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Background. Antimalarial use is a key factor driving drug resistance and reduced treatment effectiveness in
Plasmodium falciparum malaria, but there are few formal, quantitative analyses of this process.

Methods. We analyzed drug usage, drug failure rates, and the frequencies of mutations and haplotypes known
to be associated with drug resistance over a 12-year period (1991–2002) in a site in Papua New Guinea. This
period included 2 successive treatment policies: amodiaquine (AQ) or chloroquine (CQ) from 1991 through 2000
and their subsequent replacement by sulfadoxine-pyrimethamine (SP) plus AQ or SP plus CQ.

Results. Drug use approximated 1 treatment per person-year and was associated with increasing frequencies
of pfcrt and pfmdr1 mutations and of treatment failure. The frequency of pfdhfr mutations also increased, especially
after the change in treatment policy. Treatment failure rates multiplied by 3.5 between 1996 and 2000 but then
decreased dramatically after treatment policy change.

Conclusions. With high levels of resistance to CQ, AQ, and SP, the deployment of the combination of both
drugs appears to increase clinical effectiveness but does not decelerate growth of resistance. Our estimates of
mutation and haplotype frequencies provide estimates of selection coefficients acting in this environment, which
are key parameters for understanding the dynamics of resistance.

Mass deployment of antimalarial drugs invariably re-

sults in emergence and spread of resistance. The effec-

tiveness of the most widely used antimalarials, chlo-
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roquine (CQ) and sulfadoxine-pyrimethamine (SP),

was heavily compromised by the emergence and spread

of resistant Plasmodium falciparum [1]. The genetic ba-

sis of this resistance is known in some detail: resistance

to CQ and SP is associated with accumulation of mu-

tations in pfcrt/pfmdr1 and pfdhfr/pfdhps genes, respec-

tively [2–4], which have spread within and across con-

tinents [5–7]. Here, we use a unique 12-year compilation

of clinical records of drug use, molecular analyses of

blood samples, and longitudinal morbidity surveillance

to quantify the 3 key components of the process leading

to drug failure:

1. The driving force for resistance: the level of com-

munity drug use.

2. The mediator: the spread of resistance-associated

mutations.

3. The outcome: drug failure and reduced effec-

tiveness.

We investigate and quantify the relationship between

these 3 factors to investigate the impact of drug pressure
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in driving mutations that encodes CQ and SP resistance in an

area of moderate to high malaria transmission in Papua New

Guinea (PNG). Rather than considering prevalences of these

mutations in patient blood, which is potentially misleading if

there are changes in transmission intensity and multiplicity of

infection (MOI), we present these analyses of the evolution of

resistance in terms of allele and haplotype frequencies [8]. We

then proceed to quantify the impact on failure rates and ther-

apeutic effectiveness.

PATIENTS AND METHODS

Patients and follow-up. The study, part of the Malaria Vac-

cine Epidemiology and Evaluation Project [9–11] in Wosera,

focused on the inhabitants of the immediate catchment area

of the Kunjingini health center in East Sepik Province, PNG.

This health center provided the only source of primary care

for this area [12], and identification (ID) numbers, presumptive

diagnosis, and treatment were recorded for all patients that

presented during the period 1991–2002. ID numbers were then

linked to those in the Wosera demographic surveillance system,

and reattendance at health facilities within any given period of

time was thus recorded.

Patients with fever were treated presumptively for malaria

according to the guidelines of the PNG Department of Health

[13], which for uncomplicated malaria recommended amodia-

quine (AQ) for children !20 kg and CQ for others, until 2000.

From 1997 on, to reduce vivax malaria transmission, 1 dose of

primaquine (PQ) was combined with AQ or CQ. Second-line

treatment was quinine (QN) plus SP. In 2000, the first-line

treatment changed to AQ plus SP or CQ plus SP, depending

on the patient’s weight.

Blood was collected for parasitological and hematological

assessment, and samples were frozen in EDTA-Microtainer

(Becton Dickinson).

The Medical Research and Advisory Committee of the Min-

istry of Health in PNG gave scientific approval and ethical

clearance, and written informed consent was obtained from

patients, parents, or legal guardians before recruitment of each

patient.

Molecular analysis. DNA was extracted by the QIAamp

DNA kit from a random sample of 50 blood samples per year

from cases that presented with 11000 asexual P. falciparum

parasites/mL. Polymorphisms in the pfcrt (C72S, M74I, K76T,

H97Q, T152A, S163R, A220S, Q271E, N326S/D, I356L/T,

R371I), pfmdr1 (N86Y, Y184F, S1034C, N1042D, D1246Y),

pfdhfr (A16V, N51I, C59R, S108N, I164L), and pfdhps (S436A/

F, A437G, K540E, A581G, A613T/S, I640F, H645P) genes were

analyzed by DNA microarray as described elsewhere [14]. MOI

was determined using GeneScan-based msp2 genotyping [15].

Drug use. Drug pressure was measured as the mean num-

ber of treatments per person per year. For 1991–1993, the total

number of treatments dispensed from the clinic was known.

The number of treatments in our study area was then obtained

by multiplying this total by the proportion of the clinic’s catch-

ment falling in our study area (39%, obtained from the total

person-time in the demography database for 1999–2002). Our

experiences during this period suggest that this catchment had

typical levels of patients seeking malaria treatment and that

local demographic characteristics did not alter significantly be-

tween 1991–1993 and 1997–2002. For 1994–1996, no reliable

data on treatments were available. From 1997 onward, treat-

ment data were available from the Institute of Medical Research

(IMR) study nurses who recorded the drugs used during their

visits. They were not present each day, so the total number of

treatments was obtained by dividing the recorded number of

IMR treatments by the proportion of days that the IMR study

team was present. This calculation relies on the assumption

that treatment rates and type were independent of presence of

the IMR nurses, because the nurses’ role was observational.

Allele and haplotype frequencies. Single allele frequencies

of resistance markers were estimated from nonlinear statistical

model by accounting for the effects of varying multiplicity of

infection and by assuming that resistant and sensitive parasite

clones are transmitted independently. The likelihood of a sam-

ple containing no resistant clones is , where p is then(1 � p)

frequency for the mutant allele and n is the MOI of the sample.

Similarly, the likelihood of a sample containing no wild-type

allele is , and for a mixture of both, a wild-type and a resistantnp

allele, is . The overall likelihood for p is thenn n1 � p –(1 � p)

the product of this likelihood over all samples, using values of

n obtained from msp2 genotyping results [16]. We used a simple

1-dimensional search routine to maximize this likelihood and

obtain estimates of p [17]. This maximum likelihood (ML)

analysis is a standard-population genetic approach for samples

whose genetic composition is ambiguous (eg, ambiguity arises

if a sample has MOI p 4 and contains both mutant and wild-

type alleles because it is unclear whether the sample contains

1, 2, or 3 mutant clones). ML emphasizes the probability of

observing the entire data set rather than attempting to un-

ambiguously identify the genetic composition of each sample.

Consequently, it can include all samples, and we were not forced

to discard genetically ambiguous samples when MOI �2. Poly-

merase chain reaction (PCR) bias and parasite sequestration

means that minor clones may be missed in some samples and

MOI may be underestimated. However, we are not directly

counting the number of clones of each genotype, so this effect

is not important. We avoid subsequent problems, such as the

most appropriate denominator to use; provided that the prob-

ability of detecting clones is unaffected by the genotype being

analyzed, then the methodology is robust. The frequencies of

distinct haplotypes for pfdhfr and pfdhps were estimated by ML

using the MalHaploFreq program [8]; the ML approach is de-
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Figure 1. Per capita treatment showing use of various drug com-
binations, from 1991 through 2002 (but excluding 1994–1996 due
to lack of data). AQ, amodiaquine, CQ, chloroquine; SP, sulfadoxine-
pyrimethamine.

Figure 2. Changes in mutant allele frequency from 1991 through 2002 as a result of use of sulfadoxine-pyrimethamine in combination with chloroquine
or amodiaquinea.

scribed in more detail in that publication and in the accom-

panying users’ manual.

Selection coefficients were calculated for each allele and hap-

lotype by plotting against time, where R and S are theln (R/S)

frequency of resistant and sensitive alleles or haplotypes, re-

spectively [18]. Time was converted to parasite generations that

assumed 6 P. falciparum generations per year. The selection

coefficient for each single-nucleotide polymorphism (SNP) or

haplotype was the slope obtained by regression analysis for the

12-year period. Annual selection coefficients were also calcu-

lated for correlation with contemporaneous drug usage.

Treatment effectiveness. Treatment failure rates were cal-

culated by year as the proportion of patients with confirmed

malaria administered an antimalarial treatment course who re-

presented with a subsequent episode of confirmed malaria

within 8–28 or 29–42 days of start of treatment [19]. Treatment

courses were provided at health facilities, and subsequent pa-

tient compliance was not noted. Hence, our failure rates reflect

drug effectiveness. It is important not to confuse effectiveness

with drug efficacy measures that arise from clinical trials. The

latter provide drugs in idealized conditions (typically giving

exact doses based on weight and observing compliance) to

confirm that the drug will work in principle, rather than in

practice. Our use of drug failure to measure effectiveness is

more appropriate for 2 main reasons. First, it reflects the real-

life conditions under which people use (and misuse) the drugs.

Second, the impact of mutations depends on their environ-

ment: in principle, they might not compromise drug efficacy

(mutant parasites are always killed by correct treatment) but
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Figure 3. Changes in haplotype frequency from 1991 through 2004.

may reduce effectiveness (mutant parasites may survive the

suboptimal treatments that inevitably occur in practice). Failure

rates were not PCR-corrected, so they include both recrudes-

cent infections that survived treatment and reinfections. Both

are important for effectiveness; mutations to resistance increase

the probability of surviving treatment and also allow parasites

to tolerate high drug levels, thus enabling them to establish

new infections in people more rapidly after treatment [20].

Thus, the absence of PCR correction is not problematic for the

study.

RESULTS

Drug use. A total of 7612 AQ, 5179 CQ, 337 QN, 2571 SP,

and 4430 PQ treatments were delivered at the Kunjingini Health

Center to patients from the core villages from 1991 through

2002, corresponding to an average of 0.81 treatment courses

per person-year. From 1991 through 1993, only AQ, CQ, and

QN were prescribed. Per capita treatment decreased for AQ

and CQ between 1991 and 1999 (with the proviso that data

for 1994–1996 were not available), remaining relatively stable

thereafter (Figure 1), but was always higher for AQ than for

CQ. QN use was low during the entire 12-year period. PQ use

commenced in 1997 with 0.58 treatments per person, increased

to 0.95 in 2000, and then decreased to 0 in 2002 (Figure 1).

SP use started in 1997, with 0.01 treatments per person and

remained low until 1999. SP was then combined with CQ or

AQ as recommended first-line drug, increasing rapidly to 0.86

and 0.74 treatments per person-year in 2001 and 2002, re-

spectively (Figure 2). Slides collected by the IMR team during

their visits showed that 56% of the (presumptively) treated

patients did not have P. falciparum (data not shown), with this

percentage stable over time.

Genetic analyses. MOI showed no significant trend over

time, averaging P. falciparum clones per sample, with1.4 � 0.15

the lowest MOI in 1991 (1.21) and the highest in 2000 (1.78).

Thus, 98% of samples could be genotyped (588 samples), with

polymorphisms found in pfcrt codons C72S, K76T, H97Q,

A220S, N326D, I356L, and I356T, pfmdr1 codons N86Y, Y184F,

and N1042D, pfdhfr codons C59R and S108N, and pfdhps co-

don A437G. The changes in SNP and haplotype frequencies

are shown in Figures 2 and 3, respectively.

Most mutant allele frequencies increased over the 12-year

period, except pfmdr1 Y184F and N1042D, pfcrt I356T and

H97Q, and pfdhps A437G, which were at low frequencies and

showed no discernible trend. Mutant gene frequencies in pfcrt,

already frequent (10.4) in 1991 (Figure 2), increased over the

12-year period (for pfcrt I356L, C72S, and K76T multiplying

by 1.67, 1.63, and 1.34, respectively). The pfmdr1 N86Y fre-

quency was multiplied by 1.18 (Figure 3). The mutant allele

frequencies of pfdhfr C59R and S108N decreased between 1991

and 1995, from 0.47 to 0.24 for S108N and 0.26 to 0.07 for

C59R. From 1995 onward, the frequencies of these alleles mul-

tiplied by 3 and 6.4, respectively.

Among haplotypes, the frequency of pfdhfr is the most in-

teresting. The wild-type frequency did not vary significantly

between 1991 and 1998, but it dramatically decreased thereafter.

The pfdhfr108 single-mutant haplotype did not change much

in frequency over the entire period. There was no clear trend

for pfdhfr double-mutant haplotype 59R/108N between 1991

and 1997, but after 1998 it increased to a frequency that was

2.5 times higher in 2001 than in 1998 (Figure 3).

The selection coefficients for all the mutations are listed in

Table 1. There was significant selection for the pfcrt SNPs C72S

and I356L ( ) and the pfdhfr SNPs C59R (and S108NP � .05



Table 1. Analysis of the Spread and Consequences of Single-Nucleotide Polymorphism (SNPs) and Haplotypes in pfcrt, pfmdr1,
and pfdhfr

SNP or haplotype
Selection coefficient,

% (95% CI)

Correlation between selection
coefficient and drug usage

Correlation
between SNP/haplotype

frequency and
drug failure rates

CQ AQ QN PQ SP ETF LTF

Gene pfcrt. (haplotypes defined
at codons 76, 220, and 356)

SNP C72S 2.60a (1.47 r 3.73) �0.05 �0.62 �0.68a 0.45 N/A 0.33 0.05

SNP K76T 4.08 (�4.90 r 13.05) �0.56 �0.43 �0.55 0.36 N/A 0.65b 0.01

SNP H97Q 6.13 (�2.54 r 14.80) �0.27 �0.41 �0.42 0.27 N/A 0.63c 0.77a

SNP I356L 2.53a (1.31 r 3.75) 0.04 �0.50 �0.61 0.45 N/A 0.21 0.07

SNP I356T �4.94 (�19.3 r 09.4) �0.003 0.45 0.37 �0.41 N/A �0.23 �0.14

SNP A220S 2.15 (�0.82 r 5.12) 0.35 �0.20 �0.11 0.07 N/A �0.38 �0.13

SNP N326D 1.70 (�0.73 r 4.13) 0.47 0.01 �0.12 0.18 N/A �0.50 0.02

Haplotype 000 �0.025a (�0.04 r �0.01) �0.02 0.48 0.60 �0.54 N/A �0.21 �0.24

Haplotype 001 0.01 (�0.11 r 0.13) 0.23 0.04 �0.13 �0.11 N/A 0.15 �0.15

Haplotype 010 �0.03 (�0.10 r 0.04) 0.21 0.18 0.29 �0.37 N/A �0.18 �0.02

Haplotype 011 0.03 (�0.11 r 0.17) 0.45 0.18 0.13 �0.24 N/A �0.27 �0.05

Haplotype 100 �0.01 (�0.13 r 0.11) 0.6 0.27 0.27 �0.43 N/A �0.28 0.18

Haplotype 101 �0.04 (�0.13 r 0.05) �0.05 0.11 0.11 0.55 N/A 0.62c 0.4

Haplotype 110 �0.10a (�0.19 r �0.005) 0.65b 0.88d 0.82d �0.56 N/A �0.37 �0.13

Haplotype 111 0.02 (�0.01 r 0.05) 0.26 �0.24 �0.10 0.11 N/A �0.27 �0.02

Gene fmdr1. (haplotypes defined
at codons 86, 184, and
1042)

SNP N86Y 1.03 (�0.04 r 2.10) �0.06 �0.37 �0.58 0.53 N/A 0.49 �0.19

SNP Y184F �1.27 (�3.73 r 1.20) 0.60 0.55 0.47 0.11 N/A �0.82 d 0.04

SNP N1042D 3.27 (�8.76 r 15.31 0.16 �0.36 �0.17 0.03 N/A �0.17 0.63c

Haplotype 000 �0.02a (�0.03 r �0.002) 0.003 0.45 0.54 �0.69a N/A �0.16 �0.04

Haplotype 100 0.01 (�0.002 r 0.02) �0.09 �0.43 �0.51 0.75a N/A 0.24 �0.04

Haplotype 101 0.12a (0.01 r 0.24) �0.37 �0.64b �0.62 0.26 N/A 0.78a 0.51

Gene pfdhfr (haplotypes defined
at codons 59 and 108)

SNP C59R 2.25a (0.09 r 4.41) N/A N/A N/A N/A 0.83d �0.26 0.35

SNP S108N 1.95a (0.34 r 3.57) N/A N/A N/A N/A 0.92e �0.97 �0.92

Haplotype 00 �1.76a (�3.27 r �0.23) N/A N/A N/A N/A �0.90e 0.97 0.63

Haplotype 01 0.11 (�2.45 r 2.69) N/A N/A N/A N/A 0.02 �0.25 �0.80

Haplotype 11 2.15a (0.03 r 4.27) N/A N/A N/A N/A 0.79d �0.23 0.38

NOTE. Only the main haplotypes and their constituent SNPs are included, identified in the table using “0” to indicate a wild type and “1” to indicate
a mutant. Hence, pfcrt haplotype 001 is wild type at positions 76 and 220 and mutant at position 356; pfmdr1 haplotype 011 is wild type at position
86 and mutant at positions 184 and 1042; and so on. The Table provides 3 key factors describing the spread of resistance: (1) selection coefficients for
CQ and SP resistance-related molecular markers over the whole study period assuming 6 generations of Plasmodium falciparum per year. (2) The
correlation between these selection coefficients (a measure of how rapidly the mutations are spreading or disappearing) and level of individual drug
use. This was done on an annual basis (ie, each year constitutes 1 data point), excluding years 1994–1996 in which there was no quantification of drug
usage. (3) The correlation between the allele/haplotype frequency and early and late treatment failure rates analyzed on an annual basis. In the case of
treatment failures and pfcrt and pfmdr, we only include 1991–1999 (because failure rates are not directly comparable in the periods before and after
the introduction of SP as their partner drug). Similarly, SP was only deployed for 3 years, 2000–2002, so correlation was only over 3 time points. AQ,
amodiaquine; CI, confidence interval; CQ, chloroquine; ETF, early treatment failure (between days 8 and 28); LTF, late treatment failure (between days
29 and 42); N/A, not applicable; QN, quinine; PQ, primaquine; SP, sulfadoxine-pyrimethamine.

a .P � .05
b .P p .06
c .P p .07
d .P � .01
e .P � .001
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Figure 4. Treatment failure rates in relation to changes in treatment
policy. AQ, amodiaqine; CQ, chloroquine; SP, sulfadoxine-pyrimethamine.

( ). Among the pfcrt haplotypes, there was low but sig-P � .05

nificant selection against the triple wild-type haplotype and

against the double-mutant 76/220 haplotype. In pfmdr, there

was significant selection against the triple wild-type haplotype

and positive selection for the double-mutant 86/1042 haplo-

type. There was significant selection for the pfdhfr double-mu-

tant haplotype and significant selection against the pfdhfr 59/

108 wild-type haplotype. In particular, the selection coefficient

for the pfdhfr 59/108 double mutant after 1999 (ie, after the

change to SP plus AQ or SP plus CQ as a first drug in 2000)

was 4.87% (data not shown), but it was not significant

(�14.34% to 24.07%).

The correlations between selection coefficients and drug use

patterns were nonsignificant for nearly all the pfcrt and pfmdr1

mutations and QN, AQ, and CQ use, except for pfcrt C72S and

QN use, and pfcrt 76/220 haplotype and AQ and QN use (Table

1). In contrast, the correlations between selection coefficients

of pfdhfr SNPs and haplotypes and SP use were significantly

positive.

Treatment effectiveness. Overall, 148 (2.2%) of 6678

treated patients were reinfected during the 8–28-day period and

an additional 122 (1.8%) patients were reinfected during the

29–42-day follow-up period. The treatment failure rate for the

28-day follow-up period did not change significantly between

1991 and 1995, but it gradually increased from 1996 until 1999;

treatment failures were 3.8 times more common in 1999 than

in 1996 (Figure 4). Patient follow-up was not recorded in 1995.

After 1999, the treatment failure rate decreased dramatically,

resulting in a treatment failure rate that was 3.5 lower in 2002

than it was in 1999 (Figure 1). There was no significant overall

trend for treatment failure rates over the 29–42-day follow-up

period. Nevertheless, treatment failure during that period was

3.8 times more likely in 2002 than in 1991 (Figure 4).

DISCUSSION

Over the 12-year study period, annual drug use was ∼1 treat-

ment per person, consistent with the area being of moderate

to high intensity of transmission, with little drug access outside

the formal health sector [10]. There was a gradual decline in

deployment of AQ and CQ, whereas use of SP was high, fol-

lowing its introduction in 2000. Despite little use of SP before

2000, pfdhfr108 and pfdhfr59 mutations were already present

in 1991, and there was significant selection for these mutations

even without evident SP use (Table 1 and Figures 2 and 3).

Several explanations are possible: first, trimethoprim-sulfa-

methoxazole, an antifolate used mainly for its antibacterial ef-

fect, could select for pfdhfr mutations [21]. Second, SP was not

systematically recorded when it was given with QN as a second-

line treatment. Third, resistant parasites could immigrate from

neighboring areas, where SP resistance was higher. Fourth, ef-

fects of antifolate pressure exerted by mass drug administration

of pyrimethamine in the 1960s and 1970s were persistent [22].

Any of these explanations would be compatible with the model

that the acquisition of mutations enabling parasites to become

tolerant takes much longer than subsequent acquisition of sol-

id resistance [23]. The haplotypes of genes, rather than poly-

morphisms at individual codons, are the basic unit of drug

selection. Evolution of resistance may proceed through a series

of haplotype turnovers, some haplotypes initially spreading be-

fore being replaced in turn by more-resistant haplotypes [23].

Interestingly, our analyses suggest that resistance is in very dif-

ferent stages of development (Figure 3) in the 4 genes; pfdhps

is represented essentially by only wild-type haplotypes. Mutants

occur only on a single codon 86 in pfmdr1, although there was

a late appearance of a double pfmdr86/1042 haplotype. In pfcrt

the wild-type haplotype was almost eliminated and replaced by

the 76/356 and 76/220/356 mutant haplotypes, with the triple

mutant eventually largely displacing the double mutant.

In pfdhfr, the wild-type haplotype shows a steady decline

with the 108 single-mutant haplotype, initially being slowly

displaced by the 59/108 double-mutant haplotype but increas-

ing rapidly after the introduction of SP as a first-line drug in

1999. The estimated selection coefficient was 4.9% after this

introduction, and although the sample size was tiny (3-year

points), resulting in a large confidence interval (�14% to 24%),

it is interesting that this estimate is almost identical to that of

5% reported by Anderson and Roper [18], despite their work

being performed in a low-transmission area and examining a

more highly resistant pfdhfr triple mutant haplotype, which

would have been displacing the double.

Note that these selection coefficients are overall values, which

reflect both the advantage of the mutations in the presence of

a drug and their possible disadvantage in untreated individuals

[24–28]. The selective disadvantage of pfcrtK76T in the absence
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of drug treatment was previously estimated at �5% [27] in

Malawi, so making an illustrative assumption that the advan-

tage in the presence of the drug is +25% and that 30% of infec-

tions are treated would give an overall selection coefficient

of . Obviously, as drug use(0.3 � 0.25) + (0.7 � �0.05) p 0.04

increases or decreases, this overall selection coefficient will

change; hence, the importance of examining the correlation

between the 2 parameters is clear (Table 1). In principle, it

should be possible to disentangle the 2 effects by regressing the

selection coefficient against drug use and finding where the

regression cuts the Y axis (when drug use p 0), which would

give the selective disadvantage in the absence of the drug, but

in practice the relationship was so weak as to preclude this

calculation.

The sign and magnitude of these selection coefficients, s, is

a key parameter in much of population genetic theory. For

example, the magnitude of s affects the following:

1. The rate at which mutations and haplotypes migrate

across geographic regions. Classically, the rate is , where�j (2s)

j is the standard deviation of parasite dispersal via host move-

ment ([23]; but see the brief discussion in the Appendix of

[29]).

2. The chance of new mutations surviving the first few

generations after their first appearance or introduction (see box

2 of [30]).

3. The mutation/selection balance and hence the frequency

of the mutation that would be present before drugs are deployed

[31].

4. The size of the selective sweep in the genome surround-

ing a mutation being selected for resistance [32].

The estimates for s given in Table 1 can therefore be used to

calibrate and inform broader discussions of the population ge-

netics of emergence and spread of resistance. They can also be

used to validate models of the spread of resistant mutations,

which should predict selection coefficients similar to those ob-

served in the field. Although the estimates of s are imprecise,

the results are remarkably consistent (Table 1). Despite the

central role of the selection coefficient in understanding the

dynamics of resistance, in addition to the value of 5% estimated

for pfdhfr by Anderson and Roper [18], the only other estimate

of selection coefficients acting on P. falciparum drug-resistant

mutations/haplotypes appears to be that of Nair et al [33]. They

used the decline in clinical effectiveness of SP rather than direct

frequency estimation to assess the selection coefficient acting

on dhfr resistance as 11%. The results summarized in Table 1

are therefore a substantive advance.

The increasing treatment failure rate between 1996 and 1999

can be ascribed to the increasing parasite resistance to standard

treatment with CQ and AQ [34, 35], consistent with increasing

frequencies of the CQ resistance–associated mutant alleles in

pfcrt and pfmdr1. Although AQ in combination with SP is

efficacious in some areas where both drugs have previously been

used in monotherapy [36, 37], this drug combination is already

failing in PNG [38–40]. Our data have shown that resistant

pfdhfr allele frequencies already began to increase in 1998 before

the large-scale use of SP. The addition of SP to AQ or CQ in

2000 improved the effectiveness of the standard treatment but

did not prevent the increase in 4-aminoquinolines resistance

in this situation where resistant alleles were already frequent.

Treatment failure rates by day 28 with combination therapy

reached 16% in Wosera in 2003 [38]. Later molecular data have

also confirmed that resistance to SP, as measured by pfdhfr

S108N and C59R frequencies, continued to increase steadily

from 1999 onward [39, 40].

Few previous studies have assessed the relationships between

therapeutic effectiveness and molecular resistance markers over

extended periods [41–43]. The only other study, in Senegal

[19], to correlate these with drug pressure found results similar

to ours. The frequencies of both resistance markers and clinical

failure to both SP and CQ increased rapidly despite restriction

of antimalarial treatments to parasitologically confirmed cases

[19].

We conclude by considering how closely the 3 parts of the

process leading to resistance interrelate. There were strong cor-

relations between SP use and pfdhfr selection coefficients but

little correlation between drug use and selection coefficients in

either pfcrt or pfmdr1, probably because mutations known to

be associated with resistance (pfcrtK76T and pfmdrN86Y) were

already present at high frequencies. There also appears to be a

closer relationship between mutations in pfdhfr and SP resis-

tance than there is between pfmdr1/pfcrt mutations and CQ/

AQ failures. The weak correlations between individual muta-

tion/haplotype frequency and CQ/AQ failure rates very likely

reflect other phenomena, such as external factors that include

pharmacogenetics, compliance, and host immunity.

The genetic component was the most illuminating. The ge-

netic basis of resistance is known for several drugs, and there

is increasing interest in using molecular monitoring as a tool

to assess resistance [44–46] and to influence treatment poli-

cy change [47, 48]. We demonstrated the ability to use high-

throughput screening to simultaneously genotype P. falciparum

at numerous loci and could estimate frequencies of individual

alleles and haplotypes, which are the basic units of drug selec-

tion, and selection coefficients (consistently in the range of 1%–

4%). These analyses provide a valuable resource to inform ge-

netic modeling of drug resistance and, more generally, con-

tribute to effective and appropriate use of genetic surveillance

to support and guide antimalarial drug deployment policy.
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