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Abstract

Monitoring vectors is relevant to ascertain transmission of lymphatic filariasis (LF). This may
require the best sampling method that can capture high numbers of specific species to give
indication of transmission. Gravid anophelines are good indicators for assessing transmission
due to close contact with humans through blood meals. This study compared the efficiency of
an Anopheles gravid trap (AGT) with other mosquito collection methods including the box
and the Centres for Disease Control and Prevention gravid, light, exit and BioGent-sentinel
traps, indoor resting collection (IRC) and pyrethrum spray catches across two endemic
regions of Ghana. The AGT showed high trapping efficiency by collecting the highest
mean number of anophelines per night in the Western (4.6) and Northern (7.3) regions com-
pared with the outdoor collection methods. Additionally, IRC was similarly efficient in the
Northern region (8.9) where vectors exhibit a high degree of endophily. AGT also showed
good trapping potential for collecting Anopheles melas which is usually difficult to catch
with existing methods. Screening of mosquitoes for infection showed a 0.80–3.01%
Wuchereria bancrofti and 2.15–3.27% Plasmodium spp. in Anopheles gambiae. The AGT
has shown to be appropriate for surveying Anopheles populations and can be useful for
xenomonitoring for both LF and malaria.

Introduction

Lymphatic filariasis (LF) is a neglected tropical disease that causes debilitating, acute and
chronic morbidities in affected individuals. It is caused by three mosquito-borne parasitic
worms: Wuchereria bancrofti, which accounts for 90% of cases recorded globally (Ottesen,
2006), Brugia malayi and Brugia timori accounting for the remaining 10%. LF is present in
over 80 countries in the Americas, Asia, the Pacific and Africa (Molyneux et al., 2003). It is
estimated that 120 million of the world’s population is infected, while 40 million suffer
from disabilities and psychological trauma due to stigmatization (Brady, 2014; Ichimori
et al., 2014; WHO, 2015). It is transmitted by mosquitoes belonging to the Aedes,
Anopheles, Culex, Mansonia and Ochlerotatus genera (de Souza et al., 2012). In Africa,
whereW. bancrofti is the parasite responsible for LF, anophelines (Anopheles gambiae s.l. com-
plex and Anopheles funestus) are the main vectors in rural areas across the continent while
culicines (Culex quinquefasciatus) are the primary vectors in urban areas in eastern and south-
ern parts of Africa (Pederson, 2008). More recently, Mansonia mosquitoes have been incrimi-
nated as potential vectors in rural Africa as well (Ughasi et al., 2012).

The Global Programme to Eliminate Lymphatic Filariasis (GPELF) was launched in 2000,
with the primary goal to interrupt LF transmission through annual mass drug administration
(MDA) with albendazole in combination with either ivermectin in Africa or diethylcarbama-
zine in areas outside Africa (Ottesen, 2006). The GPELF has achieved great successes since its
inception, with the elimination of LF in Cambodia, Cook Islands, Maldives, Niue, Sri Lanka,
Togo and Vanuatu (Budge, 2014; WHO, 2016, 2017). In addition, 13 countries are now in the
post-elimination phase.

According to the WHO guidelines, transmission assessment surveys (TAS) support the
decision to stop MDA (WHO, 2011) based on microfilariae (mf) prevalence <1% or antigen
prevalence <2% (Stolk et al., 2003). The tools available for transmission assessment include;
immunochromatograhic test (ICT) [such as filarial test strip (FTS)], ELISA, polymerase
chain reaction (PCR) and mf detection by microscopy (WHO, 2011). However, these tools
require blood collection from large numbers of community volunteers. Further, the cross-
reactivity of Loa loa and W. bancrofti reported by Wanji et al. (2015) in Cameroon, questions
the reliability of ICT especially in parts of Central Africa where these parasites are co-endemic.
Meanwhile, monitoring vectors for the presence of parasite DNA (xenomonitoring) is an
important assessment tool for LF elimination programmes, with the advantage that it provides
a real-time estimate of microfilaria in the community members (Okorie and de Souza, 2016).
Mosquito surveillance studies have shown to be useful in assessing the transmission of LF in
the Pacific (Chanteau et al., 1994; Burkot and Ichimori, 2002; Farid et al., 2007). Furthermore,
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studies in Africa show that xenomonitoring can provide valuable
information to the LF elimination programme (Chanteau et al.,
1994; Boakye et al., 2004; Ughasi et al., 2012; de Souza et al.,
2014). The traditional methods for xenomonitoring include dis-
secting vectors for the different developmental stages of the
worm. However, as microfilariae (mf) prevalence in human popu-
lations becomes low due to MDA, the time and cost involved in
processing such large numbers remain a challenge (Burkot and
Ichimori, 2002). In this instance, molecular xenomonitoring, a
method which allows for processing samples within a shorter
time with high precision will improve sample processing (Derua
et al., 2017). Additionally, targeting epidemiologically relevant
mosquitoes, i.e. older mosquitoes (blood fed, gravid or parous
mosquitoes) will further enhance the chances of detecting parasite
DNA (Springer et al., 2016). Gravid traps have shown to be useful
for such purposes (Mboera et al., 2000). The Centres for Disease
Control and Prevention (CDC) gravid traps are routinely used for
surveying culicine populations (Williams and Gingrich, 2007;
Facchinelli et al., 2008), however, the attractive ovoposition sub-
strate is not effective in collecting anophelines. Recent work by
Lindh et al. (2016) point to the potential of the Anopheles gravid
trap (AGT) (OviART) in collecting gravid Anopheles mosquitoes.
Other mosquito collection tools for monitoring mosquito popula-
tions include indoor and outdoor collection methods (e.g. the
human landing catches, pyrethrum spray catches (PSC), aspir-
ation of resting mosquitoes, exit traps (ET), barrier nets, box
gravid trap (BOX), CDC-light trap (LIT), and the
BioGents-sentinel trap). The traps exploit different mosquito
behaviours, such as feeding and resting, and habitats with varying
sensitivities.

The aim of our study was to assess the efficiency of the AGT
for xenomonitoring purposes in two LF endemic areas in Ghana –
the coastal Western region and the Northern region. The study
evaluated the mosquito composition, density and physiological
state of mosquitoes collected from this trap compared with five
other collection methods, as well as W. bancrofti and
Plasmodium spp. DNA positivity in the mosquitoes collected.

Materials and methods

Study sites

Our study was conducted in villages across the Western Region
(Akonu, Agyan and Asemko) and Northern Region (Dugli and
Sekyerekura) of Ghana (Fig. 1). Akonu and Agyan are neighbour-
ing communities located in the Nzema East district while Asemko
is in the Ahanta West district. Dugli and Sekyerekura are neigh-
bouring communities in the Bamboi district. The major vectors
of LF in the Northern savanna region are An. gambiae,
Anopheles arabiensis and Anopheles funestus while in the coastal
areas, the predominant vectors are A. gambiae s.s, Anopheles
melas and An. funestus (de Souza et al., 2010). The Northern
region is characterized by a rainy season which occurs between
May and September and a dry season between December and
April with temperatures as high as 40 °C. The Western region
has a wet season that spans from April to November and a dry
season from December to March.

Epidemiological survey

An epidemiological survey was conducted to determine the LF
prevalence in Agyan (May 2016), Akonu and Asemko (January
2017), Dugli and Sekyerekura (October 2017). Finger-prick
blood was collected from volunteers aged 16 years and above
and tested using the FTS (Alere™) to detect circulating filarial
antigen. Positive individuals were then followed up for the

presence of microfilariae through the collection of blood between
10 pm and 2 am. This coincides with the peak time of mf in per-
ipheral blood. Blood samples were screened by microscopy using
the counting chamber technique described by Agbolade and
Akinboye (2005).

Mosquito collection methods

The AGT was designed and described by Dugassa et al. (2013). It
was made of a rectangular basin measuring 45 cm × 33 cm ×
11.5 cm (length × width × height), with a 4 cm hole on the side
and 6 L rectangular basin. An open plastic tube (collection cham-
ber) was inserted into the hole and the other opening of the tube
was sealed with fibre glass netting to prevent trapped mosquitoes
from escaping. The tube was placed and secured halfway into an
aluminium collapsible pipe. The flexible tube was connected to a
12 V fan that provided suction on the water surface. The efficiency
of AGT was compared with two gravid traps; BOX-the Box gravid
trap (by BioQuip, Rancho Dominguez, CA) and CDC-gravid trap
(Model 1712 from John W. Hock Company), and LIT (by UPL
limited) for outdoor collections. The AGT was also evaluated
against the BGS-BioGents-sentinel, ET-Exit traps, IRC-Indoor
resting collection and the PSC-pyrethrum spray catches which
were used to collect mosquitoes indoor. The BGS (BioGents)
was baited with the Anopheles odour lure. The LIT was baited
with cotton wool soaked in 1-Octen-3-ol. The IRC were done
using a battery-powered aspirator (Vazquez-Prokopec et al.,
2009), with the interior ceiling, walls and any hanging clothing
aspirated. The AGT, BOX, CDC, ET, LIT and BGS were set up
at 6 pm and removed the following morning at 6 am. PSCs
were conducted between 5:30 am and 6 am in selected houses
in the Western region. Whereas, the IRCs were conducted from
5:30 am to 8:30 am in all households in the villages in the
Northern region. Water from larval habitats was used in all the

Fig. 1. Map of Ghana showing the locations of study villages sampled.
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gravid traps. Only valid collection nights (nights where all the
traps worked through the night) were used in comparisons. The
data collected on days where batteries of one or more of the
traps failed were excluded.

Western region mosquito collection

The AGT was compared with CDC, BOX, LIT, ET and PSC in the
three Western region villages. Mosquito collections were con-
ducted in March and May 2017 with a total of 26 collection nights
each for AGT, BOX, CDC and LIT; 18 for ET and 37 for PSC in
13 consecutive nights. The four outdoor collection methods
(AGT, CDC, BOX and LIT) were rotated among selected loca-
tions within the densely populated sections of the villages and lar-
val habitats. The two indoor methods (ET and PSC) were done in
randomly selected rooms with at least one sleeper.

Northern region mosquito collection

The AGT was compared with the BOX, BGS and IRC in the
Northern region. Mosquito collections were conducted in
October 2017 with 12 collection nights for each trap type. The
three outdoor traps (AGT, BOX, BGS) were rotated among
selected locations within each village. Each location consisted of
a family compound and IRCs were conducted in all rooms
which were occupied by a sleeper the night before (the number
of rooms per compound ranged 1–8). The mean number of mos-
quitoes per room is presented for each location (Fig. 5).

Mosquito processing

The collected mosquitoes were identified morphologically using
keys by Gillies and Coetzee (1987). Mosquitoes collected from
the Western region were scored based on abdominal status –
fed, unfed or gravid. A proportion of the mosquitoes collected
from the Western region were dissected and ovaries removed
and dried to determine parity based on ovary tracheation as
described by Detinova (1962). Mosquito legs were used for
molecular identification of members of the An. gambiae s.l. com-
plex, based on restriction fragment length polymorphism
described by Fanello et al. (2002). Mosquitoes from the
Northern region were only identified using morphological
features.

Wuchereria bancrofti and Plasmodium detection in
mosquitoes

The anopheline mosquitoes that were in good condition (not
damaged) were screened for W. bancrofti and Plasmodium spp.
DNA, in pools of up to 5 mosquitoes based on trap type, species
and location. The heads and thoraces were screened separately
from the abdomens. Genomic DNA (gDNA) was extracted
from the mosquito pools, using the Livak extraction method
(Livak, 1984). To determine the presence of W. bancrofti DNA,

the ITS1 gene in the 18S and 5.8S subunits of the rRNA from fil-
arial worms was amplified as described by Jiménez et al. (2011).
For the identification of Plasmodium spp. DNA, the COX-1 gene
was amplified in a single step PCR as described by Echeverry et al.
(2017).

Data analysis

Morphological and molecular identification showed no differ-
ences in species composition between villages of the same region,
therefore, data were combined for statistical analysis using SPSS
(IBM24). To evaluate the trapping efficiency of AGT, a
Bonferroni posthoc analysis of variance (ANOVA) was performed
to compare the mean number of Anopheles mosquitoes caught by
each method, per night.

Trapping efficiency was also evaluated by comparing an esti-
mated mean number of Anopheles that were likely to have taken
a blood meal in their lifetime since these are the target population
for xenomonitoring. The proportion of mosquitoes that were
unfed but parous, blood fed and gravid mosquitoes collected in
each trap was estimated and multiplied by the mean catch per col-
lection/night to get the estimated number that had previously
taken a blood meal.

The prevalence of W. bancrofti and Plasmodium spp. DNA in
mosquitoes was estimated using the PoolScreen software 2.0
(Katholi et al., 1995) and the maximum likelihood estimates
reported with 95% confidence interval (CI).

Results

LF infection prevalence

Filarial antigen prevalence ranged 12.2–27.9% in the study villages
and microfilaria prevalence ranged 1.5–3.8% (Table 1).

Mosquito composition

Western region
A total of 1417 mosquitoes was collected in the Western region.
Morphological identification of collected mosquitoes showed
that 4.6% were Aedes spp, 36.8% were A. gambiae s.l., 58.4%
were Culex spp and 0.2% were Mansonia spp. There was no sig-
nificant difference in the species composition across the three vil-
lages. The largest proportion of mosquitoes caught using the
outdoor collection methods (AGT, BOX, CDC and LIT) were
Culex whereas, the largest proportion of the total catch in ET
and PSC were Anopheles (Fig. 2). Molecular characterization of
the 442 An. gambiae s.l. collected from the villages in the
Western region, show that 44.0% were An. gambiae s.s., 43.8%
were An. melas, while 12.1% did not amplify. Whereas in the
Northern region, 55.1% of 78 Anopheles were identified as An.
gambiae s.s. however, 44.9% did not amplify with the An. gambiae
complex primers used (primers included; An. arabiensis, An.
gambiae and An. melas). These proportions did not differ

Table 1. Estimated CFA and mf prevalence in the five villages

Region Community Number tested for CFA CFA prevalence (%) Estimated village microfilariae prevalence (%)

Western Agyan 195 23.0 2.2

Western Akonu 93 27.9 1.5

Western Asemko 115 12.2 1.7

Northern Dugli 78 19.2 2.6

Northern Sekyerekura 79 15.2 3.8
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between the indoor and outdoor collection methods (χ2 = 0.16,
P = 0.7).

Northern region
A total of 771 mosquitoes was collected in the Northern region.
Of the 555 mosquitoes collected indoors, 473 (85.2%) were An.
gambiae sl, and 68 (12.2%) were An. funestus, 10 (1.8%) were
other Anopheles spp. including Anopheles rufipes and Anopheles
coustani and 4 (0.7%) were Culex spp (Fig. 3).

Comparison of the trapping efficiency by mosquito
composition and density

In the Western region, AGT caught the highest mean number of
anophelines per collection night (4.62, 95% CI 0.49–8.74) fol-
lowed by PSC (3.05, 95% CI 1.85–4.26) and the least being
CDC (0.15, 95% CI 0.01–0.30). Pairwise comparisons show that
the differences in the mean catch per collection night of anophe-
lines was only significant for AGT when compared with CDC,
F(5, 153) = 2.959, P = 0.014 (Fig. 4).

In the Northern region, the indoor resting collections had the
highest mean number of anophelines per collection night (8.86,
95% CI 4.13–13.59) followed by AGT (7.33, 95% CI 0.83
−13.831) with BGS catching the least (0.58, 95% CI 0.01–1.16).
The observed differences in the mean number of anophelines
was statistically significant between IRC and BGS but not AGT
and BOX (F(3, 44) = 4.808; P < 0.01) (Fig. 5). However, the

differences in mean between AGT and BGS, AGT and BOX or
BGS and BOX were not statistically significant.

Trapping efficiency for mosquitoes that have previously taken
a blood meal

Estimating the number of mosquitoes that were likely to have pre-
viously taken a blood meal is important for xenomonitoring.
These mosquitoes include those that were caught bloodfed, gravid
or unfed and parous. The parity dissections were only conducted
in the Western region study. The results show that AGT caught
the highest mean number of An. gambiae s.l. previously exposed
to at least one blood meal. PSC was second with CDC collecting
the least number per collection night. As expected, the gravid
traps caught a high proportion of gravid An. gambiae s.l. while
the indoor collections caught a high proportion on bloodfed
An. gambiae s.l. (Table 2).

Infection prevalence in mosquitoes

Pools of heads and thoraces were split from abdomens and
screened separately for W. bancrofti and Plasmodium spp DNA.
The results are presented in Table 3. In the Western region,
none of the head/thorax pools were positive for either.
However, W. bancrofti and Plasmodium spp. DNA were detected
in pools of mosquito abdomens. A 0.80% and 2.15% prevalence of
W. bancrofti and Plasmodium spp. was observed in the An.

Fig. 2. The proportion of mosquito genera caught per trap type in the Western region. Where ‘N’ is the number of mosquitoes caught in each trap. AGT, Anopheles
gravid trap; BOX, Box gravid trap; CDC, CDC gravid trap; ET, Exit trap; LIT, Light trap; PSC, Pyrethrum spray catch.
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gambiae collected from the Western region. These included mos-
quitoes (i.e. 3 pools of 15 mosquitoes) that had been captured
using PSC (the only method that had mosquitoes that were posi-
tive for W. bancrofti). The Plasmodium positives pools were
obtained from 3, 4 and 1 pool of 14, 11 and 2 mosquitoes that
were caught in AGT, BOX and ET, respectively. The
Plasmodium spp. positives were recovered from the pools that
contained unfed, bloodfed and gravid Anopheles mosquitoes,
indicating that, immature stages of the parasite were present in
the midgut. Unsurprisingly, the W. bancrofti DNA positive
pools were all from those that were bloodfed. Screening of pools
of Mansonia show a prevalence of 3.57% (95% CI 0.11–17.08%)
Plasmodium spp. and 3.86% (95% CI 0.12–18.45) of W. bancrofti
DNA. In the Northern region, we observed a higher overall preva-
lence of W. bancrofti at 3.01% (95% CI 1.60–5.05) and
Plasmodium spp. at 3.27% (1.78–5.40). The W. bancrofti positive

pools were from 2, 3 and 7 pools of 5, 9 and 29 for AGT, BOX and
IRC, respectively. While that of Plasmodium spp. were from 1 to
11 pools of 5 and 52 mosquitoes that were captured using BOX
and IRC, respectively. In addition, a small number of head/thorax
pools were positive for W. bancrofti (0.3%, 95% CI 0.01–1.5) and
Plasmodium spp. (0.9%, 95% CI 0.2–2.5), indicating the develop-
ing stage of filarial worms were present in the thorax, and the
infective stage sporozoites were present in the salivary glands.
The positive mosquitoes were collected from IRC and AGT and
these mosquitoes were An. gambiae and Culex spp.

Discussion

Monitoring parasite infection in vector populations can be used to
assess transmission as well as infection in the human population
(Boakye et al., 2004; Ughasi et al., 2012; de Souza et al., 2014).

Fig. 3. The proportion of mosquito genera caught per
collection method in the Northern region. Where ‘N’ is
the number of mosquitoes caught in each trap. AGT,
Anopheles gravid trap; BGS, BG sentinel trap; BOX, Box
gravid trap; IRC, indoor resting collection.

Fig. 4. Plots of the mean number of anopheline mosqui-
toes caught by each method per night in the Western
region (P < 0.05). Bars with identical letters are not sig-
nificantly different from each other. Error bars show
standard error of the mean.
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However, there is a challenge identifying efficient vector collection
methods for anopheline mosquitoes, the primary vectors in
sub-Saharan Africa for both LF and malaria. Using gravid traps
increases the chance of catching infected mosquitoes as gravid
mosquitoes would have taken at least one blood meal (Irish
et al., 2013). CDC gravid traps, purposely designed for Culexmos-
quitoes, are used routinely for the surveillance of diseases such as
dengue fever and lymphatic filariasis transmitted by Culex mos-
quitoes (L’Ambert et al., 2012; Hapairai et al., 2015). However,
an equivalent for anophelines is not widely used for monitoring,
and this has been a challenge for surveying these populations.
This study reports on the first evaluation of an Anopheles gravid
trap for monitoring LF and malaria in vectors in Ghana.

In the Western region, about 40% of the total An. gambiae s.l.
collected were An. melas. Anopheles melas is usually associated
with mangroves, which were present in the study communities.
Tuno et al. (2010) also reported on the abundance of An. melas
in the western coast of Ghana. In the Northern Region, the
Anopheles sampled included An. coustani, An. funestus, An.
rufipes and An. gambiae s.l. which are also implicated in malaria
transmission (Tabue et al., 2017). These Anopheles species have
been reported to exhibit ‘limitation’ which favours transmission
even when mf prevalence is low (McGreevy et al., 1978; Bryan,
1990; Amuzu et al., 2010).

For this study, trapping efficiency was evaluated by comparing
the mean number of Anopheles per trap night. Amongst the
gravid traps used, the AGT performed better than the Box gravid
trap (BOX) and CDC-gravid trap (CDC), even though all three
were baited with water from larval habitats. AGT had the highest
proportion of An. gambiae s.l exposed to a blood meal as well as
the highest mean number of An. gambiae s.l compared with the
other collection methods in the Western region. Its efficiency at
trapping exposed mosquitoes was approximately 1.6 and 2.2
times better than PSC and ET, respectively. Amongst the outdoor
collection methods, it was 5.1, 27 and 9.4 times better than BOX,
CDC and LIT. The improved performance of AGT could be due
to a bigger fan, which provided a suction effect over the entire
water surface. Whereas, the suction effect for the BOX and
CDC were only strong at the opening to the collection chambers
but the effect was less towards the periphery. AGT resulted in a
higher catch than Exit trap (ET), CDC-LIT and pyrethrum
spray collection (PSC), when standardized per location per
night. Similar observations were made in the testing of AGT in
Kenya (Lindh et al., 2016). The Kenyan study evaluated the trap-
ping efficiency of the OviART gravid trap designed to collect
gravid Anopheles. The OviART gravid trap, which is similar to
the AGT used in this study, collected 2.3 times the number of
An. gambiae s.l. compared with BOX. In our study, the AGT

Fig. 5. Plots of the mean number of anophelines caught by each method
per night in the Northern region (P < 0.05). Bars with identical letters are
not significantly different from each other. Error bars show standard
error of the mean.

Table 2. Estimated mean number of A. gambiae s.l. from the Western region which have previously taken a blood meal

Collection
method

Mean catcha

(±S.E.)
Proportion unfed

nulliparous
Proportion unfed

parous
Proportion
bloodfed

Proportion
gravid

Estimated mean number
exposed to blood meal

AGT 4.60 (1.96) 0.12 – 0.311 0.57 4.05

BOX 0.92 (0.33) 0.13 0.13 0.105 0.63 0.79

CDC 0.15 (0.07) – – 0.5 0.5 0.15

LIT 1.19 (0.64) 0.64 0.3 0.03 0.03 0.43

ET 2.11 (0.84) 0.13 0.17 0.46 0.24 1.84

PSC 3.05 (0.59) 0.16 0.046 0.66 0.13 2.55

AGT, Anopheles gravid trap; BOX, Box gravid trap; CDC, CDC-gravid trap; LIT, light trap; ET, Exit trap and PSC, Pyrethrum spray catches.
aEstimates per collection night in the case of AGT, BOX, CDC, LIT, ET and per room for PSC.

Table 3. Infection prevalence of W. bancrofti and Plasmodium spp. in mosquito pools

Region
Total number of mosquitoes

screened
Estimated prevalence W. bancrofti

DNA (%) (95% CI)
Estimated prevalence Plasmodium spp.

DNA (%) (95% CI) Trap type

Western 382 0.80 (0.155–2.30) 2.15 (0.867–4.28) PSC (Wb)
AGT, BOX, ET (Plas)

Northern 516 3.01 (1.60–5.05) 3.27 (1.78–5.40) IRC, BOX, AGT (Wb)
IRC, BOX (Plas)

aThe table above shows the estimated prevalence of W. bancrofti and Plasmodium spp. DNA in the mosquitoes collected using PoolScreen 2.0.
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also showed good trapping efficiency for An. melas, even though
this species prefers to breed in high salinity water compared with
other anophelines. AGT also caught the highest mean number of
Anopheles that had previously taken a blood meal. Similarly,
Lindh et al. (2016) observed a higher proportion (90%) of gravid
mosquitoes in the OviART trap. The main difference in the AGT
and OviART trap is the oviposition tray. The AGT had a 6 L rect-
angular basin unlike the OviART which had 8 L circular basin in
which water was kept serving as an attractant for gravid mosquito.
The rectangular basin of the AGT provides a larger surface area
for oviposition, compared with the circular basin of the
OviART. However, it is not clear whether the aforementioned var-
iations, affects the performance of these traps.

Some of the limitations to the use of the AGT are due to bulki-
ness and the use of a 12 V car battery which limits portability.
There is no protective shield on the traps and the basins get
flooded during rains wetting the collection chambers and trapped
mosquitoes. Rains can also damage the fan and the battery. As
such, improved designs aimed at protecting the components of
the trap while also improving portability will make it more useful
in the field.

The high numbers and the different species caught in the AGT
show that, not only is it efficient for sampling LF and malaria vec-
tors, it can also be employed in sampling other mosquito vectors
including Culex which is implicated in LF and arbovirus transmis-
sion elsewhere (Mak, 2007; Lutomiah et al., 2011; Jones et al.,
2012). Information such as vector abundance and diversity within
a locality, can help inform local health authorities on vector dis-
tribution and implication in the transmission which can be the
basis for deploying control measures (Ciota and Kramer, 2013;
Oduola et al., 2013). Further, parasite positivity in mosquitoes
collected with these traps indicates the presence of infection in
the community, providing information that may require intensi-
fied efforts to manage and control vector-borne diseases
(Kouassi et al., 2015).

None of the head/thorax pools of mosquitoes were positive for
W. bancrofti and Plasmodium spp. in the Western region, suggest-
ing that these mosquitoes were not carrying any infective stages.
However, a small number of pools were positive from the
Northern region. The mosquitoes that were positive for W. ban-
crofti DNA were An. coluzzii and An. melas, the primary vectors
of W. bancrofti in these areas (de Souza et al., 2010). The number
of samples analysed was few, however, they illustrate the utility of
detecting parasite DNA in mosquitoes, even when infection
prevalence is very low in the community. Detection of parasite
DNA confirms the presence of infection in humans and indicate
ongoing transmission to mosquitoes. Furthermore, the positive
pools obtained from the traps, supports the evidence that these
methods are useful for sampling epidemiologically relevant mos-
quitoes (ie. mosquitoes that were exposed to at least a blood
meal). Hence, they can be employed in monitoring vector popu-
lations which can provide valuable information to support the
decision to stop MDA.

However, comparison of the differences in infection preva-
lence in mosquitoes between collection methods of Anopheles
species and locations were not performed. This is a limitation
as these information are relevant and can inform vector monitor-
ing campaigns.

In conclusion, AGT was a very efficient collection method
compared with the other traps in both study regions, but particu-
larly in the Western region where few mosquitoes were found
resting indoors. We found that, on average, AGT collected over
2 times as much as blood exposed Anopheles compared with
the indoor methods and 5–27 times compared with the other
gravid traps. The collection of indoor resting mosquitoes, either
by PSC or mechanical aspiration is efficient in areas with high

numbers of indoor resting anophelines such as in the Northern
region since many rooms can be screened for indoor resting mos-
quitoes by one team of collectors. While the AGT showed effi-
ciency in trapping mosquitoes, there are limitations to the
number of traps that can be set and rotated by a team because
of the heavy car battery, which needs to be recharged every few
days.
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