga E, Hoelscher M,
320		Notomi T, Hase T, Perkins MD. 2007. Operational feasibility of using loop-mediated
321		isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of
322		developing countries. Journal of Clinical Microbiology 45:1936-1940.
323	7.	Njiru ZK, Mikosza AS, Armstrong T, Enyaru JC, Ndung'u JM, Thompson AR. 2008. Loop-
324		Mediated Isothermal Amplification (LAMP) Method for Rapid Detection of Trypanosoma
325		brucei rhodesiense. PLoSNeglTropDis 2:e147.
326	8.	Hopkins H, Gonzalez IJ, Polley SD, Angutoko P, Ategeka J, Asiimwe C, Agaba B, Kyabayinze
327		DJ, Sutherland CJ, Perkins MD, Bell D. 2013. Highly sensitive detection of malaria
328		parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal
329		amplification kit in a remote clinic in Uganda. J Infect Dis 208:645-652.
330	9.	Polley SD, Gonzalez IJ, Mohamed D, Daly R, Bowers K, Watson J, Mewse E, Armstrong M,
331		Gray C, Perkins MD, Bell D, Kanda H, Tomita N, Kubota Y, Mori Y, Chiodini PL, Sutherland

13

332		CJ. 2013. Clinical evaluation of a loop-mediated amplification kit for diagnosis of imported
333		malaria. J Infect Dis 208:637-644.
334	10.	Adams ER, Schoone GJ, Ageed AF, Safi SE, Schallig HD. 2010. Development of a reverse
335		transcriptase loop-mediated isothermal amplification (LAMP) assay for the sensitive
336		detection of Leishmania parasites in clinical samples. AmJTropMedHyg 82:591-596.
337	11.	Verma S, Avishek K, Sharma V, Negi NS, Ramesh V, Salotra P. 2013. Application of loop-
338		mediated isothermal amplification assay for the sensitive and rapid diagnosis of visceral
339		leishmaniasis and post-kala-azar dermal leishmaniasis. Digan Microbiol Infect Dis 75:390-
340		395.
341	12.	Ivens AC. Peacock CS. Worthey EA. Murphy L. Aggarwal G. Berriman M. Sisk E. Rajandream
342		MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A,
343		Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L,
344		Clayton C. Coulson RM. Cronin A. Cruz AK. Davies RM. De Gaudenzi J. Dobson DF.
345		Duesterhoeft A. Fazelina G. Fosker N. Frasch AC. Fraser A. Fuchs M. Gabel C. Goble A.
346		Goffeau A. Harris D. Hertz-Fowler C. Hilbert H. Horn D. Huang Y. Klages S. Knights A. Kube
347		M. Larke N. Litvin L. et al. 2005. The genome of the kinetoplastid parasite. Leishmania
348		major Science 309 -036-042
340	13	Peacock CS Seeger K Harris D. Murnhy I. Ruiz IC Quail MA. Peters N. Adlem F. Tivey A
350	15.	Aslett M. Kerhornou A. Ivens A. Fraser A. Rajandream MA. Carver T. Norbertczak H
351		Chillingworth T Hance 7 Jagels K Moule S Ormond D Rutter S Squares R Whitehead S
352		Rabbinowitsch F. Arrowsmith C. White B. Thurston S. Bringaud F. Baldauf Sl
352		Faulconbridge A Jeffares D. Denledge DP. Ovola SO. Hilley JD. Brito J.O. Tosi J.B. Barrell B.
354		Cruz AK Mottram IC Smith DE Berriman M 2007 Comparative genomic analysis of three
355		Leishmania species that cause diverse human disease NatGenet 39 :839-847
356	14	Rogers MB Hilley ID Dickens NI Wilkes I Bates PA Denledge DP Harris D Her Y Herzyk
357	14.	P Imamura H Otto TD Sanders M Seeger K Dujardin IC Berriman M Smith DE Hertz-
358		Fowler C Mottram IC 2011 Chromosome and gene conv number variation allow major
359		structural change between species and strains of Leishmania. Genome Res 21 :2129-2142
360	15	Downing T Imamura H Decuvnere S Clark TG Coombs GH Cotton IA Hilley ID de
361	15.	Doncker S. Maes I. Mottram IC. Quail MA. Rijal S. Sanders M. Schonian G. Stark O. Sundar
362		S Vanaerschot M Hertz-Fowler C Dujardin IC Berriman M 2011 Whole genome
363		sequencing of multiple Leishmania donovani clinical isolates provides insights into
364		nonulation structure and mechanisms of drug resistance. Genome Res 21 :21/3-2156
365	16	Weatherly DB Boeblye C Tarleton BL 2009 Chromosome level assembly of the hybrid
366	10.	Trunanosoma cruzi genome <i>BMC Genomics</i> 10 :255
367	17	Franzen O. Ochava S. Sherwood E. Jawis MD. Llawellyn MS. Miles MA. Andersson B. 2011
368	17.	Shotgun sequencing analysis of Trynanosoma cruzi L Sylvio X10/1 and comparison with T
360		cruzi VI CL Brener DLoS Neal Tron Dis 5:0084
270	10	Jackson AD Allicon HC Barry ID Field MC Hartz Fowler C Barriman M 2012 A coll
370	10.	surface phylome for African trypanecemer, BLoS Neel Tren Dis 7:02121
271	10	Surface phylometor Amcan trypanosomes. PLos Negr Hop Dis 7.e2121.
372	19.	Color E. Hamlin NE. Hass P. Bohme II. Hannisk I. Aslett MA. Shallom I. Marcollo I. Hay I
5/5		Caler E, Hallinn NE, Hads D, Donnie O, Hallink L, Aslett MA, Shanoni J, Marcello L, Hou L, Wiekstood P. Alemark U.C. Arrougemith C. Atkin PJ. Parron Al. Pringoud E. Brooks K
374		Wicksteau B, Alshidrk OC, Alfowshillin C, Alkin KJ, Balfon AJ, Bhilgauu F, Brooks K,
375		Carrington IVI, Cherevach I, Chillingworth IJ, Churcher C, Clark LN, Corton CH, Cronin A,
376		Davies Rivi, Doggett J, Djikeng A, Feldbiyum T, Field MC, Fraser A, Goodnead I, Hance Z,
3//		narper D, narris BK, Hauser H, Hostetler J, Ivens A, Jagels K, Jonnson D, Jonnson J, Jones K,
3/8		Kernornou AX, KOO H, Larke N, et al. 2005. The genome of the African trypanosome
3/9	20	In y punosonnu brucer. Science 309:416-422.
380	20.	Jackson AP, Berry A, Aslett IVI, Allison HC, Burton P, Vavrova-Anderson J, Brown R, Browne
381		H, CORTON N, HAUSER H, GAMPIE J, GIIGERTNORP K, MARCEIIO L, MCQUIIIAN J, Otto TD, Quall

MA, Sanders MJ, van Tonder A, Ginger ML, Field MC, Barry JD, Hertz-Fowler C, Berriman

382

383		M. 2012. Antigenic diversity is generated by distinct evolutionary mechanisms in African
384		trypanosome species. Proc Natl Acad Sci U S A 109: 3416-3421.
385	21.	Bray N, Pachter L. 2004. MAVID: constrained ancestral alignment of multiple sequences.
386		Genome Res 14: 693-699.
387	22.	Dewey CN. 2007. Aligning multiple whole genomes with Mercator and MAVID. Methods Mol
388		Biol 395: 221-236.
389	23.	Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
390		Genome Project Data Processing S. 2009. The Sequence Alignment/Map format and
391		SAMtools. Bioinformatics 25:2078-2079.
392	24.	de Almeida ME, Steurer FJ, Koru O, Herwaldt BL, Pieniazek NJ, da Silva AJ. 2011.
393		Identification of Leishmania spp. by molecular amplification and DNA sequencing analysis of
394		a fragment of rRNA internal transcribed spacer 2. J Clin Microbiol 49: 3143-3149.
395	25.	de Paiva Cavalcanti M, Felinto de Brito ME, de Souza WV, de Miranda Gomes Y, Abath FG.
396		2009. The development of a real-time PCR assay for the guantification of Leishmania
397		infantum DNA in canine blood. Vet J 182:356-358.
398	26.	Zelazny AM, Fedorko DP, Li L, Neva FA, Fischer SH. 2005. Evaluation of 7SL RNA gene
399		sequences for the identification of Leishmania spp. Am J Trop Med Hyg 72:415-420.
400	27.	Adams ER, Gomez MA, Scheske L, Rios R, Marquez R, Cossio A, Albertini A, Schallig H,
401		Saravia NG. 2014. Sensitive diagnosis of cutaneous leishmaniasis by lesion swab sampling
402		coupled to qPCR. Parasitology 141:1891-1897.
403	28.	Faber WR, Oskam L, van Gool T, Kroon NC, Knegt-Junk KJ, Hofwegen H, van der Wal AC,
404		Kager PA. 2003. Value of diagnostic techniques for cutaneous leishmaniasis. J Am Acad
405		Dermatol 49: 70-74.

406

407

Journal of Clinical Microbiology 15

Downloaded from http://jcm.asm.org/ on May 11, 2018 by LIVERPOOL SCH OF TROPICAL MED

408 Tables:

409 Table 1. Three highest copy number targets with low homology to other related pathogens. Copy

410 number taken from literature and experimentally.

411

Target	Copy number Literature	Copy number
		experimental
Kinetoplast DNA (visceral	> 10,000	7,500-22,500
leishmaniasis)		
18S ribosomal DNA	20-200	300-2200
Histone H3	Х	80-380
7SL RNA	1	1

412

413

414 Table 2. Correlation between Microscopy, PCR and LAMP on blood, PBMC and buffy-coat from 50 VL

415 suspected patients from Ethiopia, Gondar teaching hospital. TP = True Positive, FN = False Negative,

416 TN = True Negative, FP = False Positive. PBMC = Peripheral Blood Mononuclear Cells. 95% CI = 95%

417 Confidence Intervals.

Sample	Whole Blood		PBMCs		Buffy-coat	
Test	PCR (95% CI)	LAMP (95% CI)	PCR (95% CI)	LAMP (95% CI)	PCR (95% CI)	LAMP (95% CI)
ТР	25	24	25	23	25	24

FN	1	2	1	3	1	2
TN	22	24	23	23	23	23
FP	2	0	1	1	1	1
Sensitivity	96.1%	92.3%	96.1%	88.5%	96.1% (80.1-	92.3% (74.9-
	(80.1-99.9)	(74.9-99.1)	(80.1-99.9)	(69.9-97.6)	99.9)	99.1)
Specificity	91.7% (73 -	100%	95.8%	95.8%	95.8% (78.9-	95.8% (78.9-
	99)	(86.7-100)	(78.9-99.9)	(78.9-99.9)	99.9)	99.9)