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Abstract 

Introduction Streptococcus pneumoniae (or pneumococcus) is a common 

commensal (coloniser) of the human upper respiratory tract. Colonisation is likely a 

prerequisite for respiratory tract infections and invasive pneumococcal disease. 

Colonisation also has a significant role in the horizontal spread of this pathogen 

within communities, but paradoxically could also lead to boosting of the host’s 

immune system. We use the unique experimental human pneumococcal challenge 

(EHPC) model to study pneumococcal transmission and colonisation in healthy 

adults. This novel study design allows us to investigate bacteriological and immune 

factors associated with colonisation and to examine the density and duration of 

colonisation episodes.  

Project Aims 1) Investigation of the transmission dynamics of Streptococcus 

pneumoniae. Can the hands can be a vector for transmission of S. pneumoniae into 

the nasopharynx, leading to colonisation? Does concurrent asymptomatic viral 

infection affect transmission? 2) Investigation of the propensity of two 

pneumococcal serotypes to cause experimental pneumococcal colonisation, to 

improve the generalisability of the model and to investigate if immunological 

responses to serotype 6B are similar to other serotypes. We also wanted to 

investigate if colonisation is an asymptomatic process in healthy adults? How do the 

host’s polysaccharide specific antibody responses affect colonisation?  

Main findings Using our unique controlled human pneumococcal challenge model, 

we have demonstrated the viability of transmission of pneumococcus from the hand 

into the nasopharynx, leading to colonisation. We were unable to investigate the 

relationship between colonisation acquisition and concurrent viral infection due to the 



 

xxx 

absence of viral infection in our participants. The data presented in this thesis showed 

that the experimental human pneumococcal carriage model can successfully 

investigate transmission dynamics of pneumococcus. We also demonstrated the 

varying propensity of two pneumococcal serotypes, 23F and 15B to experimentally 

colonise the nasopharynx of healthy adults. Nasopharyngeal colonisation was shown 

not to cause nasal symptoms; however, the data suggested that colonisation may 

cause a cough in healthy adults. No relationship was found between the level of serum 

IgG to 15B capsular polysaccharide at screening and colonisation outcome after intranasal 

inoculation. Nasopharyngeal colonisation with 15B was however, found to boost 

polysaccharide specific immunity; colonisation positive participants had a significant 

increase in serum IgG levels to 15B capsular PS.  

Implications Data presented in this thesis suggest that good hand hygiene practices, 

already known to reduce enteric bacterial and viral disease, may also prevent the 

spread of pneumococcus which is thought to be spread primarily through 

aerosolisation. Results support epidemiological studies which have shown the 

varying propensity of different pneumococcal serotypes to cause colonisation. We 

can build upon this work by investigating serotypes in vitro and in vivo to understand 

bacterial factors that impact the pneumococcus’ ability to colonise the nasopharynx 

in humans. The EHPC model will be useful in further studies to better understand the 

dynamics and drivers of pneumococcal transmission, bacterial factors which support 

successful colonisation and host responses to pneumococcal exposure and 

colonisation. 
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This thesis focuses on investigating the drivers of nasopharyngeal pneumococcal 

colonisation. Two studies were conducted, and the clinical aspects of these studies 

will predominantly be discussed in this thesis. Both studies used the experimental 

human pneumococcal challenge model to answer research questions which are 

outlined at the end of the introduction. To form a rationale for these studies, a 

literature review was conducted on pneumococcal colonisation, transmission of 

Streptococcus pneumoniae and pneumococcal disease and is presented below along 

with description of gaps in the literature. Following this introduction, the methods 

section outlines the broad methods relevant to both studies described in this thesis. 

Chapter 3 and 4 describe the results of the two studies conducted as part of this MD 

project. The final chapter (Chapter 5) is a general discussion of the main findings of 

both studies, a methodological critique of the work conducted and the implications 

of the findings with an outline of possible future work in this field.  

1.1 Overview 

Streptococcus pneumoniae (or pneumococcus) is Gram-positive bacterium which is a 

common cause of respiratory tract infections and invasive disease worldwide. 

Pneumococcus is also a common commensal (coloniser) of the human upper 

respiratory tract. The majority of pneumococcal serotypes have a polysaccharide 

capsule (CPS) that surrounds the cell wall 1. There are over 90 different serotypes 

described, each with a biochemically unique polysaccharide capsule. In most 
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serotypes this capsule is attached to the cell wall of the pneumococcus by covalent 

bonds 2. Epidemiological studies have shown that most serotypes can cause disease, 

however, the majority of pneumococcal infections are secondary to a minority of 

serotypes 3. This thick layer of CPS improves the organism’s ability to evade the host’s 

defences and is required for invasive infection 4.  The mechanisms by which the 

capsule aids in evading the host’s defences include: 

• Repelling anionic mucus with it’s negatively charged polysaccharide capsule 

which allows the bacteria to escape the nasal mucus 5 6 

• Inhibition of phagocytosis by innate immune cells again by electrostatic 

repulsion 6 

• Helping to escape neutrophil net traps 6 

• Inhibition of complement and helps reduce recognition by immunoglobulins6 

The World Health Organisation (WHO) named Streptococcus pneumoniae as a 

priority pathogen in 2017 because it poses a high level of threat to human health 7. 

Invasive disease occurs when pneumococcus proliferates in areas of the body such 

as the middle ear, sinuses, blood stream and lungs (Figure 1) 8. Meningitis, sepsis and 

pneumonia are the predominant invasive diseases caused by pneumococcus and are 

more common in high risk groups including elderly people, patients with 

immunodeficiencies and young children 9.  
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Figure 1: Pathogenesis of pneumococcal disease  
Streptococcus pneumoniae colonises the nasopharynx, this often leads to clearance following a local 
immune response. Local spread and progression to otitis media is common in children. Children have 
the highest rates of nasopharyngeal pneumococcal colonisation.  Aspiration into normally sterile 
alveoli can lead to pneumonia or into the blood stream leading to bacteraemia. Complications such 
as meningitis and empyema can also occur. 1 9 

Transmission and acquisition of this pathogen and its colonisation in the nasopharynx 

is likely a pre-requisite for the development of infectious disease. Colonisation also 

has a significant role in horizontal spread of this pathogen within communities and 

could also lead to immune protection. Controlled human infection studies have 

shown that colonisation can be an immunising event; an increase in both anti-

pneumococcal antibody and T cell specific responses have been shown following 

colonisation 10.  
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Pneumococcus is a leading cause of lower respiratory tract infection and pneumonia 

worldwide. Definitive microbiological diagnosis is often difficult and antibiotic 

resistance is increasing. Strategies to prevent pneumococcal disease are becoming 

increasingly important. Therefore, this thesis focusses on investigating drivers of 

pneumococcal colonisation acquisition which may be blocked to reduce 

pneumococcal burden.  
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1.2 Colonisation  

 Pneumococcal colonisation 

Stable colonisation of the human nasopharynx with S. pneumoniae is a common 

human phenomenon with 40-95% of infants and 10-25% of adults colonised at any 

time11 12-15. The upper respiratory tract is also an ecological niche for many other 

bacterial species which colonise it, including the pneumococcus 16. Rates of 

pneumococcal acquisition and colonisation vary greatly by age, geographical location 

and socioeconomic background 9.  

Colonisation with pneumococcus is a dynamic process. Multiple pneumococcal 

serotypes can colonise the nasopharynx both simultaneously and sequentially but 

there is usually a predominant current colonising serotype 17. In addition, 

interspecies competition between resident flora such as alpha-haemolytic 

Streptococci inhibit potential colonisers including S. pneumoniae, H. influenzae and 

S. aureus. This leads to a constantly changing composition of the nasopharyngeal 

flora. I t is poorly understood why this leads to dynamism in the nasopharyngeal 

microbiome rather than a static state dominated by α haemolytic streptococci 9.  

Colonisation requires that the pathogen penetrates the mucous barrier which 

overlies the epithelium and avoids mechanical clearance mechanisms 5. Robust 

binding to host cellular carbohydrates and proteins is mediated by cell-wall 

associated proteins such as pneumococcal surface adhesins 5 . The bacterium must 
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also survive and replicate despite host cellular and humoral defences. Selective 

pressures have led to niche adaptation and may increase virulence (see Figure 2) 5. 

These local host responses play an important role in regulating all pathogens 

including pneumococcus in the upper airway. People who mount a poor mucosal 

immune response may subsequently develop persistent or recurrent colonisation 

episodes 18 19. Conversely a quick and efficient local immune response can result in 

elimination of colonisation and prevention of re-colonisation 18 19.   

 

Figure 2: The stages of pneumococcal colonisation of upper respiratory tract adapted from Siegel et 
al 5   
Streptococcus pneumoniae colonised the nasopharynx by initially entering at the nose and passes 
through a layer of mucus. When the bacteria reach the epithelial surface, they bind to surface 
carbohydrates and proteins. Following this, to allow for replication, pneumococcus obtains nutrients 
which can involve exploiting inflammation produced by the host. Persistence of pneumococcus also 
includes circumvention of both cellular and humoral immune responses. Following this the 
pneumococcus can use these responses to persist and lead to colonisation invade the host potentially 
leading to disease Evasion of host immune responses also allows for exit from the host which can drive 
transmission. In addition, growth during colonisation leads to increased bacterial densities which can 
increase the likelihood of transmission. Shifts in colonisation density, co-infection with viruses and 
interactions with other commensal and pathogenic bacteria in the nasopharynx can affect stages of 
this cycle. Viral co-infection increases bacterial load and mucus production and therefore leads to 
increased shedding 20. The success of the pneumococcus also requires interaction with 
nasopharyngeal microbiota, these interactions can either be co-operative or competitive 20. 

Pneumococcus enters 
nasopharynx and passes 

through mucus  layer  

Binding to the epithelial surface 
occurs by attaching to surface 

carbohydrates and proteins

Nutrients 
obtained from 

host 

Persistance of bacteria in 
nasopharynx by evading host's 

immune responses

Pneumococcus exploits 
host's immune responses 
which helps invasion or 

drives tranmission 
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 Pneumococcal colonisation and impact on immunity 

The highest rates of pneumococcal colonisation are observed in infants. Following 

this, colonisation rates decrease with increasing age. Interestingly, in low and middle-

income countries, the highest rates of colonisation are observed at 2 months of age 

(80%) with a gradual reduction observed until 3 years of age, followed by a more 

dramatic reduction in rates following this 13.  Conversely, in high-income countries, 

less than 50% of children under 1 year of age have been found to be colonised, a 

peak is observed at 3 years of age where colonisation rates of 60% have been 

reported 11. Differences in colonisation rates between high and middle-lower income 

countries continue into adulthood. High income countries report adult colonisation 

rates of approximately 10% compared to low-and middle-income countries reporting 

colonisation rates up to 40% 21.  

It is hypothesised that the reduction of colonisation rates with increasing age is due 

to the development of specific immunity which partially protects older children and 

adults against colonisation. General reduction in rates of pneumococcal colonisation 

and disease around the second and third years of life coincides with the development 

of humoral and cellular responses to pneumococcal capsular polysaccharides and 

protein antigens. This has been generally thought to be the immune response 

mounted in unvaccinated children in response to pneumococcal exposure 22. The fact 

that immunisation with a polysaccharide conjugate vaccine (PCV) has been shown to 

reduce pneumococcal colonisation and produces a serotype-specific antibody 

response supports this view 22. However, there is some evidence from longitudinal 
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follow up of children, during their first year of life, that colonisation protects against 

subsequent colonisation episodes 23. This protection is serotype-independent and is 

observed prior to maturation of capsule-specific antibodies. It is likely that a 

combination of serotype-dependent and serotype-independent immune 

mechanisms explain how colonisation is controlled with increasing age.  

Repeated exposure to pneumococcus and episodes of pneumococcal colonisation 

are likely to boost immune defences and contribute to lower rates of colonisation 

and disease 24. Murine models have shown that antigen specific T-cell and specific 

antibody responses develop during colonisation and protect against subsequent re-

colonisation 25-28. Mice who had been previously colonised with pneumococcus 

showed earlier clearance of the pathogen when re-colonised 25. This correlated with 

higher levels of luminal neutrophils compared to those observed in mice being 

colonised for the first time 25. A further study showed a high level of protection 

against fatal invasive disease in mice which had previously cleared a colonisation 

episode 26. This study reported that higher numbers of CD4+ cells and increased 

levels of interleukin 17A (IL17A) in the lungs were associated with a reduction the 

number of pneumococcal found in the lungs of pre-colonised mice 26. However, a 

conflicting murine study reported that a previous colonisation episode protected 

against death from subsequent severe pneumonia, mainly by reducing rates of 

bacteraemia 28. This protection remained when mice were depleted of CD4 cells prior 

to colonisation but was lost in antibody deficient mice. This suggests that the 

protection against bacteraemia following pneumonia may not be dependent on 
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CD4+ T-cells but could be related to antibody-mediated phagocytosis of the bacteria 

from the blood 28.  

Pneumococcal colonisation in children without any invasive infection is associated 

with higher serum levels of immunoglobulins against pneumococcal proteins and 

capsular polysaccharide 12 24 29. Controlled human infection studies, which have been 

developed over the last 10-20 years, have been able to improve the understanding 

of the immune responses resulting from pneumococcal colonisation 29 30. One of 

these models is the Experimental Human Pneumococcal Challenge model (EHPC) 

which has been established over the last 9 years at the Liverpool School of Tropical 

Medicine (LSTM). This model uses serotype 6B S. pneumoniae to establish 

colonisation in approximately 50% of healthy participants following nasopharyngeal 

challenge with 80,000 colony forming units (CFU) per nostril 10.  

One EHPC study showed that specific immune mucosal responses are elicited 

following exposure to pneumococcus even in the absence of colonisation. These 

results support the possibility that exposure to low doses of pneumococcus is 

potentially immunising at the mucosal surface 24. It also reported an increased anti-

pneumococcal polysaccharide immunoglobulin response (IgG and IgA) nasally in 

participants following inoculation and an increase in IgG levels found in fluid obtained 

from the lungs of these participants 24. 

A similar human controlled infection study showed that a previous colonisation 

episode was significantly protective against reacquisition of colonisation by the same 
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pneumococcal serotype (6B) 10. Following the initial pneumococcus exposure 

(inoculation) an increase in IgG to several pneumococcal proteins was observed in all 

participants, the largest of which were observed in colonisation positive participants 

24. Increased levels of IgG to the 6B anti-capsular polysaccharide were also found but 

only in colonisation positive participants 24. Ten colonisation positive participants 

were inoculated for a second time with the same serotype up to 11 months following 

clearance of the first colonisation episode (re-challenged). Eighty percent of 

participants (8/10) were found to have significantly increased level of IgG to both 

proteins and polysaccharides which protected against reacquisition of colonisation 

10. This is an important finding as it suggests that the immunising effect of a single 

episode of pneumococcal colonisation is functionally significant. These results can 

may have significant implications of future vaccine strategies; they support the 

development of pneumococcal mucosal vaccine strategies.  However, the relative 

importance of protection against pneumococcal colonisation and its association with 

the reduction of mucosal infections and invasive pneumococcal disease is still 

unclear.  

 Pneumococcal colonisation and disease 

Colonisation is important as it is believed to be a pre-requisite of infection and is the 

primary reservoir for transmission but can also be a source of immunising exposure 

and immunological boosting against pneumococcal infection in both children and 

adults 10 29 31. Most colonisation episodes will not lead to a subsequent disease 

episode. The progression from stable nasopharyngeal colonisation to invasive 
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disease is enhanced by local inflammation caused by cytokines such as interleukin 1 

and tumour necrosis factor (TNF). The inflammatory cascade that follows the 

production of these factors lead to a change in the number of receptors on epithelial 

and endothelial cells 20 32. Invasion of the pneumococci follows due to pneumococcal 

cell-wall choline binding to one of these upregulated receptors namely platelet-

activating-factor receptor, which in turn induces internalisation of the pneumococci 

20 32. In addition, choline-binding protein A (PspC) on the pneumococcus interacts 

with Ig receptors, on cytokine-activated human cells 9 33. This leads to increased 

migration though the mucosal barrier 33 .  

Colonisation by pneumococcus is often asymptomatic but it can progress to 

respiratory or even systemic disease 9. Observational studies show a direct link 

between pneumococcal disease and colonisation at the individual level 31. Most 

commonly this link is seen with mild mucosal infections (predominantly AOM) but 

some reports suggest a link between colonisation and pneumonia or invasive 

pneumococcal disease (IPD) 31. One study shows a disproportionally high prevalence 

of colonisation in children affected with pneumococcal disease 31. Another study set 

in Pakistan found that 94% (101/108) of children diagnosed with IPD were carrying 

the bacteria in their nasopharynx compared to 52% (69/133) colonisation rate in 

healthy controls 34.  the study found in 99% (69/70) of cases there was concordance 

between the serotype cultured from the nasopharynx and that causing invasive 

disease34. A similar study in The Gambia found comparable results; 90% (73/81) of 

children with IPD were found to have pneumococcal colonisation compared to 76% 

(86/113) colonisation rates in healthy controls (chi squared, 6.99; P<0.01)35. 
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However, it is difficult to prove a temporal relationship between pneumococcal 

colonisation and subsequent IPD. 

It is believed that pneumococcus is more likely to cause disease soon after 

colonisation of the upper airway before there is time for the body to mount a cell-

mediated response and for antibodies to develop. Longitudinal colonisation patterns 

were studied in a cohort from birth to 24 months of age; serial throat and 

nasopharyngeal swabs were taken to determine colonisation status 36. They found 

that infection usually occurred within 30 days of the acquisition of pneumococcal 

colonisation with a new serotype (74% of infections [23/31])  and found that disease 

following prolonged colonisation was rare 36.  

Evidence suggests that pneumococcal serotypes differ in their duration of 

colonisation and invasiveness. Some serotypes are rarely found in colonisation but 

have high invasiveness. For these serotypes it is hypothesised that they may only 

colonise the nasopharynx for a short duration which is difficult to see prior to disease 

and therefore difficult for temporal relationship to be proven 31. A further hypothesis 

is that these serotypes may colonise at lower densities and are therefore not 

detected in epidemiological studies 37. Using a meta-analysis, researchers showed 

that for some serotypes there is an inverse correlation between invasive disease and 

colonisation prevalence. In this study, the most invasive serotypes were the least 

likely to be found to colonise the nasopharynx and the most frequent colonisers were 

the least likely to cause invasive disease 37.  Research suggests that there may be a 

specific density needed for the transition from colonisation to disease or a common 
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factor which allows for both, one study found that patients with pneumococcal 

pneumonia had higher densities of pneumococcal nasopharyngeal colonisation 

compared to asymptomatic colonised controls 38.  

Recent technical advancements have also allowed more in-depth research into the 

dynamics of colonisation episodes with multiple pneumococcal serotypes. Evidence 

e suggests that children that are colonised with multiple pneumococcal serotypes 

have higher overall density of colonisation than those with a single serotype 

colonisation episode 39. A further study used lytA qPCR and molecular serotyping to 

investigate the prevalence of pneumococcal serotypes in colonisation episodes. They 

found that 30% of colonised children (89/299) were colonised with 2 or more 

pneumococcal serotypes 40. The authors concluded that multiple pneumococcal 

serotypes may be transmitted between children as a complex mixed community and 

colonise the nasopharynx in the same way rather than as a single serotype 40. High 

density colonisation has also been hypothesised as a risk for invasive disease. A 

surveillance study carried out in South Africa found that higher colonisation density 

was associated with viral co-infection (adjusted odds ratio [OR], 1.7; 95%CI, 1.1-2.6) 

and invasive pneumococcal pneumonia (adjusted OR, 2.3; 95% CI, 1.3-4.0) 41. 
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1.3 Transmission of Streptococcus pneumoniae 

Historically transmission of S. pneumoniae was thought to occur primarily due to 

inhalation of infected respiratory droplets from person-to person. However, spread 

of pneumococcus by various transmission methods are biologically plausible 

including aerosol, droplet or indirect contact. The relative frequency of these 

different modes of bacterial transmission and their links to pneumococcal 

colonisation or disease in humans is poorly understood 42. Epidemiological data 

suggest that transmission is enhanced when there is close contact with a carrier and 

is more likely to occur with concurrent viral respiratory tract infections 8 43. S. 

pneumoniae outbreaks have been well documented in day care centres, military 

camps, prisons and nursing homes 8. To allow for successful implementation of 

methods to reduce transmission we first need to understand better the mechanisms 

underlying pneumococcal transmission into the nasopharynx. 

It has been suggested that in young adults pneumococcal transmission may occur 

through saliva by sharing drinking glasses and bottles 44. This study investigated 

pneumococcal colonisation prevalence in an Israeli Army training base and possible 

risk factors for colonisation 44. They reported that sharing of a drinking glass/bottle 

was common practice with 48% of participants reporting frequent sharing. They 

reported that frequent sharing of a drinking glass/bottle was a strong and 

independent risk factor for pneumococcal colonisation. The study also concluded 

that there was no evidence of a correlation between hand wash frequency and 
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colonisation. The authors suggest that pneumococci may be transmitted in saliva in 

adults.   

More recently our understanding of the process of pneumococcal transmission has 

improved following the development of murine models which have successfully 

studied transmission dynamics. However, current understanding of the dynamics of 

human-to-human transmission is still poor and needs further investigation. A recent 

randomised controlled trial examined the effects of nasopharyngeal bacterial 

colonisation during a viral URT co-infection in 151 children. The study used the live 

attenuated influenza vaccine (LAIV) as a surrogate for mild URT viral infection. The 

results suggested that the use of this vaccine may increase bacterial densities in the 

nasopharynx 45. The authors suggest that due to the absence of safety concerns, 

following the widespread use of the LAIV, that LAIV could be used as a tool to 

investigate the dynamics of pneumococcal transmission in the future 45. 

 Rodent models investigating transmission 

Initial rodent models investigating the dynamics of pneumococcal transmission 

depended on influenza co-infection to increase pneumococcal transmission. One 

study in 2010 used a model of transmission in ferrets. The benefit of using ferrets for 

pneumococcal transmission studies lies in the fact that they sneeze which allows for 

airborne transmission 46. This study showed that ferrets which had previously been 

infected with influenza virus had higher rates of pneumococcal disease and 

transmission 46. In addition, in a further experiment they intranasally inoculated 

contact ferrets (no pneumococcal colonisation) with Influenza A virus prior to contact 
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with colonised ferrets. This pre-existing viral infection promoted pneumococcal 

acquisition and allowed acquisition of colonisation over longer distances 46. 

Other groups have studied transmission dynamics using murine models. One group 

analysed transmission from index pups colonised with pneumococcus at 4 days old 

to contact pups from the same litter who had previously been infected with influenza 

47. They found that younger age, close contact and viral co-infection all increased 

transmission 47. This group also found that influenza increased bacterial titres in both 

the inoculated donor mice and the index mice 47. Furthermore, using neutrophil 

depletion they showed that higher bacterial numbers during colonisation promoted 

transmission, as did nasopharyngeal inflammation in the contact pups 

(demonstrated by cytokine production) 48.  

More recently another group also using a murine model, suggest that increased 

transmission during concurrent influenza infection is likely secondary to increased 

bacterial shedding rather than solely due to higher bacterial titres in donor mice 

during viral co-infection 49. Shedding was found to increase with levels of 

inflammation observed in the upper respiratory tract in response to influenza 

infection 49. A further study supported this finding by reporting that reduction of 

inflammation using intra-nasal dexamethasone reduced shedding and transmission 

50.  

More recently a murine model has been developed which can investigate the 

transmission dynamics during pneumococcal mono-infection. This model allows for 
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examination solely of pneumococcal factors and host responses that can impact on 

transmission. In 2016 this model was published and showed that bacterial shedding 

peaked over the first 4 days post inoculation of index pups. This correlates with a 

peak of inflammation in the upper respiratory tracts due to colonisation 51. This study 

also reported that transmission within a litter was enhanced when there was a high 

ratio of colonised pups to un-colonised contact pups 51. Colonisation density 

significantly affected level of shedding and rates of transmission were proportional 

to the level of shedding observed 51.   

 Healthy carrier transmission  

There is evidence of S. pneumoniae spread within families. One study which looked 

at 64 families for a period of 8 weeks to 52 weeks found 25 episodes of transmission 

of a single serotype of S. pneumoniae from one family member to another 52. They 

also saw rapid spread of pneumococcus between family members if a new serotype 

was introduced to the family; 7/25 transmission episodes took place within 2 weeks 

of a new serotype entering the household 52. They also described 2 different and 

distinctive patterns of spread of S. pneumoniae in these families; (1) apparent 

concurrent acquisition of colonisation of a specific serotype of pneumococcus by two 

or more members of the family and (2) the prolonged colonisation by one member 

of the family with sudden spread to several others in the household 52. They 

suggested that a specific event could facilitate dissemination of the bacteria; they 

hypothesised that simultaneous viral illness could be this event, but this was difficult 

to investigate as there were three times more viral episodes as episodes of S. 
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pneumoniae colonisation 52. However, they did find that when evaluating the 25 

episodes of transfer of S. pneumoniae a presumed donor and recipient could be 

identified 52. Investigating these presumed donors, they found in 14 of the 25 

episodes the donor had symptoms of upper respiratory tract infections (URTI) during 

the 2-week period where transmission could have occurred 52. They hypothesised 

that increased production of respiratory secretions or another mechanism associated 

with presumed viral illness may play a role in increased transmission 52. 

Another study assessed pneumococcal transmission in Muslim pilgrims completing 

the Hajj 53. They took nasopharyngeal swabs and administered a questionnaire to 

3203 subjects (1590 at beginning-Hajj and 1613 at end-Hajj) they found that there 

was a statistically significant increase in nasal colonisation between the beginning 

and end of the Hajj (4.4 % vs 7.5%; prevalence ratio 1.7, 95% CI 1.3-2.3) but did not 

investigate the possible routes of transmission 53. This likely indicates there was 

increased transmission of pneumococcus during the Hajj from person-to person. An 

overall increase of colonisation was observed rather than the increase of a specific 

serotype which reduces the possibility that a single invasive clone could have 

expanded during the Hajj 53. They also found that there was a lack of association 

between duration of time at the Hajj and likelihood of colonisation 53. This is in 

keeping with results of the study above which suggest that transmission leading to 

colonisation happens relatively quickly following contact and that there may be an 

all-or-nothing protective response, however, further study is needed to understand 

this further  52.  
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 Disease transmission 

Patients with pneumococcal pneumonia are usually considered a relatively low 

contagion risk; hospitalised patients with pneumococcal infections are not treated 

under isolation and health care workers do not take increased infection control 

measures 8. However, there have been reports of epidemics previously in Africa and 

Canada 54-56. In Ghana there was a steady increase of incidence of pneumococcal 

meningitis from 2000-2003 55. The researchers concluded that the S. pneumoniae 

ST217 clonal complex showed a high propensity to cause meningitis and that 

evidence of increasing incidences suggested that the lineage had high epidemic 

potential 55. Following a review of cases with suspected bacterial meningitis between 

2002-2005 in Burkina Faso it was reported that pneumococcal meningitis was 

occurring in an epidemic pattern. An average of 38 cases of S. pneumoniae infection 

was identified each month during the meningitis epidemic season compared to 

average of 8.7 cases/month at other times of the year 56. Of the 48 pneumococci that 

were tested, 41% (21/48) were identified as serotype 1, with the remaining identified 

as 15 different serotypes 56. In Canada during 2000/2001 there was a report of 

pneumonia epidemic caused by a virulent strain of streptococcus pneumonia 

serotype 1 54. A total of 84 cases of pneumococcal pneumonia were identified, of 

these 34/84 (40%) occurred in adults aged 20-64 years and majority were severe 

infections with 75/84 needing hospitalisation 54.  

Another study investigated thirteen clusters of acute otitis media (AOM) in siblings 

and analysed the bacterial pathogens causing disease in these siblings 57. Following 
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comparison of the pneumococcal isolates from each sibling pair they found 100% 

homology between the siblings and antibiotic susceptibility testing were able to show 

homology between pairs of organisms from siblings 57. This provides evidence that 

there is person-to-person transmission among siblings with AOM, but what the 

current study could not show is what impact the disease process of AOM has on the 

transmission in these cases.  

Despite these reports, outbreaks of pneumococcal infection are generally 

uncommon and usually are observed in high risk populations such as nursing home 

residents 58, day care centres 59, prisons 60 and residents in homeless shelters 61. One 

interesting cohort study investigated an outbreak of multi-drug resistant 

pneumococcal pneumonia in an American nursing home in 1996 58. The study 

reported that 23% of residents and 3% of employees were colonised with a 

multidrug-resistant S. pneumoniae, serotype 23F. Evidence suggested that the 

transmission route was likely person-to-person transmission from staff to residents. 

This was due to two main reasons; firstly, residents that were colonised or had 

developed pneumonia from this bacterial serotype were randomly distributed 

throughout the facility and secondly two colonised residents were bedbound with no 

exposure to any other resident or visitors 58. However, they did not investigate how 

this transmission from staff to residents took place. They noted that one colonised 

staff member, who had widespread contact with residents, had a febrile respiratory 

illness during the period which was treated with antibiotics and hypothesised that 

working during this illness may have been the cause of the spread.  
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An outbreak of pneumococcal pneumonia in children was observed in the United 

Kingdom (UK) in 2006 57. Initially three cases of pneumococcal pneumonia were 

reported in an English primary school. Children were aged 4-5. Following 

identification of this outbreak, school contacts and those living in the same 

household of these children were given rifampicin chemoprophylaxis but 

unfortunately despite this intervention two further cases were reported from 

classmates in the same school 57. All five cases were caused by pneumococcal 

serotype 1 which supports the hypothesis that there was transmission between 

these subjects which lead to disease 57.  Following the second outbreak throat swabs 

were obtained from cases and contacts, only one further carrier of S. pneumoniae 

serotype 1 was identified 57. However, the authors conclude that this colonisation 

rate may be under-reported due to sampling technique. Colonisation was only 

determined from oropharyngeal swabs rather than nasopharyngeal swabs due to NP 

swabs being an unpleasant procedure for children 57. In many of these reported 

outbreaks of pneumococcal disease, close contact in crowded conditions was often 

hypothesised as a major risk factor for the transmission. 

 Streptococcus pneumoniae survival in the environment  

To better understand how pathogens are transmitted, it is important for us to 

understand how long pathogens can persist on inanimate objects. This is specifically 

important in the health care setting for deciding on the appropriate treatment of 

surfaces. The longer pathogens can persist on a surface, the longer it is a possible 
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source of transmission which can endanger patients or be further spread by health 

care workers 62.  

There is evidence to suggest that in the hospital environment many inanimate 

objects such as computer keyboards, bed rails and tap handles can be reservoirs for 

pathogen transmission 63 64. A study evaluated 144 samples from computer 

keyboards and tap handles in a medical intensive care unit to investigate if they were 

reservoirs of nosocomial pathogens 63. The colonisation rate for keyboards was 24%, 

and for taps was 11% 63. Pathogens recovered included Staphylococcus aureus (49%), 

Enterococcus 18% and Enterobacter 12%. A further study investigated survival and 

transfer of bacteria in laboratory conditions, they found a variable degree of 

pathogen transfer from contaminated objects to the hands, with the highest rates of 

transmission observed with E.coli, Salmonella spp., and Staph aureus 65.  

Kramer et al 62 found that most Gram-positive bacteria can survive on dry surfaces 

for months, and that Gram-negative bacteria have been reported to persist longer 

on average than Gram-positive bacteria. When evaluating environmental factors that 

prolonged persistence on objects they found that lower temperatures (4-6 degrees 

centigrade) and high humidity (>70%) were both associated with longer persistence 

for most bacteria 62.  

Data specific to S. pneumoniae are few. It has been reported that pneumococcus can 

persist for up to 28 days outside the human host 62 66(see Table 1). Prolonged survival 

was reported when the bacteria are stored in dry conditions and at lower 
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temperatures 66. More recently a study investigated the survival and infectivity of S. 

pneumoniae following desiccation 67. They found that direct contact with respiratory 

droplets containing pneumococci may not be needed for transmission of this 

pathogen 67. Desiccated pneumococci were recovered and following this were able 

to colonise the nasopharynx of mice following intranasal inoculation67. This suggests 

that inanimate objects could be a source of pneumococcal transmission 67. Only one 

study was found which specifically investigated pneumococcal survival time on hands 

and fomites 68. Pneumococcus was suspended in either serum broth (10% horse 

serum in Brain heart infusion broth) or Mueller-Hinton broth. Three volunteer’s 

hands were exposed to pneumococcus. They reported a significant reduction in 

pneumococcal counts after only 3 minutes 68. However, pneumococcus could still be 

recovered 3 hours after exposure when suspended in serum broth. Interestingly 

when testing pneumococcal survival on fomites, despite substantial loss of viable 

pneumococcus following exposure, pneumococcus could still be recovered from a 

glass plate up to 15 hours after exposure and from a plastic toy at the final eight-hour 

sampling point 68. 
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Table 1: Survival time of Streptococcus pneumoniae 62 66 

Origin of Streptococcus 

pneumonia bacteria 

Temperature 

stored at 

Stored in Dry 

conditions 

(Survival time in 

days) 

Stored in moist 

conditions 

(Survival time in 

days) 

Infectious human pus 

mixed with room dust 66 

15-20°C 12 but not 16 5 but not 8 

Infectious blood of a rabbit 

mixed with room dust 66 

15-20°C 1 but not 3 1 but not 3 

Infectious sputum from 

patient mixed with room 

dust 66 

15-20°C 20 but not 25 12 but not 16 

Infectious sputum from 42 

patients and divided into 2 

portions 66 

4°C 28 N/A 

Infectious sputum from 42 

patients and divided into 2 

portions 66 

Room 

temperature 

7 N/A 

 

Recently emerging evidence suggests that capsular type can also effect shedding and 

transmission of pneumococcus. A recent murine model examined whether 

pneumococcal capsule contributes to viability of pneumococcus outside the host 7. 

This study showed that the capsule supports pneumococcal viability during 

starvation conditions (24 hours in phosphate-buffered saline at 25°C) 7. 

Pneumococcal serotype affected viability during these nutrient-poor conditions and 

a decrease in capsule thickness and amount of CPS was observed following starvation 

7. It was confirmed that serotype differences in survival were due to capsular type, 

rather than a result of genetic background by testing capsular-switch mutants 7. This 
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study suggests a possible new role of the pneumococcal capsule; pneumococcus may 

be able to utilise their capsule as a nutrient source to maintain viability when the 

organism is being transmitted between hosts. A further murine study found that 

capsule type and amount affected shedding of pneumococcus during a colonisation 

episode and this was associated with the rate of host-to-host transmission 69. The 

authors highlighted that those specific serotypes which are strongly bound by mucin 

are shed less by the host and therefore are less likely to be transmitted 69.  

The results of these recent studies suggest that capsular type may lead to varying 

rates of pneumococcal transmission and could explain why different serotypes have 

varying propensity to cause outbreaks of disease. Serotypes which can survive for 

longer in the environment could increase the likelihood of acquisition, colonisation 

and potentially disease in a new human host.  

 Hand to nose transmission of S. pneumoniae 

Hand washing interventions can reduce the transmission of disease spread by the 

faecal-oral route, and is an effective and feasible means of reducing rates of 

gastroenteric infections in developing countries 70. Hand washing interventions may 

also be a promising intervention against acute respiratory infections. The hands can 

be vectors for respiratory microorganisms which are shed from the nose and mouth 

to a new host’s mucous membranes 70. A meta-analysis of 8 studies conducted in 

2006 showed that hand washing interventions could reduce the risk of acute 

respiratory infections (ARI’s) by around 16% (95% CI 11-21%) 70. However, the quality 

of the studies examined was poor and had geographical limitations; none of the 
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studies were conducted in developing countries and 6/8 studies were conducted in 

the USA. Therefore, the generalisability r of the findings are uncertain 70.  

When evaluating the possible impact of transmission of infection by self-inoculation, 

it is important to consider the prevalence of face-touching behaviour. Self-

inoculation is a type of contact transmission where contaminated hands make 

contact with other parts of the body such as the mouth, eyes and nostrils ,which 

subsequently introduces bacteria into those sites 71. An observational study from 

1973 monitored a total of  124 adults in a lecture theatre or Sunday school 

environment for 30-50 minute periods 72. They observed 29 episodes of nose picking 

(0.33 hr-1) and 33 episodes of eye rubbing (0.37 hr-1) 72. 

Two more recent studies reported much higher rates of hand to face contact 71 73. 

Nicas et al in 2008 conducted an observational study looking at the hand touching 

rate of 10 volunteers. Participants sat alone at a desk for a 3-hour period performing 

office-type work and the frequency of hand contact with the eyes, nostrils and lips 

was examined. The average total contact rate per hour was 15.7 73. They noted that 

there was significant inter-individual variability in total hand contact with facial 

membranes 73. This was shown by a 35-fold difference in the range limits (lowest 

total hand to face contacts 3 vs. highest 104) 73.  

Kwok et al 71 observed 26 students’ face touching behaviour during two 2-hour 

lectures. They found that on average each of the students touched their face 23 times 

per hour; of these 44% (1024/2346) involved contact with a mucous membrane 71. 
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Of the 1024 touches that involved mucous membranes, there was found to be a fairly 

even split between the mouth (36% 327/1024), nose (31% 318/10247 and eyes (27% 

273/1024) with 6% (61/1024) of touches being a combination of mucous membrane 

contact 71 (Figure 3). The students involved in this study were medical students who 

had previously had one 4-hour infection control lecture which involved teaching 

about hand hygiene, aseptic technique and transmission-based precautions. Kwok et 

al concluded that due to the high frequency of mouth and nose touching observed in 

this study, hand hygiene is an essential preventative method to break colonisation 

and transmission cycles 71. 

 

 

 

 

 

 

Figure 3: Average number touches of mucosal surfaces observed over 1 hour period adapted from 
Kwok et al 71 
Results from a behavioural study involving medical students in Australia. Face-touching behaviour was 
observed via videotape recording; frequency of hand to face contact was analysed.  

 

NOSE 
3 average 
touches/hour 
Average duration 1 

MOUTH 
4 average touches/hour 
Average duration 3 
second (range 1-12) 

EYE 
3 average 
touches/hour 
Average duration 1 
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The above studies support the hypothesis that hands could be an important vector 

for bacterial transmission to facial mucous membranes. S. pneumoniae colonises the 

upper airway; through touching of contaminated surfaces, sneezing, coughing and 

rubbing/picking of the nose pneumococcus could contaminate the hands. Due to this 

it is biologically plausible that hand to face contact could be a significant transmission 

pathway. There is very little research investigating the link between pneumococcus 

hand contamination and rates of nasal colonisation currently.  

Only two relevant studies in humans were found; the first found pneumococcal nasal 

colonisation in 83% (67/81) of children studied in Papua New Guinea with a 

corresponding hand contamination rate of 22% (18/81) 74. They also found that 17/20 

children who were found to have hand contamination with pneumococcus had the 

same serotype colonising their nasopharynx 74. In conjunction with testing children, 

the study also evaluated pneumococcal hand contamination of mothers; two 

mothers had pneumococcus recovered from their hands but there was no 

concordance  with the serotype found colonising their children’s nasopharynges 74.   

The second study compared the rates of pneumococcal hand contamination and 

nasal colonisation in two groups of children in Australia; a remote aboriginal 

community group (n=89) and an urban child care centre group (n=294) 42. They found 

a two-fold increase of nasal colonisation rates in the remote group compared to the 

urban group (90%, 80/89 positive for colonisation remote group vs. 43%. 125/294 

urban group) using nasal swabs 42. This correlated with higher hand contamination 

rates in the remote group; the remote group were >9 times more likely than the 
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urban group to have pneumococcal hand contamination (37%, 33/89 positive hand 

swab remote group vs. 4%, 13/294 urban group) 42. This suggests that pneumococcal 

shedding during a colonisation episode is possible and that the hands could be a 

possible vehicle for pneumococcal transmission in the community.  

Rodent models investigating pneumococcal transmission are adding to the current 

understanding of the extent of airborne transmission versus contact-dependent 

transmission. Transmission secondary to infected secretions from a person colonised 

with pneumococcus may involve direct person-to-person spread or may involve 

contaminated surfaces or fomites 20. A recent study demonstrated that an 

environmental reservoir of pneumococcus can facilitate transmission 50. In this study 

colonised mice were kept in separate cages from un-colonised mice. Both sets of 

mice had an uncolonised mother; three times per day mice were switched between 

cages but were never in contact with each other 50. Over 50% transmission rate was 

observed; the investigators concluded that contamination of the mother’s teats with 

pneumococcus was the source of transmission between the colonised and 

uncolonised mice.  They confirmed that the bedding was not an environmental 

source of pneumococcal transmission by doing a further experiment. When they 

moved the mothers between cages of colonised and uncolonised mice transmission 

was still seen suggesting that pneumococcus was likely acquired from the surface of 

the mothers 50.  
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 Reduction of transmission 

The benefits of hand washing for reducing the spread of respiratory bacterial 

pathogens is uncertain with the evidence currently available 42. Previous intervention 

studies using hand hygiene interventions to reduce viral transmission pathways 

support the hypothesis that both direct and indirect contact are important in 

transmission of viruses from person to person. A randomised control trial looking at 

the effect of infection control measures in child care centres showed only a 5% 

overall reduction of incidence of “colds” 75.  

There is limited research assessing whether hand hygiene interventions and infection 

control teaching can reduce upper respiratory bacterial pathogen transmission. A 

cluster randomised control trial (RCT) conducted in 20 child care centres in Australia 

investigated this question76. Ten centres (219 children) had one infection control 

training session for staff and had regular follow up visits by researchers to implement 

20 second hand washing, barrier nose-wiping, removal of contaminated toys and 

non-touch sunscreen application 76. The other 10 centres (235 children) acted as 

controls with no intervention given. The researchers found no reduction in 

transmission of bacterial pathogens (adjusted incidence rate ratio, IIR, 0.97 95% CI 

0.88, 1.08) or respiratory illness in the intervention group (adjusted IIR 1.00 95% CI 

0.93, 1.01) 76. Transmission of bacterial pathogens (S. pneumoniae and H. influenza) 

was assessed with nasal swabs undertaken every 2 weeks for 6 months and childhood 

illness was reported by parents. However, interpretation of these findings was 

limited by poor uptake of the hand hygiene practices in the intervention centres 
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(proportion of hygiene practices consistent with guidelines; weighted mean 

difference 14%, 95% CI 9, 19).  

1.4 Pneumococcal disease treatment and prevention 

 Pathogenicity  

Streptococcus pneumoniae was first described by George M Sternberg who isolated 

it in 1880 from a colonised individual 77. He also described recovery of the organism 

from the saliva of healthy students which established that the pneumococcus is part 

of the normal human microflora 77. S. pneumoniae was first described as a cause of 

lobar pneumonia in 1883 by Friedlander and Talamon. Diagnosis of pneumococcal 

pneumonia improved following the development of the Gram stain as a method to 

differentiate bacterial species in 1884. It is a Gram-positive bacterium which has the 

potential to cause invasive infections and is considered to be an extracellular 

bacterial pathogen 78. Extracellular pathogens can replicate or persist on mucosal 

surfaces in the human body or in tissues outside host cells. They can also spread 

quickly or establish an infection if they successfully contend with host humoral 

defences and cellular immune mechanisms (e.g. T cells and phagocytes) 78. Due to 

this, the ability of extracellular pathogens to evade clearance by the body’s humoral 

and cellular immune defence mechanisms is an important determinant of 

pathogenicity.  
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The pneumococcus can release a pore-forming toxin called pneumolysin; which at 

low levels can induce apoptosis of cells and high levels cause lysis of all cells with 

cholesterol in their membrane 79. This pathogen also has pro-inflammatory cell wall 

components such as C-polysaccharide and F-antigen. These release tissue damaging 

enzymes such as neuraminidase and have adhesins, such as pneumococcal surface 

protein A (PspA), that can bind to cell surface carbohydrates which play important 

roles in combating the host’s immune responses 80.  

The polysaccharide capsule surrounds the pneumococcal cell wall which is comprised 

of peptidoglycan and teichoic acid. This capsule protects the bacteria from 

phagocytosis by obstructing leukocyte fixation onto the cell wall 1. Pneumococcal 

serotypes each have chemically distinct capsules which can affect: 

• Tendency to cause outbreaks,  

• Antibiotic resistance profiles, 

• Likelihood of causing invasive disease (serotypes 1 and 7E are 

prominent serotypes for invasive disease),  

• Prevalence of mucosal disease or nasopharyngeal colonisation; 

different serotypes have varying propensity to cause colonisation and 

invasive disease  1 2.  

Geographical variation in serotypes is often dependent on the period studied and 

differences in age distribution between host’s; serotypes most commonly observed 

in young children include 6B, 9V, 14, 19F and 23F 1 2 80. These differences in serotypes 
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may be due to the quantity and degree of encapsulation of the polysaccharide 

capsule. Thicker capsules protect against neutrophil-mediated killing in vitro, and 

may prevent clearance of colonisation by the host 2. Other genetic factors relating to 

the pneumococcus are also likely to impact on virulence such as bacterial adhesins.  

 Pneumococcal disease  

Streptococcus pneumoniae is the most common cause of acute otitis media, sinusitis 

and pneumonia worldwide and also causes a significant number of cases of 

meningitis 81. Epidemiological studies have shown that there is an inverse 

relationship between the frequency and severity of types of pneumococcal disease 

(see Figure 4).  

The archetypal presentation of a patient with pneumococcal pneumonia has been 

historically described as symptoms including sudden onset of chills and pleuritic 

chest pain, closely followed by fever and rusty sputum production. However, many 

present with more non-specific symptoms especially in the elderly and in young 

children81. Pneumococcal pneumonia can progress to  pneumococcal bacteraemia in 

some patients, rates of bacteraemia have been  estimated at 20-25% 82 and mortality 

from bacteraemia has stayed high at 20-30% despite antibiotic treatment 83.   
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Figure 4: Burden of pneumococcal disease adapted from Edwards and Griffin 84.  
Estimated pneumococcal disease cases per year in adults and children in USA taken from CDC report 
2002 (www.cdc.gov/nip/publications/surv-manual/chapt09_pneumo.pdf) 
 
 

Pneumococcus is considered to be the most common cause of CAP worldwide and in 

the UK is the most common cause of CAP in children ≤2 years of age 85. Timely and 

effective management of pneumococcal pneumonia can be difficult. It is hindered by 

low rates of microbiological pathogen confirmation in patients with suspected 

pneumonia and lower respiratory tract infections (LRTI) 86 87. Following spread of the 

pneumococcus to a sterile site it can also cause IPD which encompasses a range of 

diseases including bacteraemia, meningitis, empyema and septic arthritis. 

Penicillin has been the mainstay of antibiotic treatment for any pneumococcal 

infection for over half a century 81. However, increasing antibiotic resistance is a 

growing problem worldwide.  S. pneumoniae is no exception to this and we have 
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observed increasing antibiotic resistance develop specifically in serotypes that have 

high prevalence in children for example serotypes 6, 14, 19 and 23. 

Due to these diagnostic difficulties and increasing problems with antibiotic 

resistance, strategies to prevent pneumococcal disease are becoming increasingly 

important.  

1.4.2.1 Burden in UK and worldwide and risk factors for disease 

The WHO estimates that 1.6 million deaths are caused by pneumococci annually, 

with over a million of these deaths attributed to pneumococcal pneumonia in 

children under the age of 5 in developing countries 81 88. The global pneumococcal 

disease burden in children, especially under 5 years of age is well documented. In 

2000 it was estimated that there were 13.9 million cases of pneumococcal 

pneumonia per year in this age group. The burden of pneumococcal disease in adults 

is less well known. 

Over the last 100 years, the incidence of pneumococcal pneumonia has stayed stable 

but a significant improvement in mortality rates has been observed following 

widespread antibiotic use 89. In the United Kingdom (UK) and high-income countries, 

the yearly incidence of community acquired pneumonia (CAP) is approximately 1% 

of which half is attributable to S. pneumoniae. 
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Overall incidence of pneumococcal pneumonia is 5 in 1000, with the incidence being 

significantly higher in high risk populations such as infants and the elderly 81. 

Pneumococcal pneumonia can progress to invasive pneumococcal disease (IPD) (e.g. 

bacteraemia). The annual incidence of this is 10-20 cases per 100,000 individuals 

annually in North America and Europe 81. The risk of IPD increases by more than 20 

times this rate in young children attending day care centres 90. In Western countries, 

the incidence of pneumococcal disease rises in the winter months and the increased 

rates of viral respiratory infections observed during this period could be the pre-

disposing factor for this 81. 

Both age and gender are found to be important risk factors for pneumococcal 

pneumonia 81. The incidence of pneumococcal pneumonia is up to 50 times higher in 

the elderly (over age of 65) and in the very young (under age of 2), with a male: 

female ratio of approximately 1.5-2:1 81. Many underlying co-morbidities have been 

found to pre-dispose patients to pneumococcal disease. A case- control study 

investigated this retrospectively. They compared 63 men with culture proven 

pneumococcal infections to 130 uninfected control patients and calculated relative 

risks using logistic regression analysis 91. They found that the following conditions 

were statistically significant independent risk factors (relative risks shown in 

brackets); dementia (5.82), seizure disorders (4.38), heart failure (3.83), 

cerebrovascular disease (3.82, institutionalisation (3.13) and chronic obstructive 

pulmonary disease (COPD; 2.38) 91. Concurrent respiratory tract infection, especially 

influenza viral infection, is also a risk factor for pneumococcal pneumonia 81.  
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 Pneumococcal disease prevention: current pneumococcal 

vaccines  

In the UK, there are currently three vaccine formulations licenced for the prevention 

of pneumococcal infections; the pneumococcal polysaccharide vaccine (PPV23) and 

two pneumococcal conjugate vaccines (PCV10 and PCV13) 92. See Table 2 for 

comparisons of these vaccines.  

Table 2: Comparison of currently licenced pneumococcal vaccine formulations in the UK 
Table reports specific aspects of the pneumococcal vaccines which have been, or currently are 
licenced for use in the UK. Further discussion about vaccine immunological profile and efficacy 
discussed in sections 1.4.3 and 1.4.4. 
 

 PCV 7 PCV13 PPV23 

Serotypes 

covered 

1, 4, 5, 6B, 7F, 9V, 

14, 18C, 19F, and 

23F. 

1, 3, 4, 5, 6A, 6B, 7F, 

9V, 14, 18C, 19A, 19F, 

and 23F. 

1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 

9V, 10A, 11A, 12F, 14, 

15B, 17F, 18C, 19A, 19F, 

20, 22F, 23F and 33F. 

UK Vaccination 

recommendation 

From 2006-2010 93: 

recommended for all 

children at 8 weeks 

old, 16 weeks old 

and 1 year old. 

Since 2010 93: 

recommended for all 

children at 8 weeks 

old, 16 weeks old and 

1 year old. 

Since 2003 93: 

recommended for all 

over 65’s and younger 

adults who have chronic 

illnesses that put them at 

higher risk of invasive 

pneumococcal disease. 

Effective against 

S. pneumoniae 

Invasive pneumococcal disease. 

Reduction in nasopharyngeal colonisation, 

leading to reduction in transmission of 

vaccine serotypes (in turn reduced incidence 

of mucosal disease). 

Moderately effective against mucosal disease 

such as pneumonia and AOM 94. 

 

Invasive pneumococcal 

disease. 

 

Non-conclusive evidence 

on protection against 

pneumococcal 

pneumonia or other 

mucosal infections92. 
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The currently used PPV contains polysaccharide from 23 different serotypes (PPV23). 

PPV23 elicits a T-cell independent, humoral immune response. Evidence suggests this 

protects against IPD but there is debate about this vaccine’s effectiveness against 

pneumonia 92. The immune response to PPV is not long lasting and does not show a 

booster response upon challenge with native polysaccharide. Due to this, protection 

induced by this vaccine is limited. A major limitation is lack of efficacy in infants under 

2 years of age whose immune systems are immature 95. PPV immunisation does not 

protect against nasopharyngeal colonisation by pneumococcus, therefore no herd 

immunity was observed after vaccine implementation. Herd immunity is the indirect 

protection against an infectious disease whereby individuals who are not immune 

can benefit and which occurs when many of the population are immune following 

vaccination. 

A meta-analysis which evaluated 25 studies ( 18RCTs and 7 non-RCTs) found strong 

evidence that PPV is effective against IPD with overall efficacy of 74% (95% CI 56% to 

85%) 96. No statistical heterogeneity was found when all RCTs were included in 

analysis However, there was a statistical difference between heterogeneity of studies 

conduction among different populations such as healthy adults in low-income 

countries (P <0.01) 96. Results of effectiveness against pneumonia were inconclusive 

96. Efficacy against all-cause pneumonia in low-income countries was reported (OR 

0.54, 95% CI 0.43 to 0.67) 96. However, this was not the case in high-income countries 

in the general population (OR 0.71, 95% CI 0.45 to 1.12) or those with chronic disease 

(OR 0.93, 95% CI 0.73 to 1.1) 96. A further meta-analysis supported this finding and 

concluded that PPV did not appear to be effective against pneumonia even among 
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elderly patients or adults with chronic disease for whom the vaccination is 

recommended 97.  

Some randomised control trials have found protective effect of the PPV against 

pneumonia; this prospective randomised study included 1006 nursing home 

residents. It reported a statistically significant reduction in pneumococcal pneumonia 

cases in the vaccine arm compared to control (14/502 ,2.8% vs 37/504, 7.3%; 

P<0.001) 98. Due to this specific study population (mean age of 84, nursing home 

residents many with co-morbidities), it is difficult to generalise the findings to larger 

population. In addition, a non-randomised observational study of 27,204 individuals 

aged ≥60 years in Spain reported that recent vaccination with PPV23 (<5 years ago) 

reduced risks of bacteraemic pneumococcal CAP (hazard ratio [HR], 0.38; 95% 

confidence interval [CI], .09–1.68) and non-bacteraemic pneumococcal CAP (HR, 0.52; 

95% CI, .29–.92)99. This was only observed following sub-analysis of patients who had 

received the vaccine within the last 5 years, when evaluating the full cohort, no 

protective effect was observed 99.  

PVC13 is the most commonly used polysaccharide conjugate vaccine worldwide; this 

vaccine covers pneumococcal 13 serotypes 100. PCV13 contains purified 

polysaccharides of the capsular antigens of each of the 13 pneumococcal serotypes 

covered. These are individually conjugated (coupled) with a nontoxic diphtheria toxin 

(CRM197, CRM cross-reactive material). The conjugation of the capsular 

polysaccharide to a carrier protein in PCV13, unlike PPV, activates a T-cell dependent 

antibody response which leads to mucosal immunity and immunological memory 92 
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101. Previous studies suggest that this leads to immunity for the individual user but 

also leads to herd immunity 92. Global vaccine strategies have been very successful, 

and 132 countries have introduced PCV into their national immunisation programs 

(see Figure 5. 

 

Figure 5: Worldwide current or planned implementation of PCV into national immunization 
schedule as of September 2016.  
Taken from World Health Organization, Immunization Vaccines and Biologicals Database, September 
2016. http://www.who.int/immunization/monitoring_surveillance/data/en 102 

 

Since the introduction of childhood PCV there has been a decrease in IPD and 

pneumonia in children and similar reduction in rates of IPD have been observed in 

older adults 92. A large randomised control trial, which included 85,000 adults aged 

65 years of age or older was conducted by a PCV vaccine manufacturer 103. This study 

showed 45.6% (95% confidence interval [CI]=21.8-62.5%) efficacy of PCV13 against 

all vaccine-type pneumococcal pneumonia and 75% (CI=41.4-90.8%) efficacy against 

vaccine-type IPD in adults ≥65 years of age 103.   

http://www.who.int/immunization/monitoring_surveillance/data/en/
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 Rationale behind new vaccine development 

Despite the success of the PCV and PPV immunisations in reducing pneumococcal 

disease and mortality worldwide, the widespread use of these vaccines and addition 

into public immunisation programmes has highlighted several limitations 92 101 104. 

These include: 

• Protective immunity is limited to the specific serotypes contained in each of 

the PPV23 and PCV13 – there are currently over 90 known serotypes of S. 

pneumoniae. 

•  ‘Serotype replacement’ is a major limitation of the PCVs. Among 

asymptomatic carriers, the prevalence of non-vaccine serotypes ([NVT] non 

PCV 13 serotypes) has increased significantly (serotype replacement). 

However, there does not seem to be any impact of overall pneumococcal 

colonisation rates 105. A review, also reported an increase in NVT 

pneumococcal disease 105. The true amount of replacement may be 

underestimated due to biases in the pre-vaccine colonisation data. 

Surveillance systems may underestimate the prevalence of serotypes with 

lower invasive potential. Because these systems monitor invasive 

pneumococcal disease, serotypes which do not cause disease are likely to be 

underreported. Epidemiology studies can also underestimate prevalence of 

pneumococcal serotypes which have short colonisation durations. This is 

because surveillance tests for colonisation often are undertaken weekly or 

less frequently in these studies105. In addition, simultaneous colonisation with 
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multiple pneumococcal serotypes has been increasingly reported with 

improvements in molecular techniques for pneumococcal detection 40. Due 

to this, NVT may have been more prevalent colonisers but at lower density in 

a multiple serotype colonisation episode and therefore under detected.  

• Limited efficacy against certain serotypes covered in PCV13 (serotype 1 and 

5) 92. Clinical trials in South Africa 106 107 and The Gambia 108 109 failed to show 

evidence of efficacy of PCV against serotype 1. A further study, reported 

PCV13’s vaccine effectiveness at 62% and 66% against serotype 1 and 3 

respectively although confidence intervals spanned zero 110. A further study 

found that the vaccine effectiveness for serotype 3 was not significant (26%, 

95% CI, -69%-68%) 111. In developing countries serotype 1 and 3 continue to 

be prevalent serotypes causing IPD therefore the lack of efficacy is 

problematic.  

• Geographic variation in protection from both PCV13 and PPV23 due to 

varying serotype distribution worldwide. The current vaccines favour 

covering serotypes that are most prevalent in western countries such as USA 

or Europe rather than the serotypes that cause most of invasive disease in 

developing countries 9. This was a larger issue with the first PCV vaccine; PCV 

7 than for PCV13. 

• Hypo-responsiveness to the capsular polysaccharide is observed with PCV 

immunisation (serotype-specific) if children had an episode of pneumococcal 

nasal colonisation shortly before the first dose of PCV 112 113. This is only 

partially overcome after the 2nd or 3rd dose of the vaccine. There has also been 

reports that repeated doses of bacterial polysaccharides may induce a state 
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of immune tolerance or hypo-responsiveness. All studies, except one 114, 

reported that serotype-specific pneumococcal antibody concentrations were 

lower after the second dose of PPV compared the first dose 115-119 .  

• Complexity and high costs of protein-conjugate vaccines incurred by 

pharmaceutical companies and purchasers may impact on the future 

development of these vaccines to expand coverage to more serotypes 92.  

• Transient efficacy in healthy elderly. Clinical effectiveness of PPV in older 

adults is likely to diminish over time. The reduction in pneumococcal capsular 

antibodies over time following vaccination has been shown in PPV 120. 

Reduction in clinical effectiveness over time is also seen in other 

unconjugated polysaccharide vaccines 121 

• Lack of proven efficacy in very frail elderly or immunocompromised. 

Evidence suggests that PPV23 is effective in preventing invasive 

pneumococcal disease in healthy young adults and in the healthy older 

population 122. However, the vaccines effectiveness in the 

immunocompromised and very elderly has not been demonstrated 123 122 ,  

 Novel vaccine development  

Limitations of the current vaccines available for protection of pneumococcal disease 

have driven the development of novel vaccines some of which would be serotype-

independent. New vaccine approaches include new polysaccharide conjugate 

technologies, pneumococcal whole cell vaccines and vaccines which are based on 

highly-conserved noncapsular protein antigens 92 124 125. Due to the limitations 
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discussed above, there are specific criteria any new vaccine must satisfy to make a 

significant impact on disease (target product profile); 

• New vaccines should be highly conserved and develop immunity to all 

pneumococcal serotypes 

• There should be evidence to suggest mucosal immunity and immunity against 

nasopharyngeal colonisation   

• The vaccines should have evidence of immunogenicity with evidence of non-

inferiority to a licensed pneumococcal vaccine  

• The vaccines should induce antibody and cell mediated immune responses  

• The immunity should be long-lasting 

• The vaccine should be designed to prevent disease in the majority of the 

population including children under 2 years of age 

• The vaccine should be low cost to produce  

One possible new vaccine approach is modification of the conjugate vaccine; an 

international non-profit organisation (PATH) is investigating two alternatives; firstly 

to develop a conserved pneumococcal protein which would be used as a carrier for 

a specific number or polysaccharides which could be chosen and changed to meet 

specific geographical needs 124. Secondly, they are looking at ways to accelerate the 

development of vaccines that target serotypes which are more prevalent in 

developing countries and are also developing new strategies to reduce the cost of 

manufacturing 124.   
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An alternative strategy is the use of broadly conserved protein combinations for 

vaccines. The pneumococcus has multiple proteins exposed on its surface which 

could be used as possible vaccine antigens. Well-studied examples of these are 

pneumococcal surface protein A (PspA) and choline-binding protein A (PspC). While 

other virulence factors that are also at the forefront of protein-based vaccine 

development include choline-binding protein (PcpA), pneumolysin (Ply) and 

pneumococcal histidine triad protein D (PhtD) 92 124. Research into these protein-

based serotype independent subunit vaccines have reached varying stages of 

advancement. Recombinant PspA has been studied in a phase 1 clinical trial where it 

was found to be safe in humans and was also immunogenic 126. This study used a 

passive transfer murine challenge model as a surrogate for protection of humans 126. 

Human participants were administered recombinant PspA, pre- and post-immune 

serum samples were examined 126. The authors reported that human antibody to 

PspA could protect mice from pneumococcal infection 126 .   

Another promising area of research is whole cell pneumococcal vaccines, either in 

live attenuated form or killed form, in which many pneumococcal antigens would be 

present at once 92 124. Potential benefits of a killed bacteria whole-cell vaccine 

development would be the very low cost of manufacture and that it could protect 

against all serotypes and could lead to comprehensive mucosal and systemic 

immunity 124 127.  
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1.4.5.1 Controlled human infection studies 

Controlled human infections models (CHIM) involve the experimental infection of 

study participants with a pathogen. They provide the opportunity for researchers to 

study organisms, their incubation periods and clinical disease. More recently these 

studies have been used to accelerate the development of new drugs and vaccines for 

infectious diseases by adding significant data prior to large scale efficacy trials. The 

first controlled infection studies were described in the 17th century. The ethics of 

these preliminary CHIM studies were questionable with the most infamous example 

of Edward Jenner inoculating his gardeners son with cowpox in 1796, and following 

this repeatedly with smallpox lesion material 128.  

There have been significant improvements in ethical considerations of all research 

and specifically CHIM studies since these preliminary studies; CHIM studies must 

conform to a strict ethical framework and go through rigorous independent review 

prior to starting. However, some still argue that CHIM studies are inherently 

unethical due to concerns about non-maleficence 129 130. There are significant global 

health benefits from these studies but to the individuals involved there is an inherent 

risk of illness 128. In addition, similar to phase one studies, there are no direct benefits 

to participants. Due to this, CHIM studies can only be carried out to investigate 

treatable or self-limiting diseases 128.  

The experimental human pneumococcal challenge (EHPC) model is different to the 

majority of CHIM by having colonisation rather than infection as its primary endpoint. 
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Due to this, from an ethical and clinical standpoint, the inherent risks and potential 

for harm is much lower. The Liverpool EHPC team have inoculated over 1000 

participants with pneumococcus over the last 9 years with no related significant 

adverse events.  

 Experimental Human Pneumococcal Colonisation studies and 

their use for vaccine research 

A major roadblock in the process of developing new protein vaccines has been a 

means of prioritising between proposed vaccine candidates 131. Nasopharyngeal 

colonisation is likely the source of pneumococcal transmission into sterile sites and 

therefore is likely a prerequisite for invasive disease 31 131. It has therefore been 

proposed as a marker for vaccine efficacy 31 131. For new vaccines due to come to the 

market, protection against colonisation may predict the overall protective effect 

against mucosal or invasive disease 101. Experimental human pneumococcal 

colonisation (EHPC) can be induced in humans. This was first shown by McCool et al 

29 in 2002; this group successfully induced nasopharyngeal colonisation following 

pneumococcal inoculation with serotypes 6B and 23F and showed that controlled 

human infection with pneumococcus was safe 29 30. 

Following these initial studies in the United States of America (USA), a safe and 

reproducible EHPC model was establish at LSTM, which can be used to test the 

protection induced by vaccination against nasopharyngeal colonisation 101. 

Preliminary studies investigated what the optimal sampling method would be to 

identify nasopharyngeal pneumococcal colonisation. The team compared 
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nasopharyngeal swab (NPS) to nasal wash for the detection of potential respiratory 

pathogens. This study showed that nasal wash was more comfortable for volunteers 

and was significantly more likely to detect pathogens than NPS 132.  

The model allows assessment of the immune responses at the mucosal surface and 

systemically following inoculation with live whole bacteria. It can also be useful to 

help evaluate and compare new vaccines that are possibly coming to market; it could 

evaluate pneumococcal colonisation protection and any change in nasopharyngeal 

flora following vaccination 101. To increase the generalisability of the model and its 

use for vaccine development, it is important to test multiple serotypes of S. 

pneumoniae.  

It has been previously reported that pneumococcal serotype has a significant role in 

determining colonisation. Some serotypes are more likely to be carried but have low 

potential to cause infectious or invasive disease. Conversely others are more 

commonly observed in pneumococcal disease 133. A previous human pneumococcal 

challenge study performed by the Weiser group in the USA used serotype 23F P833. 

They inoculated participants with either 5,000 CFU/naris, 7,000 CFU/naris or 17,000 

CFU/naris to assess if there was a dose dependant relationship to colonisation 

acquisition and achieved colonisation rates of 43% (6/14) with a duration of 

colonisation ranging from 27-122 days 29. Following this, our team (Liverpool EHPC 

team), retested the 23F serotype in addition to serotype 6B in a dose-ranging human 

challenge study. Colonisation rates for 23F in this study were poor for all inoculum 

doses (Figure 6) 134. 
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Figure 6: Dose ranging curve for serotypes 6B and 23F (unpublished work from J. Gritzfeld thesis) 
10 participants were inoculated with either serotype 6B (circle) or 23F (square) for each of the six 
doses from 1x104 CFU/naris to 3.2x105 CFU/naris. Y axis shows percentage of colonisation positive 
participants in each group defined as number of participates found to be an experimental coloniser of 
pneumococcus in nasal washes at any time point following inoculation. 
 

Due to the poor colonisation rates observed above, the 23F serotype used was 

sequenced to look for a cause of these results. It was discovered that this serotype 

differed from the original P833 serotype tested in the USA 29. Murine models had 

previously demonstrated that mutations in amiC gene could significantly affect the 

ability of the pneumococcus to colonise. It was found that there was a frameshift 

mutation in the amiC gene in the 23F serotype used in this initial study, which was 

hypothesised to be the cause of these poor colonisation rates. However, for the ‘new 

serotypes’ study (see below) the serotype used was a naturally-derived isolate of 

P833; P1121. This contained a stable form of the wild-type amiC gene; so we 

expected to be able to reproduce findings from the US-based group of 50% 

colonisation rates at 7,000 CFU/naris and 75% at 17,000 CFU/naris 29.  
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1.5 Project aims 

This project focuses on improving knowledge about the acquisition of S. pneumoniae 

colonisation using controlled human infection trials.  

Aim 1: To investigate whether the hands can be a vector for transmission of S. 

pneumoniae from hands into nasopharynx, leading to colonisation.  

a) We will also investigate whether asymptomatic viral infection at the 

time of exposure to pneumococcus affects acquisition of 

pneumococcal colonisation following transmission from hands to 

nose 

Transmission of S. pneumoniae from person-to-person is thought to occur due to 

airborne respiratory droplets. Epidemiological data provide evidence that 

transmission is influenced by overcrowding and concurrent viral respiratory tract 

infections 8 43. There are no published data investigating specifically how 

Streptococcus pneumoniae is spread and testing different routes of transmission. 

(Chapter 4: HAND TO NOSE STUDY) 

Aim 2: To investigate the propensity for two different pneumococcal serotypes (23F 

and 15B) to cause experimental pneumococcal colonisation in healthy adults 

a) We will investigate whether exposure to pneumococcus or 

pneumococcal colonisation is symptomatic in healthy adults and 



Introduction 

52 

b) Investigate the host’s polysaccharide specific antibody (IgG) response 

following experimental challenge 

 

To improve our knowledge about nasal pneumococcal colonisation we planned to 

extend the EHPC model by colonising participants’ nasopharynx with different 

serotypes of S. pneumoniae (23F and a non-vaccine type [15B] were tested). Success 

in this would ensure that the model is more generalisable and useful for further 

development of vaccine testing studies. Specifically, the development of a 

colonisation model with a non-vaccine type serotype would be an important step for 

vaccine testing. New pneumococcal vaccines will need to demonstrate an impact on 

reducing colonisation, and protein-based vaccines will need to show efficacy against 

serotypes not covered by PCV13. (Chapter 5: NEW SEROTYPES STUDY) 
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2.1 Overview  

This chapter describes the methods relevant to both studies described in this thesis. 

It covers methodology used to investigate the main aims of the thesis outlined at the 

end of Chapter 1. Specific methods relevant to one study are considered separately 

in each chapter for ease of reading. The chapter is divided into subsections which 

cover study set up, clinical procedures, methodology and laboratory processes.  

2.2 Study set up: Research in the National Health Service (NHS) 

 Sponsorship 

All clinical research undertaken in the NHS requires a sponsor. The definitions of a 

sponsor and roles and responsibilities are detailed in the Research Governance 

Framework, Edition 2 2005 135 (guidelines in place when New Strains study was set 

up) and later by UK Policy Framework for Health and Social Care Research 2017 136 

(see Table 3).The sponsor needs to be an individual, organisation or group which is a 

legal entity involved in either the funding, running, hosting of the research or 

employing the research staff.   

Sponsorship can be sole (in the case of Hand to Nose study- single sponsorship by 

LSTM) or co-sponsored by more than one organisation (in the case of New Serotypes 

study- joint sponsorship between LSTM and Royal Liverpool and Broadgreen 

University Hospital Trust [RLBUHT]). Co-sponsorship involves a pre-agreed division of 
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the sponsor responsibilities prior to initiation of the study. Agreement for LSTM or 

RLBUHT to sponsor a research study involves the research team completing an 

application to the organisation’s research governance department. Initially 

sponsorship in principle is obtained. Full sponsorship is only agreed once the 

organisation receives documentary evidence of ethical and relevant national 

regulatory approvals. No study activities should be completed prior to full approval 

and sponsorship.  

Table 3: Definitions and responsibilities of a sponsor taken from Research Governance Framework 
135 and UK policy for Health and Social Care Research 136 
 

 Research Governance Framework 

for Health and Social Care 

(Second edition, 2005) 135 

UK Policy Framework for 

Health and Social Care 

Research (2017) 136 

 

 

 

 

 

Definition 

 

‘Individual, organisation or group 

taking on responsibility for securing 

the arrangements to initiate, manage 

and finance a study. A group of 

individuals and/or organisations may 

take on sponsorship responsibilities 

and distribute them by agreement 

among the members of the group, 

provided that, collectively, they make 

arrangements to allocate all the 

responsibilities in this research 

governance framework that are 

relevant to the study.’ 135 

 

 

‘The sponsor is the individual, 

organisation or partnership that 

takes on overall responsibility 

for proportionate, effective 

arrangements being in place to 

set up, run and report a research 

project. All health and social care 

research has a sponsor.’ 136 

 

 

 

 

 

Responsibilities 

 

Main responsibility of the sponsor is to assure the quality of the research, 

including ensuring participant’s wellbeing, all legal requirements are met, 

the research team are adequate to carry out the work and have resources 

and arrangements in place for the study to be completed. More detailed 

set of responsibilities are set out in the Research Governance Framework 

for Health and Social Care, Second edition 2005 135 and the UK Policy 

Framework for Health and Social Care Research 2017 136. 
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 Health Research Authority (HRA) 

HRA approval process for research trials was fully implemented in the UK in March 

2016. This new system was designed to combine the independent ethical 

opinion/approval by the Research Ethics Committee (REC) and a review of research 

studies against NHS standards 137. This is an assessment of governance and legal 

requirements needed for each study which is undertaken by specific HRA staff, 

previously undertaken by individual NHS Research Development and Innovation 

(RD&I) offices.   

HRA approval was only required for the Hand to Nose study because the New 

Serotypes study received ethical approval before this new system was fully 

implemented. HRA application is encompassed into the Integrated Research 

Application System (IRAS) form, the research team also provides the HRA with 

Statement of Activities and Statement of Events forms which together aim to capture 

all information about study activities and study related information at a local level.  

There are many steps involved in obtaining HRA approval for a clinical trial.  Figure 7 

below shows the main steps in obtaining approval. The Hand to Nose study gained 

HRA approval in February 2017. For the New Serotypes study which was approved 

pre-implementation of HRA approval, the sole responsibility for ensuring the study 

complied with all legal and governance requirements fell to RLBUHT RD&I 

department, see below section 2.2.4. 
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Figure 7: HRA approval process applies to all research projects taking place in the NHS in England 112 
HRA approval encompasses assessment of governance and legal compliance and independent ethical 
opinion by the Research Ethics Committee.  
 

 Ethics: Integrated Research Application System (IRAS) and 

Research and Ethics Committee (REC) 

One of the HRA’s main functions is ensuring that research undertaken in the NHS is 

ethically acceptable. To do this they have multiple RECs countrywide. They aim to 

protect research participants by ensuring that studies are carried out in an ethical 

way and ensure that participants rights, safety, dignity and wellbeing is protected. In 

addition, they aim to ensure that research being undertaking is of potential benefit 

to science, society and the participants. Both studies in this thesis (Hand to Nose 

[Chapter 3] and New Serotypes [Chapter 4]) required full REC approval because these 

studies involved human volunteers and were carried out in NHS sites.  
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A separate IRAS form was created for each study and was the main basis of the REC 

application. Following this, the research team attended a REC meeting date, this gave 

the REC an opportunity to ask questions about the study and give feedback on 

changes that they would like the study team to make to documents provided or IRAS 

form. Ethical approvals for the studies were granted as shown in Table 4 below.  

Table 4: REC study approvals and other approvals/registrations for research studies within this 
thesis 

Study REC IRAS 
number 

Sponsor  Other 
approvals/registrations 

Hand to Nose 
study 

 
Chapter 3 

Liverpool 
(East) 

 
17/NW/0054 

 
Approved: 
02.02.2017 

221034 LSTM ISRTN: 12909224 registered 
27.06.2017 

 
NIHR portfolio: 33503 

 
HRA approval: 22.02.2017 

 
RD&I: 5376 approved 

17.03.2017 
 

New 
Serotypes 

study 
 

Chapter 4  

Liverpool 
(East) 

 
15/NW/0931 

 
Approved: 
25.01.2016 

 

193680 LSTM and 
RLBUHT 

ISRTN: 68323432 registered 
15.08.2017 

 
NIHR portfolio: 20815 

 
RD&I: 5124 approved 

08.08.2016 

 

 Research Development and Innovation Department (RD&I) 

Both studies discussed in this thesis were carried out in the Clinical Research Unit 

(CRU) based in RLBUHT. As the site of these research studies RLBUHT has a legal 

obligation to ensure that they are aware of all research undertaken on the site and 
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have carried out certain assessments prior to study initiation. The CRU is a Medicines 

and Healthcare Products Regulatory Agency (MHRA) accredited phase one research 

unit at RLBUHT. All participant visits for both studies were conducted in this unit.  

Final RD&I approval was provided for both studies once all other approvals were in 

place including: 

• REC approval 

• Finance team/ RD&I business team approval (contracts finalised) 

• HRA approval (only Hand to Nose study as this step only implemented March 

2016) 

• Directorate managers approval  

• CRU approval  

• Evidence of sponsorship in place 

• Evidence of liability insurance in place 

• Evidence of Principle Investigator/Chief Investigator contract with RLBUHT  

 Patient and Public Involvement (PPI) 

PPI is becoming increasingly important in research, and there are many benefits to 

the research team and public with this involvement. Some of the many benefits 

include: 

• Supporting recruitment and consent 
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• Demonstrating to funders that the research topic is important and relevant 

to the public and patients 

• Demonstrating to funders that the study design and documents are 

acceptable to the public 

• Identifying possible ethical issues with the design of the study 

The EHPC team have been studying pneumococcal colonisation in Liverpool over the 

last 9 years. The clinical and lab EHPC team understand the importance of PPI in 

research and we strived to ensure we had continual PPI events planned throughout 

both study periods. 

We attended many public engagement events; these events gave us the opportunity 

to provide information about the research being undertaken and improve local 

knowledge about research. This included us attending public open days, science fairs 

which are open to the public, having regular display stands and face to face 

engagement with the public at local gymnasiums and libraries. We also created a 

newsletter which was disseminated to previous research participants, colleagues and 

members of the public to which provided updates on findings of finished studies and 

future studies. 

We have also developed a role within the team for research ambassadors; individuals 

who previously participated in one of the EHPC studies. For the studies described in 

this thesis, research ambassadors were used to sense-check promotional and 
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information materials, to provide lay-input into the study protocols and to assist with 

recruitment events. 

A relatively new addition to our PPI work was utilising social media platforms as a 

way of involving the public in the research undertaken. We used multiple platforms 

including Facebook and Twitter to regularly upload information about our face-to-

face research events the public could attend and update followers about current 

trials which were open to recruitment. This has impacted on the demographics of our 

participants; the majority tended to be under 30 years of age who were more likely 

to have an active social media connection 138.   

2.3  Clinical procedures 

 Trial designs  

The two studies in this thesis used a human challenge model study design. 

Participants were challenged with live pneumococcus either intranasally (inoculated) 

or on their hands (exposure). All participants were seen prior to this challenge for 

screening and then were followed up for a period of up to 14 days post challenge. 

Nasal wash and blood samples were obtained to assess for nasopharyngeal 

pneumococcal colonisation and to investigate the immune response to challenge 

with or without colonisation (sample obtained discussed further below). 
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Study specific trial design with study design flow charts are outlined in Chapters 3 

and 4 (sections 3.2.2 and 4.2.2). 

 Ethical considerations 

Autonomy 

The study team ensured that participants were given sufficient information, written 

and spoken, without the use of medical jargon or other language requiring specialist 

knowledge. This ensured that participants could understand the research objectives 

and the risks and benefits of any procedures. Participants were always given enough 

time to consider the information before consenting to any involvement. We ensured 

that all participants did not feel pressured or persuaded into participating in the 

research study. Participants were financially compensated for their participation in 

the studies. Offering this payment was not intended to unduly influence participation 

but to compensate participants for their time and travel expenses incurred due to 

taking part in the trial. 

Participants that were recruited via the Consent4Consent database (see below 

section 2.3.3) were contacted regarding the research as they had previously 

expressed an interest in research. These participants had already given their consent 

to be contacted about future research that they may be eligible for. Participants were 

informed that they had the right to withdraw their consent and therefore withdraw 

from the study at any time without giving reason. 
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Non-maleficence 

The research team had a responsibility to minimise the risk of harm to the 

participants. We ensured that all researchers in the team had sufficient knowledge 

about the proposed interventions and potential risks. In addition, strict safety 

procedures were in place for both studies described in this thesis. See sections 2.3.6 

and 2.3.7 for further details on participant safety during the trial.  

Beneficence 

There are no direct benefits to the participants when taking part in the study. 

However, participants may have benefited from a better understanding of clinical 

research and from a sense of contributing to valuable medical research. 

Justice 

Justice is balanced with non-maleficence. We ensure that the research is open to all 

individuals, but important exclusion criteria are in place, primarily to protect 

individuals from undue risk.  

 Recruitment and advertising 

Prior to the start of the study the research team ensured that there were strategies 

in place to meet recruitment targets. Recruitment strategies used for both studies 

described in this thesis are detailed in Table 5. Figure 8 shows a flow chart of the 



Methods 

64 

participant recruitment process. Advertising for the studies was not aimed at any 

vulnerable adults or those that may have lacked capacity to consent to take part in 

research. Participants were asked to gift their samples for use in future studies and 

to share with collaborators internationally. A continuous consent approach was used 

throughout the study; participants were asked at each visit if they were willing to 

continue.   

Table 5: Recruitment strategies for both Hand to Nose study and New Serotypes study 

Recruitment activity Description 

Flyers and 

recruitment posters 

Flyers and recruitment posters were put up on notice boards, 

table displays and around local public areas and local universities 

Social media adverts Facebook and Twitter announcements  

Electronic notice 

boards 

Announcements on local university’s electronic 

notice/announcement boards.  

Face-to-face 

recruitment drives 

Included: local university fresher’s fairs, local university open 

days and events at local halls of residences, libraries and 

gymnasiums.  

Interested people were given study recruitment flyers and were 

briefly spoken to about the purpose of the research and what 

taking part involved.  

Face to face recruitment drives were the most fruitful 

recruitment strategy for our team. During the 2016 fresher’s 

events at local universities we obtained contact details of over 

1400 potential participants. 

Consent4Consent 

Database 

Consent4Consent Database is a secure database of volunteers, 

created by RLBUHT, who had given their permission to be 

contacted about future research projects.  
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Figure 8: Flow chart of participant recruitment 
Following initial expression of interest in taking part in research, participants were given written 
information about the study and all were seen for a face-to-face discussion about the study prior to 
consent.  
 

Recruitment team contacts 
participant if previously given 

contact details at face to face event. 
Via email or phone.  

Potential participants contact 
recruitment team.  

Via email, phone or text.  

If participants happy to consent to 
the research study- the consent 
process and eligibility check was 
done 1:1 with a member of the 

clinical research team following this 
consultation 

Initial recruitment activity – see 
Table 5 above 

Email sent to potential participants with general details about the study and the 
study participant information leaflet (PIL). Invited to attend a face to face 

consultation with the research team.  
Provided we had not exceeded the capacity for recruitment, participants were 
given an unrestricted amount of time to decide whether to participate or not.  

Face-to-face consultation: 
participants met the research team, listen to a presentation about the study and 

asked any questions about their eligibility or the study 

If participants would like time to 
consider the study, they are given 
an un-restricted amount of time to 
consider participation and can re-
contact the team if/when they are 

happy to consent 

Participants details were put on The Over-Volunteering Protection System (TOPS) 
database prior to starting the study. 

This database was used to prevent volunteers from over-volunteering in trials 
which could be detrimental to their health. 
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 Inclusion and exclusion criteria 

Any specific inclusion and exclusion criteria for the Hand to Nose study and New 

Serotypes study are described in Chapter 3 (Hand to Nose) and Chapter 4 (New 

Serotypes).  

 

Inclusion Criteria- common to both studies described in this thesis 

• Adults aged 18-50 years  
 

To minimise the risk of pneumococcal infection, and to allow comparison with previously published 
experimental work done by the EHPC group 
 

• Fluent spoken English 
 

To ensure all participants have a comprehensive understanding of the research project and their 
proposed involvement 
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Exclusion Criteria- common to both studies described in this thesis 

• History of major pneumococcal illness (other severe bacterial infections included if participant fully 
recovered) 

• History of drug or alcohol abuse  

• History of smoking, defined as: 
o Current regular smoker (smokes daily/ smokes > 5 cigarettes per week)  
o Recent smoker i.e. within the last 6 months  
o Ex-smoker with a significant smoking history (>10 pack years)  

• Asthma (current and on treatment or not on treatment but symptomatic) and chronic respiratory 
diseases– both due to propensity to infection and due to possible confounding effect of  
medications such as corticosteroids.  

• Any other acute or chronic medical diagnosis that is known to increase the risk of bacterial  
infections or could lead to hospitalisation during the study period- at the discretion of study team 

• Taking daily medications that may affect the immune system such as steroids, steroid nasal spray, 
or retinoids 

• On any courses of medications which may affect the immune system such as chemotherapy, 
biologics, radiotherapy 

• Current illness, acute illness within 3 days prior to inoculation or antibiotic treatment within 2  
weeks of inoculation- both due to propensity to infection and to minimise any effect on inoculation 
or  
transmission 

• Currently pregnant 

• Diabetes- type 1 and type 2 (current diagnosis) 

• Involved in another clinical trial unless observational or in follow-up (non-interventional) phase- 
both due to propensity to infection and to minimise effect on inoculation or transmission 

• Significant anaemia, thrombocytopenia, neutropenia, neutrophilia, leucocytosis- as per results of full 
blood count test at screening 

• Previously undiagnosed abnormality found on screening clinical examination such as murmur 
 

To minimise risk of possible pneumococcal infection following inoculation or exposure 
 

• Allergy to penicillin/amoxicillin 
 

For safety of the participants- pneumococcal pathogen used in the studies fully sensitive to penicillins  
and are therefore given to participants during the study as emergency supply if unwell or to attempt to 
clear carriage at the end of the study 
 

• Close physical contact with at risk individuals (children under 5 years of age, immunosuppressed 
adults, elderly, chronic ill health) 
 

To minimise pneumococcal transmission and possible subsequent infection risk to others in the  
Community 

• Have been involved in an EHPC clinical trial involving pneumococcal inoculation in the last 3 years 

• Previous pneumococcal vaccination 

• Taking daily medications that may affect the inoculation such as long-term antibiotics  
 
To ensure homogeneity and interpretability of immunological endpoints of the participant population 
 with respect to previous pneumococcal immunisation or disease  
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 Study schedule 

Common parts of the study schedule for the Hand to Nose study and New Serotypes 

study are described below, specific details for each study are detailed in Chapter 3 

for Hand to Nose Study (section3.2.5) and Chapter 4 for New Serotypes study (section 

4.2.2).  

Following consent, participants were given a study schedule by the research team. 

This included an initial screening visit which was scheduled for the week prior to 

pneumococcal inoculation or exposure (see Table 6 for screening safety 

assessments). During the initial screening, additional study samples were also 

obtained to allow for baseline assessment. These included nasal wash to assess for 

natural pneumococcal colonisation and viral throat swab for both studies. A week 

after the screening visit, all participants who had passed screening came back for day 

0 which included pneumococcal challenge (inoculation or exposure).   
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Table 6: Screening safety assessments 

Assessment Rationale Action taken if abnormal 

Focused clinical 

history with 

medication review 

and clinical 

examination 

Ensure no abnormality that 

could increase risk of 

pneumococcal infection or 

would put participant at 

increased risk in the case of 

infection.  

Significant abnormality: volunteer was 

excluded from the study and the study 

doctor arranged appropriate 

investigations or treatment through 

primary care.  

 

Minor abnormality: if no potential to 

increase infection risk, volunteer 

included in study and study team 

informed primary care for follow up.  

 

Urinary pregnancy 

test 

Rule out pregnancy which 

could increase risks 

associated with 

pneumococcal infection  

 

Excluded from study if positive. 

Full blood count 

blood test 

Ensure no abnormality that 

could increase risk of 

pneumococcal infection or 

would put participant at 

increased risk in the case of 

infection. 

No specific cut off values 

were used when evaluating 

full blood count results. 

Results were taken into 

context of clinical history 

and examination.  

Significant abnormality: volunteer was 

excluded from the study and the study 

doctor arranged appropriate 

investigations or treatment through 

primary care.  

 

Minor abnormality: if no potential to 

increase infection risk, volunteer 

included in study and study team 

informed primary care for follow up. 

 Safety  

Pneumococcus is responsible for infections including otitis media, sinusitis, 

pneumonia, bacteraemia and meningitis. Exposing patients to pneumococcus gives 

a theoretical risk to participants of these infections. However, experience from 

previous pneumococcal challenge studies that have been run in Liverpool, suggests 

that the risk to healthy volunteers of developing an infection is very low. 10% adults 

experience natural colonisation at any time; while the incidence of invasive disease 
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is 20/100,000 patient years). Nevertheless, both studies reported in this thesis were 

designed to ensure any risk was minimised as follows: 

• Experienced study team (in pneumococcal human challenge studies) 

undertaking the work. 

• Careful serotype selection and dosing. Serotypes are all fully sequenced and 

have had antibiotic resistance testing by Public Health England. Dosing for 

these studies was based on a previous dose ranging study undertaken by the 

EHPC team 134 139. The team has experience of inoculating volunteers with 

doses of serotype 6B pneumococcus between 10,000-320,000 CFU/naris 134 

139. We have shown that inoculating at these doses is safe and colonisation 

rates are reproducible 134 139. Further information on serotype selection and 

dosing can be found in Chapter 3 and 4.  

• Study design. The New Serotypes study had a dose escalation period built 

into the study design. This ensured safety monitoring of at least 7 days post 

exposure of the first group receiving a new dose prior to any further 

inoculations (see Figure 13, Chapter 4). For both the Hand to Nose study and 

the New Serotypes studies, participants were put into groups of up to 24 

participants. Groups were inoculated at least a week apart to ensure that we 

could minimise exposure if any safety concerns were raised. 

• Participant selection and exclusion criteria. For both studies, strict exclusion 

criteria must be met, and safety screen visit was carried out to ensure 

participants do not have any un-diagnosed conditions which could put them 
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at increased risk (previously explained under the inclusion/exclusion 

heading).  

• Participant education. Participants were educated about potential risks 

involved in the study and signs and symptoms to look out for during the study 

at numerous times. See Appendix A for participant information leaflets. 

• Rigorous safety procedures. Each volunteer received a safety information 

leaflet, business card with emergency contact information, thermometer and 

3-day course of amoxicillin. Participants were advised to keep this pack with 

them at all times during the study. They were advised to take amoxicillin1) in 

the event they were unwell and were instructed to by the research team 2) if 

they were unwell and unable to contact the research team 3) if they had 

carried pneumococcus during the study and did not have 2 clear nasal washes 

prior to the last visit. Daily monitoring was also undertaken; participants were 

required to contact the study team with their temperature reading and any 

symptoms before midday for 7 days post exposure/inoculation. If the study 

team had not heard from a participant by midday, the volunteer was 

contacted to ensure their wellbeing. If they did not respond an allocated daily 

contact person/next of kin was contacted.   

• 24-hour emergency telephone contact available. A member of the clinical 

team was available for participants 24 hours a day, 7 days per week. This 

emergency number was covered by a research nurse during working hours 

and a medical consultant out of hours. Safety queries were either dealt with 

by phone advice or face to face review could be arranged.   
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• Weekly safety report. This report included study number of each participant, 

bacterial dose and serotype, date of inoculation, if they were a carrier of the 

bacteria post inoculation and details of any symptoms or illness that had been 

reported.  

Risks to researchers during the study are also very low. The main potential risks 

include needle stick injury to the clinical staff during venepuncture procedures and 

biological/chemical hazards within the laboratory for the lab staff. Bacterial stock 

preparation is undertaken in a hood to reduce risk of staff pneumococcal 

colonisation. During inoculation/exposure procedure staff also ensure that the 

bacterial stock is only open to the environment for minimal amount of time to ensure 

bacteria are not aerosolised and keep risk of pneumococcal colonisation of staff to a 

minimum. To ensure these risks are at a minimum, only experienced staff carried out 

procedures, within their competencies, in accordance with standard operating 

procedures regulated by good clinical practice and national guidelines. Appropriate 

risk and Control of Substances Hazardous to Health (COSHH) assessments are in place 

for all laboratory procedures. All laboratory work was conducted in an appropriately 

rated laboratory in line with health and safety regulations for research with human 

tissues/infectious agents.  

 Safety monitoring 

The following definitions were used in both Hand to Nose study and New Stains study 

(taken from HRA): 
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• Adverse Event (AE): Any untoward medical occurrence in a participant to 

whom a medicinal product has been administered, including occurrences 

which are not necessarily caused by or related to that product. 

• Serious Adverse Event (SAE) A serious adverse event is any untoward medical 

occurrence that: 

o Results in death 

o Is life-threatening 

o Required inpatient hospitalisation or prolongation of existing 

hospitalisation 

o Results in persistent or significant disability/incapacity 

o Other ‘important medical events’ may also be considered serious if 

they jeopardise the participant or require an intervention to prevent 

one of the above consequences 

 

There are strict guidelines for monitoring safety of participants taking part in 

research studies and reporting any safety concerns; Table 7 details the procedure for 

informing REC of any safety events. The Hand to Nose study and New Serotypes study 

were not clinical trials of an investigational medicinal product (CTIMP). Accordingly, 

the REC was only informed about SAEs that were related to the study and 

unexpected. In addition to this all SAEs were recorded and reported to the DMSC and 

sponsors (within 24hrs). SAE were monitored and reported until the end of the 

participant’s follow-up.  
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Non-serious adverse events were collected systematically during the research and 

recorded in the case report form and in the weekly safety report. Participants in the 

New Serotypes study were also asked to keep a log of symptoms since new serotypes 

of pneumococcus were being investigated. The results were summarised and 

reported to the DMSC. Safety reporting continued until the participant’s last visit. 

Table 7: Safety reporting to REC for non-CTIMP research studies; guidelines taken from the HRA 140  

 

Who When 

SAE CI or sponsor to the REC which 

issued favourable opinion 

 

Within 15 days of the CI becoming 

aware of the event 

Urgent safety 

measures 

CI or Sponsor to the REC which 

issued favourable opinion 

Immediately by telephone and then 

in writing within 3 days 

 

Progress reports To be submitted by sponsor, 

sponsor’s legal representative 

or Chief Investigator. Must 

always be signed by the CI. 

To the REC which issued 

favourable opinion 

 

Annually (starting 12 months after 

the date of the favourable opinion) 

 

Declaration of the 

conclusion or early 

termination of the 

research 

 

CI or Sponsor to the REC which 

issued favourable opinion 

Within 90 days (conclusion). 

Within 15 days (early termination). 

Summary of final 

report 

 

CI or Sponsor to the REC which 

issued favourable opinion 

Within one year of the conclusion of 

the research. 
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 Data Management and Safety Committee (DSMC) 

The EHPC team has an established Data Management and Safety Committee (DMSC) 

who are available for advice and support for the research team. DSMC should be an 

independent group of experts which can advise the study team using their expertise 

and can give recommendations. This committee was used as an additional safety 

measure for our studies. It consisted of 3 members (including at least 1 statistician) 

who are independent of the study team. The DMSC were supplied with a safety 

report at the end of the study, in the event of an SAE, or if requested at any time by 

the PI or DMSC members. Review of this safety report allows for critique of the safety 

of the studies without any possible reporting bias by study staff deciding to only 

escalate certain events to the committee. In the event of a SAE the DMSC and 

sponsor were also informed within 24 hours of PI becoming aware.  

 Nasopharyngeal pneumococcal challenge 

Participants in both the studies reported in this thesis were exposed to 

pneumococcal bacteria (pneumococcal challenge). On the day of pneumococcal 

challenge participants were specifically asked to report any upper respiratory tract 

(URT) symptoms to the clinical team and an oral temperature was taken as an extra 

safety check. If the participant reported any URT symptoms or had an abnormal 

temperature (>38 °C) they would be reviewed by one of the study doctors who would 

undertake a full clinical history and examination and decide about the safety of the 

participant to undergo the pneumococcal challenge. The pneumococcal challenge 

methods are described in Chapter 3 and 4, sections 3.2.7 and 4.2.1.  
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 Nasal wash sampling method 

Nasal wash was used for detection and quantification of pneumococcal colonisation. 

For this procedure, participants were seated, with their head tilted back to 30°, and 

were asked to hold their tongue at the roof of their mouths. Participants were asked 

to take a deep breath in and hold this breath (to avoid lung aspiration). Following 

this, 5mls of sterile 0.9% sodium chloride (saline) was instilled into one nostril, then 

collected into a sterile foil bowl following leaning forward and blowing the saline out 

of the nose while releasing the held breath (see Figure 9). 

This same procedure was then repeated three more times, in total twice in each 

nostril, with a total of 20ml of saline used. The sample was then transferred into a 

50ml centrifuge tube (Falcon, Thermo Fisher scientific, USA) for transportation to the 

laboratory. If less than 10ml of sample was obtained, the procedure was repeated to 

obtain an adequate specimen. Up to 10mls of extra saline was used if needed.  

 
 
Figure 9: Nasal wash procedure 
A syringe is filled with 20mls of saline, this is inserted into the nasal cavity and 5mls of saline is instilled 
into the nasopharynx. The participant has their head tilted back to approximately 30° while the saline 
is expelled and then leans forward to collect the expelled saline into a foil bowl. Picture reproduced 
with permission from EHPC team volunteer. Consent gained prior to photographs taken. 
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 Viral swab sampling method 

Swabs (flock swab, FLOQSwabs™) were taken from the palatopharyngeal arch using 

a tongue depressor, then placed immediately in viral transport medium (universal 

transport medium) and put on ice for transfer to the laboratory. Throat swabs 

preceded nasal washes to minimise oropharyngeal contamination with nasal 

pathogens (Figure 10).  

 

Figure 10: Viral throat swab procedure.  
A sterile medical swab is used to sample the oropharynx. A wooden tongue depressor was used if 
needed. Picture was reproduced with permission from EHPC team. Volunteer consent was gained 
prior to photography. 

 Blood sampling method 

Blood samples were obtained by venepuncture from the arm. The skin was cleaned 

prior to the procedure (CloraPrep® chlorhexidine gluconate 20mg/ml and isopropyl 

alcohol 0.7ml/ml), and samples were collected using a vacutainer system (Becton 

Dickinson, Plymouth, UK) (Figure 11). 

https://lstmed.sharepoint.com/sites/RespiratoryGroup/Photos/Team%20photos/2016%20Volunteer%20Action%20Photos/IMG_7124.JPG
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Figure 11: Venepuncture procedure 
Participant’s blood was usually taken from the antecubital fossa. The skin was cleaned prior to the 
procedure and samples collected using a vacutainer system. Picture reproduced with permission from 
EHPC team. Volunteer consent was gained prior to photography. 

2.4 Laboratory procedures 

 Pneumococcal stock preparation (batch) 

For each serotype (15B, 23F and 6B) a ‘parent’ bead stock was prepared which was 

then used to prepare all subsequent inoculation stocks. For preparation of the 

‘parent’ stock, clinical isolates of each serotype were cultured on Columbia Blood 

Agar with horse blood (Oxoid, UK). This was then incubated overnight at 37°C in 5% 

carbon dioxide CO2. Following this the bacteria growth was added to Microbank™ 

vials (Pro-lab Diagnostics, USA). These cryovials contain ceramic beads and a unique 

cryo-preservative fluid which has been proven to allow for longer survival of 

fastidious cultures and higher quantitative recoveries and stored at -80°C 141. Prior to 

preparing any inoculum stocks from this ‘parent’ stock, it was checked for 

contamination by plating of the stock and checking for any non-pneumococcal 

bacterial growth and colony uniformity.  
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The preparation of the batch pneumococcal stock was undertaken in a fume hood 

with dedicated incubator and pipettes to ensure no contamination. Using the 

‘parent’ stock, each serotype was plated on blood agar and incubated overnight at 

37°C in 5% CO2. Bacterial colonies which grew overnight were then mixed with 

Vegitone broth (a vegetable-based growth medium, Sigma-Aldrich, UK) and grown to 

mid-log phase. These were then stored in aliquots of 1ml following the addition of 

10% sterile glycerol at -80°C.  

The determination of colony forming units (CFU) per ml is carried out using a slight 

modification of the Miles and Misra method 142. A blood agar plate was initially 

divided into 6 sections and labelled as shown in Figure 12. Using a 96 well U-bottom 

plate (Corning Inc, Germany), 180ul of sterile saline was mixed with 20ul of bacteria. 

Serial dilutions were performed to 106. Three 10ul drops from each dilution were 

placed on the corresponding section of the blood agar plate (e.g. 104 in section 4). 

Following time for drying, the plate was incubated for 9-16 hours at 37°C, 5% CO2. 

The following day the number of visible colonies in each section was counted.  
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Figure 12: Miles and Misra plates for determination of CFU/ml 
Three 10µl drops from serial dilution of inoculum were placed into the corresponding section of the 
blood agar plate. The plate was then inverted and incubated overnight. The following day the number 
of visible individual colonies in each section was counted.  
 
 
 
 

Calculation of the final dose (CFU/ml) is determined using the least dilute section 

where the number of individual colonies can be counted using the following formula;  

 

Prior to human challenge, a sample of the bacterial stock was sent to an independent 

reference laboratory (Public Health England, UK) to confirm bacterial stock purity, 

serotype and antibiotic sensitivity.  

(number of visible colonies/3) x (dilution factor of section) 
  volume of the drop plated  

CFU/ml

volume of 
bacteria 
stock used 
for 
challenge 
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 Preparation of pneumococcal stock on day of challenge   

Participants in the Hand to Nose study and New Serotypes studies were put into 

groups. Each group was challenged on the same day in groups of up to 7 participants 

per challenge. This helped to minimise variability between different bacterial 

challenge stocks being used throughout the study. In addition, for all participants the 

bacterial challenge stock came from the same ‘parent’ stock and same pneumococcal 

batch stock made.  

30 minutes prior to the scheduled pneumococcal challenge appointments the 

bacterial aliquot was thawed. This was spun down at 17000g for 3 minutes, followed 

by a wash step in normal saline. The bacterial pellet was re-suspended in 0.9% saline 

to the desired concentration based on prior CFU quantification. Bacterial suspension 

densities were prospectively quantified by Miles and Misra (M&M) serial dilution, 

both from defrosted stock, and from a control sample which was transported to and 

from the clinical site. This established the loss of bacterial viability related to 

transport. Two independent counts were performed per sample. 

 Nasal wash sample processing 

Nasal wash samples were transported to the laboratory and were processed within 

one hour of the sample being taken to minimise loss of viability. Any large pieces of 

mucus were removed (after vortexing to break up the debris or mucus) prior to 

processing with as little loss of saline as possible. The nasal wash sample was then 
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centrifuged for 10 minutes at 3345g, the supernatant volume was recorded and then 

stored as 1ml aliquots at -80°C.  

The nasal wash pellets were mixed with 100µl of skim milk, tryptone, glucose, 

glycerol medium (STGG), and the STGG plus nasal wash pellet volume was recorded. 

20µl of this was then streaked onto a blood agar plate with gentamicin (4µg/ml). 10µl 

was then used for M&M to assess possible colonisation density. The remaining nasal 

wash pellet was diluted with 8.2ml STGG; a further 25µl was streaked onto blood 

agar plates to assess for co-colonising flora. All plates were incubated overnight at 

37°C in 5% CO2. The remainder of the sample was divided into 3 cryovials and stored 

at -80°C.  

 Detection of pneumococcal colonisation by culture 

Pneumococcal growth was confirmed by visual appearance of the colonies 

(draughtsman-like colony morphology), presence of α-haemolysis, Gram-positive 

staining, optochin sensitivity and bile solubility.  

Serotype was assessed using latex agglutination (commercial kit from Statens Serum 

Institute, Denmark). A participant was labelled as colonisation positive if the serotype 

was proven to be the type experimentally challenged with (6B for Hand to Nose and 

23F or 15B for New Serotypes). If there was growth of any other serotypes the 

participant was labelled as a natural carrier of pneumococcus.  
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 Detection of pneumococcal colonisation by quantitative 

polymerase chain reaction (qPCR) 

2.4.5.1 Bacterial DNA extraction 

Stored samples were thawed and 300µl nasal wash pellet suspension was 

centrifuged at 20,238g for 7 minutes. The pellet was re-suspended with lysis buffer 

and protease mix (300µl; 1-part protease to 6-parts of lysis buffer [LGC Genomics 

GmbH, Germany]), 100µl of zirconium beads and 300µl of phenol, and disrupted 

using a TissueLyser (Qiagen, Germany), twice at maximum speed for 3 minutes (with 

cooling on ice in between). Following a further centrifuge for 10 minutes at 9391g to 

ensure separation of phases. The aqueous phase was mixed with binding buffer 

(600µl) and magnetic beads (10µl), then vortexed and incubated for 30-90 minutes 

in a gyratory rocker (Stuart™ SSM3 Gyratory Rocker) at room temperature. The 

sample and magnetic beads were washed twice with 2 washer buffers (200µl each) 

and bacterial DNA was eluted with 63µl of elution buffer. This buffer was the final 

step which detaches the extracted DNA from the magnetic beads and makes it 

soluble for recovery. 

2.4.5.2 Quantification of pneumococcal DNA by qPCR  

Determination of colonisation status and the density of colonisation episode by qPCR 

was performed through partial amplification of the lytA gene. The master mix 

included 12µl of DEEPC-treated water, 0.225µl of forward primer (5’-
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ACGCAATCTAGCAGATGAAGCA-3’), 0.225µl of reverse primer (5’-

TCGTGCGTTTTAATTCCAGCT-3’), 0.125µl probe (5’-(FAM)-

GCCGAAAACGCTTGATACAGGGAG-(BHQ)-3’) and 12.5µl of TaqMan® Universal PCR 

Master Mix (Life Technologies). In each well, 22.5µl of the master mix was mixed with 

2.5µl of extracted DNA. On each plate, two negative controls used 25µl master mix 

only, and each plate contained a standard curve of 10-fold dilutions of genomic DNA 

extracted from S. pneumoniae (106-101). Samples were assayed as duplicates, using 

thermal cycling conditions: 10 minutes at 95°C for DNA denaturation followed by 40 

cycles of 15 seconds at 95°C and then finally 1 minute at 60°C. All qPCR thermal 

cycling was performed in the same ABI 7500 Fast Real-Time qPCR system (Life 

Technologies, UK).  

The lower limit of detection was set at 40 cycles (CT). The qPCR plate was repeated 

if: 1) there was DNA detected in either of the negative control wells or; 2) any of the 

standards between 106-102 were not detected or; 3) both 101 standard wells were 

not detected or 4) the scatter of the standard results around the fitted regression 

line was poor (R2 ≤0.98, slope was not between -3.1 and -3.6) or 5) the efficiency was 

not between 90% and 110%.  

 Detection and identification of upper respiratory tract viruses 

Viral RNA was extracted from 200µl of viral transport medium (VTM), in which the 

oropharyngeal swab was stored and eluted into buffer using standard protocols for 

the QIAcube or QIAsymphony instruments. The samples were analysed for detection 

of viral RNA using four multiplex real-time PCR assays which amplify the viral 
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genome. All PCR assays were run using the Roche LC480 Instrument (Roche 

Diagnostics, UK). The four assay panels cover the detection of: 

1. Influenza A and Influenza B 

2. Parainfluenza 1-4, Adenovirus 

3. Human Metapneumovirus (hMPV), Respiratory Syncytial Virus (RSV), Human 

Rhinovirus (hRV) 

4. Coronaviruses OC43, NL63, 229E, HKU1 
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Healthy Participants – Pilot Study (Hand to Nose) 
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This chapter was accepted for publication in a peer review journal (European 

Respiratory Journal) on 1st August 2018 and is currently in press.  

3.1 Introduction 

In pneumococcal epidemiology, transmission routes of S. pneumoniae between 

individuals remains poorly understood. It is hypothesised that transmission occurs 

due to inhalation of contaminated respiratory droplets 8. It is unclear if the hands or 

fomites (inanimate object capable of carrying infectious organisms) have a role in 

pneumococcal transmission. If direct transmission is implicated in the spread of 

pneumococcus the relative contributions of direct and indirect transmission modes 

to pneumococcal colonisation and disease are unknown. Current understanding of 

the transmission of this important clinical pathogen is described in Chapter 1 (section 

1.3).  

The hands have been identified as vehicles for the transmission of respiratory 

pathogens previously. Multiple studies have identified respiratory viral pathogens on 

hands and fomites 62 70 72 143 144,with persistence on dry inanimate surfaces ranging 

from 3 hours for coronavirus and up to 3 months for adenovirus 62. When evaluating 

bacterial respiratory pathogens, Gram-negative species such as klebsiella species and 

Pseudomonas aeruginosa have been shown to survive on inanimate surfaces for 

months 62. However, others only last for days such as Haemophilus influenzae (12 

days) 66.  
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Evidence is limited on the survival of pneumococcus on hands and fomites. One study 

exposed the hands of 3 adult volunteers, a glass plate and a plastic ball to 

pneumococcus suspended in two different media (Serum broth [10% horse serum in 

Brain Heart Infusion Broth, Oxoid] and Mueller-Hinton broth [Oxoid]) 68. Persistence 

of pneumococcus on the skin was reported for up to 3 hours post exposure when 

suspended in Serum Broth, but with substantially lower pneumococcal counts than 

the initial bacterial stock 68. Viable pneumococcus was also recovered from a glass 

plate at 15 hours post contamination. For the plastic ball there was an 85% average 

loss of pneumococci (266 CFU) at 4 hours but reported ongoing recoverable bacteria 

8 hours post contamination.    

Many epidemiological studies have examined natural pneumococcal carriage in the 

nasopharynx and transmission of infection has been described in case studies of 

outbreaks or epidemics of specific pneumococcal serotypes in communities 54-56. 

Healthy carrier transmission is less well understood. Observational studies suggest 

that person-to-person transmission occurs when in close contact with carriers such 

as within family groups 52 and could be increased with overcrowding for example 

during the Hajj 53.   

There is emerging evidence from murine models which investigate pneumococcal 

transmission from host to host. Most of these models have investigated 

pneumococcal transmission during influenza A co-infection, as this enhances 

pneumococcal shedding and therefore leads to higher acquisition rates by new hosts 

49. More recently evidence from an infant murine model describing shedding and 
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transmission during pneumococcal mono-infection has been published 51. Using this 

model Zafar et al 51reported that bacterial shedding was highest in pups intranasally 

infected with pneumococcus at age four days and that it peaks over the first four 

days post inoculation. They also reported that transmission was more likely to occur 

when there was a high ratio of colonisation positive pups to colonisation negative 

pups 51.  

We wanted to explore further possible mechanisms of human-to-human 

transmission and acquisition of nasopharyngeal pneumococcal colonisation. To do 

this we have developed our human pneumococcal challenge model to assess the 

feasibility of self-inoculation as a possible mechanism for pneumococcal 

transmission.   

This chapter addresses the following question: Can the hands be vehicles for direct 

transmission of pneumococcus from the hands to nostrils leading to experimental 

pneumococcal colonisation?  
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3.2 Methods  

 Study set up 

Hand to nose study set up procedures and approvals gained can be found in Chapter 

2, section 2.2. 

 Trial design  

Non-specific EHPC trial design information is described in Chapter 2, section2.3.1, 

section and ethical principles which were considered prior to the study initiation are 

outlined in section 2.3.2.  

The Hand to Nose study involved human participants being experimentally exposed 

to Streptococcus pneumoniae on their hands and asked to facilitate transmission of 

bacteria to the nasopharynx. Participants were followed up to evaluate if they had 

acquired nasopharyngeal pneumococcal colonisation using nasal washes at day 2, 6 

and 9. There was an assessment of two different transmission methods and the 

impact of wet bacterial transmission versus transmission following drying.  

The dose of pneumococcus used for the exposure procedures was 3.2 x 106 CFU. In a 

previous EHPC study 139 participants were intranasally inoculated with up to 3.2 x 105 

CFU/naris (6.4 x105 CFU total) with no significant adverse events. Pre-study 

experiments showed that there was a 1-2 log drop in pneumococcal counts 

recovered from the hand after exposure when the bacteria were wet and 
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immediately after drying (data not shown). Therefore, we estimated that we could 

expose participants’ hands to 6.4 x 106 CFU and still be confident that it would be safe 

for participants. However, as this is the first study of this type, we decided to use half 

this dose (3.2x106 CFU) to ensure safety further.  

All participants were exposed to serotype 6B Streptococcus pneumoniae. The first 

forty volunteers were randomly allocated, on the day of exposure, to one of four 

different transmission groups;  

1. Sniffing bacterial residue after air-drying of the hands- Group A/ ‘dry 

sniff’ 

2.  Pick/poke nose with finger exposed to wet bacteria residue- Group B/ 

‘wet poke’ 

3. Sniffing wet bacterial residue- Group C/ ‘wet sniff’ 

4. Pick/poke nose with finger exposed to dried bacterial residue ‘dry 

poke’ 

Randomisation was computer-generated and occurred in blocks of 6. An 

independent co-ordinator from LSTM’s Tropical Clinical Trial Unit produced the 

randomisation schedule. Two members of staff that were not involved in the conduct 

of the study produced sealed envelopes containing the group allocations. On the day 

of exposure, a clinical team member opened the envelope in from of the participant 

and informed them which transmission group they would be in.  
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Following the results from these first 4 groups, the trial steering committee (TSC), 

discussed the results and decided which group would be taken on to complete a 

larger number of participants (see Figure 13). 
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Figure 13:  Study Design Flow Chart 
The first 40 participants were randomly allocated, on the day of exposure, to one of the four 
transmission groups. Rates of colonisation for each of these transmission groups were discussed by 
the trial steering committee following the completion of the first 40 participants. One group was 
chosen to take forward to an extended cohort for better precision of estimated rates of colonisation.  
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 Recruitment 

Recruitment strategies and where the study was advertised is outlined in Chapter 2, 

section 2.3.3.  

 Inclusion/Exclusion criteria 

Inclusion and exclusion recruitment criteria can be found in Chapter 2, section 2.3.4.  

For the Hand to Nose study some additional specific inclusion criteria and exclusion 

criteria are outlined below.  

Table 8: Inclusion and exclusion criteria specific to Hand to Nose study 

Inclusion Criteria 

• Access to their own mobile telephone  
 

To ensure safety and timely communication. Also, to ensure the participants can follow the 
protocol by contacting us daily with temperature and any symptoms during the first 7 days 
post exposure to pneumococcus 
 

• Capacity to give informed consent  
 

To ensure it is clear to the research ethics committee that we will only be undertaking this 
research in adults who have capacity to make their own decision about entering the study 
 

Exclusion Criteria 

• Any acute dermatological illness or skin injury affecting the hands or face 
 

To ensure no confounding effects of topical medications or increased propensity to skin 
infections 

 

• Natural carriers of pneumococcus as determined at screening visit 
 

To minimise the potentially positive or negative effects on pneumococcal challenge 
 

 



Chapter 3: Hand to Nose Study 
 

95 

 Study schedule 

Non-specific study schedule details are outlined in Chapter 2, section 2.3.5. In the 

Hand to Nose study following pneumococcal exposure, participants were followed 

up for 3 further visits on day 2, 6 and 9 post exposure visits. These follow up visits 

entailed only a nasal wash sample. See Figure 14 for full appointment schedule for 

Hand to Nose study.  
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Figure 14: Hand to Nose study appointment schedule 
Following participants consent to take part in the study, appointments were arranged for all other 
clinical visits. The first visit is a screening appointment for baseline research samples and safety check. 
It also involved a nasal wash to screen for natural colonisation of pneumococcus. The week following 
this screening appointment participants underwent pneumococcal exposure. All participants were 
followed up for 9 days after exposure session. Any participant who was still colonised with 
pneumococcus (6B) at the end of the study was given a three-day course of amoxicillin in an attempt 
to clear colonisation. Clearance of colonisation was not confirmed with repeat nasal wash following 
antibiotics.  
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 Participant safety 

Details of participant safety procedures, safety monitoring and symptom reporting 

are detailed in Chapter 2, sections 2.3.6 and 2.3.7.  

There is a risk of unplanned pneumococcal environmental spread during the 

procedure of exposing participant’s hands to the pneumococcus and while the 

participant attempts bacterial transmission into the nostrils. To reduce this risk, we 

gave the participants full body gowns and eye shields to wear and used a draped area 

for the exposure procedure followed by the area being decontaminated with anti-

bacterial cleaning wipes following each participant.  

To mitigate any potential risk of spreading pneumococcus to vulnerable groups in the 

community, we discussed these risks with our participants and excluded anyone with 

close physical contact with at risk individuals (children under 5 years of age, 

immunosuppressed adults, elderly, chronic ill health) during the trial period. We also 

reduced pneumococcal colonisation burden in all study participants who were still 

colonised with pneumococcus at the end of the study, by giving them oral amoxicillin 

500mg three times daily for 3 days. Clearance of colonisation was not confirmed with 

repeat nasal wash following antibiotics.  
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 Pneumococcal challenge: hand exposure and transmission 

Clinical isolates of serotype 6B BHN418 (GenBank accession number 

ASHP00000000.1), a gift from Professor P Hermans, Radboud University Nijmegen, 

were used to create the ‘parent ‘stock for the Hand to Nose study. See Chapter 2, 

section 2.4.1 for details about how the ‘parent’ stock was made and for general 

aspects of pneumococcal challenge which are common to both studies in this thesis.  

For the Hand to Nose study, challenge involved exposing an area of the participant’s 

hand to pneumococcus, followed by the participant attempting to transmit the 

bacteria into their nose using one of two transmission methods (Figure 15). The 

pneumococcal stock preparation on the day of challenge and the 

exposure/transmission process is outlined in Chapter 2, sections 2.3.9 and 2.4.2.  
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Figure 15: Pneumococcal exposure and transmission process for participants using WHO hand 
hygiene guidelines 145 
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 Clinical sampling processes  

All participant visits were carried out at the CRU in RLBUHT, UK. Samples obtained 

from participants include; nasal wash, throat swab, blood sample and urine samples 

(only women of child bearing age). See Chapter 2, sections 2.3.10-2.3.12 for sample 

collection process. Participants’ full blood count (taken as part of safety procedure) 

and viral throat swabs were analysed by RLBUHT, clinical laboratories. All other 

research samples were processed and stored at LSTM.  

 Sample analysis 

Details of nasal wash sample processing can be found in Chapter 2, section 2.4.3. The 

process for detection of pneumococcal colonisation by culture and by qPCR can be 

found in Chapter 2 sections 2.4.4 and 2.4.5 respectively. The process used for 

detection of concurrent upper respiratory tract viral infection can be found in section 

2.4.6.  

 Endpoints and objectives 

The primary endpoint was experimental pneumococcal colonisation (detection of 6B 

in nasal wash) by classical culture methods at any time point (day 2, 6 or 9) following 

pneumococcal hands to nose transmission. This rate will be expressed as a 

percentage of participants colonised with pneumococcus over the total number 

exposed.  
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The secondary endpoints were (1) Determination of the duration and density of 

pneumococcal colonisation (2) Rates of pneumococcal nasopharyngeal colonisation 

following immediate attempted transmission (3) Rates of pneumococcal 

nasopharyngeal colonisation following attempted transmission following drying of 

bacteria (4) The detection of pneumococcal colonisation by qPCR at any time point. 

 Statistical methods 

As this was a pilot study, with no previously published data pertaining to 

pneumococcal hand to nose transmission rates available, we used proportion 

estimates to ensure the number of participants used in the study was large enough 

to give a specified degree of precision. 

Previous EHPC studies using nasal inoculation of S. pneumoniae bacteria found 

approximately 40% colonisation rates. If our study had the similar rates, 34 people 

would have given 95% confidence that the rate of colonisation lies within 18% on 

either side of this rate (22-58% colonisation). However, as this study does not involve 

nasal inoculation but adds a further step of hand exposure and attempted 

transmission, this rate is likely to be much lower. If we estimate we will get half the 

amount of colonisation observed in other studies (20%), then 34 people would give 

a 95% confidence that the rate of colonisation lies within 14% on either side of this 

(6-34%).  

Taking into consideration the possibility of 10% of participants being natural carriers 

12 and the possibility of 10% drop out/exclusion rate (taken from approximate 
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dropout rates from previous EHPC studies), it was concluded that we would need to 

recruit a maximum of 80 participants to complete 64 participants. This study was not 

powered to compare rates of colonisation between the four different transmission 

methods. The preliminary 40 participants were used to primarily investigate the 

feasibility of the transmission methods to decide which would be taken to the full 

cohort.  

The Fisher’s exact test and the Chi squared test were used to analyse colonisation 

rates. Graphing and statistical analysis were performed using GraphPad prism 

(California, USA). All P values were two-tailed and considered significant if P≤0.05. 

Differences in density were evaluated using one-way ANOVA test. Spearman’s rank 

correlation coefficient was used to assess the correlation of qPCR and culture 

densities.   
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3.3 Results  

 Screening and recruitment  

Between March and June 2017, 76 participants were recruited for the Hand to Nose 

study, with 63 participants completing all the study visits. 9 participants withdrew 

pre-screening due to personal reasons, 4 participants attended the screening visit; 2 

were excluded due to natural carriage of pneumococcus, 1 had an abnormal full 

blood count and one withdrew for personal reasons (see Figure 16). All 63 

participants were challenged with pneumococcus between April and May 2017, with 

the final participant’s final visit on 1st June 2017.  

The mean average age of volunteers was 22.6 years (range 18-45, median 21) and 

the male:female ratio was 23:40. When evaluating the first 40 participants who were 

randomly allocated to 4 different transmission groups, the mean average ages were 

similar (wet sniff: 23 [range19-28]; wet poke: 21.4 [range 20-24]; dry sniff: 22.5 

[range 19-27]; dry poke: 23.3 [range 19-44]). There were no statistically differences 

when comparing gender ratios of all 4 groups using Chi-squared (P=0.19) or when 

comparing the wet and dry groups using the Fisher’s exact test (P=0.08) (male:female 

ratios: wet sniff 5:5; wet poke 4:6; dry sniff 1:9; dry poke 2:8). 
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Figure 16: Consort flow diagram for Hand to Nose study 

 

 Inoculum doses were compliant with protocol 

All inoculum doses were compliant with the protocol as they fell within half and did 

not exceed double the target amount (3.2x106 CFU; see Table 9). The average 

Completed study = (n=63) 

Recruited (n=76) 

Wet sniff 
extended group 
(n=23 
completed) 

Withdrew after consent 
(n=9) 

Screened (n=67) 

Wet sniff (n=10) Wet poke (n=10) Dry Poke (n=10) Dry sniff (n=10) 

Discontinued (n=4) 

• Abnormal FBC 

• Natural carrier x2 

• Withdrew 
consent 

Total number of wet 
sniff group who 
completed the study 
(n=33) 
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pneumococcal dose participants were exposed to in each of the 4 different 

transmission groups were similar (wet sniff 3.4x106 CFU; wet poke 3.3x106 CFU; dry 

sniff 3.3x106 CFU; dry poke 3.4x106 CFU). To complete the full cohort, a total of 15 

different inoculation sessions were conducted, on 5 different days (See Table 9). The 

first 3 challenge days, in which the first 40 participants were challenged, included 

exposure with the four different transmission methods. For the last 2 challenge days 

only the ‘wet sniff’ transmission method was used to complete the full cohort.  

Table 9: Average pneumococcal challenge dose for all participants groups.  

Date of 

Challenge 

Number of 

participants 

Number of 

challenge 

procedures 

Average dose, CFU 

(SD) 

24/04/2017 22 4 3.50 x106 (4.46 x105) 

02/05/2017 15 3 3.24 x106 (2.00 x105) 

03/05/2017 3 1 2.78 x106 (0) 

16/05/2017 12 4 3.33 x106 (1.00 x105) 

23/05/2017 11 3 3.15 x106 (2.23 x105) 

 

 Hands were vectors for transmission of pneumococcus into the 

nasopharynx- classical culture results 

Initially forty participants were allocated to four different transmission groups. Eight 

individuals (20%) were found to be colonised with 6B serotype pneumococcus at 

follow up visits by culture, with highest rates found in the ‘wet poke’ (4/10, 40%), 

and ‘wet sniff’ (3/10, 30%) groups. Drying of the bacteria on the skin before “sniff” 

or “poke” led to 1/10 (10%) and 0/10 participants becoming colonised respectively 
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(see Figure 17 ). The difference in colonisation rates between groups was not 

significant (first 40 participants P=0.10; Chi-square test).  

Acquisition of colonisation following attempted transmission while the bacteria were 

wet was significantly higher than attempted transmission following drying of the 

bacteria (7/20 vs. 1/20 respectively, two-tailed P=0.04, Fisher’s exact test). The only 

group with no acquisition of colonisation following attempted transmission was the 

‘dry poke’ group. No difference was observed when comparing colonisation rates in 

the sniff groups versus poking groups (4/20 vs. 4/20 respectively, two-tailed P=1.00, 

Fisher’s exact test).  

The ‘wet sniff’ group was expanded to improve precision-estimates of rates. A total 

of 33 participants completed the study in this group. Of these, 6 participants became 

colonised (18.2%, 95% CI, 8.6%-34.4%). This was a lower overall colonisation rate 

than we expected following a colonisation rate of 30% in the initial 10 participants 

exposed. However, this fluctuation in colonisation rates week on week is not 

uncommonly seen in previous EHPC studies. For serotype 6B we have often had 

colonisation rates per group range from 10%-70% but with the overall study 

colonisation rate consistently between 45-55%. Overall experimental pneumococcal 

colonisation was found in 11/63 participants (17.5%, 95% CI, 10.0%-28.6%) at any 

time point, following hand to nose transmission of the pathogen.   
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Figure 17: Colonisation rates following classical culture of nasal wash samples at any time point 
after exposure in each transmission group.  
*No experimental carriers of serotype 6b were found in the dry poke group but 2 participants became 
natural carriers of pneumococci after baseline. 10 participants were exposed to pneumococcus in 
each of the 4 different transmission groups (dry poke, dry sniff, wet poke, wet sniff). Following 
discussion by the trial steering committee it was decided that the wet sniff group should be expanded 
to a total of 33 participants (the end graph includes participants from the initial cohort and extended 
cohort; 10 from initial cohort and 23 from extended). Percentage represents the number of 
participants in the group that were found to be experimentally colonised with pneumococcus at any 
time point following exposure.  
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 Natural Pneumococcal Colonisation 

Overall the natural colonisation rate in our cohort was 6% (4/67). Two participants 

were excluded at baseline due to natural carriage and two participants became 

natural carriers during the study (Error! Reference source not found.). No 

participants were co-colonised with 6B and the naturally acquired serotype when 

assessed using culture. However, 6A/B specific qPCR showed that one participant 

was co-colonised with naturally acquired serotype 19 and 6B at both day 2 and 6. No 

baseline nasal wash samples were positive for lytA qPCR confirming that all 

participants were negative for carriage at time of exposure.  

 

 
Figure 18: Natural pneumococcal colonisation serotypes as found by culture in 4 individuals  
NVT: non-vaccine type, serotypes identified by Statens Serum latex kit; SPN: Streptococcus 
pneumoniae. Pool D NVT serotypes: 16(16F, 16A), 36 and 37.  
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 Pneumococcal colonisation densities were similar in each 

transmission group- classical culture results 

Median post-exposure colonisation densities (CFU/ml of nasal wash) of the ‘wet 

sniff’, ‘wet poke’ and ‘dry sniff’ groups were 5.6x101 (range 4.3x10-1-3.7x106), 4.72 

(range 4.5x10-1-1.25x102) and 2.42 (range 1.16-9.55) respectively. See Figure 19for 

densities at each time point. 
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Figure 19: Pneumococcal colonisation densities, using classical culture method of pneumococcal 
identification, at each time point post exposure to pneumococcus. 
Results from the first 40 participants/subjects are in filled points and participants positive from the 
second part of the wet sniff group are in open points. Nasal washes were performed on day 2, 6 and 
9 post exposure to determine carriage status and density. Density is reported as CFU/ml of nasal wash 
returned. 
 

 



Chapter 3: Hand to Nose Study 
 

110 

Differences in densities between groups, when comparing the colonisation positive 

participants from the initial cohort (n=8), were not statistically different using a one-

way ANOVA test at any time point. Overall density over time for each participant was 

calculated using area under the curve (AUC). Comparison of AUC of the different 

transmission groups was also not statistically significantly different.  

When the wet sniff group was extended, the AUC appeared statistically significantly 

different between the wet sniff, wet poke and dry sniff groups (one-way ANOVA test) 

(Table 10). However, when applying Dunn’s multiple comparison test, no significant 

differences were observed (Table 11).  

Table 10: Comparison of transmission groups (full cohort) colonisation densities from culture. 
One-way ANOVA test with a P value of <0.05 considered significant. All densities log transformed prior 
to analysis. 

 Wet Sniff 

Mean Densities,  

Log transformed 

(Standard error) 

N=6 total 

Wet Poke 

Mean Densities, 

Log transformed 

(Standard error) 

N=4 total 

Dry Sniff 

Mean Densities, 

 Log transformed 

N=1 total 

P value 

(one-way 

ANOVA 

test) 

D2 1.96 (0.97) 

N=6 

0.21 (0.24) 

N=3 

0.98 

N=1 

0.23 

 

D6 2.09 (0.67) 

N=6 

0.91 (0.28) 

N=3 

0.06 

N=1 

0.20 

 

D9 1.86 (0.44) 

N=6 

1.05 (0.73) 

N=3 

0.38 

N=1 

0.41 

 

AUC  14.57 (3.52) 

N=6 

4.62 (1.62) 

N=4 

4.02 

N=1 

0.04* 
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Table 11: Dunn’s multiple comparison test results from AUC densities from culture of different 
transmission groups 

Dunn's Multiple Comparison Test Difference in rank 

sum 

Significant? P < 

0.05? 

Wet Sniff AUC vs Wet Poke AUC  5.083 No 

Wet Sniff AUC vs Dry Sniff AUC  5.333 No 

Wet Poke AUC vs Dry Sniff AUC  0.250 No 

 lytA qPCR detected pneumococcal DNA in more samples than 

classical culture  

252 nasal wash samples were collected from the 63 participants who completed the 

study; all were tested for the presence of S. pneumoniae by microbiological culture 

and retrospectively using lytA qPCR. The proportion of samples positive for 

colonisation by qPCR was significantly more than the proportion of samples positive 

for carriage by culture (23.8% vs. 13.1%, P<0.0001, Fisher’s exact test) (Table 12). 

There were no samples where pneumococcus was detected by culture but not lytA 

qPCR but in 10.7% of samples pneumococcus was only detected by lytA qPCR.  

Table 12: Comparison of microbiological culture and qPCR in detection of pneumococcus in nasal 
washes. 
 *3 samples culture positive for natural carriage of pneumococcus after baseline included   

Culture 

Positive (%) 

Culture 

Negative (%) 

Total 

qPCR Positive (%) 33 * (13.1%) 27 (10.7%) 60 (23.8%) 

qPCR Negative (%) 0 (0%) 192 (76.2%) 192 (76.2%) 

Total 33* (13.1%) 219 (86.9%) 252(100%) 
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 qPCR detected significantly higher rates of pneumococcal 

colonisation compared to classical culture 

Using molecular methods (lytA qPCR) resulted in higher colonisation detection rates 

compared with culture (35/63 [56%] vs 13/63 [23%] respectively, P=0.0001, Fisher’s 

exact test) (Table 13).  

Table 13: Comparison of microbiological culture and qPCR in detection of participants colonised 
with pneumococcus.  
* 2 participants who were natural carriers of pneumococcus after baseline included  
  

Culture 

Positive (%) 

Culture 

Negative (%) 

Total 

qPCR Positive (%) 13* (20.6%) 20 (31.7%) 33 (52.4%) 

qPCR Negative (%) 0 (0%) 30 (47.6%) 30 (47.6%) 

Total 13* (20.6%) 50 (79.4%) 63 (100%) 

qPCR detected a larger proportion of colonisation positive participants in every 

transmission group and at every time point except for day 9 in the dry sniff group 

compared to culture (Figure 20). The difference was most apparent in dry poke 

group, where 7/10 (70%) volunteers were experimentally colonised at any time 

point, with detectable pneumococcal DNA in nasal washes at 9 days after exposure. 

Of the 24 participants who were only determined as experimental colonisers of 6B 

using qPCR, 5 participants were colonised for more than one time point and 8 further 

participants were found to be colonisers at day 6 or day 9 nasal washes. 
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Figure 20: Comparison of culture (6A/B serotype only) and lytA qPCR results for different 
transmission methods 
Nasal washes performed on day 2, 6- and 9-days post exposure to pneumococcus to determine 
colonisation status. Nasal washes were plated on blood agar plates in real time and read the following 
day. Those participants with confirmed serotype 6B in nasal washes were deemed colonisation 
positive. Filled bar charts represent colonisation rates at each time point for each transmission 
method. At the end of the study all samples were re-run using lytA qPCR method of detecting 
pneumococcus. Striped bars are the additional participants found to be colonised with this molecular 
method. No samples were culture positive and qPCR negative for pneumococcus.  
 
 

 All transmission groups had similar densities of colonisation 

when assessed using qPCR 

Differences in densities between groups were not statistically different at any time 

point or AUC analysis for either the first 40 participants or the full data set (Table 14). 

Samples which were only positive with qPCR tended to have lower densities 

compared to samples which were both qPCR and culture positive (Figure 21).  
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Table 14: Comparison of transmission groups (full cohort) colonisation densities from lytA qPCR.  
One-way ANOVA test with a P value of <0.05 were considered significant. All densities were log 
transformed prior to analysis.  

 Wet Sniff 
Mean Densities, 

Log 
transformed 

(Standard error) 
N=17 total 
colonised 

Wet Poke 
Mean 

Densities, Log 
transformed 

(Standard 
error) 

N=6 total 
colonised 

Dry Sniff 
Mean 

Densities, Log 
transformed 

(Standard 
error)  

N=3 total 
colonised 

Dry Poke 
Mean 

Densities, Log 
transformed 

(Standard 
error) 

N=7 total 
colonised 

P value 
(one-
way 

ANOVA 
test) 

Day 2 1.97 (0.39) 
N=14 

1.13 (0.07) 
N=4 

2.41 (0.40) 
N=2 

1.56 (0.26) 
N=2 

0.34 
 

Day 6 2.99 (0.61) 
N=9 

2.09 (0.32) 
N=6 

1.32 (0.72) 
N=2 

1.65 (0.56) 
N=3 

0.42 
 

Day 9 2.64 (0.58) 
N=9 

2.29 (0.41) 
N=4 

2.75 (NA only 
one positive 

sample) 
N=1 

1.08 (0.28) 
N=3 

0.49 
 

Area Under 
Curve  

10.9 (2.90) 
N=17 

10.4 (2.45) 
N=6 

7.78 (4.58) 
N=3 

3.74 (1.31) 
N=7 

0.41 
 

 

 
Figure 21: lytA qPCR densities for each transmission group  
Nasal washes were performed at days 2, 6 and 9 post pneumococcal exposure. At the end of the study 
all nasal wash samples underwent DNA extraction and lytA qPCR for detection of pneumococcal DNA. 
Densities expressed as copies/ml of nasal wash. Graph shows each participant who was found to be 
colonisation positive following qPCR for each transmission group. Participants who were positive at 
more than one-time point are linked with a line. Open circles represent those samples which were 
only found to be positive using qPCR, filled circles are those samples that were positive with both 
culture and qPCR.  
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When the difference between pneumococcal detection was stratified by qPCR 

density it was clear that qPCR detects more carriers colonised at <101 CFU/ml density 

than classical culture method (Table 15). However, at qPCR densities 103 copies/ml 

and higher there was 100% concordance between qPCR and culture results.  

Table 15: Detection of pneumococci in nasal wash by bacterial culture and qPCR (categorised 
according to qPCR density) 

Density by QPCR 

(copies/ml) 

Number culture positive/number qPCR 

positive (%) 

<10 2/12 (17%) 

101 8/29 (28%) 

102 10/13 (77%) 

103 9/9 (100%) 

104 1/1 (100%) 

105 3/3(100%) 

 

 Density of colonisation reported by qPCR correlated with 

density reported by culture 

The correlation between pneumococcal density found by microbiological culture and 

qPCR was determined for 33 samples. There was a positive correlation between 

density of pneumococcus by culture and qPCR (rs=0.77, P<0.0001) (Figure 22).  
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Figure 22: Correlation between bacterial culture and qPCR in quantifying pneumococci in nasal 
wash.  
Quantification of pneumococci by culture and qPCR were positively correlated. Spearman’s rank 
correlation coefficient for samples positive by both qPCR and culture is 0.77. P<0.05 was considered 
significant.  

 

 No difference in length of time colonised was found between 

transmission groups 

Mean duration of carriage was not significantly different between transmission 

groups by classical microbiology nor by molecular methods of pneumococcal 

detection (1-way ANOVA culture results, P=0.42, qPCR results, P=0.82). Also, no 

significant difference was observed when comparing length of time colonised 

between wet and dry groups (Mann Whitney test culture results, P=1.0, qPCR results, 

P=0.59) or the poke vs sniff transmission methods (Mann Whitney test culture 

results, P=0.36, qPCR results, P=0.67) (Table 16). 
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Table 16: Mean and median days of colonisation for each transmission group, detected by both 
culture and qPCR methods 

Group 
(number 
colonised 
culture and 
qPCR) 

Median – 
culture 

(days with 
interquartile 

range) 

Median-qPCR 
(days with 

interquartile 
range) 

Mean- culture 
(days with 
standard 

deviation) 

Mean -qPCR 
(days with 
standard 

deviation) 

Wet sniff  
n=33 (culture 
n=6, qPCR 
n=17) 

9.0 (9.0-9.0) 9.0 (2.0-9.0) 9.0 (0.0) 6.2 (3.3) 

Wet poke 
(culture n=4, 
qPCR n=6) 

9.0 (3.8-9.0) 9.0 (5.0-9.0) 7.3 (3.5) 7.3 (2.9) 

Dry sniff 
 (culture n=1, 
qPCR n=3) 

9.0 (9.0-9.0) 
 

6.0 (2.0-9.0) 9.0 (0.0) 5.7 (3.5) 

Dry poke 
 (culture n=0, 
qPCR n=7) 

NA 6.0 (2.0-9.0) NA 6.1 (3.1) 

Full wet group 
(culture n=10, 
qPCR n=23) 

9.0 (9.0-9.0) 9.0 (2.0-9.0) 8.3 (2.2) 6.5 (3.2) 

Full dry group 
(culture n=1, 
qPCR n=10) 

9.0 (9.0-9.0) 6.0 (2.0-9.0) 9.0 (0.0) 6.0 (3.1) 

Full sniff group 
 (culture n= 7, 
qPCR n=20) 

9.0 (9.0-9.0) 7.5 (2.0-9.0) 9.0 (0.0) 6.1 (3.3) 

Full poke 
group  
(culture n= 4, 
qPCR n=15) 

9.0 (5.5-9.0) 9.0 (4.0-9.0) 9.0 (3.1) 6.7 (3.0) 

 

 No participants had asymptomatic viral infection at baseline 

We wanted to investigate whether the presence of asymptomatic upper respiratory 

tract (URT) viral infection increases the susceptibility to experimental pneumococcal 

colonisation following hand to nose transmission of the pathogen. Oropharyngeal 

swabs were taken between 4-7 days prior to pneumococcal exposure for all 

participants. At the end of the study we retrospectively analysed swabs from carriage 
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positive participants and negative controls (matched by date of exposure) by PCR for 

the presence of URT viruses. 22 samples were analysed in total due to funding 

constraints. No viral co-infections were found in any samples (tested for Influenza A, 

Influenza B, Parainfluenza 1-4, Adenovirus, Human Metapneumovirus (hMPV), 

Respiratory Syncytial Virus (RSV), Human Rhinovirus (hRV), Coronaviruses OC43, 

NL63, 229E, HKU1).  

3.4 Discussion  

This novel use of a human challenge model allowed for the study of pneumococcal 

colonisation in a controlled environment evaluating transmission of pneumococcus 

from hands into the nose. The study shows, for the first time, that the hands can be 

a vehicle for transmission of pneumococcus leading to acquisition of nasopharyngeal 

colonisation.  

 Success in the model expansion; hands were vehicles for 

transmission of pneumococcus  

We were able to successfully modify the Experimental Human Pneumococcal 

Challenge model 146 to allow for the study of transmission dynamics from the hands 

to the nose. Experimental pneumococcal colonisation was established in 17.4% of 

participants (11/63) when assessed using microbiological culture.  
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The EHPC model was established using nasal inoculation of the pneumococcal 

bacteria. Previous EHPC studies in Liverpool showed an overall colonisation rate of 

63% using this inoculation method (colonisation rates ranged from 55%-70% 

depending on dose of bacterial stock inoculated with) 139. A further study found 

colonisation acquisition was dose dependent with carriage rates ranging from 10%-

60% when inoculated with dose between 1x104-1.6x105, with carriage rates 

stabilising around 50% above 4x104 CFU/naris inoculation dose 10. Lower rates 

observed in this study may be due to the sniffing transmission method causing 

movement of the pathogen out of the nasopharynx. During the inoculation process, 

the inoculum is instilled around the anterior naris and participants are instructed not 

to sniff or blow. Another possible explanation for lower colonisation rates is death of 

the pneumococcal bacteria during the drying process on the hands.  

Epidemiological studies of nasopharyngeal colonisation rates with matched hand 

contamination rates support the findings of this study and suggest that hands could 

be vectors for direct and in-direct transmission of pneumococcus. One study 

reported simultaneous nasopharyngeal colonisation of pneumococcus and hand 

contamination rate of 22%, with serotype concordance of 85% (17/20) 74. A further 

study found hand contamination with pneumococcus is an indicator for risk of otitis 

media in populations at risk for tympanic membrane perforation (relative risk 8.4; 

95% CI 4.6-15.2) 42. 

An association between frequent sharing of drinking glasses or bottles and 

pneumococcal colonisation has also been reported. A significant correlation between 
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colonisation prevalence and self-reported frequency of sharing a drinking 

glass/bottle with 33% of frequent sharing group (sharing a glass/bottle always or 

usually) colonised with pneumococcus versus 16% of infrequent sharing group 

(sharing a glass/bottle half of the time, occasionally or never) 44. The authors 

suggested that these findings indicate pneumococcal transmission through saliva is 

a highly plausible route in young adults. However, the possibility that the hands could 

be vectors for this transmission was not considered or investigated. Following the 

results of this study, it is plausible that hand contamination and hand-to-nose 

transmission could be implicated in the higher rates of colonisation observed in the 

‘frequently sharing group’. 

It is widely known that hand washing is an effective means of preventing 

gastroenteric infections, especially in the developing world and it is a cost effective 

prevention strategy147 148 70. The effect of hand washing for preventing acute 

respiratory tract infections (ARIs) is less well understood. A systematic review of 8 

studies considering this question found a consistent impact of hand washing on ARIs 

with reduction of risk of ARIs by 16% (95% confident interval 11-21%)70. This 

reduction in risk is lower than that observed with the effect of hand washing on 

gastroenteric infection (47% reduction in risk of diarrhoeal illness) 147, but supports 

the results of this study that contaminated hands likely aid in the transmission of 

ARIs. It supports the view that hand washing could be a cost effective and feasible 

option for helping prevent ARIs and other contagious illnesses.  
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 Factors affecting transmission 

When assessing colonisation rates using microbiological culture, results suggested 

that transmission of pneumococcus resulting in colonisation was more likely when 

the bacteria were transmitted while still wet. However, interestingly when evaluating 

colonisation rates using molecular methods (qPCR) this difference disappeared with 

both the wet and dry groups having approximately 50% colonisation rates.  

Drying of the bacteria tended to lead to lower density of colonisation compared to 

transmission while the bacteria were still wet. No significant differences were 

observed between the two different transmission methods; sniffing versus poking. 

Participants who attempted transmission using the sniffing technique tended to have 

higher colonisation densities. This difference is likely due to the dispersion of the 

bacteria into both nostrils and to a larger area of the nasopharynx compared to the 

poking method.  

Little is known or understood about the survival of pneumococcus on the hands and 

the role of contaminated hands and fomites in pneumococcal transmission. One 

study reported a significant drop in pneumococcal counts at 3 minutes post hand 

exposure, but did recover some viable bacteria 3 hours post exposure 68. 

Interestingly, there was significant inter-volunteer variation in pneumococcal 

survival, with the greatest difference (4% recovery to 79% recovery rate at 3 minutes) 

observed between two volunteers exposed to 435 CFU of pneumococcus suspended 

in Serum broth (10% horse serum in Brain Heart Infusion Broth, Oxoid) 68. A limitation 

of this study was that the researchers were unable to assess whether the numbers 
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of pneumococci recovered were sufficient to lead to colonisation or infection. Our 

study confirms that pneumococcus is still viable following drying and can cause 

nasopharyngeal colonisation, albeit at lower densities.  

Transmission models using infant mice have previously been able to give some 

insights into transmission dynamics. Most transmission models have depended on 

influenza A virus co-infection. This has been shown to greatly enhance the 

pneumococcal shedding and leads to more acquisition of colonisation in new hosts 

48 49. Direct contact between pups was not needed for transmission and acquisition 

of colonisation to occur; this suggests that an environmental reservoir may be 

important for the spread of this pathogen 50. When evaluating Streptococcus 

pneumoniae mono-infection similar to all participants in this human challenge study, 

one murine model reported bacterial shedding was highest over the first 4 days post 

challenge 50. This suggests that host-to-host transmission may peak immediately 

following acquisition of pneumococcal colonisation. Epidemiological studies support 

this. A study investigating spread of pneumococcus within families showed rapid 

spread between family members if a new serotype was introduced to the family with 

17/25 transmission episodes took place within 2 weeks of a new serotype entering 

the household 52. 

Transmission in the same murine model was found to be increased when there was 

a high ratio of colonised pups to uncolonised pups in a litter 50. This supports previous 

evidence to suggest close contact increases in transmission of pneumococcus. 

Pneumococcal outbreaks have been reported in nursing homes 58 and prisons 60 and 
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colonisation rates were found to be significant higher at the end of the Hajj where 

close contact and overcrowding is common 53.   

Host and pathogen factors are also likely to impact transmission and the potential 

for the acquisition of pneumococcal colonisation. Murine models have shown that 

transmission is increased with high levels of bacterial shedding 48-50. Shedding is 

increased with acute inflammation in the nasopharynx and is also observed with co-

infection with influenza A virus 48-50. It has also been shown that nasopharyngeal 

inflammation in contact mice lowers their threshold for acquisition of pneumococcal 

colonisation 48. High bacterial load in index mice and capsular type were also found 

to affect transmission 48 69. One study used neutrophil depletion in index mice 

(experimentally colonised with pneumococcus) to investigate this. They found a 

small but significant increase in pneumococcal nasopharyngeal load can increase 

transmission 48. A further study showed that capsular type is correlated with 

transmission rates; capsule types which are better at escaping mucus entrapment 

show increased transmission 69.   

 qPCR detected a higher rate of pneumococcal colonisation 

compared with culture 

The proportion of nasal wash samples positive for colonisation by qPCR was 

significantly higher than the number detected by culture. This is in keeping with a 

previous EHPC study which also found significantly higher colonisation rates using 

qPCR (42.6% vs 27.5%, P<0.0001)149.  
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Culture is considered the gold standard method for detection of upper respiratory 

colonisation of pneumococcus and is recommended by the WHO Pneumococcal 

Carriage Working Group 150. The main advantage of culture is that further tests can 

determine serotype of pneumococcus recovered. Molecular methods of 

pneumococcal detection are increasingly being used either to complement culture 

or on their own to detect pneumococcal DNA. The WHO Pneumococcal Carriage 

Working Group state that there is no current gold standard molecular method of 

pneumococcal detection; they support the lytA PCR assay as widely used and species 

specific. The specificity of molecular methods to detect S. pneumoniae have been 

questioned due to similarities in gene profile of other streptococcal species 151-154. A 

study looking at pneumococcus in cerebrospinal fluid assessed specificity of lytA 

qPCR and reported a specificity of 70% 155. Many studies have showed that qPCR is 

more sensitive at detecting colonisation compared to culture 155-157, with increased 

sensitivity shown when an enrichment step was used 158. However, when the density 

of pneumococcal carriage is of interest, as in our study, this extra step cannot be 

utilised. The most thorough study methodology would utilise both of these methods; 

an initial qPCR could be run with the raw samples on which density could be 

measured then a second qPCR could be run following enrichment.  

The main concern about using qPCR is that this technique cannot confirm the viability 

of pneumococcal DNA detected; a positive PCR result which is culture-negative could 

represent either live bacteria causing low-density colonisation or non-viable/dead 

pneumococcal debris. It has been suggested that using an enrichment step in the 

qPCR method can increase the sensitivity of the method by reducing the impact of 
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pneumococcal DNA signal originating from possible non-viable bacteria 159. A 

previous study supports our findings; they reported significantly higher rates of 

pneumococcus in saliva using qPCR compared to culture (44/50 [88%] vs. 2/50 [4%] 

respectively) 39. In this study, higher quantities of pneumococcal-specific genes were 

detected in culture-enriched saliva samples. This study also used sham-inoculated 

samples with pneumococcal DNA. These samples were found to be negative with lytA 

qPCR which supports the hypothesis that qPCR detects low density colonisation of 

live bacteria rather than non-viable bacterial DNA 39. A further study reported that 

pneumococci were recovered following re-culturing from the majority of samples 

that were qPCR positive and initially culture negative, further supporting the validity 

of the method 159. 

The results of this study support the hypothesis that qPCR can detect subclinical or 

low-density colonisation rather than detecting non-viable pneumococcal debris. In 

20% of new qPCR colonisers pneumococcus was found at more than one-time point. 

In addition, 33% were found to be colonisers at day 6 or day 9 nasal washes. It is 

unlikely that non-viable or dead bacterial DNA would be still in the nasopharynx 

>6days following initial exposure or be detectable at multiple time points, supporting 

that qPCR likely detects low density colonisation. Using a novel home sampling 

method, the EHPC team have recently examined bacterial movement after 

experimental pneumococcal challenge 160. In this study, the kinetics of pneumococcal 

colonisation or clearance during the first 48 hours following challenge by using self-

collected saliva and nasal lining fluid samples 160. The study showed that at 48 hours 

less than one fifth of non-colonised participants had detectable levels of 
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pneumococcus from nasal lining fluid samples (4/21 (19%) 160. The results suggest 

two distinct profiles of those protected against colonisation;  

1. Saliva clearers; these participants demonstrated a fast-initial 

movement of pneumococcus into the bacteria. With 40% having 

complete clearance of pneumococcus from the nose by 8 hours 

160.  

2. Nasal clearers; these participants show a rapid and strong 

neutrophil baseline activity 160.  

This study supports the hypothesis that dead bacteria do not stay in the nasopharynx 

for prolonged periods of time, with the majority of clearance happening within 24 

hours of exposure or inoculation.  

 Culture and qPCR methods used together improved sensitivity 

of pneumococcal detection  

Our data suggest that using both culture and qPCR to determine pneumococcal 

colonisation is beneficial. By using both methods the chance of missing 

pneumococcal colonisation is likely to be reduced. Higher colonisation rates were 

found using qPCR, but pneumococcal densities measured with both methods were 

positively correlated. All samples that were culture-positive for pneumococcus were 

also positive for lytA in qPCR.  
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We found that culture positivity rate decreased with decreasing densities measured 

by qPCR, suggesting that qPCR may be more appropriate for detecting low density 

colonisation episodes. All the 27 samples that were culture negative and qPCR 

positive had qPCR densities below 103 copies/ml. It has previously been shown that 

culture detected fewer carriers of pneumococcus and S. aureus and H. influenzae at 

bacterial densities of <105 CFU/ml (measured by qPCR) (P<0.0001) 157.  

qPCR has also been shown to be superior at detecting multiple pneumococcal 

serotypes at low carriage densities. One study found 28.7% of participants were co-

colonised with multiple pneumococcal serotypes when using qPCR and only 4.5% of 

these were found to be co-colonised using only culture (P<0.001) 156. The majority of 

additional serotypes only detected by qPCR had a density of <104 CFU/ml 156. This 

correlates with the findings of this study.  We found that one participant who was 

determined to be colonised with only serotype 19 using culture, was co-colonised 

with 6B using molecular methods of detection.  

 Asymptomatic viral carriage and acquisition of colonisation 

We were unable to investigate the relationship between colonisation acquisition and 

concurrent viral infection due to the absence of viral infection in our participants. 

The lack of any concurrent viral infection is likely due to the season in which the study 

was carried out (Spring; April-May)161. Previous EHPC studies, conducted during 

winter months, found that asymptomatic viral co-infection increased odds of 

experimental pneumococcal colonisation (15/20, 75% virus positive volunteers 

became colonised vs. 37/81, 46% virus-negative, P=0.02) 162. In addition, a recent 
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randomised control trial investigated the effect of viral upper respiratory tract 

infections in pneumococcal colonisation using the live attenuated influenza vaccine 

(LAIV) as a surrogate 45. No change in prevalence of colonisation was observed but 

there was evidence of increasing density following vaccination 45.  

Results from murine models have been able to show that viral co-infection can 

increase transmission and colonisation acquisition. One study inoculated index mice 

with pneumococcus and 8 days later inoculated index and contact mice with 

Influenza A; 47% of the contact mice acquired colonisation at day 14. In contrast, 

there were no colonisation episodes detected in any contact mice in the control 

group (no influenza inoculation) 49. Epidemiological studies have also found that viral 

co-infection, such as rhinovirus, facilitate acquisition and transmission of 

pneumococcus between individuals 163.  

Our ability to prevent pneumococcal transmission is limited by the lack of 

understanding about transmission dynamics of pneumococcus and which factors 

promote acquisition of nasopharyngeal colonisation. We have shown that an 

experimental human carriage model can be used to investigate modes of 

transmission. The study shows, for the first time, that the hands can be a vehicle for 

transmission of pneumococcus and lead to acquisition of nasopharyngeal 

colonisation. It also shows that pneumococcus continues to be viable following 

drying. The data suggest that using both culture and qPCR methods for 

pneumococcal detection is important to ensure that low density colonisation 
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episodes are not missed. This is important for further transmission studies where 

carriage density may be an endpoint.  
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4 The Effect of Different Serotypes of Pneumococcus on 

Colonisation in Healthy Participants (New Serotypes) 
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4.1 Introduction 

Epidemiological studies have shown that rates of pneumococcal colonisation and 

disease are dependent on multiple factors. Many of these are host specific including 

age, geographic area, socio-economic factors and viral or bacterial co-infection 14 164. 

The host’s innate and adaptive immune responses have also been shown to effect 

rates of colonisation and disease. Mucosal and systemic antibodies to pneumococcal 

capsular polysaccharides (IgG antibodies) are thought to play a role in pneumococcal 

immunity but the degree of protection against pneumococcal colonisation and 

disease is unclear.  

Current evidence suggests different serotypes may induce different sizes of IgG 

antibody responses to the pneumococcal capsular polysaccharide. During an 

outbreak of pneumococcal pneumonia caused by serotype 1 at a military training 

camp, 27.8% of the men who did not develop pneumonia had serotype-specific IgG 

antibodies detected in sera (systemic blood) compared to 3.6% of controls (3/83, 

controls used were a comparable population of soldiers at a training base with no 

outbreak of pneumococcal pneumonia) 165. A later study showed that for some 

serotypes (9V, 14, 18C, 19F and 23F) a colonisation episode can lead to a significant 

increase in levels of serotype-specific anticapsular IgG 12. However, serotype 6B failed 

to induce the same immune response 12. For serotype 14, higher levels of 

anticapsular IgG at the beginning of the study was also associated with reduced 

chance of colonisation during the study 12. In contrast, in this study antibody 

responses to pneumococcal proteins (PsaA, PsaA and Ply) did not correlate with 
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protection against colonisation. The role of antibodies against the polysaccharide 

capsule and towards proteins in the protection against pneumococcus remain 

unclear. The data suggest that these responses may vary depending on serotype. 

However, more information is needed before this conclusion is made.  

Pneumococcal serotype has also been shown to play a major role in acquisition of 

colonisation or disease. There are over 90 serotypes of Streptococcus pneumoniae. 

Serotypes are defined by biologically different polysaccharide capsules.  Some 

serotypes are more invasive and cause significant disease whereas others mainly 

cause colonisation episodes and are rarely recovered in disease cases 133. A recent 

pneumococcal colonisation surveillance study in the UK showed that the most 

prevalent serotypes causing colonisation are 15B/C, 11A, 23B and 10A in 

2015/2016southern). In addition, serotypes 8, 12F, 3 and 9N caused approximately 

50% of all invasive pneumococcal disease cases in England/Wales during 2016/2017 

166.  

Capsular polysaccharides are understood to play a key part in bacterial physiology 

and are vital in determining the host’s immune response to the pneumococcus. Due 

to differences in the capsular polysaccharides between serotypes, capsule structure 

has been implicated in the varying clearance and acquisition rates observed between 

serotypes 167 168. Specific characteristics of the capsular polysaccharide which affect 

this process are yet to be fully understood. In addition to different capsular 

polysaccharide, multiple other proteins have been suggested to be important in the 
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colonisation process, such as PspC and ChoP 167. The relative contribution of these 

factors is also unknown 167.  

Better understanding of the dynamics of colonisation and systemic immunity for 

different pneumococcal serotypes is vital. This study expanded the current EHPC 

model by re-testing a modified 23F serotype and for the first time tested a non-

vaccine serotype 15B. Investigating the varying propensity of pneumococcal 

serotypes to establish nasopharyngeal colonisation will allow for better 

understanding of transmission dynamics and disease.  

Serotype 6B is currently used in the EHPC model. This serotype consistently colonises 

40-50% of participants. The model is currently limited in generalisability, only having 

one serotype that colonised consistently at a high rate, which is already covered by 

the current PCV (serotype 6B). Expanding the model to include non-vaccine 

serotypes is important for vaccine testing. As colonisation is a likely a pre-requisite 

for invasive infection, it could be used as a surrogate marker of disease risk. 

Protection against colonisation therefore could be used in a vaccine trial to predict 

the protective effect against invasive pneumococcal disease 101. The model has 

previously been used to test the effectiveness of PCV13. A sample size of 100 was 

needed in the study to give power to detect 50% reduction in colonisation rates 

compared to control 169. New serotypes that are able to colonise at similar or higher 

rates than 6B in this EHPC model would allow for further vaccine testing trials.   
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To develop a reproducible model of colonisation with smallest numbers necessary, 

we examined colonisation rates at increasing doses until a colonisation rate of 

greater than 40% was achieved. Following this, to improve the precision of our 

estimates of colonisation potential, one dose was tested in a larger number of 

participants.  

This chapter addresses the following question: What is the capacity of 23F and 15B 

serotypes to cause experimental pneumococcal colonisation in healthy adults?  
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4.2 Methods  

 Study set up 

New Serotypes study set up procedures and approvals obtained can be found in 

Chapter 2, section 2.2.  

 Trial design  

Non-specific EHPC trial design information is described in Chapter 2, section 2.3.1 

and ethical principles which were considered prior to the study initiation are outlined 

in section 2.3.2. 

The New Serotypes study experimentally exposed human participants to 

Streptococcus pneumoniae: 

Dose-ranging:  

• Group 1: participants were entered into cohorts which were all inoculated 

with the same dose of serotype 23F (P1121). Successive cohorts had 

increasing does of the serotype inoculated if desired colonisation rates were 

not obtained (see Figure 23;n = 33-67). 

• Group 2: participants were entered into cohorts which were all inoculated 

with the same dose of serotype 15B (non-vaccine serotype). Successive 
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cohorts had increasing does of the serotype inoculated if desired colonisation 

rates were not obtained (see Figure 23;n = 33-67). 

• Extended Cohort: To enhance the precision of the estimated colonisation 

rate, a dose and serotype that lead to more than 40% of carriage in the dose 

ranging part of the study was tested in a larger group of volunteers.  

We hypothesised a dose-dependent relationship in probability of colonisation. We 

used the dose escalation method to test this hypothesis, to estimate the optimum 

inoculation dose for these new serotypes and to minimise unnecessary exposure of 

volunteers. Also, to ensure safety of participants, by inoculating small groups we 

monitored for any adverse events before continuing to higher doses and to larger 

groups.   
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Figure 23: Dose escalation study design for New Serotypes study.  
Used for both 15B and 23F serotypes; methodology adapted from Waddington et al 170.  
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 Trial procedures  

General details of trial procedures common to both studies outlined in this thesis are 

described in Chapter 2 Sections pertaining to different trial procedures are outlined 

below in Table 17.  

Table 17: Generic trial procedures outlined in Chapter 2: Methods. 

Trial procedure Section 

Recruitment strategies  Section 2.3.3 

Prevention of over-volunteering process Section 2.3.3 

Inclusion and exclusion criteria Section 2.3.4 

Study schedule Section 2.3.5 

Participant safety procedures Sections 2.3.6, 2.3.7 and 2.3.8 

 

In the New Serotypes study following pneumococcal inoculation, participants were 

followed up for 3 further visits on day 2, 7 and 14 post inoculation. These follow up 

visits involved a nasal wash sample at each visit and bloods for all participants at day 

14. See Figure 24 for full appointment schedule. 
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Figure 24: Flow chart of New Serotypes study participant appointments 
Following participants’ consent to take part in the study, appointments were arranged for all other 
clinical visits. The first visit is a screening appointment for baseline research samples and safety check.  
The week following this screening appointment, participants underwent pneumococcal exposure. All 
participants were followed up for 14 days after exposure session. Any participants who were still 
colonised with pneumococcus (6B) at the end of the study were given a three-day course of amoxicillin 
in an attempt to clear colonisation. Longer follow up was decided for this study compared to the Hand 
to Nose study because we were investigating immunological responses. Previous EHPC studies found 
that serotype 6B induced significant immune response at day 14 post inoculation10 171.  
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 Symptom reporting 

To examine whether experimental colonisation with pneumococcus causes 

symptoms, all volunteers filled out a daily symptom log on inoculation day and for 

each of the following 6 days. For the 23F study a 7-point Likert-type scale was used 

for symptom reporting (nasal and non-nasal symptoms) as published by Spector et al 

172 (recommended to evaluate severity of rhinitis). This scoring system was slightly 

modified with the removal of ‘mental function’ as a possible non-nasal symptom (see 

Appendix B: Daily Symptom Logs) 

For the 15B study, a different daily symptom log was used to cover a larger number 

of potential non-nasal symptoms as a further safety strategy and to ensure 

colonisation did not cause systemic symptoms that we previously did not enquire 

about. A further benefit of this was also to move to a generic symptom log for all 

EHPC studies to allow better comparison of results (see Appendix B: Daily Symptom 

Logs). The numeric scoring system was replaced with descriptive options based on 

participant feedback. Participants felt that the lack of explanation of what 

constituted a score of 2, 4 and 6 made it difficult to use. The study team also believed 

that descriptive options would reduce the subjective variation between participants 

reporting on a numbered scale.  
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 Bacterial Serotypes 

4.2.2.1 23F Serotype  

In 2001 a human challenge experiment was performed in the USA using serotype 23F 

P833.This achieved colonisation rates of 43% (6/14 participants) 29. This serotype was 

transferred to the EHPC group. A repeat study found 23F serotype had a reduced 

ability to colonise humans, maximum colonisation rate of 10%. Upon discussions with 

the USA team it was discovered that the 23F inoculum contained two different cell 

populations, one wild-type for the amiC gene and the other contained an amiC 

frameshift mutation (Dalia and Weiser, personal communication with Ferreira). It 

was confirmed that the inoculum used for the EHPC study containing the amiC 

frameshift mutation. Both genetic serotypes (P833 and P1123) were sequenced using 

an Illumina Hi-Seq and frameshift mutation was determined by PCR amplification and 

sequencing (described in J. Gritzfeld PhD thesis 173).  

AmiC is a pneumococcal transmembrane protein that has been shown to play a role 

in adherence and oligopeptide transport 174 175. Following this discovery, a murine 

model assessed the effect of this mutation on nasopharyngeal colonisation. The 23F 

serotype with amiC mutation did not establish any colonisation, while a 23F serotype 

with a full length amiC gene was able to establish colonisation and is not further 

considered in this thesis (unpublished work, M.de Jonge).  
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In this study we tested a natural derivative isolate of 23F serotype P833; P1121, 

containing a wild-type amiC gene, with no frameshift mutation on amiC gene. Using 

the wild type serotype, we expected to be able to reproduce findings from the USA 

group which established carriage in 75% participants using 17,000 CFU/naris 29. This 

penicillin-sensitive isolate was obtained from a child with otitis media by 

tympanocentesis, gifted from University of Pennsylvania as described below. 

4.2.2.2 Non-Vaccine Serotype 

We also wanted to investigate a pneumococcal serotype not included in the PCV13 

vaccine; no human infection model has tested any such serotype previously. Multiple 

serotypes were assessed using laboratory testing prior to choosing the best 

candidate. 15B P1262 was chosen based on superior pneumococcal survival in 

presence of human blood neutrophils and adherence to human nasal cells compared 

to 6B serotype (Pojar, unpublished work). This penicillin-sensitive isolate was 

obtained from a child during a colonisation episode, gifted from Southampton. 

Collection as described below.  

 Pneumococcal inoculation 

Clinical isolates of serotype 23F serotype P1121 (a gift from Professor JN Weiser, 

University of Pennsylvania. European Nucleotide Archive accession number: 

ERS1072059) and serotype 15B serotype P1262 (a gift from Dr D. Cleary, University 

of Southampton. European Nucleotide Archive accession number: ERS2632437), 
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were used to create two ‘parent’ stocks for the New Serotypes Study. See Chapter 2, 

section 2.4.1 for details about how the ‘parent’ stock was made and for general 

aspects of pneumococcal challenge which are common to both studies in this thesis. 

Prior to human challenge, a sample of the bacterial stock was sent to an independent 

reference laboratory (Public Health England, UK) to confirm bacterial stock purity, 

serotype and antibiotic sensitivity.  

Intra-nasal inoculation with either 15B or 23F serotypes of S. pneumoniae was carried 

out by a research nurse or clinical fellow, trained in the inoculation procedure. 

Participants were sat in a semi-recumbent position with their head tilted back. Using 

a P200 micropipette 0.1ml broth containing the desired dose of pneumococcus was 

inserted into each nostril Figure 25. The pipette tip never touched the nasal mucosa 

during the procedure to ensure the integrity of the epithelium was not disrupted. 

Following inoculation, the participant remained in this position for up to 15 minutes 

without sniffing or blowing the nose.  

               

 

                      

Figure 25: Inoculation of the nasal mucosa procedure  
Participants sat in a semi-recumbent position. Inoculation of the nasal mucosa with pneumococcus 
was undertaken using a P200 pipette. 100µl of the bacterial inoculum was instilled into the anterior 
nasal cavity in a circular motion.  
 

https://lstmed.sharepoint.com/sites/RespiratoryGroup/Photos/Team%20photos/Innoculations-Blood-Volunteers/IMG_1997-mathieu.jpg
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 Clinical sampling processes and sample analysis  

All participant visits were carried out at the Clinical Research Facility in the RLBUHT.  

Samples obtained from participants include; nasal wash, blood samples and urine 

sample (only women of child bearing age). Sample collection and processing can be 

found in Chapter 2 (see below for sections in Table 18). Participants’ full blood count 

were analysed at RLBUHT, clinical laboratories. All other research samples were 

processed and stored at LSTM. 

Table 18: Generic clinical sampling process and sample analysis is outlined in Chapter 2 

Process Section 

Nasal wash sampling method Section 2.3.10 

Blood sampling method Section 2.3.12 

Pneumococcal stock preparation (batch) Section 2.4.1 

Preparation of pneumococcal stock on day of challenge Section 2.4.2 

Nasal wash sample processing  Section 2.4.3 

Detection of pneumococcal colonisation by culture Section 2.4.4 

 

Detection of pneumococcal colonisation by q PCR 

Section 2.4.4 

4.2.4.1 Measurement of anti-pneumococcal polysaccharide 

antibodies by enzyme-linked immunosorbent assay (ELISA)  

We measured the levels of serotype 15B specific polysaccharide antibody in 

volunteers’ serum. Initially a 96-well plate was coated with 10µl purified 15B capsular 

polysaccharide (Statens Serum Institute Diagnostica, Denmark) in 10ml of 

phosphate-buffered saline (concentration 5µg/ml) then incubated at 4°C overnight. 

Human anti-pneumococcal capsule reference serum lot 007sp (National Institute for 
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Biological Standards and Control, UK) was used to make a standard curve. The 

standard was serially diluted from a concentration of 271.04ng/ml to 4.235ng/ml.  

In a separate 96-well plate 2.5 µl of serum sample was mixed with 100µl of dilution 

buffer (2ml of 10% heat-inactivated foetal bovine serum blocker in 20ml PBS), 

10µg/ml of cell wall polysaccharide (CPWS Multi, Statens Serum Institute 

Diagnostica, Denmark) was added and incubated at room temperature for 30 

minutes. Following these dilution and absorption steps samples were transferred to 

the pre-coated plates and incubated at room temperature for 2 hours. Bound 

antibodies were detected using goat anti-human IgG (Sigma Life Sciences, UK), 2.5µl 

in 10ml phosphate-buffered saline and incubated at room temperature for 1 hour 30 

minutes. Finally, 100µl of p-nitrophenylphosphate (5mg added to 40ml of distilled 

water) was added to plates and left to develop in the dark for 15-20 minutes, 

following this absorbance was measured at 405nm using FLUOstar Omega plate 

reader (BMG Labtech, Germany). All samples and standard curve were measured in 

duplicate. Between all steps described above plates were washed with PBS-Tween 

0.005% using a microplate washer (ELx50™, BioTek™, USA).  

 Endpoints and objectives 

The primary endpoint was the detection of experimental pneumococcal colonisation 

(serotype 23F or 15B) in nasal wash by classical culture methods at any time point 

(day 2, 7 or 14) following pneumococcal challenge.  
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The secondary endpoints were: (1) Determination of the duration and density of 

pneumococcal colonisation with 23F and 15B serotypes; (2) Rates of colonisation at 

different inoculum doses for both serotypes; (3) The detection of pneumococcal 

colonisation by qPCR at any time point; (4) Quantification of a systemic humoral 

immune response to nasopharyngeal carriage (capsular specific IgG concentration in 

serum). 

 Statistical methods 

Previous EHPC studies using serotype 6B S. pneumoniae bacteria attained 

colonisation rates of approximately 45%. We used this as the basis of our sample size 

calculation; to estimate colonisation rates with 95% confidence (+/-5%) 34 

participants completing the study with a single inoculation dose (2.0x104, 8.0x104 or 

1.6x105 CFU/naris), using 45% colonisation as an estimate for the ‘real rate’. To allow 

for an estimated drop-out rate of 10% and natural colonisation of 10% (who will be 

excluded from primary endpoint analysis) between 34 and 67 participants was 

required for each serotype.  

The Fisher’s exact test and Chi squared test were used to analyse colonisation rates. 

We compared colonisation rates seen between serotype 23F and 15B. In addition, 

comparison was made between colonisation rates found at different inoculation 

doses. Differences in density was evaluated using one-way ANOVA test. Graphical 

and statistical analysis were performed using GraphPad prism (GraphPad Software, 

CA, USA). All P values were two-tailed and considered significant if P<0.05.  
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4.3 Results  

 Screening and recruitment  

4.3.1.1 23F study  

During September 2016, 18 participants were recruited for the 23F group, 16 

participants completed all the study visits. This study was suspended early due to 

poor results, further discussed in section 4.3.3. Two participants were excluded 

following screening both due to abnormal full blood counts (see Figure 26). All 16 

participants were inoculated with pneumococcus in September 2016, with final 

participant, final visit on 11th October 2016. The mean average age of volunteers was 

30.2 years (range 25-47, median 29) and the male:female ratio was 5:11.  

 

Figure 26:Consort flow diagram for 23F group New Serotypes study  

Recruited (n=18) 

Inoculated with 
20,000 CFU 

N=6 

Inoculated with 
160,000 CFU 

N=4 

Inoculated with 
80,000 CFU 

N=6 

Screened (n=18) 

Discontinued (n=2) 
1)Abnormal FBC n=2 
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4.3.1.2 15B study 

Between August-November 2017, 72 participants were recruited to the 15B group, 
with 54 participants completing all study visits. 10 participants withdrew pre-
screening, 7 excluded or withdrew post screening visit and 1 was excluded at day 1 
post inoculation due to starting antibiotics for a non-study related issue (see  

 

Figure 27). All 54 participants who completed the study were challenged with 

pneumococcus between September-November 2017, with the final participants, 

final visits on 13th December 2017. The mean average age of volunteers was 24.6 

years (range 18-49, median 21) and the male:female ratio was 29:25.   

Sequential groups were inoculated with higher doses of bacterial inoculum if optimal 

rates of colonisation were not achieved by day 7 (>40% colonisation rates). This was 

a safety feature to ensure that we were taking forward to an extended cohort the 

lowest inoculum dose possible to achieve adequate colonisation rates. Participants 

were recruited into groups depending on their availability. The inoculation dose 

which achieved the optimal colonisation rates was extended to complete a full 

cohort. This extended cohort would give us statistical confidence to estimate the 

colonisation rate of this serotype.  
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Figure 27: Consort diagram for 15B group of New Serotypes study 

 Inoculum doses were within target range 

All inoculation doses were compliant with protocol as they fell within half or double 

of the target amount. The average inoculation doses per group can be seen below 

(Table 19).  

Table 19: Average pneumococcal challenge dose for all participant groups 

Dose Group 
Target inoculation dose per naris 

Serotype 23F 
Average dose (CFU/naris) 

Serotype 15B 
Average dose (CFU/naris) 

2x104 1.7x104 (SD 0) 1.9x104 (SD 9.9 x102) 

8x104 7.5x104 (SD 0) 8.9x104 (SD 1.3x104) 

1.6x105 1.7 x105 (SD 0) 1.9x105 (SD 0) 

Recruited (n=72) 

Inoculated with 
20,000 CFU 

N=10 

Inoculated with 
160,000 CFU 

N=9 

Inoculated with 
80,000 CFU 

N=10 

Screened (n=62) 
Discontinued (n=7) 
1)Abnormal FBC n=2 
2)Participant wishes n=3 
3)Health issues n=2 

Discontinued (n=10) 
1)Participant wishes n=9 
2)Health issues n=1 

Withdrew at D1 
n=1 due to starting 

antibiotics  Extended cohort 
inoculated with 

80,000 CFU  
N=26 

TOTAL N=36 
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 Dose-ranging study: Serotype 15B lead to more acquisition of 

colonisation compared to 23F serotype  

Naturally colonised participants at baseline were excluded from analysis (see Table 

20). There was no significant difference in colonisation rates between participants 

inoculated with 15B and those receiving 23F (P=0.29, Fisher’s exact test).  

Table 20: Number of participants in each dose-ranging group for each serotype tested, with number 
of naturally colonised participant as baseline who were excluded from primary analysis of data.  

Dose Group 23F group  
Number of 

participants  
 

23F Group 
Naturally 

Colonised at 
baseline 

15B Group  
Number of 

participants   
 

15B Group 
Naturally 

Colonised at 
baseline 

2x104 6 0 10 0 

8x104 6 1 10 1 

1.6x105 4 0 9 1 

 

Overall the colonisation rate with 23F was 13% (2/15; excluding participant naturally 

colonised at baseline). The highest colonisation rates were observed in the group 

inoculated with 8x104 CFU/naris (20%, 1/5) and no colonisation events were 

detected in the 1.6x105 dose group (Figure 28). Due to poor colonisation rates with 

serotype 23F in the dose-ranging portion of the study, this serotype was not taken 

forward to be completed in an extended cohort.   

The 15B serotype led to acquisition of colonisation in each dose group. Initially 

colonisation rates were dose dependent with more participants in the 8x104 group 

becoming colonised compared to the 2x104 group (4/9, 44% vs. 3/10, 30% 
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respectively). However, rates fell from 44% at 8x104 CFU/naris to 13% (1/8) when the 

dose rose to 1.6x105 CFU/naris. This difference was not statistically different (P=0.29) 

(Figure 28). 

 

Figure 28: Colonisation rates (%) for 23F and 15B during dose range portion of the study. 
Participants who were naturally colonised with pneumococcus at baseline were removed prior to 
analysis. Participants were intranasally inoculated with either serotype 23F (blue circle) or 15B (red 
squares) over a range of doses, starting with 2x104 CFU/naris to 1.6x105 CFU/naris. Y axis shows 
percentage of participants experimentally colonised at each dose.  

 Dose-ranging study: Density of colonisation and inoculum dose 

Colonisation rates were not found to rise significantly with increasing inoculum dose 

for either serotype. We wanted to investigate whether colonisation density may 

increase in parallel with this inoculum dose increase. Figure 29 shows the 

colonisation density recovered from nasal washes at each time point (day 2, 7 and 

14) for both 23F and 15B dose-ranging participants. Due to low colonisation rates in 
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the 23F group we cannot confidently analyse differences in colonisation density at 

increasing inoculum doses.  

Participants inoculated with 15B with an inoculation dose of 8x104 CFU/naris had 

significantly higher colonisation density at day 2 compared to those inoculated with 

2x104 (P=0.047, t test). This difference did not continue at later follow up time points 

(day 7 and 14).   
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Figure 29: Density of colonisation for both 23F and 15B groups at each time point tested.  
Results from nasal washes performed at day 2 (A&B), day 7 (C&D) and day 14 (E&F). Density is 
reported as CFU/ml of nasal wash recovered. Data bars represent mean and standard deviation. We 
were unable to compare inoculation groups for 23F as too few were colonised. For the 15B cohort, t-
test was used to compare groups at day 2 as only two inoculation doses lead to colonisation. One-way 
anova was used to compare groups at day 7 and 14. P value of <0.05 considered significant.  
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When evaluating the area under the curve (AUC) of densities for each serotype, no 

differences were observed between 15B and 23F either when looking at all positive 

participants or when this was broken down into inoculum doses (Figure 30). Overall 

colonisation density during the 14 days follow up period was not a function of 

inoculation dose.  
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Figure 30: Area under the curve densities. For 23F and 15B groups at each inoculum dose 
Nasal washes were performed at day 2, 7 and 14 for all participants. Pneumococcus was detected in 
nasal washes using classical culture techniques. Area under the curve was calculated from the density 
of colonisation calculated at each positive time point. Density reported as CFU/ml of nasal wash 
returned. Data bars represent mean ± standard deviation.  

 Dose-ranging study: Majority of the participants colonised up 

to day 14 

Both colonised participants with 23F continued to be positive to day 14. The majority 

(75%, 6/8) of participants colonised with 15B during the dose-ranging portion of the 

study also continued to be positive to day 14. All participants inoculated with 2x104 

and 1.6x105 CFU/naris were colonised up to day 14, but in the 8x104 CFU/naris group 

50% (2/4) cleared colonisation prior to day 14. Those participants who were found to 
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be colonised at either day 7 or 14 received antibiotics at the end of the study to clear 

colonisation.  

 Extended Cohort: Precision of estimated colonisation rate with 

15B improved with extension of cohort to 33 participants  

During the dose-ranging portion of this study, 15B was the only serotype to reach 

colonisation rates above the desired 40% attack rate. Colonisation rates of 44% were 

observed at the 8x104 inoculation dose group; therefore, this was taken forward into 

the reproducibility portion of the study.     

Twenty-five further participants were inoculated with 15B at 8x104 inoculation dose 

in this part of the study. One participant was naturally colonised with pneumococcus 

at baseline; they were removed from the population prior to analysis of the data for 

the primary outcome (modified intention-to-treat). Following challenge, 29% (7/24) 

of participants were experimentally colonised with 15B by microbiological culture. 

Analysis including all participants who were inoculated with 8x104 CFU/naris of 

serotype 15B, indicated an overall colonisation rates were 33% (11/33) (See Figure 

31). 
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Figure 31: Proportion of colonisation positive and negative participants detected by classical culture 
Participants who were naturally colonised with pneumococcus at baseline were removed from 
analysis. Participants were intranasally inoculated in groups with serotype 15B over a range of doses; 
2x104 (10 participants), 8x104 (9 participants) and 1.6x105 (8 participants). We extended the 8x104 

group as this had the best colonisation rates. The extended cohort shows results of a further 24 
participants inoculated with this dose.   
 

 Extended cohort: Half of participants had cleared colonisation 

by day 14  

Of the 11 participants colonised following inoculation with 8x104 CFU/naris of 15B 
serotype, over half cleared colonisation prior to the final visit at day 14 (55%, 6/11), see  
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Figure 32. This was similar to results found in the dose ranging part of the study 

where 50% of participants (2/4) in the 8x104 CFU/naris group cleared colonisation 

prior to day 14.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32: Proportion of participants colonised at each time point following inoculation for 
participants inoculated with 8x104CFU/naris.  
Clearance of colonisation was considered as the first negative nasal wash found by classical culture 
after which all further nasal washes were also negative. All participants in this group who were 
colonisation positive during the study had pneumococcus detected at day 2. By the end of the study 
(day 14) only less than half of participants were still colonised. Any participant that did not have 2 
negative nasal wash results after day 14 visit were given 3 days of amoxicillin in an attempt to clear 
colonisation.  
 
 

 Complete 15B Cohort: No difference found between 

colonisation rates when using lytA qPCR compared to culture  

128 nasal wash samples were collected from 32 participants in the full 15B 8x104 

CFU/naris inoculum group. These were tested for the presence of S. pneumoniae by 
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microbiological culture and retrospectively by lytA qPCR at the end of the study. For 

this analysis, natural carriers (3 participants) were excluded to remove the 

interaction of more than one prominent colonising serotype which might introduce 

wider unexplained variation in responses.  

The proportion of samples positive for carriage by qPCR was higher than by culture, 

but this difference was not statistically significant (29/128 [23%] vs. 21/128 [16%] 

respectively, P=0.27, Fisher’s exact test). LytA qPCR improved detection of 

colonisation and therefore colonisation rate but this was also not statistically 

different from the culture colonisation rate (16/32 [50%] vs. 11/32 [34%] 

respectively, P=0.31, Fisher’s exact test) (Figure 33). Six participants were only 

colonisation positive using qPCR. Of these 5/6 only had pneumococcus detected from 

nasal wash at day 2 post inoculation (Figure 33). In 1.6% samples (2/124), 

pneumococcus was detected by culture but not qPCR (one participant at 2-time 

points), but in 8% of samples (10/128) pneumococci were only detected by qPCR. 

Table 21 shows concordance rates between the two methods of pneumococcal 
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detection. 
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Figure 33: Number of participants colonised at each time point detected by culture and lytA qPCR 
for 15B full cohort.  
For detection by classical culture techniques, nasal wash samples were plated on blood agar. For lytA 
qPCR detection, nasal wash was added to RNA protect and frozen on day of sample collection, DNA 
extraction process was completed retrospectively following completion of the study. Samples with a 
Ct value of <40 were considered qPCR positive. Samples from 32 participants were analysed (naturally 
pneumococcal colonised participants were excluded from analysis). Blocks represent participants who 
were culture positive only (culture +), lytA qPCR positive only (lytA +) and those that were found to be 
colonised by both culture and lytA qPCR. All time points post inoculation are shown and results from 
any time point (any).  
 
Table 21: Concordance between microbiological culture and qPCR in detection of pneumococcus in 
nasal washes. 
3 participants who were natural carriers of pneumococcus either at baseline or during the study were 
excluded from this analysis (modified intention-to treat analysis). 
a Denominator is total number of samples or participants which are positive with either culture or lytA 
qPCR and numerator is number of samples positive by both methods. b Denominator is total number 
of samples or participants which are positive with either culture or lytA qPCR and numerator is number 
of samples negative by both methods.  
 

 

 
Nasal Wash 

Samples 

Number of 

Participants  

Concordance of Positive Results  63% (19/30) a 59% (10/17) a   

Concordance of Negative Results  89% (97/109) b 68% (15/22) b 
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 Natural carriers of pneumococcus 

Overall natural colonisation rates in the 23F group was 1/18 (5.5%) and 15B cohort 

was 6/62 (9.6%). All serotypes found were non-vaccine serotypes (see Figure 34). No 

participants were co-colonised with 23F or 15B and the naturally acquired serotype 

when assessed using culture.  

 
 
 
Figure 34: Natural pneumococcal colonisation serotypes as found by culture.  
NVT: non-vaccine type, serotypes identified by Statens Serum latex kit. Pool C NVT serotypes: 24 (24F, 
24A, 24B), 31, 40. Pool D NVT serotypes: 16 (16F, 16A), 36, 37. Pool G NVT serotypes: 29, 34, 35 (35F, 
35A, 35B, 35C), 42, 47 (47F, 47A). Pool H NVT serotypes: 13, 28 (28F, 28A). 
 

 Levels of polysaccharide 15B (PS15B) IgG in serum at baseline 

were not associated with protection against colonisation 

acquisition. 

We measured pneumococcal antibody levels in serum samples from 34 participants 

before inoculation with 8x104CFU/naris of serotype 15B to assess whether levels 

correlated with protection against colonisation. Levels of PS15B IgG at baseline were 

similar between colonisation positive (those who acquired colonisation following 

14% 

29% 

43% 

14% 
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inoculation) and colonisation negative participants (those who did not acquire 

colonisation) (Figure 35). Median 15B IgG levels in colonisation positive volunteers 

was 3787ng/ml (interquartile range [IQR] 1607-6465) compared to 3681ng/ml (IQR 

1927-6008) in colonisation negative participants (P=0.78, unpaired t test).  

In addition, no association was observed between baseline PS 15B IgG levels and 

colonisation density (Figure 36) (RS= -0.21 Spearman’s rank correlation coefficient, 

P=0.54). Baseline levels of PS 15B IgG were therefore not predictive of colonisation 

status nor associated with colonisation density.   
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Figure 35: Baseline polysaccharide15B (PS15B) IgG levels prior to experimental human 
pneumococcal challenge.  
IgG specific ELISA’s in serum were performed against pneumococcal PS15B. levels of antibody were 
determined from colonisation-positive participants (colonisation+ n=11) and colonisation negative 
participants (colonisation – n=23). Serum samples were taken at screening visit (day -5). Horizonal 
bars represents geometric mean and error bars represents the 95% confident intervals. Comparison 
of colonisation positive and negative participants carried out using unpaired t test. P value of <0.05 
where considered significant.  
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Figure 36: Correlation between baseline anti-PS 15B IgG levels and AUC density of colonisation 
positive participants.  
Spearman’s rank correlation coefficient is -0.21 with P value of 0.54.  

4.3.10.1 PS 15B IgG levels are increased post inoculation in colonisation 

positive participants  

Paired baseline and final follow up (day 14) serum samples from 33/34 participants 

from this cohort were evaluated. In colonisation positive participants we observed a 

significant rise in levels of PS 15B IgG at day 14 post inoculation compared to baseline 

(mean 4693ng/ml at baseline vs 18164ng/ml at day 14, P=0.0005 paired t-test). In 

contrast, colonisation negative participants levels of PS 15B IgG at day 14 were 

comparable to those at baseline (mean 4059ng/ml at baseline vs. 3866ng/ml at day 

14, P= 0.31 paired t test). See Figure 37.  
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Figure 37: Levels of polysaccharide 15B (PS 15B) IgG before and after pneumococcal inoculation. 
IgG specific ELISA in serum were performed against pneumococcal PS15B. Levels of antibody were 
determined from colonisation positive participants (colonisation +) and colonisation negative 
participants (colonisation -). Serum samples taken at screening visit (day -5) labelled as ‘Pre’, serum 
samples taken on final follow up visit (day 14) labelled as ‘Post’. A) Measurement of PS 15B IgG levels 
was carried out in all samples as duplicate. Horizonal bars represents geometric mean and error bars 
represents the 95% confidence intervals. B) Pre and Post PS 15B IgG levels are linked for each subject.  
Comparison of antibody levels ‘Pre’ and ‘Post’ exposure was carried out using paired t test. P value of 
<0.05 was considered significant.  
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 Active symptom reporting 

All participants in the 23F study group completed the daily symptom logs (16/16), 

and 98% (53/54) participants in the 15B study group completed the daily symptom 

logs. Within the 23F study, two participants became experimentally colonised with 

pneumococcus. One participant was naturally colonised with pneumococcus at 

baseline and throughout follow up visits. For the 15B study, 15 participants became 

experimentally colonised and a further 4 participants who were either naturally 

colonised at baseline or during the study. The only participant who did not complete 

the daily symptom log, was not colonised with pneumococcus throughout the study.    

In both scoring systems, a score of 1-2 (no symptoms-occasional limited symptom) 

was considered asymptomatic. This was to limit the impact of participants reporting 

an isolated event of short duration such as one sneezing episode. Participants who 

reported symptoms prior to inoculation where only considered symptomatic if they 

reported a score which was higher than the baseline score.   

4.3.11.1 23F group symptom analysis 

There were 5 categories relating to nasal symptoms (sneezing, runny nose, 

congestion/stuffiness, itchy nose and post-nasal drip) and 5 categories relating to 

non-nasal symptoms (eye symptoms, throat symptoms, cough, ear symptoms and 

headache) (see Appendix B: Daily Symptom Logs). Overall 19% (3/16) of participants 

reported either nasal or non-nasal symptoms (score ≥3) during the 7 days following 
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inoculation. These symptoms consisted of one participant reporting each of the 

following; sneezing, nasal congestion and throat symptoms. All were reported on day 

7 post inoculation and no symptoms were scored as 4 or more (mild steady 

symptoms).  

Due to small number of positively colonised participants we are unable to definitively 

determine whether colonisation with 23F is symptomatic. However, of the 3 

participants who reported symptoms, none were experimentally colonised with 23F, 

and one was a natural carrier of pneumococcus at baseline and up to day 7.  

4.3.11.2 Colonisation with 15B does not increase likelihood of nasal 

symptoms but may cause coughing 

There were 5 categories related to nasal symptoms (sneezing, runny nose, 

congestion/stuffiness, itchy nose and post-nasal drip) and 15 categories related to 

non-nasal symptoms (cough, chest pain, breathlessness, coughing up phlegm, 

sweating, chills, headache, nausea/vomiting, muscle pain, anorexia, trouble 

concentrating, fatigue, trouble sleeping due to breathlessness, waking at night due 

to breathlessness and wheeze) (see Appendix B: Daily Symptom Logs). Naturally 

colonised participants were included in the colonisation positive group for this 

analysis.  

Overall 25% (13/53) of participants reported nasal symptoms (score ≥3) during the 7 

days following inoculation and 13% (7/53) reported non-nasal symptoms. Similar 
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rates of colonisation positive participants reported nasal symptoms (26%, 5/19) 

compared to colonisation negative participants (24% 8/34). For non-nasal symptoms 

21% (4/19) of colonisation positive participant reported symptoms compared to 9% 

(3/34) of negative participants. No statistically significant difference was observed 

between number of participants who reported symptoms in colonisation positive or 

negative groups (nasal symptoms P=1.00, non-nasal symptoms P=0.23, Fisher’s exact 

test). When evaluating the number of episodes of each symptom being reported 

(number of times over 7-day period), the only statistically significant difference found 

was that colonisation positive participants reported more episodes of cough (9/19 

colonisation positive participants reported cough vs 0/34 non-colonised, P<0.0001, 

Fisher’s exact test), see Figure 38.  
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Figure 38: Number of symptom episodes reported over 7/7 period post inoculation.  
Only symptoms that have been reported as ≥3 score on the daily symptom log are shown. *Cough is 
the only symptom in which colonisation positive participants reported significantly more than non-
colonised participants (9/19 vs 0/34 P<0.0001, Fisher’s exact test).  
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Five participants scored symptoms 4 or 5 (“moderately” or “quite a bit” bothered 

with symptom). Three of which were colonisation positive, all from the 8x104 dose 

group; all complained of cough and one complained of wheeze. Of the two non-

colonised participants both from the 1.6x104 dose group; one complained of sneezing 

and one complained of runny nose, sneezing and congestion. During the study no 

participants had any serious adverse events due to any symptoms reported. This 

included no hospital admission, no extra visits for clinical review and no participants 

were advised to take antibiotics due to clinical need.  
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4.4 Discussion  

The use of the experimental human pneumococcal challenge model allowed us to 

directly study the propensity of two pneumococcal serotypes to cause colonisation.  

The study successfully determined which inoculation dose of 15B, a non-vaccine 

serotype, achieved colonisation rates of >40% and tested the precision of estimated 

colonisation rates at the chosen dose.  

 Success in the model expansion; experimental colonisation of 

non-vaccine type was successful and reproducible 

Colonisation dynamics of a non-vaccine type pneumococcal serotype (15B) was 

evaluated. Experimental pneumococcal colonisation was established in 40% (4/10) 

when inoculated with 8x104 CFU/naris and was shown to be reproducible in the 

extended cohort where colonisation rates were found to be 30% (7/23, overall 

colonisation rate of 33%, 11/33).  

Despite the small number inoculated, the data suggest that a non-linear increase 

exists in colonisation acquisition rates for serotype 15B with increasing inoculum 

doses. The EHPC model has previously used serotype 6B for experimental challenge; 

with this serotype colonisation rates of 40-50% have been achieved in multiple 

studies 139. We hypothesised that colonisation rates would be higher than this for the 

15B serotype following promising in vivo testing which showed superior survival in 

the presence of human blood neutrophils and adherence to human nasal cells 
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compared to the 6B serotype (not discussed further in this thesis). We expected to 

see a dose dependent increase in colonisation rates; in previous EHPC studies 

following inoculation with serotype 6B, colonisation rates were found to be dose 

dependent between a dose of 1x104-4x104 CFU/naris. Following this the colonisation 

rates plateaued after 4x104 up to a dose of 3.2x105 CFU/naris. However, in this study 

following inoculation with serotype 15B, colonisation rates dropped after 8x104, with 

lowest colonisation rates of 13% observed with 1.6x105 CFU/naris dose.  

Better understanding of the dynamics of colonisation of non-vaccine pneumococcal 

serotypes is of growing importance with recent epidemiologic evidence of significant 

serotype replacement following the introduction of PCV13. A cross-sectional study in 

the USA analysed serotype data from children under 7 who were colonised with 

pneumococcus between 2004 and 2014 176. They found that 15B emerged as the 

most common colonisation serotype in 2014 overtaking 19A which was the 

predominant serotype in 2004 but substantially reduced following the introduction 

of PCV13 176. Two UK studies further evaluated the impact of the PCV on 

pneumococcal colonisation and invasive disease. A cross sectional study of 

nasopharyngeal colonisation rates in children under 5 between 2006-2011 found 

that the overall prevalence of pneumococcal colonisation remained stable following 

introduction of PCV7 in 2006 and PCV13 in 2010 177. Vaccine efficacy was good with 

a significant reduction in vaccine serotypes but with a simultaneous increase in non-

vaccine serotypes 177. A further UK observational cohort study reported a 37% 

reduction in overall invasive pneumococcal disease incidence in 2016/17 compared 
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to pre-PCV7 incidence, however a concurrent doubling of invasive disease due to 

non-PCV13 serotypes was observed with an acceleration since 2013/14 166.  

 No difference in colonisation rates found with lytA qPCR 

compared to classical culture  

The proportion of participants who were positive for colonisation and the number of 

positive samples were apparently higher using lytA qPCR for pneumococcal detection 

compared to culture. But these differences were not statistically significantly 

different. When evaluating the whole cohort, irrespective of inoculation dose, 8 

participants (8/37 previously colonisation negative participants, 22%) were found to 

be new colonisers with lytA qPCR only. The majority of these were only found to be 

colonised at day 2 post inoculation (7/8, 88%, one participant found to be positive 

only at day 14). As previously discussed, higher rates of colonisation using qPCR 

method could be explained by this method detecting more low-density colonisation 

episodes.  

Turner et al 178 suggested that the World Health Organisation’s suggested 

methodology of culture and serotyping with the use of latex agglutination (one 

colony used for latex agglutination test) can significantly underestimate multiple-

serotype colonisation. This study found that using sweep serotyping (a sweep of 

colonies are taken from the culture plate and serotyped using latex agglutination) 

identified 1.4 times the number of pneumococci compared to culture and S. 

pneumoniae molecular-serotyping microarray found 1.6 times the number 178. qPCR 

has also been identified as a method of improving pneumococcal detection during 
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co-colonisation episodes with one study reporting a co-colonisation rate of 28.7% 

with qPCR compared to 4.5% detected by culture alone 156. It has previously been 

suggested that non-vaccine serotypes such as 15B, may have been more prevalent, 

prior to introduction of PCV than previously described. These non-vaccine serotypes 

may be low density colonisers which were not detected if co-colonised with a vaccine 

type serotype (likely high-density colonisers). Following the introduction of conjugate 

vaccines, the prevalence of vaccine types reduced and true rates of non-vaccine 

serotypes may have been unmasked with the possibility of no real increase in non-

vaccine type colonisation rates 105.  

 Baseline levels of PS 15B IgG in serum were not associated with 

protection against colonisation acquisition  

We evaluated levels of PS 15B IgG in serum of participants in the 15B extended cohort 

who were inoculated with pneumococcus (8x104 CFU/naris). All participants had 

measurable levels of IgG to 15B capsular PS at screening. No relationship was found 

between levels of serum IgG at screening and colonisation outcome after intranasal 

inoculation. This result is in keeping with previous EHPC studies assessing 

experimental colonisation with 6B serotype. Two studies found no association 

between pre-exposure 6B specific polysaccharide IgG levels and protection against 

colonisation acquisition 10 171.  

The protective effect of pneumococcal capsular-specific antibodies against disease 

has been well established. As early as 1938 published data showed that serotype-

specific anti-pneumococcal serum passively transferred to patients with 
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pneumococcal pneumonia could improve survival rates 179. In addition, the ability of 

vaccine-induced serotype specific antibodies to protect against pneumococcal 

disease has been well established. It is still unclear what amount of circulating serum 

antibodies are sufficient to protect against disease. Research suggests that generally 

higher levels are needed for protection against mucosal endpoints in comparison to 

invasive pneumococcal disease and that there is a degree of variation between 

serotypes 111 180 181.  Being able to estimate the minimum antibody concentrations 

needed for protection against pneumococcal disease is of critical importance for 

assessing new vaccine efficacy. A meta-analysis pooled the data from three double 

blinded controlled trials which evaluated the immunogenicity of the PCV 

immunisation 182. The protective effect of the PCV immunisation is mediated 

exclusively or primarily by antibodies, therefore, the authors sought to find the 

specific concentration of antibody which is estimated to lead to protection against 

pneumococcal disease. This correlate of protection level was reported as an antibody 

level of 350ng/ml 107 182-185. The results of this study showed baseline levels much 

higher than this; median of 3787ng/ml in participants who went on to become 

colonisation positive and 3681ng/ml in those who were protected against 

colonisation.  

 Nasopharyngeal colonisation with 15B found to boost 

immunity by day 14 

Murine models and experimental human challenge models have improved the 

understanding of immune responses to pneumococcal colonisation episodes; 
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colonisation protects against re-colonisation with homologous serotypes and against 

disease 26 186. The role of antibody-mediated immune responses targeting serotype-

specific pneumococcal polysaccharides has been well researched. It is believed that 

protection against pneumococcal disease involves antibody mediated immune 

responses which target serotype-specific capsular polysaccharides 187. We have 

demonstrated that intranasal exposure to 15B serotype, without acquisition of 

colonisation, did not boost serum IgG levels to the 15B capsular PS. Conversely in 

participants who acquired experimental pneumococcal colonisation (with serotype 

15B) during the study a significant increase in serum IgG levels to 15B capsular PS 

was observed.  

Our data are consistent with previous EHPC studies, in which inoculation with 

serotype 6B was not associated with a change in 6B specific IgG levels in serum 24. 

One study showed that nasopharyngeal pneumococcal exposure alone may be 

immunising; capsular specific IgG levels were found to significantly increase in nasal 

wash and broncho-alveolar lavage samples following intranasal inoculation without 

colonisation 24. The EHPC team have previously demonstrated colonisation infers 

100% protection against re-acquisition of a homologous serotype, up to 11 months 

following the first colonisation episode 10. In this study during the initial colonisation 

episode a significant rise in serum anti-6BPS IgG levels were observed which is 

consistent with the finding for serotype 15B demonstrated in this thesis 10.   
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 Low colonisation rates observed with 23F serotype 

We were unsuccessful in expanding the EHPC model with a further vaccine type 

serotype. Colonisation rates remained low with escalating inoculum doses between 

2x104-1.6x105 CFU/naris, with highest colonisation rates observed of 20% in 8x105 

CFU/naris inoculation group. No participants became colonised following inoculation 

with 1.6x105 CFU/naris dose. This serotype (P833, inoculum doses ranging from 

2x104- 3.2x105 CFU/naris) had previously been tested by our group, poor colonisation 

rates were observed with a maximal colonisation rate of 10%. Following investigation 

of the serotype used in this study (23F P833), an amiC frameshift mutation was found 

and investigated in a murine pneumococcal challenge, results suggesting this 

mutation was the cause of the poor colonisation rates. 

For the current study we ensured the isolate used, 23F P1121, contained a wild-type 

form of the amiC gene. This isolate change did not lead to significantly better 

colonisation rates. The amiC gene may have contributed to poor colonisation rates 

in the initial study but it is clear now that either another factor or multiple factors 

may be implicated in a serotype’s ability to colonise the host. As previously discussed, 

host factors may affect colonisation rates. Epidemiological data suggest that 23F 

serotype was highly prevalent in UK prior to the introduction of PCV7 into the 

childhood immunisation schedule 15. Recent studies suggest that rates of 23F 

serotype have significantly fallen over the last decade 176. Previous colonisation with 

this serotype may have induced immunity and impacted on colonisation rates 

observed. Using the experimental human pneumococcal carriage model, it has been 
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shown that protection from colonisation (with 6B serotype) was associated with a 

high number of circulating 6B specific IgG-secreting memory B cells at baseline 171. 

Alternatively, other bacteriological differences observed between 23F and 6B 

(known to have high experimental colonisation rates) may have impacted on this 

serotypes ability to colonise the nasopharynx.  

Poor colonisation rates with the 23F serotype are likely multifactorial and may be 

due to a combination of serotype and host factors. Pneumococcus is a pathogen that 

grows in chains, it has been suggested that serotypes grow in long-chain formation 

may be more successful in colonising the nasopharynx 188. In vitro and in vivo analyses 

have shown that pneumococcal adherence is increased proportionally to the average 

size of the chain 188. The ability for serotypes or specific isolates to grow in chains and 

the average length of chains may be an important predictor for determining 

successful colonisation. Longer chains may improve adherence of pneumococcus to 

the mucosal service and therefore give an advantage in colonisation through a larger 

number of possible adhesive events per particle. Assessing chain formation of any 

future serotypes prior to experimental inoculation may be beneficial for any future 

experimental pneumococcal human challenge studies.  

It has also been suggested that the biochemical structure of the capsular 

polysaccharide of different serotypes of pneumococcus may impact on their success 

at colonising the nasopharynx. In vitro assays have shown an association between 

resistance to neutrophil-mediated killing and colonisation prevalence; serotypes 

which were more heavily encapsulated were more resistant to this neutrophil- 
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mediated killing 189. Further research showed that surface charge of Streptococcus 

pneumoniae may affect colonisation potential. It has been shown that serotypes 

which are more negatively charged also have a higher resistance to killing by 

neutrophils in vitro 190. Using previous epidemiological studies, it was also shown that 

the more negatively charged serotypes were associated with higher colonisation 

rates in human populations 190. Understanding better the factors which may explain 

why serotypes have varying colonisation potential is important for predicting 

serotype replacement and can support the identification of serotypes to be used in 

future human challenge models.  

 Experimental colonisation does not cause nasal symptoms but 

increased cough 

We actively sought symptom data using a daily symptom log on the day of inoculation 

and 7 days following. We were unable to compare symptoms reported in the 23F 

group due to small numbers of colonisation positive participants. In the 15B group, 

due to small numbers in individual inoculation dose groups, we combined all 

colonisation positive and negative participants. The number of participants reporting 

nasal symptoms in both groups were similar, suggesting that colonisation is an 

asymptomatic process in adults. Interestingly of the non-nasal symptoms reported 

cough was found to be more common in colonisation positive group, in terms of both 

number of participants reporting the symptom and the frequency with which it was 

reported over a 7-day period.  
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Nasopharyngeal colonisation is generally considered an asymptomatic event in 

adults. However, there is little definitive research looking at this question. Cross-

sectional studies in children report a strong association between a history of upper 

respiratory tract infection (URTI) symptoms, cough or coryza (in the weeks preceding 

sampling) and the detection of nasopharyngeal pneumococcal colonisation 164 191. 

Unfortunately, due to this study design the causality of symptoms is not clear. 

Pneumococcal colonisation may cause URTI symptoms or coryza may increase the 

rate of pneumococcal colonisation acquisition or there may be a third factor that 

both colonisation and viral URTIs are independently associated with.  

One study did report that for serotype 19F, colonisation was strongly associated with 

children who complained of symptoms such as coryza, sneezing, cough and 

expectoration 192. These children were recruited from the emergency room of a local 

paediatric hospital. The study did not report on the diagnosis given to these patients 

therefore an independent cause is possible for the symptoms reported 192. The same 

study also recruited participants from a day care centre; for this group the results of 

symptom reporting was not published 192.  
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We investigated factors affecting nasopharyngeal pneumococcal colonisation using 

an experimental human carriage model.  

The two main aims were: 

Aim 1: To investigate if the hands can be a vector for transmission of S. 

pneumoniae from hands into the nasopharynx, leading to colonisation.  

Aim 2: To investigate the propensity of serotypes 23F and 15B to cause 

colonisation following experimental human challenge. 

These projects used the Experimental Human Pneumococcal Carriage model to 

investigate these research questions. This model offers a novel and feasible method 

of investigating pneumococcal transmission in a controlled environment. The 

expansion of this model during this project to include a non-pneumococcal vaccine 

serotype (15B), further supports the model’s potential for use in vaccine 

development.  

A discussion of the main findings was provided at the end of each chapter; therefore, 

the aim of this general discussion is to provide an overall summary of the findings of 

these research studies. It also outlines some limitations of the research studies which 

may impact on interpretation of the results. Finally, it details implications of this work 

and how future work could provide deeper insights.  
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5.1 Main findings 

 Chapter 3- Hands were vectors for hand to nose transmission 

of pneumococcus 

Chapter 3 reports the results from a pilot study we conducted to investigate 

pneumococcal transmission using a human challenge model 146. It is generally 

thought that transmission of S. pneumoniae occurs primarily by indirect contact via 

inhalation of infected airborne droplets. Previously it has been unclear if hands or 

fomites have a role in pneumococcal transmission. We found that the hands can be 

vectors for transmission of pneumococcus leading to acquisition of colonisation. 

When using a combination of microbiological culture and lytA qPCR for 

pneumococcal detection, colonisation rates following hand to nose transmission are 

comparable to rates observed following intranasal pneumococcal inoculation in 

previous studies 149.                                                         

We demonstrated that pneumococcus can be transmitted leading to colonisation 

even after drying on the skin. Molecular methods of detecting pneumococcus 

showed similar rates of transmission when the bacteria were wet and immediately 

after visual drying on skin (50%). In addition, significant direct contact with the nasal 

mucosa (such as picking/poking the nose) is not needed for colonisation to occur 

following pneumococcal transmission. Overall rates of colonisation following 

transmission using the rubbing and sniffing method were comparable to the poking 

nose method. Direct contact with the mucosa was an important factor in enhancing 
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acquisition of colonisation in the dry bacteria sub-groups. Dry poke group had an 

overall colonisation rate of 70% (7/10) compared to 30% (3/10) in the dry sniff group. 

Streptococcus pneumoniae is a leading bacterial cause of infections worldwide; 

transmission, colonisation and invasion are the key stages in the pathogenesis of this 

bacteria. Our understanding of the process of transmission has profited recently by 

new models of transmission in rodents. In addition, experimental pneumococcal 

human challenge studies have greatly improved our understanding of the 

colonisation process. The Hand to Nose study described in Chapter 3 sought to build 

upon previous work by using this human challenge model to study pneumococcal 

transmission for the first time in humans. The results are in keeping with murine 

models which suggest that an environmental reservoir of pneumococcus may be an 

important source of transmission 47 50. Pneumococci have been shown to be able to 

survive days outside the human host, in nutrient-sufficient conditions, and have been 

cultured from common objects 193 194. It has been proposed previously that 

pneumococcus could be acquired from fomites and that bio-film growth 

characterises may be a key factor in length of time it remains infectious in the 

environment 193. Transmission during colonisation episodes is crucial to the 

infectious life cycle of pneumococcus. Future use of human infection studies 

investigating mediators of pneumococcal transmission could identify interesting 

targets for prevention of pneumococcal spread. 

Finally, the data from this chapter suggest that using both microbiological culture and 

a molecular method such as lytA qPCR for the detection of pneumococcal 
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colonisation can reduce the chance of missing low-density pneumococcal 

colonisation episodes. We found that all culture-positive samples were also qPCR 

positive. Interestingly the culture positivity rate decreased with decreasing densities 

measured by qPCR. All samples that were culture negative but qPCR positive had 

qPCR densities below 103 copies/ml. This suggests that qPCR may be more 

appropriate for detecting low density colonisation episodes.  

This study adds to the growing body of evidence suggesting that traditional culture 

methods may be suboptimal for detecting low density pneumococcal colonisation 

episodes. Our findings were in line with Olwagen et al 156 who found that qPCR was 

more sensitive in detecting concurrent colonisation with multiple pneumococcal 

serotypes. They reported that the majority of additional serotypes detected by the 

molecular method had bacteria load of <104 CFU/ml156. The use of qPCR method in 

addition to classical culture for detection of pneumococcal colonisation could help 

improve our understanding of the process and the effect of interventions such as PCV 

immunisation. Evaluation of PCV13 immunisation using the experimental human 

pneumococcal challenge model suggested that the success of this vaccine lies in 

reduction of colonisation acquisition 169. Using culture methods of detection, a 78% 

reduction in colonisation rates was found using PCV13 compared to control 169. 

Reduction of on average three logs in colonisation density in volunteers vaccinated 

with PCV13 was also observed. These results suggest the efficacy of PCV vaccine may 

be partially mediated by controlling pneumococcal colonisation density rather than 

solely stopping acquisition of colonisation.  
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 Chapter 4 – The EHPC model was successfully expanded to 

include non-pneumococcal vaccine serotype  

Chapter 4 demonstrated the propensity of serotypes 23F and 15B to cause 

nasopharyngeal colonisation in health adults. Colonisation rates for serotype 23F 

remained at or below 20%, regardless of dose. For serotype 15B acquisition of 

colonisation was dose-dependent until 8.0x104 CFU/naris, at this dose the highest 

colonisation rates were observed. An extended group of participants were inoculated 

with this dose to give a better precision of estimated colonisation rates (overall 

colonisation rate of 33% [11/33]). At the higher dose of 1.6x105 CFU/naris lower 

colonisation rates were observed. A previous human challenge study using serotype 

6B found that colonisation rates plateaued at inoculum doses higher than 8.0x104 

CFU/naris 139. This adds to previous data from human challenge studies and murine 

models which have showed a lack of relationship between dose of inoculated 

pneumococcus and colonisation densities 139 195. 

Pneumococcal serotype affects pneumococcal pathogenesis and the bacteria’s 

ability to colonise the host. It has been shown that serotypes differ in their 

prevalence, tendency to cause disease or outbreaks and their age distribution 89 133 

196. The New Serotypes study did not investigate possible bacterial factors which may 

have impacted on colonisation potential.  

This chapter also reported that nasopharyngeal colonisation does not cause nasal 

symptoms when symptom data are actively sought from participants for 7 days post 

inoculation. However, the data suggest that participants who are colonised are more 
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likely to develop a cough during a colonisation episode. Cross-sectional studies in 

children have reported that upper respiratory tract symptoms can be a significant 

risk factor for pneumococcal colonisation 164 191. It is unknown from this type of study 

design if colonisation causes symptoms or if concurrent symptomatic viral infection 

increases risk of colonisation.  

Chapter 4 demonstrated that for serotype 15B pre-exposure levels of anti-capsular 

antibodies were not associated with protection against colonisation acquisition. This 

was in keeping with previous experimental human challenge study results where 

baseline levels of 6B specific IgG levels were similar in all participants and did not 

predict colonisation status following exposure to serotype 6B 10 171. The role of these 

antibodies and levels needed to protect against colonisation are still unclear. Murine 

models have shown that passive transfer of anti-capsular polysaccharide IgG to 

contacts pups could stop acquisition of colonisation 197. Pre-exposure PS 15B IgG 

levels of all participants were ten times higher than the previously established and 

accepted threshold antibody level which is thought to protect against IPD of 

350ng/ml. Protection against mucosal colonisation may be better associated with IgG 

or IgA which are produced by B cells at the mucosal surface rather than serum levels 

171.  

This study corroborated observations from previous experimental human challenge 

studies, demonstrating that a colonisation episode increases serum capsular-specific 

antibody levels 10 171. We did not assess the function of the anti-PS responses 

observed here. However, previous research found that colonisation induced a 
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significant increase in opsonophagocytic killing activity 10. In addition, a significant 

increase in mucosal IgG to PspA levels was observed 28 days following exposure in 

colonisation positive participants 10. These results suggest that colonisation may be 

beneficial and could lead to immune boosting to provide protection against 

subsequent pneumococcal disease and colonisation. This protection is likely to be 

serotype-specific as shown by two experimental human challenge studies; one 

showed 100% protection when participants were re-challenged with a homologous 

serotype10. Whereas the second study demonstrated that heterologous challenge 

lead to 50% colonisation rates which comparable to conisation rates observed in 

previous experimental challenge studies using the same serotype (6B) 171.  
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5.2 Methodological criticisms  

One area which could impact the generalisability of results from both studies lies 

within the recruitment of individuals. All participants were healthy young adults. It is 

unknown if the rates of results from the two studies described in this thesis would 

be predictive of results in children, the elderly, or the immunocompromised. 

Understanding of the drivers of pneumococcal colonisation in these cohorts is 

important for prevention strategies as they are known to be high risk for 

pneumococcal infection. Due to concerns about safety, using a human infection 

model in children is likely unethical and its use in immunocompromised adults or 

adults with chronic medical complaints would need significant consideration and 

enhanced safety protocols. Controlled human infection model (CHIM) studies in 

these groups would allow for a unique opportunity for the investigation of host-

pathogen interactions in these groups which are high risk for disease. We could also 

investigate how differences in the microbiome of these groups effects the dynamics 

of mucosal colonisation of pneumococcus.   

In children higher rates of colonisation would be expected in human infection model 

studies. Previous studies have shown that the highest rates of pneumococcal 

colonisation are observed in infants and that rates of colonisation fall with increasing 

age. Evidence also suggests shorter duration of colonisation episodes occur with 

increasing age but that children are colonised at high densities 198. Children are also 

believed to be the primary reservoirs for community pneumococcal transmission. 

Therefore it could be hypothesised that the Hand to Nose study may have shown 
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higher rates of transmission and colonisation in a paediatric population 199. Multiple 

epidemiological studies have shown that in family transmission was a key source of 

new episode of nasopharyngeal colonisation; results suggest that children tend to 

initiate this by bringing pneumococcus into the household 15 198 200. Higher densities 

of colonisation observed in children would likely impact on transmission, this may 

lessen the impact or need for direct contact for transmission to occur.  

Conversely in the elderly many studies have reported low rates of pneumococcal 

colonisation 201. One study that sampled over 3000 participants, with a mean age of 

74, reported a colonisation rate of just 1.8% 202. Due to this we would hypothesise 

that experimental colonisation would also be lower with increasing age. 

Paradoxically,  this reduction in colonisation coincides with an increase in the 

prevalence of pneumococcal disease in this age group with causes significant 

morbidity and mortality 201. The mechanisms for this are unclear. One hypothesis is 

that in the elderly, increased levels of proinflammatory cytokines may lead to 

clearance of colonisation before a natural boosting of pre-existing immunity can take 

place. A further hypothesis is that the elderly have lower density pneumococcal 

colonisation episodes and therefore colonisation is undetected but is highly 

prevalent in this age group.   

There are some general limitations of the model which may impact on the studies 

described in this thesis. The bacteria stock used for exposure is derived from culture 

media and is mid-log phase, these experimental conditions may influence 

pneumococcal viability and colonisation potential. In addition, it is unknown if the 
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dose we expose participants to is similar to what the nasopharynx may be exposed 

to naturally. Due to this our experimental carriage model may overestimate or 

underestimate the potential for hand to nose transmission of pneumococcus or the 

potential for 23F and 15B to colonise the nasopharynx. For both studies described in 

this thesis we investigate the dynamics of mucosal colonisation with only one 

serotype of pneumococcus. In the community it is likely that we are exposed to 

multiple pneumococcal serotypes simultaneously and there is evidence to suggest 

that pneumococcal co-colonisation is not uncommon. One study found that 28.7% of 

participants who were known to be colonised with pneumococcus using classical 

culture, were co-colonised with multiple pneumococcal serotypes when using qPCR 

to detect the serotype 156.   

One possible methodological criticism could be the use of nasal washes for detection 

of nasopharyngeal colonisation. This method has been validated by our team 

previously; it was found that nasal wash detected significantly more pathogens 

compared to nasopharyngeal swab and was more comfortable for volunteers 132. 

More recently, it has been suggested that for adults trans-oral sampling may be 

superior for detecting colonisation 159. No trans-oral samples were taken in either 

study described in this thesis, using a combination of nasal wash and oropharyngeal 

swab may have increased detection of pneumococcal colonisation further 159.  

Another possible methodological criticism may be the cycle threshold (CT) value of 

40 that was used for the qPCR experiments. Many of the culture-negative samples, 

that were found to be positive for pneumococcal colonisation using qPCR, had an 
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average Ct value >38, which is very close to the assay limit of 40. This amplification 

of samples that are culture negative has also been reported previously 155 203-205. 

There is no consensus about these borderline positive results; we could attribute 

these to the superior sensitivity of PCR over culture or it could be attributed to 

detection bacterial DNA from dead organisms or contamination 151 203-205. In these 

studies, our strict laboratory procedures regarding qPCR reduces the possibility that 

these results are due to contamination by PCR amplicons. In addition, as our samples 

are from non-sterile sites and the known difficulties of pneumococcal culture, the 

increased rates of pneumococcal colonisation using qPCR is not unexpected and have 

been seen in previous studies 149 151.  

A further methodological criticism may be that patients were followed up for a 

maximum of 14 days post pneumococcal exposure and colonisation positive 

participants completed a course of antibiotics after this final visit to clear 

colonisation. This limits the ability for us to comment on duration of colonisation 

episodes in either study. The short follow up period of participants limits our ability 

to assess how duration of colonisation and different transmission methods affect 

longevity of colonisation. To confidently answer these questions participants would 

need to be followed up at regular intervals until they naturally cleared the 

pneumococcus.   

For the Hand to Nose study one possible criticism may be the investigation of only 

potential transmission of pneumococcus by self-inoculation. There was also no 

investigation of pneumococcal shedding from a colonisation episode. Recent murine 
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models have highlighted the importance of understanding pneumococcal shedding 

to understand transmission, we need to better understand the process of 

pneumococcal exit from the colonised host 20 49. Examining the relative risk of 

pneumococcal spread via aerosolised bacteria, direct contact or indirect contact 

would be beneficial similar to previous studies investigating transmission of 

respiratory viruses 206-209. One study described multiple experiments to investigate 

the transmission of rhinovirus using laboratory infected participants (donors) and 

susceptible participants (recipients) 206. These experiments included: 

• Investigation of spread by aerosol. The infection rate of recipients who were 

not allowed to touch their faces during contact with donors was analysed.  

• Investigation of a combination of spread by aerosol, indirect contact and 

direct contact. Infection rate of recipients who were in contact with donors 

with no restrictions. 

• Investigation of possible transmission through infected fomites. The only 

contact between donors and recipients in this experiment was potential 

fomites/objects which had been heavily used by donors for 12 hours. 

Finally, neither study investigated the potential effects of the URT microbiome on 

pneumococcal colonisation. To successfully colonise the nasopharynx, the 

pneumococcus must compete with many other micro-organisms including 

Staphylococcus aureus and coagulase-negative staphylococci. It is still unclear why 

some individuals are at lower risk of pneumococcal colonisation and subsequent 

disease. It is hypothesised that competition and co-operation between the 
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pneumococcus and other bacteria which colonise the nasopharynx likely influences 

the incidence of colonisation episodes 210 211. Investigating and comparing the 

microbiome of participants in our model who become colonised and those who do 

not could provide potential new strategies to limit pathogenesis.  
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5.3 Implications and future work  

 Chapter 3: Hand to Nose 

The hands have been implicated as vehicles for transmission of many pathogens and 

viruses. The results from Chapter 3 suggest that pneumococci can be transmitted by 

a similar process. Due to the high burden of disease caused by pneumococcus and 

the rise in antibiotic resistance, strategies to prevent pneumococcal infection are 

more important than ever. Better understanding of how pneumococcus is 

transmitted from person-person is crucial and can inform more effective prevention 

strategies. There is clear evidence that handwashing reduces transmission of many 

bacterial and viral pathogens and can save lives. This study adds to this knowledge 

base by specifically looking at hand transmission of pneumococcus. Unlike many 

other pathogens, the person colonised with pneumococcus is generally clinically well 

and asymptomatic which often relates to lower rates of hand washing. Our results 

suggest that regular hand washing, and cleaning of potential fomites could be an 

important approach to reducing the transmission of pneumococci via these routes. 

This is particularly important in care setting such as child care centres and hospitals 

where transmission and colonisation have a higher risk of leading to disease. These 

findings can be useful in health education campaigns and in the event of further 

epidemics of pneumococcal disease can inform containment strategies. Gavi, the 

Vaccine Alliance, in 2017, partnered with Unilever to promote handwashing with 

soap and immunisation together as they believe that promoting these two cost-

effective child survival interventions together could save many lives 212.  
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We have developed a human infection model which can investigate transmission 

dynamics in a controlled environment. Following this pilot study, the international 

consumer goods company Unilever have funded the use of this modification of the 

EHPC model. Our group has recently concluded a randomised control trial to 

investigate the effectiveness of their anti-bacterial soap, Lifebuoy. In future the 

model could be in the product development phase of new hand cleaning products to 

ensure reduction in transmission of this important bacterial pathogen. On the other 

hand, future work could show that soap universally stops pneumococcal 

transmission, irrespective of formulation which could advise public health 

interventions in the developing world.  

This chapter’s results also add to the growing amount of research suggesting that 

molecular methods of pneumococcal detection have an important role to play in the 

detection of colonisation episodes. Culture is considered the gold standard method 

for detection of upper respiratory colonisation of pneumococcus and is 

recommended by the WHO Pneumococcal Carriage Working Group 150. We have 

demonstrated that using microbiological culture and lytA qPCR methods are 

complementary. Simultaneous use improves detection rates of pneumococcus, 

especially in low density colonisation episodes and improves detection of 

simultaneous colonisation with multiple pneumococcal serotypes. This is important 

for any future transmission studies and for vaccine efficacy studies using 

experimental colonisation as a primary endpoint. If the endpoint used in future 

studies is a reduction in colonisation rates or density, the sensitivity of methods used 

to accurately detect these changes becomes increasingly important. The results from 
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our study suggest that using culture only may overestimate or underestimate the 

effect of any intervention if low density colonisation episodes are missed. From the 

current research, the significance and natural history of low density colonisation 

episodes is unclear. Future research investigating the dynamics of mucosal 

colonisation in participants who are qPCR positive culture negative would be 

beneficial to further inform this issue.  

One way in which this research could be taken forward is to investigate how long 

pneumococcus continues to be viable at high enough numbers to cause colonisation 

following drying on the hands. In addition, better understanding of pneumococcal 

survival duration in nasal secretions would help to understand the dynamics of 

pneumococcal transmission. Pneumococcal shedding in humans during a 

colonisation episode has yet to be researched. Understanding how the 

pneumococcus exits the colonised host and which factors increase this process is also 

important for prevention of transmission.  

 Chapter 4: New Serotypes 

Chapter 4 increases the scope of the EHPC model, this study showed the success of 

a non-pneumococcal vaccine type serotype for the first time in a human infection 

model. The results of this study improves current understanding of colonisation 

dynamics of serotype 15B, which is one of the most prevalent serotypes causing 

invasive pneumococcal disease currently in England and Wales 166. Understanding of 

non- vaccine serotypes is increasingly important. The widespread use of 

pneumococcal conjugate vaccines has significantly reduced invasive pneumococcal 
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disease caused by serotypes covered by the vaccine. It has been estimated that 

nearly 40,000 invasive pneumococcal disease cases have been prevented in England 

and Wales since PCV was introduced 166. However, the rapid increase in some non-

vaccine serotypes highlights the importance of improved understanding of these 

non-vaccine serotypes. Using the EHPC model we can investigate colonisation 

dynamics of different pneumococcal serotypes which represent a variety of capsular 

types and protein expression profiles. Evaluating how serotype specific factors effect 

colonisation and immune responses, especially for serotypes not included currently 

in vaccines, may help aid in the development of new vaccines. This MD project 

focuses predominantly on the clinical aspects of the model, a number of other 

analyses and mechanistic work were undertaken by the wider EHPC team but are not 

discussed in this thesis.  

The success in developing the EHPC model to include this non-vaccine serotype 

further supports its use for the testing of novel vaccines. Colonisation is a 

prerequisite for invasive disease and is the primary reservoir for pneumococcal 

transmission in the community. Herd immunity has been observed following the 

introduction of PCV into childhood immunisation programmes; control of 

nasopharyngeal colonisation has been suggested as the mechanism for this 

phenomenon. Due to this, it has been suggested that the EHPC model can use 

prevention of colonisation, or reduction in colonisation density as a surrogate of 

vaccine-induced immunity and potential for herd immunity. If this is true, it would 

allow for a cost-effective method of down-selecting pneumococcal vaccine 

candidates early in development. Using the controlled human infection model 
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(CHIM) early in vaccine development timeline, allows for preliminary efficacy testing 

to be carried out in a small number of participants. Early results suggesting poor 

efficacy can minimise the risks of a late clinical failure in following expensive phase 2 

and 3 clinical trials 128.  

Extending this model to investigate other serotypes and testing of a mixed serotype 

inoculum may provide important information about interspecies competition and 

how different serotypes with different capsules and expressed proteins effect 

colonisation. A recent study which used both standard culture methods and qPCR for 

pneumococcal detection found that culture alone significantly underestimated the 

rate of simultaneous colonisation of multiple serotypes 156. This study highlighted the 

need for better understanding of the dynamics of interspecies competition and 

simultaneous colonisation. This may help to identify steps during transmission, 

colonisation or infection, where pneumococci must pass through a microbiological 

bottleneck and may help understanding of vaccine escape mechanisms. A study in 

which healthy adult participants are inoculated with a mixed inoculum could 

investigate this, either multiple serotypes, or similar serotypes with different gene 

expression, genome sequencing could be used to support identification of serotype 

recovery. 

5.4 Overall considerations 

The work conducted for this thesis adds to the current understanding of what drives 

nasopharyngeal pneumococcal colonisation. Results from the Hand to Nose project 
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uncovered the role of the hands as vehicles for the transmission of pneumococcus 

and acquisition of colonisation. This has never been shown in humans before, this 

modification of the human challenge model can in the future build upon recently 

developed murine models investigating pneumococcal transmission dynamics. 

Future studies should aim to investigate bacterial shedding during colonisation 

episodes and identify potential factors that promote shedding. Identification of 

factors that must be inhibited in order to effectively reduce pneumococcal 

transmission is key in prevention of pneumococcal disease.  

The growing prevalence of serotypes not included in the PCV immunisation is a major 

concern. In children serotype 15B/C was a common coloniser prior to the 

introduction of PCV (2001) and its prevalence has continued to expand since the 

vaccine was introduced into many childhood immunisation programmes worldwide 

176. The use of the novel human challenge model used in this project has allowed for 

better understanding of this serotype and how host and bacterial factors can affect 

pneumococcal colonisation. A major challenge of new potential vaccine candidates 

is the huge costs involved in large scale phase II and III studies. The successful 

development of the EHPC model to include serotype 15B, which PCV 13 

immunisation does not protect against, would support the models use in future 

vaccine testing, aiming at down-selecting candidates that failure to show an impact 

on colonisation. An area which needs further study prior to this is the question of 

how we measure vaccine efficacy with colonisation; what level reduction in 

acquisition is needed for protection, or can a reduction in colonisation density suffice 

to infer protection and herd immunity by reducing transmission?
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7 Appendices 

7.1 Appendix A: Safety information leaflets 

Hand to nose transmission of streptococcus  
pneumoniae in healthy participants – pilot study 

 

 
Safety Information Sheet 
 

If you are very 
unwell  

Contact your GP or Emergency Department  
Simultaneously inform the research team tel: 
07912 053 981 

If you have mild 
or moderate 
symptoms   

Contact the Respiratory Research team 
Land line:  0151 706 3381 
Mobile: 07912 053 981 
Royal Liverpool Hospital 0151 706 2000  

If you are well   For safety monitoring we ask you to text us daily 
for the first 7 days before 12.00 (inc weekends) 
Tel: 07912 053 981 

 

If you are unwell:  
Pneumococcus bacteria may cause infection. Although this is very unlikely we ask you to 
familiarise yourself with early symptoms or signs that may indicate infection to make sure 
they are recognised and treated. Please contact the research team who are available day 
and night if you have any symptoms as follows:  
 

If you have these symptoms 
Contact the research team:  
 

Fever (temp>37.5 ˚C) (if below 36 ˚C please recheck) 
Shivering 
Headache 
New rash 
Drowsiness 
Cough 
Earache 
Signs of skin infection: pimples, blisters or raised red 
itchy bumps with redness or swelling 
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If you are very unwell or 
concerned about your 
health 
 
Caution: it is possible that 
you may be unwell for 
another reason not related 
to these bacteria. 

Seek urgent care from your GP or hospital 
Start taking the antibiotic (one tablet of amoxicillin three 
times a day)  
Tell the doctor:  
You were exposed to live Streptococcus pneumoniae on 
your hand and attempted to transmit this into your nose.      
It is sensitive to amoxicillin  
Your GP records say you have no history of allergy to this 
antibiotic. 

 
What if I am not near a phone? 
 
If you are unwell and you are unable to make contact with the research team, we would 
advise that you start taking your antibiotics straight away. If you have any concerns we 
recommend you attend your nearest GP, Walk in centre or Emergency Department. 
 
What do I tell the doctor? 
 
If, for any reason you have to attend your doctor or the hospital you need to inform them that 
you have had live Streptococcus pneumoniae inoculated into your nose which is can be 
treated by amoxicillin as it is sensitive to this antibiotic).  Please contact us as soon as you 
can.  
 
What if I have a general cough or cold? 
 
Please contact us and we can advise you whether we would like to assess you in the clinic. In 
some cases, we may ask you to have a throat swab to confirm if you have an infection or 
advise you to take the amoxicillin antibiotic or advise you to see your GP.  
 
Safety monitoring  
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To ensure you are not experiencing any problems we ask you to contact us daily after we 
have put bacteria in your nose for week and to inform us at any time in the study if you are 
unwell for any reason.  

For the first 7 days please: 
Set an alarm on your phone  
Take your temperature each morning 
Text your temperature and if you are well any time before 12.00  
If we do not hear from you, we will text then phone you.  
 
Provide contact details of someone that can contact you if we have not heard from you 
(housemate etc)  
 
Explain to them that you are in this research and that we may contact them if we are unable to 
contact you...  
 
Record symptoms daily on the diary provided and return this at your clinic appointment 
Keep your antibiotics and our contact details with you at all times during the study (return the 
antibiotic if unused on your last visit).  
 
At any time in the study: 
If you feel unwell, please contact us to let us know we are available day and night   
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Do you have any of the following? 

Fever (>37.5 ˚C) 

Headache 

Rash 

Drowsiness 

Cough 

Earache 

Generally Unwell 

YES 
NO 

Contact Research Team 
by 12 noon every day 
for first 7 days on  
07912 053 981 
 

Call the Emergency Research Team on        
07912 053 981                                    24 hours/ 
day 
Or Call 0151 706 2000 and Ask for 
Respiratory Research  

If you are unable to get to a telephone 

start taking your antibiotics 

immediately 

Inoculation LEAFLET 
Experimental Human Pneumococcal 

Carriage (EHPC) Model Using New 
Serotypes 

 
Information Sheet 

EMERGENCY RESEARCH TEAM 
07912053981 24 hours/ day 

OR CALL 
0151 706 2000 

Hospital Switchboard 
Ask for Respiratory Research 
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Do I need to do anything if I feel well? 
 
We ask that for the first 7 days you text or phone the research nurse by 12noon every day on the 
following number: 07912 053 981 
This is to ensure that you are not experiencing any problems. If we do not hear from you by 12noon we 
will contact you to make sure you are not experiencing any problems. In the event that we cannot contact 
you, your next of kin will be contacted.  
 
Things you should know........Following inoculation with pneumococcus 
 
After the pneumococcus is put into your nose it is possible that it may cause an infection. Although this is 
very unlikely it is sensible that you familiarise yourself with symptoms or signs that may indicate infection 
to make sure they are recognised and treated early. Keep your thermometer, antibiotics and contact 
numbers with you at all times during the study.  
 
WHAT SHOULD I LOOK OUT FOR? 
If you feel generally unwell or have any of the following: 
Fever (temp>37.5 ˚C) 
Shivering 
Headache 
New rash 
Drowsiness 
Cough 
Earache 
 
If you have any of the symptoms or signs marked in bold please call the emergency number immediately. 
 
07912 053 981 24 hours/ Day 
OR 
Phone 0151 706 2000 and ask for Respiratory Research 

What should I do? 
 
If you have any of the above symptoms we would ask that you should contact the research team on the 
following numbers without delay 07912 053 981  24 Hours/ Day 
0151 706 2000 Hospital switchboard - ask for Respiratory Research. The Consultant will be available by 
telephone 24 hours a day for advice. 
 
What if I feel very unwell? 
 
In the unlikely event you feel very unwell we advise you to start taking the antibiotics immediately and 
phone the emergency research team (xxxxx xxx xxx).  In the unlikely situation that you are unable to make 
contact with the team we recommend you attend your nearest Emergency department. 
 
What if I am not near a phone? 
 
If for any reason you are unable to make contact with the emergency research team, we would advise that 
you start taking your antibiotics straight away. This is one tablet (500mg) of AMOXICILLIN to be taken three 
times per day. If you have any concerns we recommend you attend your nearest Emergency Department. 
 
What do I tell the doctor? 
 
If, for any reason you have to attend your doctor or the hospital you need to inform them that: You have 
had live Streptococcus pneumoniae type _______ inoculated into your nose on ___/___/_______ as part of 
a randomised control trial into nasal carriage and vaccination. The bacteria you carry are fully sensitive to 
amoxicillin and you have no history of allergy to this antibiotic. 
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7.2 Appendix B: Daily Symptom Logs 

Daily symptom log used for all participants inoculated with 23F serotype. Adapted 

from modified Likert Score from Spector et al 172. 
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Daily symptom log for all participants inoculated with 15B serotype  

 
 
 
 


