Nasopharyngeal colonisation with *Streptococcus pneumoniae* in malnourished children: a systematic review and meta-analysis of prevalence.

Holly C Smith ¹, Esther German ², Daniela M Ferreira ² and Jamie Rylance ^{2,3*}

- ¹ University of Liverpool, Liverpool, UK
- ² Liverpool School of Tropical Medicine, Liverpool, UK
- ³ Malawi-Liverpool-Wellcome Programme, Malawi

*Corresponding author: Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA; 0151 705 3775; jamie.rylance@lstmed.ac.uk

Abstract word count: 216 Paper word count (excluding abstract and references): 2005

Abstract

Background: *Streptococcus pneumoniae* is an intermittent commensal organism in the nasopharynx. Colonisation is a prerequisite for disease and malnourished children are especially susceptible to severe infection. This systematic review examines published prevalence rates of pneumococcal colonisation in the upper respiratory tract of chronically malnourished children under the age of five years.

Methods: A systematic literature search was performed using Medline, PubMed, Web of Science and Scopus. After screening, relevant studies were assessed for quality using STROBE criteria. Colonisation data were extracted and a randomeffects model used to pool prevalence estimates.

Findings: Nine studies were included. The prevalence rate of *S. pneumoniae* colonisation in malnourished children during the first month of life ranged from 1.0-2.0% increasing at 2 months to 53.9-80.0%. Carriage remained similar from 3 months to 60 months at 64.1-88.0%. Meta-analysis showed a pooled prevalence of 67.2% in 0-3 months infants (95% CI, 55.6-78.7%), 77.9% in 3-6 months infants (95% CI, 68.1-87.7%) and 77.8% in 6-60 months infants (95% CI, 73.9-81.6%).

Conclusion: In malnourished children, it is plausible that rates of pneumococcal colonisation are higher than in healthy, well-nourished children. Knowledge of colonisation rates can inform policies on vaccination and ancillary interventions during treatment of malnutrition. Future studies should assess the impact of reducing colonisation on disease rates or transmission in these "at risk" individuals.

Keywords: CARRIER STATE, COLONISATION, MALNUTRITION, STREPTOCOCCUS PNEUMONIAE, UPPER RESPIRATORY TRACT

Introduction

Streptococcus pneumoniae (S. pneumoniae) is a leading global cause of respiratorytract infections and invasive disease in young children, the elderly and immunocompromised patients. In 2015, pneumonia accounted for 16% of all deaths of children less than five years of age.¹ Immunisation programmes using pneumococcal conjugate vaccines (PCV) and polysaccharide vaccines (PPV) reduce colonisation rates and mortality from invasive disease in a serotype-specific manner.² Their utility in Low and Middle Income Countries (LMIC) can be limited by cost, variable coverage of locally circulating serotypes,³ and the high frequency of individuals with medical conditions that alter their immune responses (such as malnutrition or HIV⁴).

The upper respiratory tract (URT) provides an ecological niche for diverse bacterial populations and *S. pneumoniae* frequently but asymptomatically colonises the URT, especially in young children.⁵ Progression to mucosal disease (such as sinusitis, otitis media and pneumonia) and invasive pneumococcal disease (IPD) can occur if immunological and mechanical defences are breached and such events are more likely amongst individuals with higher colonisation rates.⁶ Nasopharyngeal aerosolization of *S. pneumoniae* is considered the primary mode of population transmission.⁷ The high rates of *S. pneumoniae* colonisation seen in the under 5s partly explain the more frequent disease in this age group and why children are thought to be the main reservoir and vector of spread.⁸

Young children also have incomplete protection against disease due to immature adaptive and innate immunity.⁹ These systems actively sense colonising mucosal bacteria and maintain a balanced regulatory environment.¹⁰ Higher disease prevalence in LMICs reflects a variety of environmental challenges such as overcrowding, particulate exposure and undernutrition, which can adversely affect mucosal immunity.¹¹ Pneumonia, for example, is more frequent and more severe in malnourished children in whom immunological studies have shown reduced cellular immunity, phagocyte function, complement and immunoglobulin and cytokine production.^{12,13}

Malnutrition, defined as the insufficient, excessive or imbalanced consumption of nutrients, is attributable to 53% of deaths associated with infectious diseases among children less than five years of age in impoverished countries.⁶ Malnutrition is

3

multifactorial, frequently resulting from inadequate breastfeeding, insufficient food availability and recurrent enteric infections.^{6,14} Protein-energy malnutrition manifests as kwashiorkor (predominantly protein deficiency) and marasmus (protein and energy deficiency). Micronutrient deficiency due to lack of a specific vitamin or mineral may coexist with these or occur in isolation.¹⁵ Acute malnutrition usually presents as "wasting" (a weight-to-height Z score <-2), compared with "stunting" (a height-to-age Z score <-2), which suggests chronic malnutrition.¹⁶

Pneumococcal prevalence data could predict the potential of public health interventions targeting nutrition to prevent *S. pneumoniae* disease and/or transmission. The rates of colonisation in malnourished children is therefore relevant to interventions at the individual and population level. This systematic review and meta-analysis describes these rates in malnourished children under the age of 5 years.

Methods

A search of the existing literature was conducted in November 2016 to identify reports of URT pneumococcal colonisation rates in chronically malnourished children aged from 0 to 5 years. We searched PubMed (1955-2016), Medline (1950-2016), Scopus (1960-2016) and Web of Science (1900-2016) using combinations encompassing broad search strings for *Streptococcus pneumoniae*, nasopharyngeal colonisation (including carriage and carrier states) and chronic malnutrition (including kwashiorkor, marasmus and micronutrient deficiencies determined as per the WHO guidelines for the treatment of severely malnourished children).¹⁷ Specific search terms and their combinations are shown in Supplementary materials.

Inclusion criteria were: (i) experimental or observational studies; (ii) English language; (iii) reporting data on URT colonisation of *S. pneumoniae*; (iv) subjects included chronically malnourished children; (v) aged 0-5 years. Studies were excluded which: (i) did not report rates of colonisation; (ii) were case series, case reports, letters or editorials. Retrieved papers were first screened by title and abstract then by full text. Further potential publications were identified from the reference list of included articles.

Data were captured by pre-designed proforma. Quality and risk of bias were assessed using the STROBE tool.¹⁸ Prism (version 7.02, GraphPad, California USA) was used for statistical analysis. Studies were included in meta-analysis if they reported data which allowed calculation of *S. pneumoniae* point prevalence rates and if they included at least 100 participants. Pooled prevalence was calculated using a model which incorporated the study as a random effect and was weighted by the number of participants contributing data.¹⁹

Results

Sixty-eight citations were identified, of which thirty-three were unique. Nine papers met the inclusion criteria (Figure 1). STROBE quality assessment data are given in Appendix 1.

All studies used conventional microbiology to detect colonisation and followed recommendations made by the WHO for measuring nasopharyngeal colonisation.²⁰ Rayon-tipped swabs were the most frequently used swabs (4/9 studies, 44.4%). A single study from Venezuela obtained additional oropharyngeal samples.²¹

Five studies derived from vitamin A supplementation random controlled trials (RCTs): two in India,^{22,23} one in Bangladesh,²⁴ and two in The Gambia.^{25,26} One study was a zinc supplementation RCT in Nepal.²⁷ Two case-control studies - one in Venezuela²¹, one in The Gambia¹² - compared colonisation in malnourished children with and without *S. pneumoniae* infection. One paper was a clinical trial investigating a urinary pneumococcal diagnostic tool in Ecuador.²⁸

Reported prevalence of *S. pneumoniae* colonisation in malnourished children aged 0 to 5 years ranged from 1.0% to 88.0% (Table 1). The prevalence rate of colonisation ranged from 1.0 to 2.0% at birth, increasing within the first two months of life to 53.9% to 80.0%. Colonisation rates in the period between 3 to 60 months of life ranged from 64.1% and 88.0%.

The pooled prevalence estimate of *S. pneumoniae* colonisation was 67.2% (95% CI, 55.6%-78.7%) in children aged from 0 to \leq 3 months, 77.9% (95% CI, 68.1%-87.7%) aged greater than 3 months to \leq 6 months and 77.8% (95% CI, 73.9%-81.6%) aged greater than 6 months to \leq 60 months (Figure 2).

All nine papers were graded as good quality and design (Appendix 1). Control groups were used and appropriate in eight studies. Intervention trials used malnourished controls without pneumococcal infection, supplemented with placebos. The control group in the Gambian RCT study were provided with a lower-dose vitamin A supplement rather than a placebo.²⁶ In Venezuela, matched controls of nearest-age siblings or cousins living in the same household were used.²¹

Discussion

We found nasopharyngeal colonisation to be frequent in children with malnutrition under five years in low- and middle-income countries (53.9% to 88.0% from 2 months to 5 years). Pooled prevalence rates increased greatly from 1.0-2.0% at birth to 53.9-80.0% at 2 months, reflecting the point of first acquisition of *S. pneumoniae*. From 3 months up to 5 years of age, colonisation remains high between 64.1 and 88.0%.

Nasopharyngeal colonisation rates amongst healthy, well-nourished children less than 5 years of age before the introduction of PCV have been previously reported as 64.8% in low-income and 47.8% in lower-middle income countries.²⁹ The prevalence rates found in these healthy children are lower than those found in our review of malnourished children. This difference may reflect clinical and methodological differences but suggests that prevalence rates of *S. pneumoniae* are higher in malnourished states. Our results are supported by a study in Venezuela that reported colonisation rates of 73% in children under 5.³⁰

Immune changes associated with protein-energy malnutrition are many: atrophic changes to the thymus, leading to poorly developed peripheral lymphoid organs and decreased T cell function and number.¹⁴ Malnutrition also reduces immunoglobulin A secretion, impairs complement activity and immunoglobulin responses to encapsulated bacteria and, indirectly, decreases phagocytic activity.^{31,32} In a persuasive case-control study, children with stunting in Venezuela were more likely to present with pneumococcal colonisation and acute respiratory tract infection compared to age-matched relatives from the same household.²¹ A recent study, not included in our review due to search time limits, found a strong association between stunting and *S. pneumoniae* colonisation.³⁰

The role of micronutrient deficiency and supplementation in acute bacterial infections remains controversial but zinc supplementation is effective in preventing pneumonia, and is recommended by the WHO.³³ Suboptimal zinc status damages epithelial function and impairs antibody-mediated responses.²⁷ A case-control study included in our systematic review found a strong interaction between zinc status and *S. pneumoniae* colonisation.²⁷ In mice, zinc-deficiency has been associated with higher nasopharyngeal colonisation density of *S. pneumoniae* following pneumococcal challenge and reduced responses to PspA immunisation.³³

7

Vitamin A deficiency promotes rapid bacterial colonisation in infants,³⁴ potentially permitting greater bacterial adherence, colonisation, and infection.²³ It is known to play a role in immune homeostasis as well as B- and T-cell homing to the intestinal mucosa.³⁵ It is plausible that it performs a similar function at the nasal mucosa. Supplementation can reduce infant mortality in areas of endemic deficiency,³⁶ although studies examining the specific effects on bacterial colonisation are inconsistent. New-borns in south India dosed with vitamin A had a lower rate of pneumococcal colonisation at 3 months compared to those receiving placebo, but this was not apparent in a similar trial in Bangladesh.^{23,24} A third trial comparing high and low dose vitamin A supplementation found no difference in colonisation between groups.²⁶

Baseline measurements confirming micronutrient malnutrition were not systematically carried out within the supplementation trials^{22-25,26,27} and deficiency within the population is assumed. However, evidence of deficiency in those geographies was good: 17-37% of young children within the geographic area studied in south India had low serum retinol levels;^{22,23,37} the Gambian population had significantly lower levels than expected in the UK ³⁸; the Bangladesh study reported a high prevalence of maternal night blindness, a clinical sign of vitamin A deficiency;²⁴ in the Nepal zinc trial 42% of children within a previous trial in the same area had low serum zinc concentration.^{27,39}

Our review encompassed multiple forms of macro and micronutrient malnutrition which, with limited data, might make pooled rates of colonisation difficult to interpret. The studies reported here represent a relatively limited geographic sample which may not represent the worldwide malnourished population. Additionally, inclusion of studies of malnourished children only does not allow for a detailed appraisal of the association between malnutrition and pneumococcal colonisation. Two studies combined anthropometric measurements of wasting and stunting to define their study population.^{12,21} These represent acute and chronic malnutrition respectively, and each may differently impact mucosal immunity and *S. pneumoniae* colonisation rates.

There is not enough uniformity of reporting of vaccination within the included studies to comment on pneumococcal vaccination within study populations. Vaccines can have a profound effect on serotype prevalence,^{40,41} if not always overall prevalence, and vaccination status could be a confounding variable.

8

Other limitations of this study include bias arising from selective publication and methodological limitations. For example, two studies compared colonisation in malnourished children with and without pneumococcal infection. As colonisation is a prerequisite to infection, this may artificially inflate colonisation rate estimates.^{12,21} Studies embedded within trials were not originally designed to deliver a cross-sectional representation of the wider population and sampling frames may not have fully accounted for seasonal variation. For example, colonisation rates are higher in the Gambia during the dry season, perhaps due to a combination of atmospheric conditions which promote colonisation and increased transmission due to social factors such as higher school attendance (and therefore intermixing) outside of harvesting seasons.^{12,42}

Studies designed specifically to investigate pneumococcal colonisation in a malnourished population are essential for the identification of high-risk groups and to understand their responses to pneumococcal vaccines. There is evidence that both protein-energy malnutrition and micronutrient deficiencies can affect responses to vaccination.^{43,44} The drivers of colonisation rates are complex but well-designed studies could be used to detect other risk factors or confounders for increased *S. pneumoniae* prevalence in the nasopharynx, including the effect on somatic growth.²¹ Importantly, we do not know if colonisation produces antibody-mediated protection in this population as it does in healthy children.⁴⁵

The combination of pneumonia and malnutrition has an enormous impact on child mortality in developing countries. This systematic review found high prevalence of *S. pneumoniae* colonisation in malnourished children under five years of age. Although the available data are limited, *S. pneumoniae* colonisation appears more prevalent in this population compared to healthy children without malnutrition. Current evidence is insufficient to judge if correction of nutritional deficits would lead to lower colonisation rates.

Declarations

Funding: None Conflicts of interest: None declared Ethical approval: Not required as data are anonymised and openly available. Author contributions: All authors contributed to the design, analysis, and writing of the manuscript.

References

1. World Health Organization. Pneumonia: Fact sheet 2016.

http://www.who.int/mediacentre/factsheets/fs331/en/ (accessed 29/11/2017). 2. Whitney CG, Farley MM, Hadler J et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. *N Engl J Med* 2003; 348(18): 1737-46.

3. Gordon SB, Kanyanda S, Walsh AL et al. Poor Potential Coverage for 7-Valent Pneumococcal Conjugate Vaccine, Malawi. *Emerg Inf Dis* 2003; 9(6):747-749 4. Jallow S & Mahdi SA. Pneumococcal conjugate vaccine in HIV-infected and

4. Jallow S & Mahdi SA. Pneumococcal conjugate vaccine in HIV-infected and HIV-exposed, uninfected children. *Expert Review of Vaccines* 2017; 16(5):453-465

5. Mehr S, Wood N. Streptococcus pneumoniae--a review of carriage, infection, serotype replacement and vaccination. *Paediatric respiratory reviews* 2012; 13(4): 258-64.

6. Glennie SJ, Williams NA, Heyderman RS. Mucosal immunity in resourcelimited setting: is the battle ground different? *Trends in microbiology* 2010; 18(11): 487-93.

7. Musher DM. How contagious are common respiratory tract infections? *The New England journal of medicine* 2003;348(13):1256-66. doi:

10.1056/NEJMra021771 [published Online First: 2003/03/28]

8. Althouse BM, Hammitt LL, Grant L et al. Identifying transmission routes of Streptococcus pneumoniae and sources of acquisitions in high transmission communities. *Epidemiol Infect* 2017; 145:2750-2758.

 Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. *Lancet Infect Dis* 2004; 4(3): 144-54.
Paton JC, Andrew PW, Boulnois GJ, Mitchell TJ. Molecular analysis of the

pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol 1993; 47: 89-115.

11. Mills RO, Twum-Danso K, Owusu-Agyei S, Donkor ES. Epidemiology of pneumococcal carriage in children under five years of age in Accra, Ghana. *Infect Dis (Lond)* 2015; 47(5): 326-31.

12. Adegbola RA, Falade AG, Sam BE, et al. The etiology of pneumonia in malnourished and well-nourished Gambian children. *Pediatr Infect Dis J* 1994; 13(11): 975-82.

13. Zelaya H, Laino J, Villena J, Alvarez S, Aguero G. Lactobacillus rhamnosus CRL1505 beneficially modulates the immuno-coagulative response after pneumococcal infection in immunocompromised malnourished mice. *Can J Microbiol* 2013; 59(10): 684-93.

14. Schaible UE, Kaufmann SH. Malnutrition and infection: complex mechanisms and global impacts. *PLoS Med* 2007; 4(5): e115.

15. Waterlow JC. Classification and definition of protein-energy malnutrition. *Monogr Ser World Health Organ* 1976; (62): 530-55.

16. World Health Organization. WHO child growth standards: length/height for age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age, methods and development: World Health Organization; 2006.

17. World Health Organization. Management of severe malnutrition: a manual for physicians and other senior health workers. Geneva; 1999.

18. Vandenbroucke JP, von Elm E, Altman DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. *PLOS Medicine* 2007; 4(10): e297.

19. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res Synth Methods* 2010; 1(2): 97-111.

20. Satzke C, Turner P, Virolainen-Julkunen A, et al. Standard method for detecting upper respiratory carriage of Streptococcus pneumoniae: updated recommendations from the World Health Organization Pneumococcal Carriage Working Group. *Vaccine* 2013; 32(1): 165-79.

21. Verhagen LM, Gomez-Castellano K, Snelders E, et al. Respiratory infections in Enepa Amerindians are related to malnutrition and Streptococcus pneumoniae carriage. *The Journal of infection* 2013; 67(4): 273-81.

22. Coles CL, Kanungo R, Rahmathullah L, et al. Pneumococcal nasopharyngeal colonization in young South Indian infants. *Pediatr Infect Dis J* 2001; 20(3): 289-95. 23. Coles CL, Rahmathullah L, Kanungo R, et al. Vitamin A supplementation at birth delays pneumococcal colonization in South Indian infants. *J Nutr* 2001; 131(2): 255-61.

24. Coles CL, Labrique A, Saha SK, et al. Newborn vitamin A supplementation does not affect nasopharyngeal carriage of Streptococcus pneumoniae in Bangladeshi infants at age 3 months. *J Nutr* 2011; 141(10): 1907-11.

25. Darboe MK, Fulford AJ, Secka O, Prentice AM. The dynamics of nasopharyngeal streptococcus pneumoniae carriage among rural Gambian mother-infant pairs. *BMC Infect Dis* 2010; 10: 195.

26. Darboe MK, Thurnham DI, Morgan G, et al. Effectiveness of an early supplementation scheme of high-dose vitamin A versus standard WHO protocol in Gambian mothers and infants: a randomised controlled trial. *Lancet* 2007; 369(9579): 2088-96.

27. Coles CL, Sherchand JB, Khatry SK, et al. Zinc modifies the association between nasopharyngeal Streptococcus pneumoniae carriage and risk of acute lower respiratory infection among young children in rural Nepal. *J Nutr* 2008; 138(12): 2462-7.

28. Hamer DH, Egas J, Estrella B, MacLeod WB, Griffiths JK, Sempertegui F. Assessment of the Binax NOW Streptococcus pneumoniae urinary antigen test in children with nasopharyngeal pneumococcal carriage. *Clin Infect Dis* 2002; 34(7): 1025-8.

29. Adegbola RA, DeAntonio R, Hill PC, et al. Carriage of Streptococcus pneumoniae and other respiratory bacterial pathogens in low and lower-middle income countries: a systematic review and meta-analysis. *PLoS One* 2014; 9(8): e103293.

30. Verhagen LM,Hermsen M, Rivera-Olivero IA, et al. Nasopharyngeal carriage of repiratory pathogens in Warao Amerindians: significant relationship with stunting. *Tropical Medicine and International Health* 2017; 22(4): 407-414.

31. Caulfield LE, de Onis M, Blossner M, Black RE. Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. *Am J Clin Nutr* 2004; 80(1): 193-8.

32. Savino W. The thymus gland is a target in malnutrition. *Eur J Clin Nutr* 2002; 56 Suppl 3: S46-9.

33. Strand TA, Hollingshead SK, Julshamn K, Briles DE, Blomberg B, Sommerfelt H. Effects of zinc deficiency and pneumococcal surface protein a immunization on zinc status and the risk of severe infection in mice. *Infect Immun* 2003; 71(4): 2009-13.

34. Chandra RK. Increased bacterial binding to respiratory epithelial cells in vitamin A deficiency. *BMJ* 1988; 297(6652): 834-5.

35. Oliveira LM, Teixeira FME, Sato MN. Impact of Retinoic Acid on Immune Cells and Inflammatory Diseases. *Mediators of inflammation* 2018; 2018: 3067126.

36. Klemm RD, Labrique AB, Christian P, et al. Newborn vitamin A

supplementation reduced infant mortality in rural Bangladesh. *Pediatrics* 2008; 122(1): e242-50.

37. Rahi JS, Sripathi S, Gilbert CE, Foster A. Childhood blindness due to vitamin A deficiency in India: regional variations. *Arch Dis Child* 1995; 72(4): 330-3.

38. Bates CJ, Villard L, Prentice AM, Paul AA, Whitehead RG. Seasonal variations in plasma retinol and carotenoid levels in rural Gambian women. *Trans R Soc Trop Med Hyg* 1984; 78(6): 814-7.

39. Tielsch JM, Khatry SK, Stoltzfus RJ, et al. Effect of daily zinc supplementation on child mortality in southern Nepal: a community-based, cluster randomised, placebo-controlled trial. *Lancet* 2007; 370(9594): 1230-9.

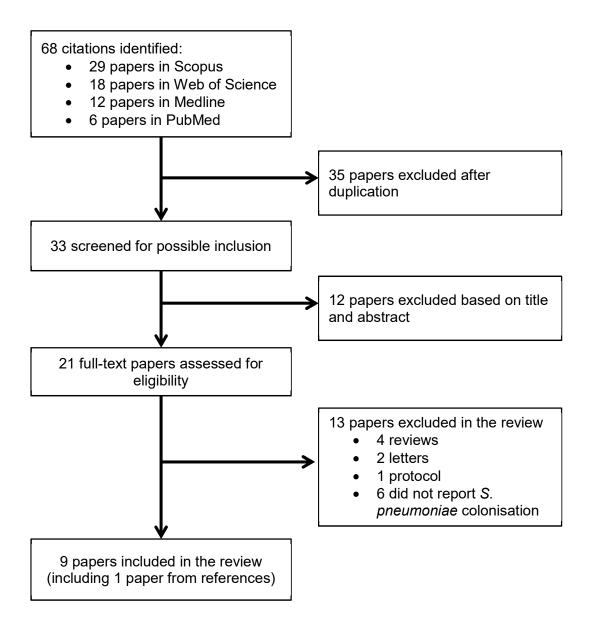
40. Devine VT, Cleary DW, Jefferies JMC et al. The rise and fall of pneumococcal serotypes carried in the PCV era. *Vaccine* 2017; 35(9):1293-1298.

41. Usuf E, Bottomley C, Bojang E et al. Persistence of nasopharyngeal pneumococcal vaccine serotypes and increase of non-vaccine serotypes among vaccinated infants and their mothers five years after PCV13 introduction in The Gambia. Clin Infect Dis 2018; ISSN 1058-4838 DOI:https://doi.org/10.1093/cid/ciy726

42. Bojang A, Jafali J, Egere UE, et al. Seasonality of Pneumococcal Nasopharyngeal Carriage in Rural Gambia Determined within the Context of a Cluster Randomized Pneumococcal Vaccine Trial. *PLoS One* 2015; 10(7): e0129649.

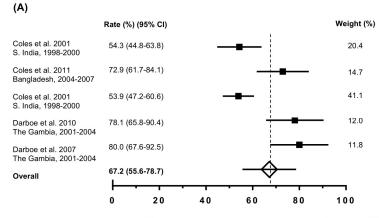
43. Rho S, Kim H, Shim SH et al. Protein energy malnutrition alters mucosal IgA responses and reduces mucosal vaccine efficacy in mice. *Immunology letters* 2017; 190:247-256.

44. Penkert RR, Iverson A, Rosch JW & Hurwitz JL. Prevnar-13 vaccine failure in a mouse model for vitamin A deficiency. *Vaccine* 2017; 35(46):6264-6268.


45. Zhang Q, Bernatoniene J, Bagrade L, et al. Serum and mucosal antibody responses to pneumococcal protein antigens in children: relationships with carriage status. *Eur J Immunol* 2006; 36:46-57.

46. Riboldi BP, Quevedo A, Fuchs S et al. Respiratory Infections in Enepa Amerindians; interpret with caution. Journal of Infection 2013; 67(4)

47. Verhagen LM, Gomez-Castellano K, Snelders E et al. Post hoc power calculations and statistical analysis of case control studies: reply to Riboldi et al. Journal of Infection 2014; 68(2):194-195.


Figure 1

Flow chart showing selection of articles

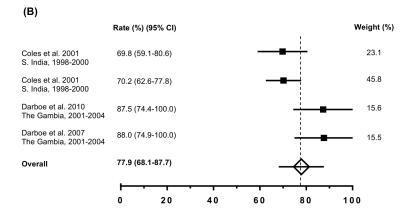
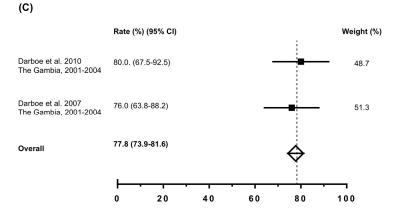


Figure 2


Meta-analysis of S. pneumoniae carriage in malnourished children under 5 years of age. Children aged: (A) 0 to \leq 3 months, (B) \leq 3 to \leq 6 months, (C) \leq 6 to \leq 60 months. The prevalence carriage rate for each study is represented by a square. An unfilled diamond represents the pooled prevalence estimate. The 95% confidence interval (CI) for each study is denoted by a horizontal line crossing the symbol. Weight for the random effects analysis for each study is given (%).

Prevalence of S. pneumoniae carriage in children 0 to \leq 3 months (%)

Prevalence of *S. pneumoniae* carriage in children < 3 to \leq 6 months (%)

Prevalence of *S. pneumoniae* carriage in children < 6 to \leq 60 months (%)

Table 1

Summary table of studies reporting colonisation rates of *Streptococcus pneumoniae* in chronically malnourished children.

Study	Study period	Country	Condition	Population	n	Strepto	coccus p	neumonia	e colonis	ation rate	e (%)		
						Birth	2m	3m	4m	5m	6m	12m	Overall
Coles et al. 2001 ²²	Oct 1998 – Jan 1999	South India	Vit A def	New-borns given placebo	232		54.3		67.9		69.8		
Coles et al. 2011 ²⁴	Jan 2004 – Jan 2007	Bangladesh	Vit A def	New-borns given placebo	225			72.9					
Coles et al. 2001 ²³	Oct 1998 – Jun 1999	South India	Vit A def	Child living in area of endemic Vit A def, of which unknown proportion received VA dose	464		53.9		64.1		70.2		
Darboe et al. 2010 ²⁵	Sept 2001 – Oct 2004	The Gambia	Vit A def	Child living in area of endemic Vit A def, of which unknown proportion received VA dose	197	1.5	78.1			87.5		78.6	
Darboe et al. 2007 ²⁶	Sept 2001- Oct 2004	The Gambia	Vit A def	0-12m infant receiving standard WHO Vit A dose 0-12m infant receiving high- dose Vit A	197	2.0 1.0	76.0 80.0			88.0 88.0		81.0 76.0	
Verhagen et al. 2013 ²¹	Aug 2011	Venezuela	WHZ or HAZ <-2	Controls aged 0-10y of which 58% are acutely or chronically malnourished	40								70.0 (0-5y)
Adegbola et al. 1994 ¹²	Nov 1990- Oct 1992	The Gambia	WFA<70% NCHS mean or oedema	Malnourished children aged 3m-5y without pneumonia	100								72.0
Coles et al. 2008 ²⁷	Dec 2003 – July 2004	Nepal	Zn def	Control groups aged 1-35m given placebo	604								78.7
Hamer et al. 2002 ²⁸	Unknown	Ecuador	WAZ	Healthy 2-60m who were: Malnourished Mildly malnourished	210								60.0 72.0

Appendix 1

Table of STROBE assessment of papers included in systematic review

Reporting Item	Coles et al. 2001 ²²	Coles et al. 2011 ²⁴	Coles et al. 2001 ²³
Title and Abstract	(a) Study design in abstract (b)	(a) Study design in abstract (b) Clear,	(a) Study design outline in abstract (b) Clear
(1)	Informative, clear abstract	balanced summary	abstract
Background/ratio	Spn leading cause of child mortality,	Data suggests correlation between endemic	Region-specific data required to form
nale (2)	vaccines unavailable. Endemic VA def in	VA def and <i>Spn</i> colonisation in early	effective vaccines as serotype prevalence
	areas of high <i>Spn</i> infection. VA may	infancy	varies temporally, geographically and by
	reduce carriage rates		age. Little data in S. India
Objectives (3)	To evaluate the impact of VA on <i>Spn</i> NP	To evaluate efficacy of new-born VA	To study the epidemiology of NP
	colonisation in young children of endemic	supplementation in preventing NP carriage	colonisation, risk factors and distribution of
	VA def	among 3mo old infants in rural Bangladesh	serotypes in S. Indian infants to determine
			the effectiveness of conjugate vaccines
Study design (4)	Double-blinded, placebo case-controlled	Double-blinded, placebo case-controlled VA	Double-blinded, placebo case-controlled VA
	VA supplementation trial	supplementation trial	supplementation trial
Settings (5)	South India. Oct 1998-Jan 1999. Area of	Bangladesh. Jan 2004- Jan 2007. Endemic	South India, Oct 1998-June 1999. Endemic
	endemic VA def	VA def	VA def
Participants (6)	Carriage study from InPACT study	Carriage study from JiVitA-2 embedded in	InPACT study embedded in VASIN trial.
	embedded in VASIN trial. Eligibility	JiVitA1 trial. Criteria given. No	Have to refer VASIN trial for eligibility
	criteria, sources, randomisation method	randomisation method given but refers to	criteria and participant details
	and controls given	JiVitA-2 paper	
Variables (7)	All variables apart from effect modifiers	Exposures, confounding variables given but	Primary and additional outcomes not clear,
	given	not clearly stated. No mention of effect	exposures, confounders and effect
		modifiers	modifiers not directly specified

Data	Specimen and lab procedures given	Specimen and lab procedures given	Specimen and lab procedures given
sources/measure			
ments (8)			
Bias (9)	Minimised. Use of control (selection), re-	Use of controls and randomisation.	No details of reducing bias
	interviewed participants at random,	Imbalance in sample size (VA 275 vs.	
	reviewed data collection forms on weekly	placebo 225) reflects survival bias (survival	
	basis to avoid missing data, high quality	until 12w old)	
	data collection method		
Study size (10)	Study size calculated for intervention data	Used data from S. India study (Coles 2000)	3000 embedded in VASIN trial to detect
	(464 required to detect 17.5% reduction in	– 500 infants to detect difference of 17%.	minimum reduction in infant mortality by
	NP colonisation with 80% power).	Placebo group = 225	30%. No study sample calculation for
	Placebo group = 232		InPACT.
Quantitative	Grouped according to treatment and	Grouped according to treatment and	Age groups split
variables (11)	placebo group	placebo group	
Statistical	(a) t test for continuous, (b) two-tailed Chi-	(a) Chi-squared and t test for baseline (b)	Associations tested by two-tailed chi square
methods (12)	squared or Fisher's for bivariate	Bivariate logistic regression models (c) No	test or Fisher's exact test. (b) Regression
	associations, (c) database analysed for	mention of missed data (d) OR and 95%Cl	models include receipt of VA as a covariate
	missed data (d) OR used to assess	used to measure associations	(c) OR used instead of relative risk as
	association between risk factors and		prevalence rates for each age group are
	colonisation, (e) OR used rather than		underestimate due to dynamics of
	relative risk due to sample collection at		colonisation
	2mo intervals		

Participants (13)	Number reported at each stage, non-	Number given at each stage, including non-	Number at each stage given, flow chart
	participation given, flow diagram given	participants. No flow diagram	given
Descriptive data	(a) Table 1 for baseline data (b) number	Baseline characteristics given. No	Demographics in table 1
(14)	of participants with missing data given	indication of missed data	
Outcome data	Table 2 shows number in each exposure	No table given	Carriage rates in text given in results
(15)	category		section
Main results (16)	Unadjusted and adjusted estimates (OR)	Unadjusted and adjusted OR given.	Carriage rates of unknown proportion
	with p-values. Baseline, effect of VA on	Multivariate models to control for effects of	receiving VA given. Adjusted OR given for
	colonisation, effect of VA delaying	baseline and other covariates	risk factors of NP carriage adjusted for
	colonisation, VA on invasive serotype		effect of VA in table 3
	colonisation, on colonisation with Ab-		
	resistant pneumococci		
Other analyses	None	None	None
(17)			
Key results (18)	Summarises results, refers to objectives	Summarises	Summarised simply
Limitations (19)	Serum retinol levels at each interval not	Carriage only measured at 3mo	Specimens collected at 2mo intervals so
	measures so VA def is assumed but good		may underestimate true colonisation. States
	evidence of endemic VA def from		mothers suffer from night blindness but
	previous studies in same area. Low power		does not investigate if infants are VA def
	to detect differences between 2 groups		

Interpretation (20)	Interprets with reference to objective,	Refers to S. Indian paper and states data	Comparable data to other regions in
	limitations, compares to previous similar	was not significant and VA does not	developing world. Few risk factors shows to
	studies and results	decrease colonisation. S. Indian paper data	modify carriage
		for 4mo. Spn colonisation dynamic process	
		so may not be valid comparison. Considers	
		objectives, limitations and current evidence	
Generalisability	Discusses how results may vary with	When pooled with S. Indian data, new-born	Cannot apply data from study population to
(21)	different populations, settings and	VA supplementation unlikely to decrease	a macroscopic level due to large
	malnutrition setting	colonisation	socioeconomic differences
Other information	USAID and Institute for Sight and Life,	Specimen and lab procedures given	USAID and Institute for Sight and Life, John
– funding (22)	John Hopkins School of Hygiene and		Hopkins School of Hygiene and Public
	Public Health		Health

Reporting Item	Darboe et al. 2010 ²⁵	Darboe et al. 2007 ²⁶	Verhagen et al. 2013 ²¹
Title and Abstract	(a) Study design in abstract (b)	(a) Study design in abstract (b) Clear,	(a) Study design outline in abstract (b)
(1)	Informative, clear abstract	balanced summary	Clear abstract
Background/ration	Spn carriage highest in infancy, search for	Nation polices of VA supplementation in	Lack of data on clinical presentations and
ale (2)	new vaccine is essential. Need to	young children has reduced all-cause	aetiologies of ARTIs in indigenous people
	understand the distribution and dynamics	mortality. Higher dose thought to increase	in South America
	of carriage of serotype	body stores in babies born to VA def	
		mothers	
Objectives (3)	To study the longitudinal distribution and	To compare efficacy of new-born high-dose	To investigate bacterial NP carriage, viral
	dynamics of Spn carriage of mother/infant	VA supplementation to standard low-dose	infections and nutritional status in Enepa
	pairs during a high-dose vs low-dose VA	suggested by WHO to assess side effects,	Amerindian children 0-10y with and
	study	VA concentration, mucosal integrity, growth	without ARTI and their mothers
		and morbidity and immunity	
Study design (4)	Cohort longitudinal carriage study	Double-blinded, placebo case-controlled VA	Matched-age sibling/cousin case-control
	embedded in double-blinded, placebo	supplementation trial	study with and without ARTI cases and
	case-controlled VA supplementation trial		their mothers
Settings (5)	The Gambia. Sept 2001-Oct 2004	Bangladesh. Sept 2001 to Oct 2004	Venezuela August 2011
Participants (6)	All pregnant women in area and their	All pregnant women in area and their	145 children 0-10y in 5 isolated Enepa
	infants unless <2200g, premature (<37w),	infants unless <2200g, premature (<37w),	communities diagnosed with ARTI. 0-5y $\%$
	congenital birth defects, severe	congenital birth defects, severe peripartum	malnourished given as those both acute
	peripartum difficulties	difficulties	(weight-for-height) and chronic (height-for-
			age) combined

Variables (7)	Outcomes outlines	Primary and secondary outcomes outlined	Primary and additional outcomes not
			clear, exposures, confounders and effect
			modifiers not directly specified
Data	Specimen and lab procedures given	Specimen and lab procedures given, breath	Specimen and lab procedures given
sources/measurem		samples for <i>H. pylori</i> , infant urine for gut	
ents (8)		epithelial integrity, breast milk concentration	
Bias (9)	Randomisation in high-dose VA trial. All	Randomisation in high-dose VA trial. All	No details of reducing bias
	pregnant women in 6 areas enrolled at	pregnant women in 6 areas enrolled at 30w	
	30w		
Study size (10)	Spn carriage expected at 80% and	Spn carriage expected at 80% and sample	No study size calculated – 40 controls and
	sample size of 220 calculated to detect	size of 220 calculated to detect 18%	40 cases. Letter ⁴⁶ : case-controls require
	18% improvement. Recruitment target of	improvement. Recruitment target of 110 per	calculations, so cases represent cases.
	110 per group to allow for drop-outs	group to allow for drop-outs	Response ⁴⁷ : "Post hoc power
			calculations": Incorrect to calculate power
			calculations after study. CI are accurate
			reflection of the strength of associations
			and power
Quantitative	Grouped according to treatment and	Grouped according to treatment and	Age groups split
variables (11)	placebo group and split in birth, 2, 5 and	placebo group and split in birth, 2, 5 and	
	12mo groups	12mo groups	

Statistical methods	VA def and Spn carriage compared	VA def and Spn carriage compared	Student's t test and non-parametric
(12)	between group by Pearson's Chi-squared	between group by Pearson's Chi-squared	Wilcoxon signed rank test – univariate
	test and ANOVA. Modelling used to test	test and ANOVA. Modelling used to test	analysis. Multivariate logistic regression
	effects of treatment with adjustment for	effects of treatment with adjustment for sex	model for age, sex, nutritional status
	sex and season	and season	
Participants (13)	Number reported at each stage, non-	Number reported at each stage, non-	Samples taken from 79/80 children (99%).
	participation given, flow diagram given	participation given, flow diagram given	No reason given for missed sample, no
			flow chart
Descriptive data	No demographics given in this data but	Baseline characteristics given. No	Characteristics in table 1. 88% cases
(14)	summarised in corresponding trial paper	indication of missed data	malnourished, 58% controls malnourished.
	in table 3		Malnourished = acute and chronic
Outcome data (15)	Carriage rates for each serotype at birth,	Carriage rates for each serotype at birth, 2,	Carriage rates for cases and controls
	2, 5 and 12mo groups	5 and 12mo groups	combined in table 2
Main results (16)	Unadjusted and adjusted estimates (OR)	Unadjusted and adjusted OR given.	Cases of ARTI significantly more
	with p-values. Serotype distribution, infant	Multivariate models to control for effects of	malnourished compared to controls. Spn
	age and sex, seasonality, relationship	baseline and other covariates. No	carriage significantly higher in
	between mother and infant carriage	difference in primary outcomes for high-	malnourished. No statistically significant
		dose vs low-dose	relationship with carriage and age.
Other analyses (17)	None	No adverse events at dosing	Spn carriage associated with mothers with
			lower BMIs. No association between
			mothers and children
Key results (18)	Summarises results, refers to objectives	Summarises well	Summarised

Limitations (19)	Assumed VA def within population.	Mechanism by which mortality is reduced is	Use of sibling/cousin controls may
	Participants had been dosed with VA	unknown. Measurement of dose that gives	underestimate effect of factors relating to
	supplementation but results found no	max reduction needs many large-scale	residence and household exposure, e.g.
	detectable effect on pneumococcal	trials but risk of adverse effects. Low dose	biomass smoke. Larger cross-sectional
	carriage – inclusion in analysis reliable.	used as control rather than placebo for	studies required to find association with
	Infrequent swabbing, no extension to	ethical considerations	carriage and house-hold related factors.
	other family members		Large CI due to small sample size – data
			collection difficult during rainy season and
			in rural areas
Interpretation (20)	Equilibrium and loss of colonies reached	No evidence to support use of higher VA	Spn carriage is high in children up to 10y
	by 2mo. Age dependence of carriage and	dose	and chronic malnutrition significantly
	relative contribution of mother-infant		associated with increased risk of Spn
	transmission differ between vaccine and		carriage – unknown if chronic malnutrition
	non-vaccine serotypes		is a risk factor or whether Spn carriage
			affects growth leading to growth deficits
			and chronic malnutrition
Generalisability	VA shown in other studies to affect	Reflects general diet disease in Sub-	Not representative of general population of
(21)	carriage rates so data may not truly reflect	Saharan Africa. Cannot be extrapolated for	Enepa Amerindians or other children due
	malnourished population once dosed	more severe VA def and study does not	to the case-control study design
		have the power to test possibility of a	
		differential effect on mortality.	
Other information -	Unknown	Summarised	Integrated Microsystems for Biosensing
funding (22)			and FUNDIAM

Reporting Item	Adegbola et al. 1994 ¹²	Coles et al. 2008 ²⁷	Hamer et al. 2002 ²⁸
Title and Abstract	(a) Study design in abstract (b)	(a) Study design in abstract (b) Clear,	(a) Clinical trial (b) Clear abstract
(1)	Informative, clear abstract	balanced summary	
Background/ration	Pneumonia and malnutrition cause of	Zinc def high in South Asia. Zinc def	Rapid urinary pneumococcal antigen test
ale (2)	mortality in children in the developing	children prone to infections and have higher	(Binax NOW) has excellent sensitivity and
	world. Unknown aetiology of pneumonia	incidence of infections. Zinc	specificity in adults to diagnose
	in malnourished children	supplementation reduces ALRI risk,	pneumonia but a study has found test to
		unknown if this is due to reducing carriage	be positive in <i>Spn</i> carriage in children
Objectives (3)	To study the bacteriology and virology of	To study the effect of zinc supplementation	To evaluate the Binax NOW assay test in
	pneumonia in malnourished children in	on the association of <i>Spn</i> carriage and risk	healthy children aged 2-60mo in Ecuador
	the Gambia compared to malnourished	of ALRI	to determine NP carriage on test results
	without pneumonia and well-nourished		
	with and without pneumonia		
Study design (4)	Case-control study – 3 control groups	Matched case-control study. Population	Clinical trial of healthy children aged 2-
		based, prospective. Embedded within	60mo
		NNIPS4 trial (trial evaluating zinc, iron and	
		folic acid prophylaxis on morbidity, mortality	
		and growth in children 1-35mo old.	
Settings (5)	The Gambia. Nov 1990-Oct 1992	Rural Nepal, Dec 2003-July 2004	Poor urban neighbourhoods of Quito,
			Ecuador. Unknown dates

Participants (6)	Presenting cases from outpatient for	All children <36mo in NNIPS4 trial during	Healthy children aged 2-60mo living in
	cases of pneumonia. Malnourished =	study period who met criteria for ALRI.	study area. Excluded those with fever,
	WAZ<70% of NCHS mean or oedema.	Controls were matched age without ALRI in	signs of ARTI
	Matched-age controls to non-pneumonia	last 4w and living in the same area	
	cases. Well-nourished with pneumonia		
	from ward during study period and without		
	pneumonia from health centres matched		
	for age		
Variables (7)	Outcomes: bacteriology and virology for	Outcomes: Colonisation rates in both	Outcomes: positive NP carriage and
	each group. Malnourished with	groups. Exposures: zinc or placebo.	positive Binax NOW test result
	pneumonia tested for HIV. No mentions of	Confounders: matched age +/- 3mo	
	predictors or effect modifiers. Malnutrition		
	given but criteria for pneumonia is vague		
Data	Lung aspirations, sputum collection. Lab	NP specimen collection	Clean-catch midstream urine collected for
sources/measurem	procedures to examine bacteria and		Binax NOW test, NP swab 15 minutes
ents (8)	viruses given		within urine collection
Bias (9)	Recruitment bias	Not outlined	2 people read all test results to reduce
			potential variability in interpretation

Study size (10)	Not calculated, based on availability at the	Study size calculation. Goal to enrol 440	Sample size calculation – 200 children
	time. 574 children meet malnourished	ALRI cases and 440 controls = 880 children	needed to provide power level of 0.98
	criteria of which 159 had evidence of	in total. Sample size had power to detect an	(α =0.05) to detect level of increase in the
	pneumonia – 119 randomly enrolled. 119	OR of 1.53 to reject null hypothesis	false-positive
	well-nourished with pneumonia controls		
	on ward at the time matched. 52 well-		
	nourished without pneumonia enrolled		
Quantitative	Summarised	Summarised	Positive carriage determined for whole
variables (11)			group and then grouped by age and WAZ
			score
Statistical methods	Chi-squared or Fisher's exact test.	Two-tailed McNemar's test and paired	With and without carriage who had false-
(12)	Continuous variables compared using	student's t test to compare baseline	positive antigen test results compared
	Wilcoxon rank sum test. No mention of	characteristics. Conditional logistic	using Chi-squared test. False-positive test
	handling missed data or sensitivity	regression model stratified by treatment	results stratified by age and WAZ score.
	analysis	group and adjusted for covariates	Logistic regression model used to assess
			association between carriage and age to
			see if age or WAZ are predictors of false-
			positives
Participants (13)	Given but no flow chart given	550 cases, 550 controls	NP swabs from 209 children
Descriptive data	No descriptive data given other than	Table 1	None
(14)	forms of malnutrition (marasmus,		
	kwashiorkor, hypoalbuminemia etc)		
Outcome data (15)	Table 1	Table 1 and 2	Table 1

Main results (16)	Aetiology of pneumonia and serotypes.	OR for carriage and risk of ALRI. Zinc	False-positives more common in carriers
	NP carriage of <i>Spn</i> and <i>H.influenza</i> high	modifies association between carriage and	than non-carriers (21.7%v4.2%). Carriage
	in all groups, isotypes present irrespective	ALRI. Strong interaction between zinc	highest in youngest and decreased with
	of nutritional status	status and <i>Spn</i> carriage	increasing age. No association between
			mildly malnourished and malnourished
			and carriage rate. No significance
			between false-positive results and WAZ
			score
Other analyses (17)	None	Carriage data in ALRI cases who were	No association between WAZ score and
		symptomatic at the time for NP swab (table	intensity of <i>Spn</i> growth in culture
		2)	
Key results (18)	Summarises results, refers to objectives	Summarises well	Summarised
Limitations (19)	Diagnostic technique undertaken in	Broad definition of ALRI – not categorised	Fails to identify children with recent but
	children with well-defined areas of	into moderate or severe, no blood cultures	resolving ARTI. Spn antigens shed for
	pulmonary consolidation next to chest wall	to determine aetiology – different	weeks post pneumonia so resolved
	(more frequent in well-nourished children	pathogens may react differently to zinc.	infection may lead to false-positives who
	than malnourished children) – may give	Timing of swabs may not account for	did not have carriage. Also false-positives
	differing isolation rate of bacteria	changes of <i>Spn</i> carriage	may occur due to test reacting with other
			streptococci species

Interpretation (20)	Equilibrium and loss of colonies reached	Zinc helps impede infection process rather	Similar results as studies in China and the
	by 2mo. Age dependence of carriage and	than stop carriage	Gambia
	relative contribution of mother-infant		
	transmission differ between vaccine and		
	non-vaccine serotypes		
Generalisability	Only studied community acquired	Zinc effect restricted to the risk of Spn-	Binax NOW antigen test should be used
(21)	pneumonia so cannot be applied to	carriage related ALRI	with caution for pneumonia diagnosis in
	hospital acquired. Can only be applied to		young children, especially in developing
	developing countries with similar		countries where carriage rates are high
	spectrum of malnutrition as the Gambia		
Other information –	Unknown	Unknown	Unknown
funding (22)			

w=week mo=month y=year Spn=*S.pneumoniae* NP=nasopharyngeal ARTI=Acute Respiratory Tract Infection ALRI=Acute Lower Respiratory Infection VA=vitamin A def=deficient/deficiency WAZ=Weight-for-age Z score OR=Odds Ratio CI=Confidence Interval