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Abstract 

Background: Increasing pyrethroid resistance has been an undesirable correlate of the rapid 

increase in coverage of insecticide-treated nets (ITNs) since 2000. Whilst monitoring of 

resistance levels has increased markedly over this period, longitudinal monitoring is still 

lacking, meaning the temporal and spatial dynamics of phenotypic resistance in the context of 

increasing ITN coverage are unclear. 

Methods: As part of a large WHO-co-ordinated epidemiological study investigating the 

impact of resistance on malaria infection, longitudinal monitoring of phenotypic resistance to 

pyrethroids was undertaken in 290 clusters across Benin, Cameroon, India, Kenya and Sudan. 

Mortality in response to pyrethroids in the major anopheline vectors in each location was 

recorded during consecutive years using standard WHO test procedures. Trends in mosquito 

mortality were examined using generalised linear mixed-effect models. 

Results: Insecticide resistance (using the WHO definition of mortality < 90%) was detected 

in clusters in all countries across the study period. The highest mosquito mortality (lowest 

resistance frequency) was consistently reported from India, in an area where ITNs had only 

recently been introduced. Substantial temporal and spatial variation was evident in mortality 

measures in all countries. Overall, a trend of decreasing mosquito mortality (increasing 

resistance frequency) was recorded (Odds Ratio per year: 0.79 per year (95% CI: 0.79–0.81, 

P < 0.001). There was also evidence that higher net usage was associated with lower 

mosquito mortality in some countries.   
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Discussion: Pyrethroid resistance increased over the study duration in four out of five 

countries. Insecticide-based vector control may be compromised as a result of ever higher 

resistance frequencies.   

Keywords: Malaria, Vector control, Insecticide resistance, Trends, Bednets, Bioassay 

 

 

Background 

Vector control using indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are 

core strategies for malaria control and elimination. The huge scale-up of these interventions 

in the last 20 years has been associated with major reductions in disease burden [1]. Between 

2000 and 2015, it is estimated that over 1 billion ITNs were distributed in malaria endemic 

countries. The proportion of people in sub-Saharan Africa sleeping under a net increased 

from 30 to 54% between 2010 and 2016, whilst in 2016 an estimated 2.9% of the at-risk 

population was covered by IRS globally [1]. The increased coverage of vector control is 

estimated to have been a major contributor to the documented 62% decline in malaria 

mortality between 2000–2015 [2, 3]. However, between 2015 and 2016, data suggest that 

malaria mortality have remained the same in the WHO regions of Southeast Asia, the 

Western Pacific and Africa, and possibly increased in the Eastern Mediterranean and the 

Americas [1]. There are therefore justified concerns about the emergence and spread of 

insecticide resistance and the impact this may have on the continued effectiveness of 

insecticide-based interventions [1, 4].  

Resistance has now been detected in malaria vectors to the four classes of public 

health insecticides used in malaria vector control (pyrethroids, organochlorines, 

organophosphates and carbamates) [5], and up to October 2016 had been reported in 71 

malaria-endemic countries [6]. Until recently, pyrethroids have been the only class used for 

long-lasting insecticidal nets (LLINs) and accounted for a large proportion of the insecticide 

used for IRS. This heavy reliance on a single insecticide class prompted the World Health 

Organization (WHO) to issue a Global Plan for Insecticide Resistance Management (GPIRM) 

[5] which was subsequently expanded as part of the Global Vector Control Response [7]. The 

aim of these initiatives is to sustain the advances made in the fight against vector-borne 

disease through rational use of vector control tools, including insecticide deployment to slow 

the development of resistance. Country-level implementation of recommended activities and 

monitoring has been poor due to a combination of limited availability and costs of 
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insecticides with new modes of action; human, financial and infrastructural capacity 

shortfalls; and insufficient data to determine epidemiological impact of insecticide resistance 

[8]. To address this latter point the WHO, with funding from the Bill and Melinda Gates 

Foundation, initiated a multi-country prospective study to assess the impact of insecticide 

resistance on the effectiveness of LLINs and IRS. The main objectives of the study were: (i) 

to determine the impact of insecticide resistance in malaria vectors on the protective 

effectiveness of LLINs and IRS, and hence on malaria disease burden; and (ii) to assess 

trends in the insecticide resistance status and underlying mechanisms in the main malaria 

vector species from the study areas in response to different interventions. 

The study was conducted in five countries, Benin, Cameroon, India, Kenya and 

Sudan, with data collection conducted from 2010–2016. Details of the overall study design 

are given in Kleinschmidt et al. [9]. Overall epidemiological outcomes, presented in 

Kleinschmidt et al. [10], showed that nets provided protection against malaria irrespective of 

resistance frequency, indicating that populations in malaria endemic areas should continue to 

use LLINs to reduce their risk of infection. A number of country-specific analyses from this 

and other studies corroborate this finding [11–15]. In addition, several studies have published 

country-specific entomological data relating to the second objective [16–18], with ranges of 

resistance to pyrethroids reported. In this paper, we describe temporal and spatial trends in 

insecticide resistance of the main malaria vector species from across the five study countries. 

 

 

Methods 

Study design 

The overall study design is described in detail in Kleinschmidt et al. [9]. The five countries 

included in the study were selected to represent areas of varying transmission intensity where 

resistance had previously been detected in malaria vectors (Table 1). In 279 study clusters 

(villages or groups of villages) across 16 areas in the five countries pyrethroid susceptibility 

in malaria vectors, and malaria infection and disease in children were measured 

simultaneously over several years. We aimed to assess whether higher levels of resistance are 

associated with loss of effectiveness of LLINs, and to characterise temporal and spatial trends 

in insecticide resistance. The numbers of clusters chosen per country are shown in Table 1 

and were based on sample size calculations determined by the epidemiological outcomes [9]. 
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Clusters were defined as villages or groups of hamlets with no less than 500 houses and were 

at least 2 km apart to avoid spill over in outcomes between clusters. 

 

Vector control 

LLIN mass distributions were carried out routinely in each site to provide universal coverage 

for each household (one net per two persons). Nets were distributed in Benin in 2011 (Olyset 

Net®, Sumitomo Chemical, Tokyo, Japan; 1 g/m2 permethrin) and 2014 (PermaNet® 2.0, 

Vestergaard, Lausanne, Switzerland; 55 mg/m2 deltamethrin), in Cameroon in 2011 and 2015 

(PermaNet® 2.0), in India in 2014 (PermaNet® 2.0), in Kenya in 2010 and 2013 

(PermaNet® 2.0), and in Sudan in 2011 and 2014 (PermaNet® 2.0). Net usage, defined as the 

proportion of respondents reporting as having slept under an LLIN the previous night, was 

determined through cross-sectional surveys which took place at least once in each country 

during the study period [10]. Cross-sectional household surveys, which consisted of sampling 

children from random households occurred in 2012 (Kenya, Sudan), 2013 (Cameroon, 

Sudan), 2014 (Sudan), 2015 (Benin, India) and 2016 (India) [10]. We used net usage as a 

proxy for the level of local mosquito exposure to pyrethroids. In Sudan half of the clusters 

were randomised to receive two rounds of IRS with bendiocarb (Ficam®80% WP, Bayer, 

Leverkusen, Germany; 200 mg active ingredient/m2. An exception was the Galabat region 

where clusters received IRS with deltamethrin (25 mg of a.i./m2; Chema Industries, 

Alexandria, Egypt) before changing to bendiocarb in subsequent years [15].  

 

Measuring resistance 

Phenotypic susceptibility to the pyrethroid deltamethrin, in the main local vector(s), was 

measured annually in each cluster using WHO adult susceptibility tests and recorded as 

percent mortality [19]. In Benin, Cameroon, Kenya and Sudan larvae were collected from 

breeding sites within each cluster annually and reared to adulthood in insectaries. In India, 

where larval sites were difficult to locate, resting females were caught [19]. Adult female 

mosquitoes [of unknown age (India); 2–5 days-old (all other countries)] were exposed for 60 

minutes to deltamethrin using WHO impregnated papers at standard concentrations (0.05% 

deltamethrin). Mosquitoes were kept at temperatures between 23 and 27 °C, with humidity, 

where measured, between 75–85%. Mortality was measured 24 h post-exposure. In all tests, 

observed mortality in control mosquitoes was less than 5% therefore Abbott’s correction was 

not applied.  
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Statistical analysis 

Mosquito mortality data were analysed at the level of the individual mosquito, with post-

exposure status (dead/alive after 24 h) modelled as the response variable in logistic 

regression. Explanatory variables of interest were year, years since last LLIN distribution, 

and cluster- and year-specific LLIN use as measured in cross-sectional household surveys. 

Susceptibility test data were excluded from the analysis if fewer than 40 mosquitoes were 

tested. A mortality estimate was calculated per cluster for each time point, with data for each 

country analysed separately and in an all-country model. Association between cluster 

mortality estimates was assessed between years using binomial generalised linear models. 

Separate generalised mixed-effect models were used to assess trends in mortality over time, 

effect of time since LLIN mass distribution and effect of bednet use, with the cluster 

specified as the random effect to account for within cluster correlation of responses. Year was 

modelled as a linear term to investigate trends over time. Where appropriate, a regional 

identifier was included as a fixed effect to allow for spatial differences in resistance within 

countries. Where data were available, insectary temperature and humidity during resistance 

testing were included in country-level models (Cameroon, India, Sudan). 

Cluster-level net usage, as a categorical variable (low, < 40%; medium, 40–80%; and 

high, > 80%), was explored as an explanatory variable in the years where these data were 

available from concurrent cross-sectional surveys. As bednet usage was only available for 

some years, a time variable was not included in these models. To investigate whether the 

impact of bednet distributions waned over time, models using time since bednet distribution 

(in years) as the key explanatory variable (as opposed to calendar time) were also examined.   

Data from all 5 countries were combined to investigate whether there was evidence 

for an overall temporal trend in phenotypic resistance, with country added as a fixed effect. 

As the only data available from 2016 were from India, the all-country analysis was 

undertaken with and without India.   

Results are presented in terms of changes in mortality of mosquitoes by year [Odds 

Ratios (OR) per year] or with increasing cluster-level category of net usage, with a reduction 

in mortality indicative of increasing resistance frequency.   

 

 

Results 

Estimates of mortality 
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More than 90,000 mosquitoes were tested in 911 separate tests across 5 countries and over 6 

years. The median number of mosquitoes exposed per cluster per year was 100 [interquartile 

range (IQR) 84–104]. Median mortality across all tests was 81% (IQR: 63–94%). Insecticide 

resistance, classified according to the WHO criteria of < 90% mortality, was detected in all 

tested species, in all five countries and in 87% (n = 793) of tests performed. In only 7% of 

tests performed (n = 63, from 57 clusters) was 100% mortality observed. There were 

noticeable differences in the proportions of clusters defined as susceptible across countries. 

For example, in India, ≥ 98% mortality was observed in 28% (n = 66) of tests compared to 

only 1% of tests (n = 2) in Sudan. In Benin, Cameroon, Kenya and Sudan, > 50% mortality 

was recorded in at least 14% of tests recorded; no tests in India had less than 50% mortality.   

 

Temporal and spatial variation 

Cluster-specific mosquito mortality showed limited and inconsistent evidence of year-to-year 

correlation in all countries (Fig. 1). The strongest association was seen between data points 

from 2014 and 2015 (Kendall's tau coefficient: 0.42, P < 0.001), although this pattern 

differed by country, with no correlation seen between those years in Benin or India (Sudan 

ceased data collection in 2014) (Kendall's tau coefficient 0.07, P = 0.677, and 0.02, P = 

0.886, respectively). The strongest correlation between years was seen in Cameroon, with 

Kendall's tau coefficient > 0.3 for all year pairs (P < 0.02), whilst for the other countries 

correlation was only present in some pairwise comparisons. 

 

Trends in mortality over time 

The trends in mortality over the study period differed by country (Table 2, Fig. 2). A decrease 

in mortality was detected in Benin, Cameroon, Kenya and Sudan. A slight increase in 

mortality was detected in India (aOR: 1.03 (95% CI: 0.98–1.1), P = 0.08). The most 

substantial yearly decrease was detected in Sudan (aOR: 0.67 (95% CI: 0.64–0.70), P < 

0.001). With data from all countries combined, a 21% decrease per year in odds of mortality 

was detected (aOR 0.79 (95% CI: 0.79–0.81), P < 0.001). This was not substantially altered 

with the exclusion of India (aOR 0.77 (95% CI: 0.76–0.79), P < 0.001). 

 

Effect of bednet distributions and bednet use 

Bednet distributions occurred in all sites during the study period. Associations between 

bednet usage and cluster specific mosquito mortality was investigated for each year that 

epidemiological cross-sectional data were available. Mean net use was above 65% in all 
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countries, with Kenya reporting the highest value (94.2%). Benin, India and Kenya had no 

clusters with less than 40% net usage. Net usage appeared to have differential impact on 

mosquito mortality in each country with no association found in Benin and Kenya (P = 0.225 

and P = 0.241, respectively); higher mortality found in areas with higher net usage in 

Cameroon (aOR 1.6 and 1.4 for net usage between 40–80% and above 80% respectively, 

compared to clusters with net use under 40%, P < 0.001) and strong negative associations 

found in India and Sudan (Table 3).   

Time since bednet distribution was also investigated to establish whether changes 

associated with bednet distributions waned over time. Differential trends were evident with 

Benin, India and Sudan demonstrating an increase in odds of mortality (decreasing resistance 

frequency) for each year post-distribution (P < 0.001 for each) whereas mosquito mortality in 

Cameroon (aOR: 0.95, P = 0.016) and Kenya (aOR:  0.59; P < 0.001) decreased (increased 

resistance frequency) with each year post-LLIN distribution (Table 4).   

 

 

Discussion 

Insecticides have been a key component in the public health and agriculture toolbox for over 

a century, resulting in the inevitable emergence of resistance in mosquito vectors. This study 

brings together a very large collection of data from a range of transmission settings to 

investigate the trends in pyrethroid resistance. Whilst year to year variation was substantial, 

and poor inter-year correlation prevented cluster specific predictions of resistance, a decrease 

in mosquito mortality was detected in 4 out of the 5 countries over the 5-year period of the 

study suggesting that resistance to pyrethroids has been gradually increasing in these settings.  

WHO encourages regular monitoring of resistance frequencies to all insecticides used 

in country. Consequently, the level of reporting has increased dramatically in recent years 

with over 30,000 data points now entered into global databases such as the WHO Malaria 

Threats Map [20] and IR-mapper (www.irmapper.com) [21]. The picture that emerges from 

these summary data [6, 22, 23], as with the present study, is that resistance to pyrethroids is 

increasing in frequency and geographic extent. However, these global databases often 

aggregate data with substantially differential sampling effort across years and regions [6] 

which may obscure the substantial stochasticity in mortality estimates.   

It is assumed that the increase in resistance to pyrethroids over the past decade is due 

in part to the higher coverage of insecticide-based interventions, such as LLINs. However, 
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studies have shown conflicting results with some reports of increasing resistance following 

bednet distributions [24–27], and other reports of no increases despite sustained insecticidal 

campaigns [28–30]. Although ascertaining the effect of bednet coverage was not a primary 

goal of this study, it was possible to investigate the impact of net use through cross-sectional 

surveys that were conducted concurrently to resistance measurements. Trends were not 

uniform across countries, perhaps in part reflecting the differing biology of the vector 

species. Anopheles arabiensis (a major vector in Kenya, Cameroon and Sudan study 

locations) and An. culicifacies (primary vector in India study locations) commonly show high 

rates of zoophily. Obtaining blood meals from sources other than humans means LLINs 

would potentially have less impact on selective pressure on resistance. However, overall, 

higher net usage was associated with increasing resistance in mosquitoes. This trend was 

most evident in Sudan where the widest range of net usage was reported whereas in other 

settings reported net usage was more uniform, thereby reducing the likelihood of detecting a 

trend.     

We did not discern a consistent trend in mosquito mortality with increasing time post-

net distribution. In Benin, India and Sudan, mortality increased every year post-distribution, 

suggesting that the initial increased coverage of nets may have been a short-term driver for 

resistance and that as the insecticide on the nets reduced over time, the selection pressure 

reduced, in turn reducing the proportion of resistant mosquitoes. However, in Cameroon and 

Kenya, the opposite effect was observed, with mortality decreasing with every year from the 

date of the distribution. Data from the An. gambiae 1000 genome project has revealed that 

there appear to be numerous instances of localised adaptation to insecticide pressure [31]. 

The difference we observed in response to LLIN distribution may reflect in part this innate 

difference of vector populations to respond to insecticide pressure and caution against making 

generalised predictions. 

Moreover, whilst bednet distributions will have increased selection pressure in the 

study settings, it is also possible that the insecticide resistance could be linked to ongoing 

agricultural practices [32–34]. In several African countries, including northern Cameroon, the 

use of pyrethroids for cotton farming has been implicated as a catalyst for the increase in 

recorded resistance in An. gambiae populations [34–36]. Differences in the use of pyrethroids 

for agricultural purposes in the study settings could further impact the relationship between 

time of net distribution and insecticide resistance.   

Previous studies have also shown resistance to be highly focal [16, 37–39], with large 

variations over small geographical distances. This is exemplified by the range of mortality 
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measures within each country and highlights the need for multiple sentinel monitoring sites 

per country and reinforces that extrapolating resistance data from few, widely-dispersed 

sentinel sites to larger areas is untenable. Spatial heterogeneity in insecticide resistance poses 

challenges for integrated resistance management and suggests that locally tailored vector 

control and resistance management programmes are required.  

There was considerable temporal heterogeneity with high between year variation at 

cluster level. This phenomenon has also been reported elsewhere [40–43]. There are several 

reasons why levels of resistance in a mosquito population may fluctuate over time, for 

instance, resistance can recede if proper resistance management practices are implemented or 

if resistance drivers reduce and resistance associated genetic variants are deleterious in the 

absence of selection pressure [5, 44]. It is possible that in our study settings varying exposure 

to pyrethroids resulted in fluctuating frequency of resistance in the mosquito population with 

evidence from some areas suggesting that bednet usage resulted in higher resistance 

frequencies.   

As well as genuine fluctuations in the frequency of resistance, it is possible that the 

different susceptibility recorded is, in part, an artefact of the method of testing. Longitudinal 

monitoring is easily influenced by any changes in protocol for measuring mortality and the 

timings of the tests. Some studies have demonstrated fluctuations in mosquito mortality over 

a transmission season [45] and whilst all efforts were taken to ensure that tests occurred at the 

same time each year, differences between seasons may have had an impact. In addition, 

humidity and temperature are known to have an impact on mortality testing [46]; whilst these 

were controlled for where data were available, it is possible that differing conditions 

influenced mortality results.   

There is mounting evidence that tests recording mosquito mortality after 24 h may not 

be the best way to record changes in population resistance, particularly when the level of 

resistance is high [47]. A number of alternative options are now available for monitoring the 

presence of resistance, including molecular assays, time/dose response assays and increasing 

the time post-exposure at which mortality is calculated all of which are likely to be more 

sensitive to resistance trends [48–51], but these methods are also more resource intensive. 

Although as noted by Churcher et al. [4] the strong association between bioassay data and 

mortality measured in experimental hut trials supports the use of bioassays as a quantitative 

test of the impact of resistance on LLIN efficacy. In this multi-country study, to ensure 

comparability between sites, the test was performed using one insecticide dose and one 

exposure time, using wild-caught mosquitoes reared in the laboratory. These settings may not 
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reflect adequately the conditions wild mosquitoes experience, such as variations in 

temperature, food availability and pre-existing pesticide exposure [51]. In addition, the doses 

used in the resistance tests are not necessarily reflective of the doses mosquitoes would 

experience in the wild, which can be influenced by age or retreatment of ITN or regularity 

and coverage of IRS. The dose used for detecting resistance can have a particularly strong 

effect depending on the prevalence and penetrance of the resistant mechanisms present in the 

mosquito population. Recording mortality at 24 h may also miss some of the nuances 

involved with the evolution of resistance which may result in delayed mortality [51]. In 

addition, mosquito age has been shown to have a big impact on susceptibility, with older 

mosquitoes showing higher mortality rates compared to their younger counterparts [52]. If 

insecticides remain effective against mosquitoes old enough to transmit malaria, this may 

explain why some studies are observing minimal impact on epidemiological outcomes [10–

12, 14).   

 

 

Conclusions  

This study demonstrated increasing frequency of resistance to pyrethroids in malaria vectors 

from 4 out of 5 study countries. Although the increase does not appear linear, if the current 

trend continues, it is likely to result in a reduction of the effectiveness of pyrethroid-based 

interventions such as ITN and IRS. There was evidence in some countries of increased 

selection pressure for pyrethroid resistance in clusters where net use was higher. There are a 

number of strategies presented within GPIRM to mitigate the increase of insecticide 

resistance in malaria vectors such as rotations, combinations, mosaics and mixtures [5]. In the 

short term, two trials have demonstrated improved efficacy of dual-active [53] and 

pyrethroid-PBO treated LLINs [54], suggesting that we are likely to be able to prolong the 

useful active life of pyrethroid-based interventions. However, the lack of vector control tools 

with different modes of actions and their increased costs, means that many endemic countries 

will continue to struggle to develop and implement insecticide resistance management plans. 

Whilst new products are currently being trialled [55–57], and some have recently come to 

market, the fine-scale monitoring of resistance phenotypes and mechanisms will be key to 

mitigating the impacts of insecticide resistance through informed selection of vector control 

tools.   
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Figure legends 

Fig. 1 Association in cluster mortality between years. Scatter diagrams show results for 

clusters with mortality estimates in consecutive years for each year of the study. The 

predicted mortality result from binomial generalised linear models is overlaid on each graph 

with 95% confidence intervals 
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Fig. 2 Box-and-whisker plots showing the range of cluster-level mortality by year and 

country. Arrows indicate the timing of bednet distributions within country 
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Table 1 Details of study sampling and sites including vector control coverage and insecticide 

resistance prevalence at baseline  

 Study sampling sites 

 Benin Cameroon India Kenya Sudan 

Malaria 

transmission 

intensity 

High High Low High Low 

Study locations Districts of 

Ifangni, Sakété, 

Pobé and Kétou 

(Departement de 

Plateau) 

Districts of 

Garoua, Pitoa 

and Mayo Oulo 

(North region) 

Subdistrict of 

Keshkal 

(Kondagaon, 

Chhattisgarh) 

Districts of 

Teso, 

Rachuonyo, 

Nyando and 

Bondo (western 

Kenya) 

El Hoosh and 

Hag Abdalla 

(Gezira State); 

Galabat 

(Gedarif State; 

New Halfa 

(Kassala State) 

Number of clusters 

sampled 

32 38 80 61 79 

Entomological 

sampling points 

(years) 

2011–2015 2012–2015 2013–2016 2011–2015 2011–2014 

Main malaria 

vectors 

Anopheles 

gambiae (s.s.)a, 

Anopheles 

coluzziia 

An. arabiensisa, 

An. gambiae 

(s.s.)a, An. 

funestus 

An. culicfaciesa An. gambiae 

(s.s.)a, An. 

arabiensisa, An. 

funestus 

An. arabiensisa 

Vector control 

interventions 

High coverage of 

ITNs (primarily 

PermaNet 2.0) in 

all clusters 

High coverage 

of ITNs 

(PermaNet 2.0) 

in all clusters 

High coverage 

of ITNs 

(PermaNet 2.0) 

in all clusters 

High coverage 

of ITNs 

(PermaNet 2.0 

and Olyset Net) 

in all clusters. 

Rachuonyo and 

Nyando 

received IRS 

with 

deltamethrin and 

lambda-

cyhalothrin in 

2012, but no 

IRS was carried 

out subsequently 

High coverage 

of ITNs 

(PermaNet 2.0) 

in all study 

clusters. In each 

study area half 

of clusters 

randomly 

allocated to 

receive 

additional IRS 

with bendiocarb 

Baseline 

insecticide 

resistance 

Kdr frequency 

by cluster ranged 

from 44 to 93% 

Kdr frequency 

by cluster 

ranged from 9 

WHO Bioassay 

mortality to 

deltamethrin 

WHO Bioassay 

mortality to 

deltamethrin 

Kdr frequency 

by cluster 

ranged from 8.3 
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information 

(cluster-specific 

range) 

(2011) WHO 

Bioassay 

mortality to 

deltamethrin 

ranged between 

20–100% (2011) 

to 65% (2011) 

WHO Bioassay 

mortality to 

deltamethrin 

ranged between 

43–100% 

(2012) 

ranged between 

86–100% 

ranged between 

1–100% (2011) 

to 70.8% 

(2010); WHO 

Bioassay 

mortality to 

deltamethrin in 

sentinel clusters 

ranged between 

47–100% 

(2011) 

aMortality results in paper presented for these species 

  



Table 2 Impact of time on mosquito mortality. Results from generalised linear mixed-effect models 

examining the impact on mosquito mortality over time (year)  

Country Odds ratio for change in 

mortality per year (95% CI) 

P-value 

All five countries combineda 0.79 (0.79–0.81) <0.001 

Four countries combined 

(without India)a 

0.77 (0.76–0.79) <0.001 

Beninb 0.74 (0.72–0.76) <0.001 

Cameroonc 0.74 (0.69–0.78) <0.001 

Indiac 1.03 (0.98–1.1) 0.08 

Kenyab 0.88 (0.86–0.90) <0.001 

Sudanc 0.67 (0.64–0.70) <0.001 

aAdjusted for country 

bAdjusted for district 

cAdjusted for district, temperature and humidity 

Results are presented in terms of change in odds of mortality of mosquitoes in WHO bioassays by 

year. Odds ratios are adjusted for locality and temperature and humidity where indicated. The data 

are shown for each country, as well as all countries combined (with country included as a 

covariate). Cluster was included as a random effect in all models 

 

  



Table 3 Impact of cluster-level bednet usage on mosquito mortality. Results from generalised 

mixed-effect models examining the impact of cluster-level bednet usage on mosquito mortality 

  All countries 

combineda 

Beninb Cameroonc Indiac Kenyab Sudanc 

 No. of 

clusters 

included 

(year) 

59 (2012); 87 

(2013); 143 

(2014); 99 

(2015); 80 

(2016) 

19 (2015) 22 (2013); 26 (2014) 80 (2015); 80 

(2016) 

13(2012); 41 (2014) 46 (2012); 65 

(2013); 76 (2014) 

 Mean net 

usage 

(range) 

(%) 

 74.9 (52.5–100) 67.8 (7.0–100) 89.9 (60.9–100) 94.2 (73.7–100) 78.6 (0–100) 

Effect of cluster-

level net usage on 

mosquito 

mortality, OR 

(95% CI) 

< 40% 1 (reference) – 1(reference) – – 1 (reference) 

 40–80% 1.03 (0.89–1.19) 1 (reference) 1.61 (1.21–2.14) 1 (reference) 1 (reference) 0.69 (0.58–0.83) 

 > 80% 0.65 (0.57–0.74) 1.59 (0.75–3.37) 1.40 (1.08–1.82) 0.36 (0.29–0.44) 2.38 (0.56–10.1) 0.45 (0.38–0.53) 

 P-value <0.001 0.225 <0.001 <0.001 0.241 <0.001 

aAdjusted for country 

bAdjusted for district  

cAdjusted for district, temperature and humidity 

Results are presented in terms of change in mortality of mosquitoes for increasing bednet usage 

category (< 40%; between 40–80%; and above 80%). Bednet usage was calculated for years where 

cross-sectional survey data was available. Odds ratios are adjusted for locality and temperature and 

humidity where indicated. The results are shown for each country, as well as all countries combined 

(with country included as a covariate). Cluster was included as a random effect in all models 

 

  



Table 4 Impact of time since bednet distribution (years) on mosquito mortality. Results from 

generalised mixed-effect models examining the impact time since bednet distribution on mosquito 

mortality 

Country Odds ratio for change in mortality 

per year (95% CI) 

P-value 

All countries combineda 1.34 (1.31–1.37) <0.001 

Beninb 3.20 (3.02–3.39) <0.001 

Cameroonc 0.95 (0.90–0.99) 0.016 

Indiac 1.62 (1.52–1.73) <0.001 

Kenyab 0.59 (0.56–0.62) <0.001 

Sudanc 1.60 (1.53–1.67) <0.001 

aAdjusted for country 

bAdjusted for district 

cAdjusted for district, temperature and humidity 

Results are presented in terms of change in mortality of mosquitoes for each year since a mass 

bednet distribution took place in-country. Odds ratios are adjusted for locality and temperature and 

humidity where indicated. The results are shown for each country, as well as all countries combined 

(with country included as a covariate). Cluster was included as a random effect in all models 
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