LSTM Home > LSTM Research > LSTM Online Archive

Unusual stability of messenger RNA in snake venom reveals gene expression dynamics of venom replenishment.

Currier, Rachel B., Calvete, Juan J, Sanz, Libia, Harrison, Robert, Rowley, Paul and Wagstaff, Simon ORCID: https://orcid.org/0000-0003-0577-5537 (2012) 'Unusual stability of messenger RNA in snake venom reveals gene expression dynamics of venom replenishment.'. PLoS ONE, Vol 7, Issue 8, e41888.

[img]
Preview
Text
Plos_ONE_7_8_e41888.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3MB)

Abstract

Venom is a critical evolutionary innovation enabling venomous snakes to become successful limbless predators; it is therefore vital that venomous snakes possess a highly efficient venom production and delivery system to maintain their predatory arsenal. Here, we exploit the unusual stability of messenger RNA in venom to conduct, for the first time, quantitative PCR to characterise the dynamics of gene expression of newly synthesised venom proteins following venom depletion. Quantitative PCR directly from venom enables real-time dynamic studies of gene expression in the same animals because it circumvents the conventional requirement to sacrifice snakes to extract mRNA from dissected venom glands. Using qPCR and proteomic analysis, we show that gene expression and protein re-synthesis triggered by venom expulsion peaks between days 3-7 of the cycle of venom replenishment, with different protein families expressed in parallel. We demonstrate that venom re-synthesis occurs very rapidly following depletion of venom stores, presumably to ensure venomous snakes retain their ability to efficiently predate and remain defended from predators. The stability of mRNA in venom is biologically fascinating, and could significantly empower venom research by expanding opportunities to produce transcriptomes from historical venom stocks and rare or endangered venomous species, for new therapeutic, diagnostic and evolutionary studies.

Item Type: Article
Subjects: QU Biochemistry > Proteins. Amino Acids. Peptides > QU 58.5 DNA.
QU Biochemistry > Proteins. Amino Acids. Peptides > QU 58.7 RNA
WD Disorders of Systemic, Metabolic or Environmental Origin, etc > Animal Poisons > WD 410 Reptiles
Faculty: Department: Groups (2002 - 2012) > Molecular & Biochemical Parasitology Group
Digital Object Identifer (DOI): https://doi.org/10.1371/journal.pone.0041888
Depositing User: Mary Creegan
Date Deposited: 12 Mar 2013 11:59
Last Modified: 17 Jul 2020 10:59
URI: https://archive.lstmed.ac.uk/id/eprint/3246

Statistics

View details

Actions (login required)

Edit Item Edit Item