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Abstract 22 

Introduction: A novel Pan-Leishmania LAMP assay was developed for diagnosis of Cutaneous and 23 

Visceral Leishmaniasis (CL & VL) which can be used in near-patient settings.  24 

Methods: Primers were designed on the 18S rDNA and the conserved region of minicircle kDNA 25 

selected on the basis of high copy number. LAMP assays were evaluated for CL in a prospective 26 

cohort trial of 105 patients in South-West Colombia. Lesion swab samples from CL suspects were 27 

collected and tested using LAMP and compared to a composite reference of microscopy AND/OR 28 

culture to calculate diagnostic accuracy.  LAMP assays were tested on 50 VL suspected patients from 29 

Ethiopia, including whole blood, peripheral blood mononuclear cells, and buffy coat. Diagnostic 30 

accuracy was calculated against a reference standard of microscopy of splenic or bone marrow 31 

aspirates. To calculate analytical specificity 100 clinical samples and isolates with fever causing 32 

pathogens including malaria, arboviruses and bacterial infections were tested.  33 

Results & Conclusions: The LAMP assay had a sensitivity of 95% (95% CI: 87.2% - 98.5 %) and a 34 

specificity of 86% (95% CI: 67.3% -95.9 %) for the diagnosis of CL. On VL suspects the sensitivity was 35 

92% (95% CI: 74.9 – 99.1%) and specificity of 100% (95% CI: 85.8-100%) in whole blood.  For CL, 36 

LAMP is a sensitive tool for diagnosis and requires less equipment, time and expertise than 37 

alternative CL diagnostics. For VL, LAMP is sensitive using a minimally invasive sample as compared 38 

to the gold standard. The analytical specificity was 100%.  39 
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Introduction: 40 

Infection with Leishmania parasites causes a spectrum of diseases from self-healing skin ulcers, 41 

cutaneous leishmaniasis (CL), to the potentially fatal form, visceral leishmaniasis (VL) affecting 42 

internal organs, in particular spleen, liver, bone marrow and lymph nodes. Accurate and opportune 43 

laboratory diagnosis followed by appropriate treatment is crucial in patient management, and to 44 

decrease transmission (1). Parasitological confirmation by microscopy of biopsies, sometimes in 45 

combination with culture techniques, remains the reference standard laboratory diagnosis for both 46 

VL and CL. For VL serological diagnostics are available in the form of rapid diagnostics tests (RDTs) 47 

and ELISAs optimally based on rK39 (2, 3), the Direct Agglutination Test (DAT)(4), and 48 

immunofluorescent antibody tests (IFA/IFAT). However, due to poor specificity, these tests are only 49 

recommended for use after prolonged fever, most commonly taken as more than 14 days of fever 50 

(3).  No alternative serological diagnostic test exists for CL due to low concentrations of circulating 51 

antibodies; as regards molecular tools, several diagnostic protocols have been validated for CL but 52 

no reference standards are currently available. 53 

Reference standard diagnostic tests suffer from challenges; microscopy can be poorly sensitive, lack 54 

standardisation of tissue collection, requires quality control and invasive sample types. The rK39 55 

RDTs lack specificity and also sensitivity in certain regions, and culture methods require time, 56 

expertise and considerable infrastructure.  57 

A recent advance in nucleic acid-based diagnostics has been the development of loop-mediated 58 

isothermal amplification (LAMP) of DNA. LAMP diagnostic kits have been developed for a variety of 59 

infectious diseases, including tuberculosis (5, 6), human African trypanosomiasis (HAT) (7) and 60 

malaria (8, 9). This nucleic acid amplification technique (NAAT) uses only one enzyme (Bst DNA 61 

polymerase) and is able to amplify large amounts of DNA within 40 minutes by the intricate design of 62 

primers and auto-strand displacement DNA synthesis. A thermocycler is not required because the 63 

enzyme works under isothermal conditions, reagents are dried-down with no requirement of a cold-64 
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chain. Results can be read visually, and there is no post-amplification handling or processing. This 65 

makes LAMP a powerful diagnostic test for disease endemic settings, bringing molecular diagnostics 66 

closer to the patient. 67 

Recent modelling data for VL diagnostics shows that early diagnosis and treatment of patients has 68 

the potential to greatly reduce transmission of disease in elimination areas (1). Diagnostics that can 69 

specifically identify and allow treatment of patients earlier than is currently possible have the 70 

potential to reduce transmission.  71 

There have been previous attempts to develop a LAMP test for Leishmaniasis (10, 11). However, 72 

these were in-house assays rather than diagnostic kits, and should not be considered for quality-73 

controlled, standardised use. In addition, the design of some LAMP primer sets is geographically 74 

focused and therefore not suitable for all Leishmania endemic areas (11). Here we describe the 75 

development of a novel LAMP assay, with the advantages of quality control and standardisation that 76 

comes with product development.  Data collected during development of the assay from cohorts of 77 

suspected CL patients in Colombia, and suspected VL patients from Ethiopia, are presented.   78 

Material and Methods: 79 

Target selection: A combination of literature searches and sequence alignment identified potential 80 

target genes conserved within the genus Leishmania that had low homology (<80%) to other targets, 81 

including the Trypansoma as the nearest taxonomic pathogen to Leishmania, and human DNA. The 82 

Leishmania were represented by the five reference genomes of L. major 83 

MHOM/IL/1981/Friedlin(12), L. braziliensis MHOM/BR/1975/M2904 (13), L. mexicana 84 

MHOM/GT/2001/U1103cl25 (14), L. donovani MHOM/NP/2003/BPK282/0cl4 (15) and L. infantum 85 

(JPCM5) MCAN/ES/1998/LLM-87 (13). To exclude targets that could be amplified due to 86 

trypanosomiasis, the Trypansoma were represented by T. cruzi CL Brenner (TcVI) (16), T. cruzi Sylvio 87 

×10/1 (TcI) (17), T. vivax Y486 (18), T. brucei TREU927 (19), and T. congolense IL3000 (20). Sequence 88 

conversation and suitability as a LAMP target were assessed using genome-wide sequence alignment 89 
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with MAVID (21) following construction of an orthology map with Mercator (22), which identified 90 

CDS regions with Genscan, and measured orthology with BLAT and MUMmer. Sequences totalling 21 91 

Mb in length were present in all five Leishmania (average ~32 Mb) and absent in all five Trypansoma. 92 

14,030 candidate LAMP targets of >200 bp were identified - these spanned 7,942 Kb of sequence. 93 

Gene length, GC content and in silico copy number were evaluated using read information with 94 

Samtools v0.1.11 (23). Gene length, GC content and in silico copy number were evaluated using read 95 

information with Samtools v0.1.11 (23) and a priority list of targets for primer design was made.  96 

Further sequence alignment showed only 18 substitutions at the 2,190 bp 18S rDNA gene using 97 

GenBank PopSet 254847845 (24) across nine Leishmania species (the five above plus L. amazonensis, 98 

L. guyanensis, L. panamensis and L. tropica). The 3’ end (1954-2190) of the 18S rDNA gene showed 99 

some homology to Trypanosoma.  100 

Copy-number calculation: In order to rank genes in priority for LAMP primer design, the copy 101 

number of each potential target was experimentally calculated as follows. Promastigotes were 102 

cultivated in RPMI-1640 culture medium containing 10% Fetal calf serum, at 27°C. DNA from 8 103 

Leishmania species were extracted using the DNeasy extraction kit (Qiagen) at the log phase. For the 104 

purposes of this study we refer to VL causing species (L. donovani and L. infantum) and CL causing 105 

species (L. tropica, L. major, L. braziliensis, L. mexicana, L. panamensis, L. guyanensis).  Alignments 106 

were made using T coffee software (www.tcoffee.crg.cat/) for all target genes except the kDNA 107 

where existing primer sets from Cavalcanti et al. (25) were used. Each target gene was amplified 108 

with HotStar Taq polymerase, using the following protocol: 94°C 10min., followed by 40 cycles of 109 

94°C for 30s., 52°C, 55°C or 58°C for 30s and 72°C for 30S, and final hold of 72°C for 10 min.  110 

Resultant fragments were cloned as single copy vectors using TOPO TA cloning kit (Invitrogen). 111 

Colony PCR was used to select colonies containing the insert, and transformants were cultured in LB 112 

medium containing ampicillin (50µg/mL). DNA was extracted using the Qiagen plasmid midi kit, and 113 

DNA digestion was performed for 2 hours at 37°C with EcoRI and HINDIII/XBA restriction enzymes. A 114 

sybr green qPCR was performed for each target gene: 95°C 5 min. followed by 40 cycles of 95°C for 115 
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10s and 60°C for 40s. A 10 fold dilution series of vector DNA was used as a standard curve, where the 116 

vector was known to contain a single copy of the target gene, and the weight of the vector was 117 

known. Additionally, a 5 fold dilution series of promastigote DNA was included, whereby the weight 118 

of the whole genome was known (14). The DNA concentrations of the vector and genomic DNA were 119 

determined using the ThermoScientific nanodrop 1000 spectrophotometer. The Cycle threshold (Ct) 120 

of genomic DNA was compared with the Ct of vector DNA and copy number was calculated by the 121 

standard formula:  122 

Copy number =   Known Concentration of Vector DNA (ng/µl)/Vector weight (ng)   123 

  Concentration genomic DNA (ng/ul) calculated by qPCR/Genome weight (ng)  124 

The gene 7SL, was used as a control as a known single-copy gene (26).   125 

Primer design: Genes 18S rDNA, Histone H3 and kDNA (Table 1) were chosen for primer design 126 

based on their high copy-number. PrimerExplorer version 4.0 software 127 

http://primerexplorer.jp/elamp4.0.0 was used to design LAMP primers on all 3 targets. Targets with 128 

highest copy number were multiplexed to optimise sensitivity.  129 

Limit of Detection: In order to determine the limit of detection (LOD) of each of the prototype LAMP 130 

primer sets, serial dilutions of DNA from 8 species (see above) from different geographical areas, 131 

including Asia and Africa were tested; this included 2 strains for CL causing species and 4 strains for 132 

VL causing species, L. infantum and L. donovani. Cultured promastigotes of Leishmania species were 133 

prepared, and DNA extracted using phenol/chloroform extraction method.  A 10-fold dilution series 134 

was tested from 1,000 parasites per µl to 0.001 p/µl. To ensure there was no cross reactivity of the 135 

LAMP primer sets they were tested with serial dilutions of DNA from Trypanosoma brucei, T. cruzi, 136 

Plasmodium falciparum, human cell lines THP1 and U937, salmon sperm, human whole blood and 137 

buffy coat.   138 

Bank of pathogen samples: In order to ensure the specificity of the LAMP assay, 50 clinical samples 139 

or cultured isolates were tested. These included high, medium and low concentration samples of 140 
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Plasmodium falciparum, P. vivax, Trypanosome brucei brucei, Trypanosoma cruzi, Giardia lamblia, 141 

Cryptosporidium parvum; and 50 isolates of high, medium and low concentration dengue, 142 

chikungunya, Zika and bacterial species including Escherichia coli and Klebsiella pneumoniae. 143 

Cutaneous Leishmaniasis clinical samples: A prospective collection of samples from suspected CL 144 

patients from CIDEIM, Colombia (27) was used to estimate the diagnostic sensitivity of the 145 

developed prototype multiplex LAMP kit (kDNA plus 18S rDNA primers).  One lesion swab sample 146 

(Isohelix DNA buccal swabs, SK-1S) was taken per suspected patient by gently rubbing a swab over 147 

the ulcer ~10 times, and then stored at -20°C. Qiagen DNAeasy blood and tissue kit (Qiagen, USA) 148 

was used to extract DNA according to manufacturer’s instructions and eluted in 50µl distilled water. 149 

Diagnostic performance of LAMP was compared with a composite reference standard of microscopy 150 

AND/OR culture positivity. Briefly, two slides with three lesion smears on each slide were 151 

microscopically examined for amastigotes; parasite isolation in semisolid culture medium was 152 

attempted from 4 independent lesion aspirates from each participant. Parasite isolation was traced 153 

for a maximum of one-month post-inoculation.   154 

Ethics: This study was approved and monitored by the Centro Internacional de Entrenamiento e 155 

Investigaciones Médicas institutional review board for ethical conduct of research involving human 156 

subjects 157 

Visceral Leishmaniasis clinical samples: Blood was collected from 50 VL suspected patients from 158 

University of Gondar Hospital, Amhara Regional State, Northern Ethiopia, in 2013. In order to 159 

determine the optimal extraction method with respect to parasite numbers, we compared the 160 

isolation of peripheral blood mononuclear cells (PBMC) with buffy coat, and with whole blood stored 161 

in heparin tubes from the same patient samples. PBMC were isolated by slowly layering two ml 162 

heparin blood on top of an equal volume of Histopaque (Sigma, Aldrich), the sample was centrifuged 163 

for 30 minutes at 2000 rpm. The PBMC fraction was removed and suspended in 600 µl PBS, and once 164 

again centrifuged for 1 minute at 8000 rpm. The cells were re-suspended in 180µl PBS. The buffy 165 
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coat fraction was isolated by centrifuging two ml heparin blood for 5 minutes at 8,000 rpm. The 166 

buffy coat fraction was removed and suspended in PBS to a total volume of 180 µl. All PBMC, buffy 167 

coat and plain heparin blood samples (180 µl volumes) were mixed with an equal volume of AS1 168 

buffer (Qiagen). DNA was extracted with Qiagen mini blood and tissue extraction kit according to 169 

protocol and resultant samples stored at -20°C. LAMP and qPCR were compared to microscopy of 170 

either bone-marrow or spleen-aspirate as the gold standard. 171 

Ethics: This study was approved and monitored by the University of Gondar Institutional Review 172 

Board, Ethiopia, (Ref R/C/S/V/P/05/664/2013). Written informed consent was obtained from 173 

patients for the use of their specimens in the study.  174 

Molecular methods:  175 

LAMP: LAMP (Eiken Chemical, Japan) was performed as per manufacturer’s instructions. 3µl 176 

extracted DNA was added to a LAMP tube plus 27µl water. Tubes were turned upside down for 2 177 

minutes to release the dried-down reagents in the cap of the tube. Samples were briefly centrifuged 178 

and then placed in a real-time turbidimeter (Eiken) at 65°C for 40 minutes, and then 80°C for 2 179 

minutes. A LAMP reaction was considered positive for Leishmania if fluorescence was observed 180 

visually and if a positive reaction was observed in the turbidimeter. Discrepancies between these 181 

two methods were recorded.  182 

qPCR: qPCR was performed on DNA extracted from swab samples as described in Adams et al. 2014, 183 

based on amplification of the 18S rDNA gene for amplification of CL (27).  kDNA qPCR was performed 184 

on all VL patient samples (N=50). 1.2 µL of DNA was added to 11.3 µL amplification mix containing 185 

6.25 μL iQ Supermix (Bio-Rad, cat.no. 170-8862),0.25 μM forward primer kDNA(5’-186 

TCCCAAACTTTTCTGGTCCT-3’), 0.25 μM reverse primer kDNA(5’-TTACACCAACCCCCAGTTTC-3’), 0.12 187 

μM probe kDNA (5’ FAM- TTCTGCGAAAACCGAAAAATGGGTGC-BHQ 3’). The qPCR protocol (Bio-Rad 188 

CFX-96) was as follows: 5 minutes at 95°C followed by 40 cycles of 10 s at 95°C and 40 s at 54°C.  189 
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qPCR was used in this programme as a comparator molecular method to LAMP to understand results 190 

fully. Diagnostic accuracy of data, including sensitivity and specificity, was calculated for LAMP and 191 

qPCR. This study followed the STAARD guidelines, including blinding of index and reference 192 

diagnostic tests.  193 

 194 

Results: 195 

Target selection: The relative copy number of nine different target genes was calculated for the 8 196 

Leishmania species tested, with an average across two strains. Results are shown for the highest 197 

copy number targets in Table 1, relative to the known single copy target of the 7SL gene.   198 

Prototype primer sets: Primer design was attempted on 3 target genes, the 18S rDNA and the 199 

Histone 3 for pan-Leishmania assays and the kDNA for a VL specific assay. Each primer set was 200 

tested for the Limit of Detection (LOD) using a real-time LAMP turbidimeter. The kDNA had the 201 

lowest LOD at 0.0001 p/µl on L. donovani and L. infantum, and no amplification with other CL 202 

causing Leishmania species. The 18S rDNA had the next lowest LOD at 0.01-0.001 p/µl. The Histone 203 

LAMP primers had a similar LOD to the 18s rDNA at 0.01 p/µl, but could not amplify all L. guyanensis 204 

and L. braziliensis, indicating low sequence homology to some South American strains. The targets 205 

18S rDNA and kDNA, were multiplexed to optimise sensitivity for detecting VL, and ability to detect 206 

all Leishmania species that cause CL; LOD was not affected by multiplexing.  All testing of primer sets 207 

was performed using the dried-down LAMP assay developed by Eiken.  No cross-reaction was 208 

observed with serial dilutions of DNA from T. brucei, T. cruzi, P. falciparum, salmon sperm, human 209 

cell lines THP1 and U937, human whole blood and buffy coat.  210 

Bank of pathogen samples: Of 100 clinical samples and cultured isolates from different pathogens, 211 

none were positive with the Leish LAMP kit, showing an analytical specificity of 100%. 212 

Cutaneous Leishmaniasis samples: 105 clinical suspects were enrolled. A complete description of 213 

demographic and clinical characteristics of study participants and Leishmania species is reported in 214 
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Adams et al., 2014. Parasites were isolated and identified in 64% of the participants; L. panamensis 215 

predominated overall, with representation from the Viannia and Leishmania subgenera. Compared 216 

to the reference standard of microscopy AND/OR culture, LAMP (kDNA + 18S rDNA) was 95% 217 

sensitive (95% CI: 87.22 % to 98.53 %) and 86% specific (95% CI: 67.32 % to 95.88 %). This compared 218 

well with qPCR data on the same samples, which showed a sensitivity of 97% (95% CI: 91%-100%) 219 

and specificity of 84% (95% CI: 64%-95%). 220 

Visceral Leishmania samples: In this study, 50 VL suspects were enrolled, of which 26 were positive 221 

for VL by microscopy of the splenic (n=19 positive) or bone marrow (n=7 positive) aspirates. Of the 222 

26 VL positive individuals 27% (n=7) were also positive for HIV.  223 

Parasite load was quantified by qPCR in order to compare the extraction efficiency of the different 224 

sample types (whole blood, buffy coat and PBMCs). Of the 26 VL parasitologically positive 225 

individuals, the highest parasite load as determined by ct threshold on kDNA qPCR, was found in 226 

whole blood (n=19) followed by buffy-coat (n=5) and PBMC (n=1) of 25 qPCR positive individuals.  227 

On VL suspects from Ethiopia, the sensitivity from whole blood was 92% (95% CI: 74.9 – 99.1%) and 228 

specificity of 100% (95% CI: 85.8-100%). The sensitivity of kDNA qPCR was 96% (95% CI: 80.1-99.9%) 229 

and specificity of 92% (95% CI: 73-99%). The sensitivity of both tests was the same on buffy coat 230 

samples but this decreased to 89% in PBMCs samples (see Table 2). The specificity was highest on 231 

LAMP from whole blood at 100% dropping to 96% on other sample types (see Table 2). qPCR had a 232 

specificity of between 92% and 95% depending on sample type. However, sample numbers are 233 

limited and confidence intervals overlap. Notably, all HIV positive patients (n=7) were positive for 234 

both qPCR and LAMP in all sample types.  235 

 236 

No discrepancies were reported between the visual analysis of the LAMP tubes for fluorescence and 237 

the real-time turbidimeter data.  238 

Discussion:  239 
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This study presents data on the development of a LAMP diagnostic kit capable of detecting both VL 240 

and CL. Target genes were chosen based on high copy number and conservation across multiple 241 

strains and species of Leishmania across geographic areas. 18S rDNA and kDNA primer sets were 242 

multiplexed to ensure a sensitive reaction for VL (kDNA) and the capability to detect all species 243 

causing CL (18S rDNA). Since the differential diagnosis and sample types of VL and CL does not 244 

overlap, the combination of primers is considered appropriate. Testing was performed on 245 

geographically distinct strains and species of Leishmania to ensure production of a robust and 246 

reliable test. The multiplex LAMP was highly sensitive and specific, with a limit of detection between 247 

0.01-0.001 parasites per µl for CL causing species, and 0.0001 parasites per µl for VL causing species 248 

on purified DNA.  LAMP was 100% specific when tested on a range of fever causing organisms with 249 

overlapping epidemiology as Leishmania; this included, bacterial infections, malaria, arboviruses and 250 

other protozoan infections. LAMP was taken forward for testing on prospective clinical sample 251 

collections. In a cohort of suspected CL patients from South West Colombia LAMP was 95% sensitive 252 

(95% CI: 87.2%-98.5%) and 86% specific (95% CI: 67.3%-95.9 %). In a study on 50 suspected VL 253 

patients the LAMP showed a sensitivity of 92.3% (95% CI: 74.9%-99.1%) and a specificity of 100% 254 

(95% CI: 86.7%-100%) on whole blood. Due to the reduced number of sample handling steps and 255 

reduced ct values, the whole blood sample type is preferable for VL compared with PBMCs and buffy 256 

coat.   257 

For CL samples, the LAMP test showed overlapping confidence intervals with qPCR, and was more 258 

sensitive than culture and microscopy alone. The lower specificity of both qPCR and LAMP may 259 

represent patients not detected by the composite reference standard, as no perfect gold standard 260 

test for CL exists. Multiple studies including (27, 28), have concluded that the molecular tools are 261 

more sensitive for diagnosing CL, and therefore, false positives in molecular tools may be considered 262 

truly positive patients. Follow-up studies of participants needs to be conducted to determine 263 

whether this is the case. Swab sampling on lesions was an appropriate collection method, although 264 

this would need adaptation to areas where non-ulcerated lesions of CL are prevalent.  265 
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In VL samples, LAMP performed on DNA extracted from whole blood showed good sensitivity 266 

compared to microscopy of highly invasive biopsy samples. The kDNA qPCR was only slightly more 267 

sensitive (96%) as compared to LAMP (92%) in the Ethiopian collection. The extraction of DNA from 268 

whole blood resulted in a higher parasite load in qPCR than either processing PBMC or buffy-coat in 269 

spite of the fact that, for the latter two methods, ten times more blood was used for extraction (200 270 

µl vs 2 ml). Using plain heparin blood for extraction is favourable since a smaller volume of blood is 271 

required, and the processing of this sample type requires fewer handling steps. Microscopic 272 

examination on bone-marrow or spleen aspirates will remain the gold standard because parasite 273 

numbers are high in these sample types. However, based on these results, LAMP could potentially 274 

be used to confirm infection in the majority of patients, and then aspiration performed in those that 275 

are LAMP negative but who remain VL suspects. This would circumvent aspiration in the majority of 276 

patients. Also in areas where it is not possible to take biopsy samples due to lack of appropriate 277 

medical facilities LAMP may be used as to confirm infection.  278 

Modelling studies have suggested the use of highly specific diagnostic tools for the detection of VL in 279 

elimination zones (1). This would enable treatment of cases earlier than is currently possible in the 280 

diagnostic algorithm. Results for VL suspects in Ethiopia show a high specificity of 100% (95% 281 

CI: 85.8-100%), intimating that LAMP may be a suitable tool for this purpose.  282 

LAMP has been developed as a platform diagnostic tool and is now available for malaria, 283 

tuberculosis and HAT, as well as a range of viral and bacterial infections. Here, this powerful 284 

diagnostic tool has now been designed for Leishmaniasis, and tested on Leishmania suspects from 285 

Colombia and Ethiopia. LAMP is simple and does not require expensive equipment and therefore can 286 

be used in basic laboratory facilities with minimal DNA extraction facilities.  Further development 287 

work and evaluation data is required. For CL it would be useful to follow up patients with (false) 288 

positive LAMP reactions to see if they become positive with the gold standard. As alternative 289 

diagnostics exist for VL, the use of LAMP may be to confirm suspected patients in areas with poor 290 

infrastructure, and before 14 days of fever has passed.   291 
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Tables: 408 

Table 1. Three highest copy number targets with low homology to other related pathogens. Copy 409 

number taken from literature and experimentally.  410 

 411 

Target Copy number Literature Copy number 

experimental 

Kinetoplast DNA (visceral 

leishmaniasis) 

> 10,000 7,500-22,500

18S ribosomal DNA  20-200 300-2200

Histone H3 X 80-380

7SL RNA 1 1

 412 

 413 

Table 2. Correlation between Microscopy, PCR and LAMP on blood, PBMC and buffy-coat from 50 VL 414 

suspected patients from Ethiopia, Gondar teaching hospital. TP = True Positive, FN = False Negative, 415 

TN = True Negative, FP = False Positive. PBMC = Peripheral Blood Mononuclear Cells. 95% CI = 95% 416 

Confidence Intervals.   417 

 418 

Sample Whole Blood PBMCs Buffy-coat 

Test PCR (95% 

CI) 

LAMP (95% 

CI) 

PCR (95% 

CI) 

LAMP 

(95% CI) 

PCR (95% 

CI) 

LAMP (95% 

CI) 

TP 25 24 25 23 25 24 
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FN 1 2 1 3 1 2 

TN 22 24 23 23 23 23 

FP  2 0 1 1 1 1 

Sensitivity  96.1% 

(80.1-99.9) 

92.3% 

(74.9-99.1) 

96.1% 

(80.1-99.9) 

88.5% 

(69.9-97.6) 

96.1% (80.1-

99.9) 

92.3% (74.9-

99.1) 

Specificity  91.7% (73 - 

99) 

100% 

(86.7-100) 

95.8% 

(78.9-99.9) 

95.8% 

(78.9-99.9) 

95.8% (78.9-

99.9) 

95.8% (78.9-

99.9) 

 419 

 420 
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