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 23 

Abstract  24 

  25 

Cuticular hydrocarbon (CHC) biosynthesis is a major pathway of insect physiology. 26 

In Drosophila melanogaster the cytochrome P450 CYP4G1 catalyses the insect-27 

specific oxidative decarbonylation step, while in the malaria vector Anopheles 28 

gambiae, two CYP4Gs paralogues, CYP4G16 and CYP4G17 are present. Analysis of 29 

the subcellular localization of CYP4G17 and CYP4G16 in larval and pupal stages 30 

revealed that CYP4G16 preserves its PM localization across developmental stages 31 

analyzed; however CYPG17 is differentially localized in two distinct types of pupal 32 

oenocytes, presumably oenocytes of larval and adult developmental specificity. 33 

Western blot analysis showed the presence of two CYP4G17 forms, potentially 34 

associated with each oenocyte type. Both An. gambiae CYP4Gs were expressed in D. 35 

melanogaster flies in a Cyp4g1 silenced background in order to functionally 36 

characterize them in vivo. CYP4G16, CYP4G17 or their combination rescued the 37 

lethal phenotype of Cyp4g1-knock down flies, demonstrating that CYP4G17 is also a 38 

functional decarbonylase, albeit of somewhat lower efficiency than CYP4G16 in 39 

Drosophila. Flies expressing mosquito CYP4G16 and/or CYP4G17 produced similar 40 

CHC profiles to ‘wild-type’ flies expressing the endogenous CYP4G1, but they also 41 

produce very long-chain dimethyl-branched CHCs not detectable in wild type flies, 42 

suggesting that the specificity of the CYP4G enzymes contributes to determine the 43 

complexity of the CHC blend. In conclusion, both An. gambiae CYP4G enzymes 44 

contribute to the unique Anopheles CHC profile, which has been associated to  45 

defense, adult desiccation tolerance, insecticide penetration rate and chemical 46 

communication. 47 

 48 
 49 
 50 
Keywords: Anopheles gambiae, CYP4Gs, P450 decarbonylase, oenocytes, cuticular 51 
hydrocarbons (CHCs)  52 
  53 
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 54 
1. INTRODUCTION 55 

Insect cuticular hydrocarbons (CHCs) are a complex blend of long-chain alkanes or 56 

alkenes and methyl-branched alkanes that act as essential waterproofing components 57 

of the insect epicuticular layer to prevent desiccation, and/or serve as species- and 58 

sex-specific semiochemicals (Arcaz et al., 2016; Chung and Carroll, 2015; 59 

Cocchiararo-Bastias et al., 2011; Gibbs, 2011; Howard and Blomquist, 2005). 60 

Although CHC profiles differ among insect species, the main biosynthetic pathway is 61 

conserved (Howard and Blomquist, 2005). Their synthesis from fatty acids requires a 62 

suite of elongases, desaturases and acyl-CoA reductases that function in concert in 63 

large, ectodermally derived cells, called oenocytes (Fan et al., 2003). An additional 64 

enzyme required for the final step of CHC synthesis, a cytochrome P450 of the 65 

CYP4G subfamily was identified as oxidative decarbonylase (Qiu et al., 2012). 66 

Drosophila CYP4G1 is highly expressed in oenocytes together with NADPH 67 

cytochrome P450 reductase (CPR) and catalyzes the oxidative decarbonylation of 68 

long-chain aldehydes (Qiu et al., 2012). Οenocyte-specific RNAi-mediated knock 69 

down of CYP4G1 results in severe susceptibility to desiccation, conferring high 70 

mortality at emergence (Qiu et al., 2012). The CYP4G P450 subfamily is 71 

evolutionarily conserved across insects (Feyereisen, 2006) but is absent in other 72 

orders, such as crustaceans and chelicerates. This may indicate an essential function 73 

of CYP4G genes specific to insects, suggested to be a key to success in terrestrial 74 

adaptation. Insect genomes sequenced so far possess at least  one CYP4G (one in 75 

honey bee and aphid, two in Drosophila and several mosquito species) (Qiu et al., 76 

2012). 77 

Several earlier studies indicate distinct lipid/CHC signatures across development. 78 

Firstly, the necessary renewal of the cuticular lipids at each molt (Wigglesworth, 79 

1988) implies distinct lipids and presumably differences in their CHC derivatives at 80 

different developmental stages. Secondly, aquatic insects should prevent liquid entry 81 

into the tracheal system while apart from this terrestrial insects must be protected 82 

from desiccation which means they should prevent water loss. Adult An. gambiae and 83 

D. melanogaster with their early developmental stages being aquatic or semi-aquatic 84 

respectively (Parvy et al., 2012) presumably reflect the distinct needs in 85 
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lipids/hydrocarbons through development. Larval oenocytes synthesize very-long-86 

chain fatty acids (VLCFA) which are accumulated into spiracles, the organs 87 

controlling the entry of air into the trachea, protecting respiratory system from liquid 88 

entry (Parvy et al., 2012). Oenocyte-specific RNAi-based knock down of Cyp4g1 or 89 

Cpr in larvae and adults results in severe depletion in epicuticular HC in the few adult 90 

survivors. The majority die at eclosion presumably of extreme sensitivity to 91 

desiccation at the time of adult emergence (Qiu et al., 2012). Furthermore, 92 

pheromone-driven courtship was altered in Cyp4g1-KD CHC depleted females (Qiu 93 

et al., 2012). Similar phenotypes are produced when oenocytes are specifically ablated 94 

in adult Drosophila females. 95 

Underlying this phenotype is the presence of two different oenocyte cells in larvae 96 

and adults that have separate  developmental origins (Billeter et al., 2009; Gutierrez et 97 

al., 2007; Makki et al., 2014) and have been described in mosquitoes (Lycett et al., 98 

2006) and other  Diptera (Makki et al., 2014). Overall, these latter studies suggest that 99 

presumably larval oenocytes have a primary role in CHC production during molting 100 

and water-loss prevention in the tracheal system, while CHCs produced from adult 101 

oenocytes are mostly implicated in sex- and species-specificity, pheromonal 102 

communication and desiccation resistance (Makki et al., 2014; Parvy et al., 2012). 103 

The fact that An. gambiae oenocytes express two CYP4Gs (CYP4G16 and CYP4G17) 104 

as opposed to the single CYP4G expressed in D. melanogaster oenocytes is possibly 105 

indicative of a functional diversity. A recent study has shown that CYP4G16 is bound 106 

on the periphery of adult oenocytes, while CYP4G17 is dispersed among the 107 

cytoplasm (Balabanidou et al., 2016). In addition, in vitro experiments indicate the 108 

ability of CYP4G16 to catalyze the conversion of long-chain aldehydes to 109 

hydrocarbons, hence completing the final biosynthetic step, whereas the role of 110 

CYP4G17 remains unknown (Balabanidou et al., 2016). While CYP4G16 was able to 111 

convert C18 aldehyde to HC, no such activity could be demonstrated for CYP4G17 112 

which did not express well in vitro and for which longer aldehydes could not be tested 113 

because of solubility issues (Balabanidou et al., 2016). A recent study in 114 

Dendroctonus ponderosae showed that shorter-chain alcohols can also be substrates 115 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5 

of CYP4Gs (MacLean et al., 2018), which can thus serve in the biosynthesis of the 116 

pine beetle pheromone exo-brevicomin as well as in CHC biosynthesis. 117 

The variation in insect CHC blend has been associated with physiological adaption to 118 

ecological and reproductive parameters (Chung and Carroll, 2015). Indeed,  methyl-119 

branched CHCs have been shown to affect both waterproofing and mating in 120 

Drosophila serrata (Chung et al., 2014). It is likely that longer carbon chains in CHCs 121 

increase the melting temperature of the insect epicuticular wax layer and probably 122 

influence desiccation resistance, and methyl branching increases the chemical 123 

information of the cuticle (Chung and Carroll, 2015). Some studies have indicated 124 

that An. gambiae is rich in methyl-branched very long chain CHCs (mono- or 125 

dimethyl) (Balabanidou et al., 2016; Caputo et al., 2005), which could potentially 126 

serve both biological functions. 127 

Moreover, cuticular analysis of an insecticide resistant An. gambiae population 128 

compared to a susceptible one, revealed a thicker epicuticle, the major deposition site 129 

of CHCs, in the femur leg segment, thus creating a thicker hydrophobic barrier to 130 

insecticide molecules, as shown by reduced penetration rate of radiolabeled 131 

insecticide (Balabanidou et al., 2016). The higher CHC amount is in line with the 132 

overexpression of CYP4Gs in the resistant mosquitoes (Balabanidou et al., 2016), 133 

implicating an additional role of CHCs in insecticide penetration resistance 134 

(Balabanidou et al., 2018).  135 

In this study, the subcellular localization of An. gambiae CYP4Gs was analyzed in 136 

oenocytes from earlier developmental stages, i.e. 4th instar larvae and pupae.  137 

Furthermore, functional analysis of the An. gambiae CYP4Gs was performed in vivo 138 

using GAL4/UAS heterologous expression coupled with RNAi knock-down of the 139 

endogenous Cyp4g1 gene in Drosophila melanogaster and the ability of CYP4G16 140 

and/or CYP4G17 in different doses and in combination to rescue the lethal (Cyp4g1 141 

Knock-down) phenotype. CHC analysis of the rescued flies then gave insights into the 142 

catalytic efficiency and specificity of the two anophelinae Cyp4Gs in a Drosophila 143 

background. 144 

2. MATERIALS AND METHODS  145 

2.1 Mosquito strains  146 
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The An. gambiae N’Gousso strain was reared under standard insectary conditions at 147 

27oC and 70-80% humidity under a 12:12 hour photoperiod. The strain is originally 148 

from Cameroon and it is susceptible to all classes of insecticide (Edi et al., 2012). 149 

2.2 Antibodies 150 

Rabbit polyclonal antibodies targeting CYP4G16 have previously been developed  151 

(Balabanidou et al., 2016). The specific antibodies that were used for the detection of 152 

CYP4G17 (AGAP000877) have previously been described (Ingham et al., 2014). The 153 

epitopes recognize residues 231-312 and 233-315 of CYP4G16 and CYP4G17 154 

respectively. 155 

2.3 Preparation of cryosections for immunohistochemistry, immunofluorescence and 156 

microscopy 157 

4th instar An. gambiae larvae and dissected pupal abdomens were fixed in cold 158 

solution of 4% PFA (methanol free, Thermo scientific) in phosphate-buffered saline 159 

(PBS) for 4 h, cryo-protected in 30% sucrose/PBS at 4o C for 12 h, immobilized in 160 

Optimal Cutting Temperature O.C.T. (Tissue-Tek, SAKURA) and stored at -80oC 161 

until use. Immunofluorescence analysis, followed by confocal microscopy, was 162 

performed on longitudinal sections of the frozen larval and pupal specimens as 163 

described previously (Ingham et al., 2014). Briefly, 7 µm sections, obtained in 164 

cryostat with UVC disinfection (Leica CM1850UV) were washed (3 x 5 min) with 165 

0,05% Tween in PBS and blocked for 3 h in blocking solution (1% Fetal Bovine 166 

Serum, biosera, in 0,05% Triton/PBS). Then, the sections were stained with rabbit 167 

primary antibodies in 1/500 dilution, followed by goat anti-rabbit (Alexa Fluor 405, 168 

Molecular Probes) (1/1000) that gave the cyan color. Also To-PRO 3-Iodide 169 

(Molecular Probes), which specifically stains DNA (red color), was used, after 170 

RNAse A treatment. Finally, images were obtained on a Leica SP8 laser-scanning 171 

microscope, using the 40-objective. 172 

 173 

2.4 Topology experiments: predictions and whole mounts (preparation of abdominal 174 

walls for immunohistochemistry and immunofluorescence) 175 
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The predicted membrane topology of both An. gambiae CYP4Gs was analyzed using 176 

Phobius, a transmembrane topology and signal peptide predictor program (Kall et al., 177 

2007). For whole-mount larval abdomen immunostaining, abdominal walls from 4th 178 

instar larvae were dissected and fixed for 30 min at room temperature in 4% 179 

methanol-free formaldehyde (Thermo Scientific) in PBS supplemented with 2 mM 180 

MgSO4 and 1 mM EGTA, washed for 5 min with PBS, and then washed with 181 

methanol for precisely 2 min. After methanol wash, the tissues were washed again 182 

with PBS and then blocked for 1 h in blocking solution (bl sol: 1% BSA, 0.1% Triton 183 

X-100 in PBS). Then the tissues were stained with rabbit primary antibodies in 1/500 184 

dilution in the blocking solution, followed by goat anti-rabbit antibody (Alexa-Fluor 185 

488; Molecular Probes; 1:1,000) that gave the green color. Up to this point the same 186 

protocol omitting the addition of Triton was used to create the non-permeabilized 187 

conditions. Finally, DNA was stained red with ToPRO 3-Iodide (Molecular Probes). 188 

Pictures were obtained on Leica M205 FA Fluorescent Stereomicroscope. 189 

2.5 Fly strains 190 

In order to drive oenocyte –specific expression, the RE-Gal4 driver line ((Bousquet et 191 

al., 2012); kindly provided by  Jean-Francois Ferveur, Université de Bourgogne, 192 

Dijon, France) was employed. This line contains the RE fragment of the desat1 gene 193 

promoter, whose expression is mostly confined to oenocytes in Drosophila adults, 194 

(though some expression is also observed in accessory glands in males (Bousquet et 195 

al., 2012)). The responder strain UAS-Cyp4g1-KD (#102864 KK from Vienna 196 

Drosophila Resource Center) was used for RNAi mediated knock-down of CYP4G1.  197 

2.6 Generation of UAS responder flies 198 

Since both the RE-Gal4 driver and UAS-Cyp4g1-KD responder transgenes are 199 

located on Drosophila chromosome 2, the two ‘mosquito CYP4G’ responder fly 200 

strains were generated by φC31 integrase mediated attB insertion (Groth et al., 2004) 201 

using landing site VK13 in chromosome 3 to facilitate downstream manipulations. 202 

Two ad hoc integration vectors were generated by modifying the vector 203 

dPelican.attB.UAS_CYP6A51 (Tsakireli et al., 2019). This plasmid is a modification 204 

of a vector based on pPelican (Barolo et al., 2000) which contains gypsy insulator 205 

sequences flanking the expression cassette (Piwko et al., 2019); plasmid #30) ). Kapa 206 
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Taq DNA Polymerase (Kapa Biosystems) was used for the amplification of a 1713 bp 207 

fragment containing CYP4G16 ORF using primer pair CYP4G16F/CYP4G16R 208 

(Table S1) that introduce a 5’ BssHII site and a 3’ XhoI site, while primer pair 209 

CYP4G17F/CYP4G17R (Table S1) was used to amplify a 1711 bp fragment 210 

containing the CYP4G17 ORF and introducing a 5’ AscI and a 3’ SalI, respectively. 211 

The templates for the amplification of CYP4G16 and CYP4G17 ORFs were cDNAs 212 

of adult mosquito RNAs. PCR conditions were 95°C for 3 min, followed by 35 cycles 213 

of 95°C for 30 sec, 50°C for 30 sec, 72 for 2 min. The amplicons were purified, 214 

digested with the relevant enzyme combinations (BssHII/XhoI for CYP4G16 215 

fragment and AscI/SalI for CYP4G17 fragment) and subcloned into the unique 216 

MluI/XhoI sites of dPelican.attB.UAS_CYP6A51 (Tsakireli et al., 2019) so that the 217 

existing ORF is removed and replaced by the CYP4G16 or CYP4G17 ORFs 218 

downstream of the 5xUAS-promoter sequence and just upstream of the SV40 219 

polyadenylation sequence. Each de novo UAS expression recombinant plasmid 220 

(dPelican.attB.UAS_CYP4G16 and dPelican.attB.UAS_CYP4G17) contained also a 221 

mini-white marker for Drosophila. These plasmids were sequence verified using 222 

primers pPel_uas F/pPel_sv40 R (Table S1) and used to inject preblastoderm embryos 223 

of the D. melanogaster strain y[1] M{vas-int.Dm}ZH-2A w[*]; PBac{y[+]-attP-224 

9A}VK00013 (referred hereafter as VK13 strain, #24864 in Bloomington Drosophila 225 

Stock Center, kindly provided by M. Monastirioti and C. Delidakis, IMBB) which 226 

enables φC31 integrase expression under vasa promoter in chromosome X and bears 227 

an attP landing site in the 3rd chromosome. G0 injected VK13 flies were crossed with 228 

yw flies and G1 progeny was screened for w+ phenotypes (red eyes) indicating 229 

integration of the recombinant plasmid. Independent transformed lines were crossed 230 

with a balancer strain for the 3rd chromosome (yw; TM3 Sb / TM6B Tb Hu) and G2 231 

flies with red eyes and relevant marker phenotype were selected and crossed among 232 

themselves to generate the homozygous flies used to establish the transgenic 233 

responder lines (Figure S1). 234 

2.7 Generation of flies used for rescue experiment 235 

In order to generate flies where both oenocyte-specific Drosophila Cyp4g1 RNAi 236 

knock-down and Anopheles CYP4G16 and/or CYP4G17 expression by one or two 237 

transgene copies would take place, a series of standard genetic crosses (see Figure S1 238 
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for detailed strategy) was performed in order to generate homozygous lines bearing 239 

either both RE-Gal4 (2nd chromosome) and UAS-CYP4G16 or UAS-CYP4G17 (3rd 240 

chromosome), or both UAS-Cyp4g1-KD (2nd chromosome) and UAS-CYP4G16 or 241 

UAS-CYP4G17 (3rd chromosome). Then, several different combinations of crosses 242 

provided all the genotypes used for rescue experiments as shown in Table S2.  243 

2.8 Quantification of eclosion (adult survival and adult mortality)  244 

For quantification experiments appropriate fly crosses were set up by crossing 5 245 

virgin females with 5 males of the appropriate genotypes as shown in Table S2. 2nd 246 

instar larvae were collected and transferred into fly food in batches of 20 247 

(approximately 130 larvae per biological replicate were transferred). Pupae were then 248 

counted to determine pupation efficiency and successfully eclosed adults were 249 

measured. To address eclosion we measured the alive adults (males and females), 250 

while newly emerged adults that died immediately after eclosion were counted 251 

separately in order to address the adult mortality, in three biological replicates. 252 

2.9 Extraction of cuticular lipids, Cuticular hydrocarbons (CHCs) Fractionation, 253 

Identification and Quantitation. 254 

Crosses B x 2, B x 3, C x 3 and G x 1 (Table S2) were set up and the progeny (B2, 255 

B3, C3 and G1, Table S2) was separated by sex at emergence.  One-day old male flies 256 

from each condition were dried in Room Temperature for at least 48 h. 257 

Approximately 150 flies of each condition were separated in 3 replicates, the dry 258 

weight of each replicate was measured and they were send for CHC analysis in 259 

VITAS-Analytical Services (Oslo, Norway). Briefly, cuticular lipids from all samples 260 

were extracted by 1-min immersion in hexane (x3) with gentle agitation; extracts were 261 

pooled and evaporated under a N2 stream. CHCs were separated from other 262 

components and finally concentrated prior to chromatography by Solid Phase 263 

Extraction (SPE). CHC identification by gas chromatography-mass spectrometry 264 

(GC-MS) and CHC quantitation by GC-flame ionization detector (FID) were 265 

performed as described previously (Balabanidou et al., 2016; Girotti et al., 2012). 266 

Quantitative amounts were estimated by co-injection of nC24 as an internal standard 267 

(2890ng/ml in hexane). CHC quantification was calculated as the sum of area of 32 268 

peaks in total (peaks 3 and 4 were excluded due to background noise) and the relative 269 
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amount (mean value ± SD) of each component was calculated by dividing the 270 

corresponding peak area by the total CHC peak area, using the internal standard. 271 

Shorthand nomenclature of CHCs used in the text and tables is as follows: CXX 272 

indicates the total number of carbons in the straight chain; linear alkanes are denoted 273 

as n-CXX; the location of methyl branches is described as x-Me for monomethyl-274 

alkanes and as x,x-DiMe for dimethyl-alkanes. Alkenes are shown as x-CXX:1. 275 

Statistics were analyzed using GraphPad Prism software, version 6.01. Differences in 276 

the total CHC values were analyzed with Student’s t-test. 277 

2.10 Western blots 278 

Abdominal walls from 4th instar larvae, 1-5 hour old pupae, 20-24 hour old pupae and 279 

1-12 hour-old adults were homogenized into a Homogenization Buffer, containing 8 280 

M Urea, 50 mM Tris-HCl, pH 8.0 and 0.5% SDS. Polypeptides resolved by SDS-281 

PAGE (10% acrylamide) were electro-transferred on nitrocellulose membrane (GE 282 

Healthcare, Whatman) and probed with anti-CYP4G16, anti-CYP4G17 at a dilution 283 

of 1:250 in TBS-Tween. Antibody binding was detected using goat anti-rabbit IgG 284 

coupled to horseradish peroxidase (Cell Signaling) (diluted 1:10,000 in 1% skimmed 285 

milk in TBS-Tween buffer), visualized using a horseradish peroxidase sensitive ECL 286 

Western blotting detection kit (GE Healthcare, Little Chalfont, Buckinghamshire, 287 

UK) and the result was recorded using Fujifilm LAS3000 CCD camera imaging 288 

station. 289 

 290 

3. RESULTS 291 

3.1. Both CYP4G17 and CYP4G16 are anchored on the plasma membrane of 4th 292 

instar larval oenocytes with the globular part facing cytoplasmically. 293 

To determine the specific localization of CYP4G16 and CYP4G17 in 4th instar larvae, 294 

an immunohistochemistry approach was employed. Longitudinal sections from frozen 295 

pre-fixed mosquito specimens were immune-stained with anti-CYP4G17 and anti-296 

CYP4G16 specific antibodies, respectively. CYP4G16 and CYP4G17 antibodies gave 297 

intense signals localizing in oenocytes. We were unable to detect specific signals in 298 

other tissues by immune-staining. Surprisingly, higher magnification confocal 299 

microscopy focusing on oenocytes revealed that both CYP4G17 and CYP4G16 are 300 
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found at the periphery of the larval oenocytes, presumably associated with the plasma 301 

membrane (PM) (Figure 1). According to topology prediction tools both proteins were 302 

predicted to have one transmembrane domain each. CYP4G16 and CYP4G17 303 

transmembrane domains are predicted to span the residues seventeen to thirty nine 304 

and twenty to forty one respectively. Hence, in order to investigate the hypothesis that 305 

they span the membrane with one helix with the N-terminus located in the 306 

extracellular space of oenocyte cells, separated from the remainder globular part of 307 

the protein that is located intracellularly we performed immunohistochemical 308 

experiments in abdominal larval walls in permeabilized and non-permeabilized 309 

conditions (Figure 2). The fact that specific antibodies used recognize epitopes closer 310 

to the C-termini of the proteins together with the absence of oenocyte-specific 311 

staining in non-permeabilized conditions for both CYP4G16 and CYP4G17 as well as 312 

in silico prediction strongly indicate that both are anchored on the plasma membrane, 313 

facing the cytoplasm, with their N-termini residing outside of the cell. 314 

3.2 Two differentially localized CYP4G17 forms in pupal oenocytes, of larval and 315 

adult origin. 316 

To immunolocalize CYP4G17 and CYP4G16 in pupae, the same 317 

immunohistochemical approach in longitudinal cryosections in pupal abdominal walls 318 

was performed as above. In pupa, both CYP4G16 and CYP4G17 antibodies gave 319 

intense signals in two cell types. We detected both close to the lateral pupal cuticular 320 

walls. The larger cells, full of round-shaped vesicular structures and lipid droplets are 321 

the remaining larval oenocytes, while the smaller in size rounded-shaped cells that are 322 

also found singly and in clusters are the newly-developing adult oenocytes (Figure 3). 323 

CYP4G16 maintained a peripheral localization in both oenocyte types (Figure 3A and 324 

B), whereas CYP4G17 antibody gave localized signals of two distinct patterns. 325 

Peripheral staining (Figure 3C) was maintained in cells of larval origin, while the 326 

developing adult cells were stained with anti-CYP4G17 throughout their cytoplasm 327 

(Figure 3D). 328 

To further examine the different sub-cellular localization observed in the two types of 329 

oenocytes found in pupae, we performed western blot analysis with anti-CYP4G17 330 

using abdominal walls of 4th instar larvae, newly-formed pupae (1-5 hour-old), pupae 331 
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prior to emergence (20-24 hour-old) and newly emerged adults (1-12 hour-old). 332 

Interestingly, we observed two bands in different molecular sizes in all developmental 333 

stages with a difference in the intensity in each condition tested (Figure 4). The lower 334 

band has a molecular mass of around  65 kDa , which is close to the estimated 335 

molecular mass of the protein (64 kDa), whereas the upper band migrates 336 

approximately at 70 kDa.  337 

 338 

3.3 Οenocyte-specific expression of CYP4G16 and CYP4G17 in CYP4G1 knock-down 339 

Drosophila can restore viability. 340 

Using a series of genetic manipulations we were able to induce the expression of 341 

either or both mosquito CYP4Gs while simultaneously silencing the endogenous 342 

Cyp4g1 gene specifically in oenocytes (Figure S1 and Table S2). Phenotypic analysis 343 

showed that all Cyp4g1-KD flies die at emergence, not being able to eclose from the 344 

pupal case. However, viability was almost completely restored in the presence of two 345 

copies of CYP4G16 (with respective elevated transcripts 1.95 ±0.4 - fold, n=3, 346 

p<0.01, compared to the single copy transgene flies) and of CYP4G16 in combination 347 

with CYP4G17 (Figure S2). Quantitative analysis of all the different CYP4G 348 

conditions tested revealed that CYP4G16 and CYP4G17 exhibit differential ability to 349 

rescue the lethal phenotype in an oenocyte-specific Cyp4g1knock-down genetic 350 

background (Figure 5). As shown in Figure 5, 86% of the larvae expressing CYP4G16 351 

in two copies successfully emerged into adults, while CYP4G17 in two copies is able 352 

to rescue approximately 33% of the flies, revealing its ability to partially complement 353 

Cyp4g1 silencing. This demonstrates that CYP4G17 is also a functional oxidative 354 

decarbonylase. The ability of each transgene to rescue the lethal phenotype is dose-355 

dependent since CYP4G16 in one copy only partially restores viability (15% 356 

survivors), while overexpression of one copy of CYP4G17 seems to generate flies 357 

arrested during eclosion. However, the combination of CYP4G16 and CYP4G17 gives 358 

a high percentage of survivors (83%), similar to a double dose of CYP4G16. 359 

Interestingly, in cases of partial rescue (1x CYP4G16 or 2x CYP4G17), as well as in 360 

the case of 1x CYP4G17, where no long time survivors are observed, a remarkable 361 

number of newly-emerged adults, mostly females, survive the eclosion burden but die 362 
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almost immediately and are found lying dead on the food. This is in contrast to 363 

Cyp4g1-KD flies where only dead adults unable to fully exit the puparium were 364 

observed (Figures 5 and S2). Moreover, in partially rescued CYP4G backgrounds (1x 365 

CYP4G16 and 2x CYP4G17) the vast majority of successfully eclosed survivors 366 

(almost 80%) are males. 367 

3.4. Three very long-chain dimethyl-branched CHCs are present in CYP4G16, 368 

CYP4G17 and CYP4G16/CYP4G17 flies, but not ‘wild-type’ CYP4G1 flies 369 

After extraction of cuticular lipids and quantification, different total hydrocarbon 370 

amounts were identified per mg of dry weight in each condition tested (Figure S3), 371 

with the control flies (no knock-down of Cyp4g1) having the highest total CHC 372 

content and the flies bearing the CYP4G17 transgene in the absence of Cyp4g1 the 373 

lowest (p-value<0.001). CYP4G16/CYP4G17 and CYP4G16/CYP4G16 appeared to 374 

have approximately the same total CHC amount (non-significant difference) (Figure 375 

S3). Moreover, 18 CHC compounds were identified in the control flies (no mosquito 376 

transgene) and 21 CHC compounds (18 similar and 3 extra) in the D. melanogaster 377 

flies expressing mosquito transgenes. Interestingly, the three extra CHCs present in all 378 

Drosophila strains expressing mosquito CYP4Gs but not in the control (CYP4G1) 379 

flies, corresponded to the three longer CHCs (dimethyl-C45, dimethyl-C46 and 380 

dimethyl-C47) identified (Figure 6) often found in Anopheles. Additionally, the 381 

relative abundance of each CHC identified was calculated in % area and it was 382 

showed that CYP4G17 and CYP4G16/CYP4G17 produce significantly more of these 383 

three very-long chain methyl-branched compounds (Figure 6) than CYP4G16. Other 384 

statistically significant differences indicate that C31 is more enriched in the presence 385 

of CYP4G17 rather than CYP4G16 (p-value<0.001) and that C25 (p-value<0.0001), 386 

C27 (p-value<0.0001), methyl-C29 (p-value<0.0001) and C31:1 (p-value<0.001) are 387 

more abundant in CYP4G16 mosquitoes.   388 

 389 
4. DISCUSSION 390 
 391 

The CYP4G are highly conserved P450 enzymes in insects and the discovery that 392 

they serve as oxidative decarbonylases in the last step of hydrocarbon biosynthesis 393 
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(Qiu et al., 2012) was the first explanation provided for this high degree of 394 

conservation. However, much remains to be learned about these enzymes. In 395 

Drosophila, CYP4G1 is a major protein of oenocytes, whereas its paralog CYP4G15 396 

is found in the brain (Maibeche-Coisne et al., 2000) where its function is unknown. In 397 

the major malaria vector Anopheles gambiae the situation is different, because both 398 

the CYP4G1 and CYP4G15 paralogues, named CYP4G17 and CYP4G16 are highly 399 

expressed in oenocytes (Balabanidou et al., 2016). This study further showed that 400 

while a CPR-CYP4G16 fusion, was able to catalyze the oxidative decarbonylation of 401 

a C18 aldehyde, this activity was not detectable for CYP4G17 (Balabanidou et al., 402 

2016).  The two enzymes also differed in their subcellular localization in adult An. 403 

gambiae oenocytes (Balabanidou et al., 2016). The results presented here address both 404 

differences between CYP4G16 and CYP4G17.  405 

In contrast to that expected for microsomal P450s, CYP4G16 was previously shown 406 

to be present on the internal side of the PM in adult oenocytes (Balabanidou et al., 407 

2016) and here we show that it has the same subcellular localization and topology in 408 

oenocytes from an earlier developmental stage and origin (Figures 1B, 3A, 3B). In 409 

larval oenocytes, CYP4G17 also appears anchored to the PM (Figure 1A and 3C). 410 

The N-terminus of each protein is predicted to be facing extracellularly with a 411 

transmembrane helix connecting to the catalytic part of the enzyme, shown to be on 412 

the cytoplasmic side (Figure 2). In pupae, CYP4G17 is found to be dispersed 413 

throughout the cytoplasm in developing adult-type oenocytes (Figures 3D) as we have 414 

observed previously in fully developed adults (Balabanidou et al., 2016).  This 415 

difference in CYP4G17 localization is also accompanied by a difference in molecular 416 

weight, as indicated by western blot analysis of different developmental stages 417 

(Figure 4). One plausible scenario is that the two bands identified in Figure 4 418 

represent developmentally specific isoforms; under this scenario adult CYP4G17 419 

(adCYP4G17) may be modified by a yet unidentified pre- or post-translational 420 

mechanism, sufficient for the protein to be rendered to the ER as a typical ER-resident 421 

P450, while larval CYP4G17 (larCYP4G17) escapes the ER-rendering mechanism 422 

and is transported to the PM. Genomic sequence and transcript analysis does not 423 

indicate obvious alternative splicing, so we favor a post-translational modification 424 

that may be confirmed by proteomic analysis in future work. Under this hypothesis 425 
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lar or adCYP4G17 may also be functionally distinct. It is tempting to suggest that PM 426 

localization would favor export of CHC from the cell and transfer to lipophorin. 427 

However nothing is known yet of the physiology of intracellular CHC transport, and 428 

the localization of the upstream enzymes in oenocytes, desaturases and elongases, has 429 

been predicted but not verified. 430 

The hypothesis of two different CYP4G17 isoforms is in line with the observation 431 

that the two different types of oenocytes co-exist in the mosquito pupa. It is known 432 

that in D. melanogaster, larval and adult generations of oenocytes are 433 

morphologically distinct ectodermal derivatives with separate developmental origins 434 

(Makki et al., 2014). In An. gambiae two distinct types of oenocytes have previously 435 

been found in larvae and adults stained for cytochrome P450 reductase (Lycett et al., 436 

2006). Oenocyte functions seem to be closely related with molting, as a new 437 

generation of such cells is developed at each molt in some holometabolous species 438 

and the size and number of these cells can vary dramatically during  Drosophila larval 439 

development  (Makki et al., 2014). Under our immunostaining approach in pupal 440 

abdomens, CYP4G17 and CYP4G16 oenocyte-specific intense staining revealed the 441 

morphological difference of oenocytes forms at this stage. Two distinct cell types that 442 

had similar morphologies to those described previously in larvae (Lycett et al., 2006) 443 

and adults (Balabanidou et al., 2016; Lycett et al., 2006) were found in pupae 444 

probably owing to the existence of two different origins of oenocytes in the pupal 445 

developmental stage. Big cells in size, carrying numerous bundles of lipid droplets are 446 

considered to be oenocytes of larval origin persisting in the pupal stage as they are 447 

very similar to those obtained in larvae longitudinal sections (Figure 3A and C). Apart 448 

from these intense specific staining was obtained in smaller in size cells also found in 449 

clusters that are considered to be newly-developing oenocytes of adult-specificity 450 

(Figure 3B and D). 451 

Our previous biochemical analysis could not detect decarbonylase activity of 452 

CYP4G17on short chain aldehydes, and so we have examined the comparative 453 

functions of the CYP4Gs by a genetic, in vivo approach. In this study, we performed 454 

the conditional expression of An. gambiae CYP4Gs in oenocytes of Cyp4g1 knock-455 

down D. melanogaster flies, in order to investigate if this expression could rescue the 456 

knock-down phenotype. Our results revealed that two copies of CY4G16 or a 457 
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CYP4G16/CYP4G17 combination can almost completely restore the viability of 458 

Cyp4g1-KD flies, while one copy of CYP4G16 and two copies of CYP4G17only lead 459 

to a partial rescue, indicating that both mosquito CYP4Gs can functionally substitute 460 

the fly decarbonylase, albeit to a different extent. Interestingly 1x CYP4G17 showed 461 

almost zero levels of adult survival although a remarkable number of dead, early-462 

emerged adults were found lying on the food in contrast to control Cyp4g1-KD flies 463 

(Figure 5 and S2), which could not fully exit the puparium , implying that even the 464 

slight expression of CYP4G17(one allele present) results in better eclosion ability. 465 

The results show that gene copy number (i.e. dose) affects survival ability. This is 466 

consistent with the very high expression level of native oenocyte CYP4Gs 467 

(Balabanidou et al., 2016; Chung et al., 2009), the sluggish enzyme activity observed 468 

in vitro until now (Balabanidou et al., 2016; Calla et al., 2018; Qiu et al., 2012) and 469 

the potentially lower level of activation provided by the RE driver. Interestingly, in 470 

cases of partial rescue (2x CYP4G17 and 1x CYP4G16), males preferentially survive. 471 

Several studies on Drosophila species from temperate and tropical regions have 472 

shown a higher desiccation resistance of females than males (Parkash and Ranga, 473 

2013). Perhaps, if females require more CHC for desiccation resistance, a deficit is 474 

more difficult to compensate. Alternatively, this may be the result of subtle 475 

differences in expression levels or spatiotemporal profile of the RE-Gal4 driver 476 

(Bousquet et al., 2012) between males and females that may affect CYP4G1 knock-477 

down efficiency or specificity. 478 

Since both Anopheles CYP4Gs can function as decarbonylases, we investigated the 479 

cuticular hydrocarbon profile of ‘rescued’ flies where CYP4G1 native expression in 480 

oenocytes has been knocked down and functionally substituted with one or both of the 481 

mosquito genes. In Drosophila oenocytes, CYP4G1 is the only oxidative 482 

decarbonylase, so the blend of CHC produced reflects the catalytic activity of a single 483 

enzyme on a large number of substrates that differ in length, saturation, and methyl 484 

branching. Its substrate specificity must therefore be quite broad. In the rescued flies, 485 

the total amount of hydrocarbons produced was somewhat lower than wild type. 486 

However, the pattern of hydrocarbons produced in flies rescued with alternative 487 

Anopheles 4Gs was different, indicating that the CYP4G enzymes may have a 488 

different substrate specificity to each other, and to the CYP4G1. In particular, three 489 
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extra CHCs (dimethyl alkanes of very high MW) were detected in all cases where 490 

mosquito CYP4Gs (but not Drosophila CYP4G1) were present. These higher MW 491 

compounds are typically found on the An. gambiae cuticle (Balabanidou et al., 2016). 492 

The substrates for CYP4G enzymes are produced by a complex pathway of enzymes 493 

(ACCase, elongases, desaturases, acyl-CoA reductases), encoded by a large number 494 

of genes (Wicker-Thomas et al., 2015). It is the flux through those enzymes that 495 

determines the substrate pool for the CYP4G enzymes. Transport in the hemolymph 496 

(on lipophorins) and then through the epidermis and differential loss from the 497 

epicuticle then determines the blend of CHC that is measured.  It is intriguing how 498 

these processes contribute to the apparition of higher MW CHCs not detected in wild 499 

type Drosophila. Although speculative, we propose several non-exclusive factors to 500 

explain this novel observation. On one hand, it is entirely plausible that the dimethyl-501 

C45, -46 and -47 substrates are produced and converted to CHC in wild type 502 

Drosophila oenocytes at a level below detection in our assay. Indeed the classical GC 503 

method detects high MW CHC poorly and other methods are needed (Cvacka et al., 504 

2006). On the other hand, in transgenic flies these substrates may be more efficiently 505 

converted by CYP4G16 and especially CYP4G17 than by CYP4G1. By drawing on 506 

the pool of high MW substrates, CYP4G17 (and CYP4G16) would increase their 507 

synthesis by relieving product inhibition of the Elovl elongases. Thus, more high MW 508 

substrates would become available in the transgenic flies than in the wild type flies. 509 

Furthermore, greater retention of the high MW CHC has been noted before (Qiu et al., 510 

2012) so that both biochemical processes may contribute to the presence of dimethyl-511 

C45, -46 and -47 alkanes in transgenic flies and allow their detection by our classical 512 

method. Our study therefore suggests that it is not only the activities of upstream 513 

enzymes in oenocytes that determines the blend of insect CHC (Qiu et al., 2012), but 514 

that substrate specificity of the last enzymes, the CYP4Gs, also contributes to it. This 515 

conclusion reaffirms the need to delineate CYP4G specificity, especially in insects 516 

that express more than one CYP4G gene in oenocytes. 517 

Furthermore, the differential subcellular localization of CYP4G17 during 518 

development and its apparent ability to act as a more efficient decarbonylase of very 519 

long-chain dimethyl-branched compounds in Drosophila reveal an intriguing 520 

functional diversification of the An. gambiae CYP4Gs. Further studies will be aimed 521 
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to elucidate the molecular mechanisms of differential localization of CYP4G17 in 522 

larval and adult oenocytes, and to delineate precisely the substrate specificity of each 523 

CYP4G enzyme. 524 

 525 
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 654 

 655 

FIGURE CAPTIONS 656 

 657 

Figure 1.  Immunohistochemical localization of CYP4Gs. Merged 658 

immunohistochemical images from longitudinal sections of 4th instar mosquito larvae 659 

focusing on oenocytes. A) CYP4G17 peripheral localization in An. gambiae larval 660 

oneocytes, B) CYP4G16 peripheral localization in An. gambiae larval oenocytes. Cell 661 

nuclei are stained red with TOPRO; scale bars= 10µm. Left: bright-field with stained 662 

nuclei, middle: antibody and nuclei staining, right: merge of bright-field, antibody and 663 

nuclei staining. 664 

 665 

Figure 2. Membrane topology of CYP4Gs. Immunohistochemical images from 666 

abdnominal walls (whole mounts) of 4thinstar mosquito larvae focusing on oenocytes. 667 

A) CYP4G17 and B) CYP4G16 in permeabilized and non-permeabilized conditions; 668 

scale bars= 1mm. 669 

 670 

Figure 3. Immunohistochemical localization of CYP4Gs in pupae. Merged 671 

immunohistochemical images from longitudinal sections of pupal abdominal walls. 672 

A) CYP4G16 localization in larval-origin pupal oenocytes mainly on the periphery of 673 

oenocytes, B) CYP4G16 localization in adult-origin pupal oenocytes mainly on the 674 

periphery, C) CYP4G17 localization in larval-origin pupal oenocytes mainly on the 675 

periphery of oenocytes, D) CYP4G17 localization in adult-origin, newly-developed 676 

oenocytes of pupae, forming a cluster, showing the protein dispersed throughout the 677 

cytoplasm. Cell nuclei are stained red with TOPRO; scale bars= 10µm.. Left: bright-678 

field with stained nuclei, middle: antibody and nuclei staining, right: merge of bright-679 

field, antibody and nuclei staining. 680 

 681 

Figure 4. Expression pattern of CYP4G17 among different An. gambiae 682 

developmental stages. Whole protein extracts from dissected abdominal walls of 4th 683 

instar larvae (lane 1), newly-formed pupae (lane 2), pupae prior to emergence (lane 3) 684 
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and newly emerged adults (lane 4), were analyzed by western blot using anti-685 

CYP4G17. 686 

 687 

Figure 5. Percent eclosion of D. melanogaster flies in different CYP4G 688 

backgrounds. Quantification of adult flies that successfully eclosed corresponding to 689 

a known number of pupae. White bars represent successfully eclosed adults that 690 

survived (%), while flies that died as newly-emerged adults lying on the food were 691 

calculated to address mortality post successful eclosion (%) and are depicted with 692 

grey bars.  Different CYP4G backgrounds are described at the bottom of the graph 693 

with “+” representing the presence and “–” the absence of a P450 gene (Cyp4g1, 694 

CYP4G17, and CYP4G16) or the oenocyte-specific GAL4 driver (REGal4). Mean of 695 

3 biological experiments + SEM.  696 

 697 

Figure 6. Relative abundance of Cuticular Hydrocarbons (CHCs) identified in 698 

different CYP4G backgrounds. Relative CHCs abundances in % area are depicted 699 

for each one of the 21 out of 32 CHCs identified in total. Differentially colored bars 700 

correspond to the different CYP4G background present in each Drosophila strain 701 

analyzed (grey: G x 1 , black: C x 3,  white: B x 2 and black/white: B x 3  fly crosses 702 

as described in Table S2). Mean of 3 biological experiments ± SEM.  703 
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Table S 1. Primer list: Names, ΙDs and sequences (5’-3’) of all primer pairs used for cloning 

(c) and sequencing (s) of An. gambiae CYP4G ORFs. 

 

 

Gene 

 

ID 
Primername PrimerSequence (5’-3’) 

CYP4G16 AGAP001076-PA 
CYP4G16F (c) GCGCGCACCATGTCAGCAACAATTGCGCATACAG 

CYP4G16R (c) CTCGAGTCATAATGTCTTCGATTTGCGTTGA 

CYP4G17 AGAP000877 
CYP4G17F  (c) GGCGCGCCCACCATGGGCATTGAAACGATCCC 

CYP4G17R (c) GTCGACTCATGCCCTCGGCTCCAGCT 

 

 

pPel_uas F (s) GAAGAGAACTCTGAATAGGGAATTG 

pPel_sv40 R (s) CAAATGTGGTATGGCTGATTATG 
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Table S 2. Combinations of crosses for the constructions of all genotypes used for 

downstream experiments (eclosion and adult mortality estimation and phenotypic observation 

of flies and cuticular hydrocarbon analysis). 

 

 
 

 
𝐑𝐄𝐆𝐚𝐥𝟒

𝐑𝐄𝐆𝐚𝐥𝟒
;
+

+
 

 

1 

 

 
𝐑𝐄𝐆𝐚𝐥𝟒

𝐑𝐄𝐆𝐚𝐥𝟒
;
𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟔

𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟔
 

 

2 

 

 
𝐑𝐄𝐆𝐚𝐥𝟒

𝐑𝐄𝐆𝐚𝐥𝟒
;
𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟕

𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟕
 

 
3 

 

 
𝑼𝑨𝑺 − 𝒅𝒔𝑪𝒚𝒑𝟒𝒈𝟏

𝐔𝐀𝐒 − 𝐝𝐬𝑪𝒚𝒑𝟒𝒈𝟏
;
𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟕

𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟕
 

 

4 

 
𝐔𝐀𝐒 − 𝐝𝐬𝑪𝒚𝒑𝟒𝒈𝟏

𝐔𝐀𝐒 − 𝐝𝐬𝑪𝒚𝒑𝟒𝒈𝟏
;
+

+
 

A 

 

 
REGal4

UAS − ds𝐶𝑦𝑝4𝑔1
;
+

+
 

 

 

 

- 

 

 

- 

 

 

- 

 
𝐔𝐀𝐒 − 𝐝𝐬𝑪𝒚𝒑𝟒𝒈𝟏

𝐔𝐀𝐒 − 𝐝𝐬𝑪𝒚𝒑𝟒𝒈𝟏
;
𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟔

𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟔
 

B 

 
REGal4

UAS − ds𝐶𝑦𝑝4𝑔1
;
𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺16

+
 

 

 
REGal4

UAS − ds𝑐𝑦𝑝4𝑔1
;
𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺16

𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺16
 

 
REGal4

UAS − ds𝐶𝑦𝑝4𝑔1
;
𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺17

𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺16
 

 

 
UAS − ds𝐶𝑦𝑝4𝑔1

UAS − ds𝐶𝑦𝑝4𝑔1
;
𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺17

𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺16
 

 

 
𝐔𝐀𝐒 − 𝐝𝐬𝑪𝒚𝒑𝟒𝒈𝟏

𝐔𝐀𝐒 − 𝐝𝐬𝑪𝒚𝒑𝟒𝒈𝟏
;
𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟕

𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟕
 

C 

 
REGal4

UAS − ds𝐶𝑦𝑝4𝑔1
;
𝑎𝑡𝑡𝐵. 𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺17

+
 

 
REGal4

UAS − ds𝐶𝑦𝑝4𝑔1
;

𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺17

𝑎𝑡𝑡𝐵. 𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺16
 

 
REGal4

UAS − ds𝐶𝑦𝑝4𝑔1
;
𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺17

𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺17
 

 

 

- 

 
𝐑𝐄𝐆𝐚𝐥𝟒

𝐑𝐄𝐆𝐚𝐥𝟒
;
𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟕

𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟕
 

D 

 

 

- 

 
REGal4

REGal4
;
𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺16

𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺17
 

 

 

 

- 

 

 

- 

 
+

+
;
𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟔

𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟔
 

E 

 

- 

 
REGal4

+
;
𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺16

𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺16
 

 

 

- 

 

- 

 
+

+
;
𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟕

𝑼𝑨𝑺 − 𝑪𝒀𝑷𝟒𝑮𝟏𝟕
 

F 

 

- 

  
REGal4

+
;
𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺17

𝑈𝐴𝑆 − 𝐶𝑌𝑃4𝐺17
 

 

 

- 

 
+

+
;
𝑽𝑲𝟏𝟑

𝑽𝑲𝟏𝟑
 

                                 G 

 

 
REGal4

+
;
𝑉𝐾13

+
 

 

 

 

- 

 

 

- 

 

 

- 
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Highlights 

 

� The two An. gambiae CYP4Gs (CYP4G17 and CYP4G16) are localized on 

the cytoplasmic side of larval oenocyte plasma membrane. 

� CYPG17 is differentially localized in two distinct types of pupal oenocytes, 

of larval and adult specificity. 

� Both CYP4G16 and CYP4G17 rescue the adult lethal phenotype of Cyp4g1-

KD flies, indicating CYP4G17decarbonylase activity. 

� CYP4G16 and CYP4G17 produce similar CHC profiles to CYP4G1, apart 

from three very long-chain dimethyl-branched CHCs. 


