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Abstract: Increasing rifampicin (RIF) dosages could significantly reduce tuberculosis (TB) treatment
durations. Understanding the pharmacokinetic-pharmacodynamics (PK–PD) of increasing RIF
dosages could inform clinical regimen selection. We used intracellular PD modelling (PDi)
to predict clinical outcomes, primarily time to culture conversion, of increasing RIF dosages.
PDi modelling utilizes in vitro-derived measurements of intracellular (macrophage) and extracellular
Mycobacterium tuberculosis sterilization rates to predict the clinical outcomes of RIF at increasing doses.
We evaluated PDi simulations against recent clinical data from a high dose (35 mg/kg per day) RIF
phase II clinical trial. PDi-based simulations closely predicted the observed time-to-patient culture
conversion status at eight weeks (hazard ratio: 2.04 (predicted) vs. 2.06 (observed)) for high dose
RIF-based treatments. However, PDi modelling was less predictive of culture conversion status at
26 weeks for high-dosage RIF (99% predicted vs. 81% observed). PDi-based simulations indicate that
increasing RIF beyond 35 mg/kg/day is unlikely to significantly improve culture conversion rates,
however, improvements to other clinical outcomes (e.g., relapse rates) cannot be ruled out. This study
supports the value of translational PDi-based modelling in predicting culture conversion rates for
antitubercular therapies and highlights the potential value of this platform for the improved design
of future clinical trials.

Keywords: pharmacokinetic/pharmacodynamic modelling; rifampicin; high dose; tuberculosis;
infectious diseases; Mycobacterium tuberculosis

1. Introduction

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of death from
a single infectious agent [1]. With an estimated 4000 deaths per day, and 10 million newly infected
people each year, the global health community have pledged to lead the fight against this disease [2].
Treatment takes a minimum of six months of multi-drug therapy with rifampicin (RIF) being the key
drug responsible for shortening treatment down from 18 to six months [3,4] when administered at
600 mg daily (10 mg/kg). At this standard daily dose, RIF has been well tolerated; however, dosing of
RIF is primarily based on cost constraints rather than vigorous toxicity testing [5], and many studies
have highlighted the advantages of increasing this recommended prescription. For example, in vitro
and in vivo (animal) studies have evidenced faster bacillary clearance rates, lower disease relapse rates,
decreased resistant strain emergence and evidence of shortening the treatment period when RIF levels
were increased [4,6–8].

Previous pharmacokinetic-pharmacodynamic (PK–PD) analyses have highlighted the potential
for accelerating TB treatment through higher doses of RIF [9]. It has frequently been revealed in clinical
studies than increasing RIF dosage results in favorable bacteriological findings [5,7,10,11]. This has
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led to repeated calls for changing the clinical practice by increasing the standard dose of RIF from
10 mg/kg [12,13]. However, only one controlled study to date has systematically studied the effects of
increasing the dosage of RIF up to 35 mg/kg with a full follow-up of patients receiving standard or
elevated RIF treatment [14]. This work was further supported by post-modelling analyses that related
drug exposure to treatment response [15]. The work described herein uses the results from this clinical
trial to compare and validate our mathematical predictions.

We previously designed a model using an imaging-based approach to define the killing kinetics
of anti-TB drugs inside macrophage cells [16], and showed that intracellular Mtb growth and kill
dynamics (PDi) can be used to predict the bacteriological outcomes in patients receiving treatment.
In this work, we demonstrate how PDi-based modelling can be used to predict the benefits of increasing
RIF dosages from 10 mg/kg up to 35 mg/kg, and we validate our PDi modelling simulations by
comparing our clinical predictions (based on in-vitro intracellular time kill data) to the observed clinical
findings reported in Boeree et al. [14]. PDi modelling is a deterministic PK–PD mathematical model,
based on in vitro Mtb growth and kill rates in both intracellular and extracellular environments, which,
when linked to the known PK parameters of each drug, can predict the speed of clinical response
to treatment.

2. Materials and Methods

2.1. PDi Modelling

PDi modelling was performed using Pmetrics [17]. We used extracellular and intracellular kill
rates of TB drugs (previously reported in Aljayyoussi et al. [16]) to build a predictive PK–PD model for
the prediction of the efficacy of isoniazid (H), rifampicin (R or RIF), pyrazinamide (Z), and ethambutol
(E)—a combination commonly abbreviated as HRZE (Figure 1).
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Figure 1. Mathematical model used to predict overall Mtb count in silico. ka is rate of absorption in
hours, kel is the rate of elimination from the systemic circulation per hour. ELF concentration is assumed
to be a fraction of the systemic circulation concentration of each drug at any given time. Respectively,
exTB and inTB are the number of extracellular and intracellular tuberculosis bacteria, kgex and kgin the
rates of extracellular and intracellular bacterial growth, Eexmax and Einmax are the maximal kill rates
against extracellular and intracellular bacteria, and EC50ex and EC50in are the half-maximal-effect drug
concentrations in the extracellular or intracellular environment for each drug. conc.ELF is the drug
concentration in the ELF.

Drug PKs are described according to a one-compartment oral absorption model used to predict
plasma drug concentration for each drug detailed in Equations (1)–(4), where Gutx is a drug mass in
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the gut compartment at any given time, Plasmax is the total drug mass in plasma at any given time, and
ka and ke are the rates of absorption and elimination in hours, respectively. V/F is the reported volume
of distribution of each drug, ELF/Plasma Ratio is the constant ratio between the epithelial lining fluid
(ELF) and plasma, as reported in the literature for each drug. ELF drug concentration is assumed to be
equal to a constant fraction of plasma drug concentration at any given dosage. The fraction for each
drug is taken from the literature, where plasma and ELF AUC are simultaneously reported [18–22].

Importantly, for the work reported herein, the PK parameters that define plasma exposure to
each drug (namely, ke and V/F) were obtained from the same clinical study to which we compare our
predictions [14], where RIF has different PK parameters at different RIF dosing, leading to a non-linear
relationship between increase of dose and increase of plasma exposure. Although V/F and CL/F values
for RIF are reduced as dosage is increased, it is unlikely that RIF PK follows non-linear PK properties.
That is because the overall elimination half-life remains largely unchanged as the dose increases from
10 to 20 mg/kg, and then to 35 mg/kg. The improvement in PK properties as the dose is increased is
hence more likely related to an improvement in bioavailability. We therefore modeled each RIF dose
independently with a separate set of PK parameters rather than using a Michaelis–Menten model.

The ELF drug concentration is then assumed to drive overall drug activity for the PD component
of the model. Mtb is assumed to exist both extracellularly and intracellularly with a ratio of 95:5 [16].
Drug dynamics are different for each of these populations with the different maximal kill rates (Emax)
and half-maximal concentration (EC50) values reported previously [16]. An Emax model is assumed
to be the driver of the PK–PD relationship for all four drugs. The PD component of the model is
described by Equations (5) and (6), where, respectively, exTB and inTB are the number of extracellular
and intracellular bacilli, kgex and kgin the rates of extracellular and intracellular bacterial growth,
Eexmax and Einmax are the maximal kill rates against extracellular and intracellular bacilli, and EC50ex and
EC50in are the half-maximal-effect drug concentrations in the extracellular or intracellular environment
for each drug. conc.ELF is the drug concentration in the ELF. The interchange between extracellular
and intracellular TB is unknown and was lumped within the overall intracellular and extracellular
kill rates.

For drug combinations, an algorithm is used where the overall kill rate at any given time is equal
to the kill rate of the drug with the highest kill rate at that given time point (this kill rate is dependent
on the changing of a drug’s concentration as well as its constant PD parameters (EC50 and Emax) at any
given time point). The model therefore assumes that there are no positive or negative PD interactions
between the drugs.

dGutx
dt

= −Gutx·ka (1)

dPlasmax
dt

= Gut·ka − Plasmax·kel (2)

Plasma conc. (ng/mL) =
Plasmax

V/F
(3)

ELF conc. (ng/mL) =
Plasma conc.(
Plasma

ELF

)
Ratio

(4)

dexTB

dt
= kgex·exTB −

Eexmax·conc.ELF

ECex50 + conc.ELF
(5)

dinTB

dt
= kgin·inTB −

Einmax·conc.ELF

ECin50 + conc.ELF
(6)

The total number of mycobacteria are assumed to be equal to the sum of extracellular and
intracellular mycobacteria at any given time. We assumed an initial burden of 107 CFUs in all patients
with a range of 105–108; this value is derived from data reported by de Knegt et al. [23]. Previous
sensitivity analysis showed that the ratio of intracellular to extracellular TB burden plays little role in
overall prediction outcomes over a range of 5%:95% to 95%:5%, intracellular:extracellular [16].
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For Monte Carlo simulations, we used previous reports to estimate variability of PK
parameters [24–26] and follow a simple log-normal distribution around the geometric mean value
reported in Boeree et al. for each drug (Table S1). The number of simulations generated for each scenario
was made to equal the number of subjects in each arm of the Boeree et al. study to allow for like-to-like
comparisons between PDi model predictions and observed clinical outcomes. The simulations were
performed using the simulator tool in Pmetrics [17] at a differential step of 24 h for a total of 4320 h
(six months) for each treatment arm.

We performed overall sensitivity analysis using the flexible modelling environment (FME for
inverse modelling, sensitivity, identifiability and Monte Carlo analyses; authors: Karline Soetaerrt and
Thomas Petzoldt) with R version 3.4.2 [27]. We report the l1 norm and l2 norm values, which are a
measure of how sensitive the model is to small changes in each parameter used in the simulation.
The higher these values are for a parameter, the more sensitive the model to the parameter.

Additionally, we performed PDi modelling using an auto-induction, non-linear pharmacokinetic
model for rifampicin, as reported in Svensson et al. [28] for the PK arm of the model, and we report
results using it separately in the Supplementary Information part of the paper.

2.2. Hazard Ratio Calculation

Hazard ratios (HRs) were calculated using the cox regression survival tool in IBM SPSS Statistics
version 24.0 [29]. Survival data were generated at a step of 1 week for a total of 8 or 12 weeks from each
PDi modelling simulation. The Monte Carlo simulation output from Pmetrics was converted using R
version 3.4.2 [27] to survival data (i.e., Kaplan–Meier style data). HR values were calculated between
standard HRZE therapy and the intervention arm RIF35HZE (same as HRZE but with a 35 mg/kg dose
of RIF for the first 12 weeks) or RIF70HZE, same as HRZE but with a hypothetical 70 mg/kg dose of
rifampicin for the first 12 weeks. HR were generated as an Exp(B) value in SPSS with 95 confidence
intervals (CIs). HRs were also similarly calculated for simulating increasing RIF exposures from
15 mg/kg (RIF15HZE) up to 60 mg/kg (RIF60HZE). In hazard ratio calculations, it was assumed that each
simulated patient would have a negative culture conversion status if the total burden was <1 CFU/mL.
The previous value is based upon the sensitivity threshold of the mycobacteria growth indicator tube
(MGIT) technique [30].

2.3. PK Monte Carlo Simulations

PK simulations where performed similarly using the Pmetrics simulator tool at 0.1 h intervals
for 24 h at steady state applying the same PK parameters reported in Boeree et al. (2017). For the
70 mg/kg dose, the parameters of 35 mg/kg dose were used. Exposure at seven to eight days
post-treatment initiation was plotted to represent steady-state PK exposure of RIF. ELF exposure was
calculated by multiplying plasma values at each time point by the appropriate ELF penetration ratio as
reported for each drug in the review by Keim et al. [20]. The PK element of the PDi modelling was
performed similarly.

3. Results

3.1. PDi Modelling Predicts Efficacy of Standard and High-Dose RIF-Containing Treatments

As shown in Table 1, PDi modelling predicts 94% of patients achieve MGIT negative culture
conversion by 26 weeks with the standard HRZE treatment (10 mg/kg RIF, 5 mg/kg isoniazid, 25 mg/kg
pyrazinamide, and 15–20 mg/kg ethambutol for 8 weeks followed by 18 weeks of standard dose Rif
and isoniazid), which is comparable to an observed 82% of patients achieving the same result in
the Boeree et al. clinical trial [14]. We predict a median of eight weeks to achieve culture conversion
compared to an observed nine weeks in the same clinical trial (Table 1).
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Table 1. Comparison between observed clinical outcomes (based on MGIT culture conversion results)
in Boeree et al. (HRZE vs. RIF35HZE) and mathematically simulated outcomes using PDi modelling.
The last column displays the results for a simulation of a hypothetical 70 mg/kg RIF dose-containing
regimen (RIF70HZE) using PDi modelling. Hazard ratios are comparisons to the control treatment
within the observation or simulation groups.

Boeree et al. (2017) [14] (Observed) PDi Prediction

Standard
HRZE H35RZE Standard

HRZE H35RZE H70RZE

Total in Analysis 123 63 123 63 63

Hazard ratio over 8 weeks
(CI) *

N/A 1.73 (1.07–2.82),
p = 0.004 (unadjusted)

N/A 2.06 (1.26–3.38),
p = 0.004 (adjusted) N/A 2.04 (1.41–2.94),

p < 0.001
2.16 (1.50–3.12),

p < 0.001

Hazard ratio over 12 weeks
(CI)

N/A 1.46 (1.02–2.11),
p = 0.04 (unadjusted)

N/A 1.78 (1.22–2.58),
p = 0.003 (adjusted) N/A 1.68 (1.21–2.32),

p < 0.001
1.86 (1.35–2.57),

p < 0.001

No. of culture conversions
during 26-weeks

(MGIT **)
(% of patients)

101 (82%) 51 (81%) 104 (94%) 62 (99%) 63 (100%)

Median time to culture
conversion (IQR) ***

62
(4–83)

48
(34–69)

55
(41–76)

40
(34–51)

39
(32–48)

* CI: Confidence Interval; ** MGIT: Mycobacteria growth indicator tube; *** IQR: Interquartile range.

However, the model predicted that nearly all patients (99%) would achieve culture conversion
by 26 weeks with RIF35HZE treatment, whereas patients receiving this treatment had no overall
improvement in achieving culture conversion at 26 weeks (only 81% of patients achieved culture
conversion in RIF35HZE, compared with 82% in the standard treatment). Additionally, comparing
RIF35HZE and HRZE, we predict an HR of 2.04 (1.41–2.94) at eight weeks, which is comparable to the
observed adjusted HR of 2.06 (1.26–3.38). Similarly, we predict an HR of 1.68 (1.21–2.32) at 12 weeks,
comparable to the observed HR of 1.78 (Table 1).

Figure 2 shows a comparison between simplified Kaplan–Meier curves generated from PDi

simulations and ones that were adapted from data reported in Boeree et al. [14]. For simplification,
and because they were the data explicitly reported in the clinical study, the data shown in the figure
are for 4, 8 12, 17, and 22 weeks only. PDi simulation HR values, however, were calculated at a 1-week
step for 8 or 12 weeks, as described in the methods.
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Figure 2. Simplified Kaplan–Myer curves comparing observed and predicted clinical outcomes (defined
as conversion to culture negative status using MGIT over time) of the standard RIF dose-containing
regimen (HRZE) versus the 35 mg/kg RIF dose-containing regimen (H35RZE): (a) reported data in
Boeree et al. comparing HRZE (solid black line) and H35RZE (solid orange line); (b) mathematically
predicted outcome (using PDi modelling) for HRZE (dashed black line) and H35RZE (dashed orange
line) applying the same conditions, patient numbers and PK parameters reported in the Boeree et al.
clinical trial; (c) mathematically generated comparison between H35RZE (orange dashed line) and a
70 mg/kg RIF dose-containing regimen (H70RZE) (red dotted line); (d) overlaid Kaplan–Myer curves
seen in panels (a), (b) and (c).

Using the Svensson et al. [28] holistic PK model instead of the individual PK parameters for
the subjects of each arm in the study as reported in Boeree et al. [14] resulted in a similar outcome.
The model still predicted a significant improvement in culture negative conversion at 8 and 12 weeks
(HR = 1.53, p < 0.01, and 1.33, p < 0.01, respectively) and a minimal improvement when dose was
increased beyond 35 mg/kg (Table S2, Figure S1).

3.2. PDi Modelling Suggests No Further Reduction in Time to Culture Conversion Rates by Increasing RIF
Dose Beyond 35 mg/kg

To test whether increasing dosage beyond 35 mg/kg would lead to any benefit in accelerating
treatment outcome, a hypothetical 70 mg/kg RIF-containing regimen (RIF70HZE) was modeled and
compared to the standard treatment. Figure 2, (c) shows that increasing the dose to 70 mg/kg would
result in a negligible improvement in time-to culture conversion. Indeed, the predicted HR at eight
weeks from RIF70HZE (2.16) offers a limited improvement to the predicted HR for RIF35HZE at the
same time point (2.04) when compared to control treatment (HRZE) (see Table 1). The HR between
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RIF35HZE and RIF70HZE is statistically insignificant (p > 0.05, assuming 123 patients in each arm) at
1.12 (0.81–1.59).

3.3. PDi Modelling Predicts a Dose-Effect Relationship of RIF

We simulated hypothetical doses from 10 mg/kg up to 35 mg/kg to assess the effect of increasing
doses of RIF in the treatment regimen upon the overall effect. This was done assuming different
PK parameters for each RIF dosing band, as previously described. Simulations show an increase
in eight-week HR is achieved as the RIF dose increases from 10 mg/kg (HRZE) up to 15 mg/kg
(RIF15HZE) (HR = 1.11 (0.74–1.65), p < 0.01), 20 mg/kg (RIF20HZE) (HR = 1.68 (1.15–2.52), p < 0.001),
25 mg/kg (RIF25HZE) (HR = 1.74 (1.19–2.55), p < 0.001) and 30 mg/kg (RIF30HZE) (HR = 2.02 (1.41–2.92),
p < 0.001). The RIF30HZE result is of particular importance as it shows very little difference from the
RIF35HZE, suggesting the need to probe the additional benefits higher doses of RIF provide to patients
of in future studies. The increase of HR with increasing RIF dosage is further visualized in Figure 3.
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Figure 3. Predicted hazard ratio for different RIF dosing levels: 10 mg/kg up to 70 mg/kg (RIF70HZE)
compared with the standard HRZE treatment. The hazard ratio was calculated over a period of eight
weeks for each dosing level. Black squares are calculated hazard ratios and the grey shaded area is the
confidence interval.

Significantly, PDi predicts that replacing EMB with a slightly higher RIF dose (20 mg/kg) (RIF20HZ)
results in no improvement in treatment outcome (time-to culture conversion), where HR is insignificant
when compared with the standard HRZE treatment (HR = 0.98 (0.69–1.39), p = 0.721). This compares
with an insignificant HR value in Boeree et al., where a dose combination of RIF (20mg/kg), INH, PZA,
and a new drug, SQ109, were compared to HRZE (adjusted HR = 1.06 (0.74–1.52), p = 0.75).

3.4. PK Simulation Analysis

Monte Carlo simulations of the PK exposure were performed to predict the ELF exposure to RIF
at doses of 10, 35, and 70 mg/kg. Out of the 300 subjects simulated in the Monte Carlo simulations,
we identified the proportion of patients who would remain above the intracellular EC50 (18.4 ng/mL)
and EC90 (165.1 ng/mL) levels for the whole duration of treatment. The analysis shows that very few
patients would maintain ELF exposure of RIF above the EC50 when they take a standard 10 mg/kg
RIF dose (6.7% of patients over 24 h), while over 54% of patients would remain above this level for
the whole duration of treatment when receiving RIF35HZE. The proportion of patients with RIF ELF
exposure above the EC50 for the whole duration only increases by 12% with a hypothetical dose of
70 mg/kg. A similar picture can be drawn when analyzing the proportion of patients whose RIF ELF
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levels will remain above the EC90 cut-off, as can be seen in Figure 4 (Figure S2 contains the plasma PK
simulations assuming the same conditions). Importantly, the analysis shows that the clear majority
of patients in the RIF35HZE arm (97%) would remain above the EC50 level of RIF for at least 60% of
the treatment duration time, while a minority of patients (33.4%) would achieve that effect when they
receive a standard HRZE treatment. Figure S2 represents the predicted plasma exposure to RIF at the
standard, 35 mg/kg, and a hypothetical 70 mg/kg dose of RIF.
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Figure 4. Monte Carlo PK simulations based on the parameters reported in Boeree et al. The simulations
show the median exposures (lines) and 9–95 percentile range (shaded areas) for each treatment arm
(Standard HRZE (R10HZE), solid black line and grey shading. Treatment containing 35 mg/kg RIF with
HZE (RIF35HZE) is represented by a solid red line and orange shading; a hypothetical 70 mg/kg RIF
with HZE that assumes similar PK parameters to RIF35 (RIF70HZE) is represented by a dotted blue line;
percentile range not shown for ease of overall comparison.

4. Discussion

RIF dosing was primarily standardized based on cost; however, the drug is now widely available
with little financial burden [31]. Being readily available throughout the world at a low cost with a
good safety profile for doses up to 40 mg/kg [28] means that increasing standard RIF dosing could
be easily and rapidly applied, and therefore should be seriously considered in future planning for
treatment regimens.

The PDi-based PK–PD modelling and simulations provide the means to predict the efficacy of
the standard first-line TB treatment at the level of time-to culture-conversion. PDi-based PK–PD
modelling can also be utilized to predict the superiority of increasing RIF dosing in patients between 8
and 12 weeks of treatment, whereby our predicted HRs are comparable to those reported from the
clinic, thus giving us confidence in our model at the initial stage of treatment. Our model suggests
that increasing dosage of RIF results in an improved bacteriological outcome until the dose reaches
30–35 mg/kg, beyond which a great improvement in patient outcome, in terms of bacillary culture
conversion rates, is not evidenced. For example, RIF30HZE, RIF35HZE and RIF70HZE have similar
predicted HRs that are not statistically different from each other, suggesting that increasing the dose
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beyond 30–35 mg/kg might not be any more useful when comparing HRs at eight weeks. This implicates
doses beyond 70 mg/kg and, despite non-linear pharmacokinetic properties, it is expected that the
rate of bacillary clearance will plateau after 35 mg/kg dosing. It is important to underline, however,
that there may be significant additional patient benefits derived from >35 mg/kg RIF doses that are not
captured here using the PDi-based PK–PD modelling e.g., relapse rates.

A further observation derived from comparing the PDi-based simulations with clinical data is
that there is a sub-population of patients (~20%) who do not benefit from an increased dose of RIF
(even at 26 weeks post-treatment), whereas our modelling predicts that increasing the RIF dose for
the first 12 weeks of treatment should ultimately increase the number of patients who achieve culture
conversion at 26 weeks. This discrepancy is reflected by the fact that PDi modelling can actually predict
the median time and 25th quartile (Q25) to achieve culture conversion in the RIF35HZE arm (median:
40 days predicted vs. 48 days observed; Q25: 34 days predicted vs. 34 days observed), but when
comparing the 75th quartile (Q75), the model fails to predict patient response (51 days predicted vs.
69 days observed). This contrasts with our prediction of the standard treatment where lower and
higher quartiles are well matched when comparing predictions and observations.

We simulated the same (limited) number of patients that were used in the comparator clinical
trial to display how results from PDi modelling can be compared head to head with field results.
However, simulations using a higher number of patients results in similar outcomes. For example,
when increasing the sample size from 123 and 63 patients in the control and high RIF groups, respectively,
to 4000 patients in each arm the HR remains similar, albeit with a narrower CI interval (HR = 2.01
[1.96–2.10]).

This discrepancy between our prediction of culture conversion at 26 weeks versus observed data
is important, as it highlights the importance of investigating the uniqueness of patients who respond
poorly to increased doses of RIF. This could potentially be due to the presence of a subpopulation
of Mtb that responds slower to RIF in those particular patients, or it could be due to higher disease
burden/more severe pathology. Another potential reason is that the Boeree et al. clinical trial had
a limited number of patients in the high dose RIF group (63 patients) to discern a difference at the
26-week point of the study.

While our PDi modelling does not predict a significant improvement beyond the 35 mg/kg RIF
level, it is important to explore further how higher doses might change clinical outcomes in clinical
trials. For instance, doses beyond 35 mg/kg might help the sub-population of patients who did not
respond at the 35 mg/kg mark, and which our model has ultimately failed to predict. However,
from a mathematical modelling point of view, any increase in dosage beyond 35 mg/kg is predicted to
result in no significant improvement in the overall clinically-observable (sputum sterilization) rate of
bacillary clearance.

Previous PK-PD modelling used to predict the activity of RIF based on hollow fiber models
has been reported [32]. These have predicted significant improvements as RIF doses are increased
from 10 mg/kg to 35 mg/kg, which matches our predictions but also predicts a potentially modest
improvement in overall activity when dosage is increased to 50 mg/kg. We predicted no more than a
5% improvement when increasing dosage from 35 to 50 mg/kg. This remains to be investigated in
future clinical trials.

Our modelling also shows that INH and PZA play a negligible role in the overall outcome of
treatment containing RIF, EMB, INH, and PZA. The activity is mainly driven through RIF and then
by EMB, while INH and PZA had next to no effect on the overall outcome (Table S2). This agrees
with previous modelling that indicated limited effects of the two drugs [33]. Again, it is important to
underline however, that there may be significant additional patient benefits derived from inclusion of
INH and PZA within the drug combination that are not captured here using the PDi-based PK–PD
modelling e.g., relapse rates and generation of drug resistance.

Using ELF PK analysis, we provide further evidence of why increasing RIF dosage from 10 to
35 mg/kg might result in a significant improvement of clinical outcomes, whilst increasing the dosage
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further might not be as beneficial. While increasing the dosage from 10 to 35 mg/kg will increase the
number of patients who sustain ELF levels that are continuously above the EC50 by 50%, a further
increase to 70 mg/kg only results in an extra 12% increase in patients sustaining such levels. This is
partly due to the non-linear relationship between RIF doses and systemic exposure, where a 3.5-fold
increase in dosage leads to up to a sevenfold increase in exposure. The non-linear relationship between
RIF dosage and its exposure has been previously reported, including cases where the dose is increased
by 1.5–2 fold [34,35].

Our study’s limitations highlight some important deficiencies in available data that would be
important to fulfill in the future. We still have a poor understanding of ELF exposure to RIF at elevated
doses. Our current assumption is that the plasma–ELF ratio remains constant over increasing doses,
which might not necessarily be true. This deficiency needs to be addressed by studies that quantify
RIF ELF levels at higher doses in vivo and clinically. The discrepancy between the end result of our
modelling highlights the possible complexity of the PK–PD relationship for RIF’s increasing doses,
and how conventional PK–PD analyses might fall short of explaining rather complex dynamics that
change over time, as well as the possibility of having numerous sub-bacterial populations that respond
to chemotherapy in unique ways. Efforts are already taking place to improve translational modelling
activities and reduce such gaps. Translational modelling has also been improved recently [33] to
further bridge the gap between animal models and clinical trials, where a large gap exists between the
two that could be attributed to a large number of factors including disease pathology (e.g., cavitary
and non-cavitary disease) as well as natural immunological responses in the host against TB.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/11/6/278/s1.
Table S1 Parameters used in PDi simulations for each TB drug; Figure S1 Predictions of PDi modelling when using
the auto-induction non-linear PK model reported by Svensson et al.; Table S2 Comparison between observed
clinical outcomes (based on MGIT culture conversion results) in Boeree et al. (2017) (HRZE VS. RIF35HZE)
and mathematically simulated outcomes using PDi modelling but using the Svensson et al. [28] non-linear PK
model for Rifampicin. The last column displays the results for a simulation of a hypothetical 70 mg/kg RIF dose
containing regimen (RIF70HZE) using PDi modelling. Hazard ratios are comparisons to control treatment within
the observation or simulation groups; Table S3 Sensitivity analysis results for the model. L1 and l2 norm values
represent the weight of each parameter upon the outcome of the simulation; Figure S2 RIF predicted plasma
exposure at different doses overlaid with RIF EC50 and EC90.
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