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Key messages

What is the key question?
 ► Is the high burden of chronic respiratory 
morbidity and household air pollution exposure 
described in Malawian adults, also seen in 
children, and would a cleaner-burning biomass-
fuelled cookstove intervention have a positive 
effect on lung function in early life?

What is the bottom line?
 ► We found a substantial burden of chronic 
respiratory symptoms, spirometric abnormalities 
and carbon monoxide exposures among young 
children living in rural Malawi, together with 
a signal of beneficial effect of a cookstove 
intervention on carboxyhaemoglobin and 
forced vital capacity.

Why read on?
 ► Chronic respiratory morbidity in adulthood is 
influenced by lung health in early life—greater 
understanding of contributing factors is vital 
to promote healthy lung development during 
childhood.

AbsTrACT
background non-communicable lung disease and 
exposure to air pollution are major problems in sub-
Saharan africa. a high burden of chronic respiratory 
symptoms, spirometric abnormalities and air pollution 
exposures has been found in Malawian adults; whether 
the same would be true in children is unknown.
Methods this cross-sectional study of children 
aged 6–8 years, in rural Malawi, included households 
from communities participating in the cooking and 
Pneumonia Study (caPS), a trial of cleaner-burning 
biomass-fuelled cookstoves. We assessed; chronic 
respiratory symptoms, anthropometry, spirometric 
abnormalities (using global lung initiative equations) 
and personal carbon monoxide (cO) exposure. 
Prevalence estimates were calculated, and multivariable 
analyses were done.
results We recruited 804 children (mean age 7.1 
years, 51.9% female), including 476 (260 intervention; 
216 control) from caPS households. chronic respiratory 
symptoms (mainly cough (8.0%) and wheeze (7.1%)) 
were reported by 16.6% of children. average height-
for-age and weight-for-age z-scores were −1.04 and 
−1.10, respectively. Spirometric abnormalities (7.1% 
low forced vital capacity (FVc); 6.3% obstruction) were 
seen in 13.0% of children. Maximum cO exposure and 
carboxyhaemoglobin levels (cOHb) exceeded WHO 
guidelines in 50.1% and 68.5% of children, respectively. 
children from caPS intervention households had lower 
cOHb (median 3.50% vs 4.85%, p=0.006) and higher 
FVc z-scores (−0.22 vs −0.44, p=0.05) than controls.
Conclusion the substantial burden of chronic 
respiratory symptoms, abnormal spirometry and air 
pollution exposures in children in rural Malawi is 
concerning; effective prevention and control strategies 
are needed. Our finding of potential benefit in caPS 
intervention households calls for further research 
into clean-air interventions to maximise healthy lung 
development in children.

InTroduCTIon
Non-communicable lung diseases are major global 
health priorities across the life course.1 2 Asthma 
is the the most common chronic disease of child-
hood and one of the the most common chronic 
diseases of adulthood, affecting around 358 million 
people while COPD affects 174 million people, 
worldwide.3

Although most of the children and adults with 
these conditions live and die in low-income countries 
and middle-income countries (LMICs), the majority 

of the research into these conditions is done in 
high-income countries. Research is especially scarce 
in the LMICs of sub-Saharan Africa where limited 
studies suggest the prevalence of childhood asthma 
is increasing in urban settings, and that children 
with symptoms of asthma are likely to be severely 
symptomatic.4 5 In adult populations, Burden of 
Obstructive Lung Diseases (BOLD) studies from 
countries in sub-Saharan Africa, including sites in 
urban and rural Malawi, have found a high burden 
of impaired lung function—particularly low forced 
vital capacity (FVC)6–8—which is concerning given 
the association between low FVC and mortality in 
other populations.9

In these same sub-Saharan African popula-
tions, there is widespread reliance (by around 
700 million people) on inefficiently burned solid 
fuels for cooking, heating and lighting.10 Studies 
in rural Malawi report exclusive biomass fuel use 
(wood, crop waste and charcoal) with households 
using traditional ‘open-fire’ cooking methods.11 
The widespread exposure of children to pollut-
ants such carbon monoxide (CO) and particulate 
matter, resulting from incomplete fuel combustion, 
is particularly concerning. Household air pollu-
tion has been suggested as a potential contributing 
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Paediatric lung disease

factor in the development of non-communicable lung diseases 
in low-income countries.12 However, the links between house-
hold air pollution exposure, new-onset asthma in children and 
obstructive lung disease in adults, are unclear, with controversy 
over the interpretation of available data.13–17 Environmental 
exposures, including inhaled pollutants, during periods of lung 
growth and development may lead to irreversible long term defi-
cits in adult lung function.18 19

In this context, the Cooking and Pneumonia Study (CAPS) 
was done to determine whether an intervention comprising two 
cleaner burning biomass-fuelled cookstoves and a solar charger 
would reduce the incidence of Integrated Management of Child-
hood Illness-defined pneumonia in children under the age of 5 
years in rural Malawi compared with continuation of traditional 
cooking methods.11 CAPS recruited households from village clus-
ters in Chikhwawa between December 2013 and February 2016. 
The primary intention-to-treat analysis found no difference 
in pneumonia incidence between the two trial arms. Recently 
reported secondary analyses in adults from a subset of CAPS 
households found no difference in chronic respiratory symp-
toms, lung function or personal air pollution exposures between 
participants from the intervention and control groups.20 That 
said, median exposure to fine particulate matter (PM2.5) was 71 
µg/m3, well above WHO annual and 24 hours guidelines.

Is it not known whether the same pattern of respiratory symp-
toms, spirometric abnormalities and air pollution exposures 
would be seen in children as in adults or whether the CAPS inter-
vention would have beneficial effects on any of these outcomes 
in children? In this paper we report the findings of a cross-sec-
tional study, conducted in the same village communities as CAPS, 
which set out to: (1) measure the prevalence and determinants 
(including measured exposure to household air pollution) of 
non-communicable lung disease in a population representative 
sample of children in rural Malawi and (2) conduct an analysis 
comparing lung function between young children in the inter-
vention group and those in the control group in CAPS. Some of 
the data have been previously presented in abstract form.21

MeThods
study design
We conducted a cross-sectional study of the prevalence and 
determinants of non-communicable respiratory disease among 
children living in Chikhwawa District, Malawi.

setting
Chikhwawa is a rural area, located in the Southern Region of 
Malawi on the Shire River, 50 km from the nearest city, Blan-
tyre. The population consists largely of subsistence farmers 
living in village communities and is highly vulnerable to climatic 
shocks, having experienced flooding, crop failures and famine 
in recent years. Infectious diseases (malaria, pneumonia and 
gastroenteritis), HIV/AIDS, malnutrition and limited access to 
basic healthcare contribute to high childhood mortality rates, 
although a considerable reduction in the mortality rate for chil-
dren under 5 years old has been seen in Malawi over the past 
25 years.22

Participants
Following widespread community engagement events, children 
aged between 6 and 8 years, living in households that had taken 
part in CAPS and BOLD-Chikhwawa were identified by local 
community advisors and invited to participate if the child’s 
parent/guardian gave written informed consent (or witnessed 

thumbprint for those unable to read and write). Exclusion 
criteria were current treatment for tuberculosis, current acute 
respiratory infection (defined as cough of <1-week duration, 
associated with fever and/or increased work of breathing) and 
other contraindications to spirometry (chest or abdominal pain, 
haemoptysis). We recruited all children from the study area 
meeting the eligibility criteria.

Procedures
Fieldworkers visited the children in the community to admin-
ister an electronic questionnaire, and assess anthropometry, lung 
function, and personal exposure to household air pollution. An 
electronic questionnaire was administered in Chichewa, the local 
language, detailing respiratory symptoms and potential contrib-
uting factors. Core written questions from the International 
Study of Asthma and Allergy in Children (ISAAC) were included, 
which had been forward and back-translated.23 Height, weight 
and mid-upper arm circumference (MUAC) were measured 
according to standardised protocols. Height and weight were 
interpreted using the WHO 2007 child growth standards.24 
MUAC was used to assess nutritional status.25

Prebronchodilator and postbronchodilator spirometry was 
performed by BOLD centre-certified technicians, according to 
American Thoracic Society/European Respiratory Society (ATS/
ERS) standards using an Easy On-PC Spirometer (ndd Medical 
Technologies; Zurich, Switzerland).26 Regular calibration was 
performed according to the manufacturer’s instructions. The 
highest forced expiratory volume in one second (FEV1) and 
FVC measurements for each participant were selected (from a 
maximum eight attempts), before and after administration of 
400 µg inhaled salbutamol, via Volumatic spacer. Reversibility 
was defined as ≥12% improvement between prebronchodilator 
and postbronchodilator FEV1.

Spirometry over-reading was performed by two indepen-
dent reviewers. Two sets of ATS/ERS standards (aged 4–6 years 
and aged seven and above) are relevant for the children in this 
study.26 27 As the age range of our study children overlaps both 
sets of standards, and to maximise the use of spirometric data 
collected, we defined acceptable (grade C) quality as two traces 
within 150 mL or 10% (online supplementary table S1).

Carboxyhaemoglobin level (COHb) was measured at a single 
time-point using a Rad-57 pulse CO-oximeter (Masimo Corpo-
ration, California, USA). Performance verification was ensured 
at study outset, according to the manufacturer service manual. 
To assess personal CO exposure levels, children wore an EasyLog 
CO USB data logger (Lascar Electronics, Wiltshire, UK), for up 
to 48 hours, starting immediately after the field visit.

Variables
Clinical outcomes were presence or absence of symptoms, as 
assessed by the following questions; Chronic cough: defined by a 
positive response to both ‘Does your child usually have a cough 
when they don’t have a cold?’ and ‘Are there months in which 
they cough on most days?’; Current wheeze: ‘Has your child 
had wheezing or whistling in the chest in the past 12 months?’; 
Severe asthma: current wheeze, and ≥4 attacks of wheeze, or 
≥1 night per week sleep disturbance from wheeze, or wheeze 
affecting speech, in the past 12 months; Shortness of breath: 
a composite outcome, positive if children were reported to be 
breathless during normal daily activities or on minimal exertion; 
Any respiratory symptom: a composite outcome, positive if a 
participant was reported to have any of the previously described 
symptom outcomes.
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Figure 1 Participant recruitment flow diagram. CAPS, Cooking and Pneumonia Study; CO, carbon monoxide; COHb, carboxyhaemoglobin level.

Continuous FEV1 and FVC values were used in the primary 
analysis. Standardised z-scores and lower limits of normal 
(LLN) for FEV1, FVC and FEV1/FVC were derived from the 
GLI 2012 reference equations for African-Americans, which 
provide race-specific and sex-specific reference values, taking 
into account height and age.28

Personal CO exposure monitoring data were not analysed 
if <24 hours were recorded. To allow comparison of varying 
lengths of recording, all data were truncated at 24 hours for the 
final analysis.

Potential effect modifiers included were height (cm), weight 
(kg), age and sex.

study size
We calculated a sample of 600 participants (300 male, 300 
female) would estimate the prevalence of non-communicable 
lung disease in each sex stratum with a precision (95% CI) of 
±3.3 to ±5.0% (assuming a prevalence of 10%–25%). To allow 
for unequal sex distributions, refusals and inability to provide 
spirometry of acceptable quality, we aimed to recruit 1000 
children.

statistical analysis
Descriptive analysis was performed, using Student’s t-test 
and Pearson’s χ2 to compare continuous and categorical data. 
For population proportions, Wald-type SEs were calculated, 
assuming a binomial distribution. Bivariate associations between 
spirometric and clinical outcomes, and variables including CO, 
COHb, hospital admission for respiratory illness during infancy, 
and CAPS allocation were explored. Harmonic regression was 
used to account for any possible effect of seasonality on the 
outcome measures. This was implemented by including sinu-
soidal functions (sine and cosine terms) of time with a period 
of 1 year. Linear multivariable regression was used to estimate 
the association between exposures and continuous lung function 
values (FEV1 and FVC). Multivariable logistic regression models 
were constructed for dichotomous clinical outcomes. All models 
included age, sex, height and weight a priori, and variables 
with a p value <0.2 on bivariate analysis. A backward stepwise 
regression technique was used to develop multivariable models. 
An analysis was conducted to compare FEV1, FVC and FEV1/
FVC, symptom prevalence and exposure variables between the 

intervention and control groups of CAPS. CO was log10 trans-
formed for inclusion in linear models to ensure normality of 
residuals.

Analyses were conducted using R V.3.4.1 statistical software.29

role of the funding source
The funders had no role in the study design, data collection, 
analysis, interpretation or writing of the report. The corre-
sponding author had full access to all the study data and had 
final responsibility for the decision to submit for publication.

Ethical approval was given by the College of Medicine 
Research Ethics Committee in Malawi (reference P.07/16/1994) 
and Liverpool School of Tropical Medicine Research Ethics 
Committee in the UK (reference 16–040).

resulTs
Between February and December 2017, we approached 886 
children of whom 804 were confirmed to be eligible and 
were recruited (79/82 were outside the eligible age range; 
3/82 guardians declined to consent). Questionnaire data were 
collected for all but one participant who withdrew from the 
study shortly after giving consent. Anthropometry, spirometry, 
COHb measurement and personal CO monitoring were done 
on 99.9% (802/803), 99.9% (802/803), 99.4% (798/803) and 
99.3% (797/803) of these participants, respectively. Grade A–C 
prebronchodilator traces were achieved in 65% (522/802) of the 
children. The duration of CO monitoring was 24 and 48 hours 
for 91.9% (738/803) and 79.5% (638/803) children, respec-
tively. There were 476 (260 intervention and 216 control) chil-
dren from households included in CAPS (figure 1).

The mean age (SD) of participants was 7.13 (0.77) years and 
417 (51.9%) participants were female. Most (700 (87.2%)) were 
attending primary school. The mean (SD) height-for-age and 
weight-for-age z-scores were −1.04 (0.90) and −1.10 (0.89), 
respectively. Mean (SD) MUAC was 15.98 (1.26) cm (table 1). 
No children met the criteria for severe or moderate acute 
malnutrition, but 11/789 (1.4%) children were ‘at risk for acute 
malnutrition’.

Chronic respiratory symptoms were reported by 133 (16.6% 
(SE 1.3)) children, most commonly cough (8.0% (SE 1.0)), and 
current wheeze (7.1% (SE 0.9)) (table 1). One-fifth (159/803) 
of children had been admitted to hospital with respiratory 
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Table 1 Demographics and clinical characteristics (n=803)

Female, n (%) 417 (51.9)

Age, mean (SD) years 7.13 (0.77)

School attendance, n (%) 700 (87.2)

Anthropometry

Weight-for-age z-score, mean (SD) −1.10 (0.89)

Height-for-age z-score, mean (SD) −1.04 (0.90)

MUAC, mean (SD) cm* 15.98 (1.26)

Chronic respiratory symptoms n (%)

Wheeze ever 97 (12.1)

Current wheeze (in the past 12 months) 57 (7.1)

Severe asthma (in the past 12 months) 31 (3.9)

Wheeze with exercise 44 (5.5)

Dry cough at night 145 (18.1)

Chronic cough 64 (8.0)

Chronic sputum production 13 (1.6)

Chronic shortness of breath 49 (6.1)

Any chronic respiratory symptom 133 (16.6)

*MUAC measurement available for 789 participants.
MUAC, mid-upper arm circumference.

symptoms in the past; on one (9.7%), two (6.1%) and three or 
more (4.0%) occasions. Admission for a respiratory problem 
during the first year of life was reported for 70 (8.7%) children. 
Antibiotic use for a chest problem in the last year was common, 
reported for 112 (13.9%) children, with 69 (8.6%) receiving 
these on more than one occasion. Half (54.4%) of children 
with current wheeze had symptoms of severe asthma, repre-
senting 3.9% of children overall. Of these, 22 (71.0%) had a 
previous hospital admission, and 10 (32.2%) missed school due 
to breathing problems. Very few (0.4%) children had previously 
been treated for tuberculosis, and 2.0% (6/307) of children who 
had been tested for HIV were HIV-positive.

Children producing grade A–C spirometry were older than 
those with unacceptable traces (mean age 7.23 vs 6.96 years, 
p<0.001); otherwise there were no significant differences in 
growth parameters and respiratory symptoms between the two 
groups (online supplementary table S2). Overall, participants 
had a mean (SD) FEV1 z-score −0.48 (0.93) and mean (SD) 
FVC z-score of −0.30 (0.96). Children from CAPS intervention 
households had higher FVC z-scores than those from control 
households (−0.22 vs −0.44, p=0.05). Prebronchodilator spiro-
metric abnormalities were found in 68/522 (13.0%) of children; 
7.1% with low FVC and 6.3% obstruction (table 2). Postbron-
chodilator spirometry was attempted by 706 children, with 72% 
(505/706) producing grade A–C traces. Both prebronchodilator 
and postbronchodilator traces were available for 432 children, 
26 of whom had a prebronchodilator FEV1/FVC ratio below the 
LLN which was reversible in 8 (30.7%).

Personal CO monitoring showed considerable variation in 
exposure throughout the monitored period (figure 2). Mean 
exposure levels ranged from 0 to 15.1 parts per million (ppm), 
with a median CO exposure of 0.20 ppm (IQR 0.07–0.54). 
Peaks exceeding the 15 min indoor WHO guideline (81 ppm; 
100 mg/m3) were observed in 370/738 (50.1%) of participants 
(figure 3).30 Median %COHb was 4.00 (IQR 1.50–6.50). 68.5% 
of participants had a level greater than 2%, and 6.0% greater 
than 10% (figure 4). We found no association between respi-
ratory symptoms or spirometric indices and personal CO and 

COHb measurements in bivariate analyses and therefore these 
variables were not carried forward into multivariable analysis. 
In logistic multivariable analysis, chronic cough (OR 2.63 (95% 
CI 1.13 to 6.12)), current wheeze (OR 5.48 (95% CI 2.45 to 
12.26)) and symptoms of severe asthma (OR 6.36 (95% CI 2.34 
to 17.28)) were all associated with hospital admission during 
infancy (table 3). We found no association between respiratory 
symptoms and spirometric indices in bivariate or multivariable 
analysis (table 3).

In the analysis comparing intervention and control groups, we 
found statistically significant associations between the interven-
tion arm and both FVC (coefficient estimate 0.04 (95% CI 0.00 
to 0.07)), and COHb level (coefficient estimate −0.89 (95% CI 
−1.53 to 0.26) (table 4A). We found no significant differences 
between CAPS arms for growth parameters (table 4A) or chronic 
respiratory symptom rates (table 4B).

dIsCussIon
This is one of the first studies to report lung function and 
personal household air pollution exposure, measured concur-
rently in young children, and it was conducted in the context 
of the largest trial of a cleaner-burning cookstove intervention 
to date. Among children living in rural Malawi, we found that; 
one in six reported chronic respiratory symptoms; over half with 
current wheeze had severe symptoms; anthropometric and lung 
function parameters were generally decreased compared with 
global reference ranges; the majority of children had COHb 
levels above WHO recommended guidelines; and half of chil-
dren exceeded WHO guidelines for CO exposure (100 mg/m3), 
during 24 hours monitoring.10 Overall, we found no evidence of 
an association between CO exposure and respiratory symptoms 
or lung function. However, children from CAPS intervention 
households had higher FVC z-scores and lower COHb levels 
than controls.

There are limited data regarding chronic respiratory symp-
toms in children from Africa, and particularly rural settings. One 
study from rural Senegal reported similar rates with 9% current 
wheeze and 5% severe asthma among children aged 5–8 years.31 
Studies from urban settings in sub-Saharan Africa, including 
ISAAC sites, reported rates of current wheeze in 5%–16% of 
young children, with symptoms of severe asthma in half of 
these.4 32–34 Globally 11.5% of children aged 6–7 years have 
current wheeze, and 4.9% have symptoms of severe asthma; 
severe symptoms are seen in one-third of children with current 
wheeze in Europe.4 The high rates of severe symptoms seen in 
low-income countries are concerning, and likely reflect multiple 
challenges within healthcare systems, which are better equipped 
to manage acute episodes relating to infectious diseases, rather 
than chronic non-communicable conditions. In keeping with 
this, recent research from Nigeria and South Africa has reported 
high rates of under-diagnosed and untreated asthma in school-
children.35 36

We found decreased lung function parameters in this study, 
comparable to values reported for community controls in a 
recent study exploring long-term outcomes after severe acute 
malnutrition, at the referral hospital in Blantyre, Malawi.37 
These lung function deficits, when compared with international 
reference ranges, may reflect host and environmental factors 
such as undernutrition, frequent respiratory infections, low birth 
weight, exposure to pollutants in utero and early life, which can 
have adverse effects on lung growth and development.38–42 No 
children in this study were acutely malnourished (as defined 
by MUAC measurement), although other anthropometric 
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Table 2 Prebronchodilator lung function parameters for participants with grade A–C spirometry, including the CAPS subgroup

Participants with A–C spirometry
n=522

CAPs intervention arm
n=167

CAPs control arm
n=133

Intervention versus 
control *

FEV1 z-score, mean (SD) −0.48 (0.93) −0.41 (0.92) −0.60 (0.97) P=0.10

FVC z-score, mean (SD) −0.30 (0.96) −0.22 (0.97) −0.44 (0.98) P=0.05

FEV1/FVC z-score, mean (SD) −0.38 (0.90) −0.40 (0.91) −0.34 (0.93) P=0.57

FVC<LLN, n (%) 37/522 (7.1%) 11/167 (6.6%) 12/133 (9.0%) P=0.57

Obstructive spirometry
FEV1/FVC<LLN, n (%)

33/522 (6.3%) 11/167 (6.6%) 10/133 (7.5%) P=0.93

Abnormal spirometry
(low FVC, obstruction, mixed), n (%)

68/522† (13.0%) 21/167‡ (12.6%) 22/133 (16.5%) P=0.42

*Comparison of means using Student’s t-test; comparison of proportions using Pearson’s χ2 test.
†Mixed pattern in two participants.
‡Mixed pattern in one participant.
CAPS, Cooking and Pneumonia Study; FEV1, forced expiratory volume in one second; FVC, forced vital capacity.

Figure 2 Example of a typical 48 hours CO monitoring trace. CO, 
carbon monoxide.

Figure 3 Maximum CO levels recorded during monitoring period for 
738 participants. Dashed line represents who recommended indoor 
exposure guideline for a 15 min time period. CO, carbon monoxide.

Figure 4 Percentage of COHb level for 798 participants. Dashed line 
represents the WHO COHb guideline. COHb, carboxyhaemoglobin level.

parameters (weight-for-age and height-for-age z-scores) were 
reduced compared with international standards, suggesting a 
level of chronic undernutrition in this community. There are 
limited data regarding normal lung function in healthy African 
paediatric populations, and consequently it is difficult to under-
stand the clinical significance of these apparent spirometric 
deficits.43 Further research is needed to describe optimal lung 
growth in African populations, and determine the morbidity and 
mortality associated with lung function abnormalities.44

Consistent with our previous findings in Chikhwawa, we 
noted exposure to high peaks of CO, reaching up to three times 
the WHO guidelines around cooking times, although mean and 
median levels were low; median CO 1.23 ppm (IQR 0.79–1.93) 
in adults and mean CO 1.27 ppm (SD 2.79) in younger chil-
dren.20 45 Median CO exposure levels were lower (0.20 ppm 
(IQR 0.07–0.54) in our older paediatric population perhaps 

reflecting long periods of time that children spend away from 
the home environment during the school day. Cookstove trial 
analyses exploring adult lung function as a secondary outcome 
have found no evidence of intervention benefit.20 46 47 Paediatric 
lung function outcomes in cookstove trials are inconclusive, but 
signal a possible beneficial effect of the interventions. Secondary 
analysis from the RESPIRE trial found decreased lung growth at 
around 5 years of age (measured by peak expiratory flow), associ-
ated with delayed chimney stove installation, although there was 
no association between lung function at age five and measured 
personal CO exposure during the first 18 months of life.48 The 
GRAPHS birth cohort in rural Ghana recently reported an asso-
ciation between prenatal CO exposure and infant lung function 
at 30 days of life, with an increased effect of exposure on female 
infants.49 Cross-sectional studies from Nigeria have described 
decreased lung volumes (FEV1 and FVC) and increased asthma 
symptoms in children with self-reported exposure to biomass 
cooking fuels.36 50

The association between CAPS intervention group and higher 
FVC is interesting, given the lack of evidence for an association 
between lung function and CO exposure or COHb level. This 
positive finding must be interpreted cautiously as it is the result 
of exploratory secondary analyses, unadjusted for multiplicity 
and therefore may be due to chance. However, when taken with 
the second signal of a potential effect, lower COHb observed in 
the intervention group, the results may be evidence of a genuine 
impact. We may have observed a benefit among our partici-
pants, who were aged 3–6 years during the CAPS trial period, 
in contrast to findings from adult populations, because the early 
childhood years represent a key period for lung development. 

5Rylance S, et al. Thorax 2019;0:1–8. doi:10.1136/thoraxjnl-2018-212945
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Table 3 OR (95% CI) for chronic respiratory symptoms estimated by multivariable logistic regression (n=522)

Cough Current wheeze severe asthma
shortness of 
breath

Age (years) 0.72 (0.48 to 1.06) 0.55 (0.31 to 0.96)* – –

Sex – – – –

Height (cm) – 1.07 (0.99 to 1.17) 1.18 (1.04 to 1.35)* 1.06 (0.98 to 
1.14)

Weight (kg) – – 0.72 (0.54 to 0.94)* –

Admission during infancy 2.63 (1.13 to 6.12)* 5.48 (2.45 to 12.26)† 6.36 (2.34 to 17.28)† –

FEV1 (l)‡ – 0.14 (0.01 to 1.72) 0.04 (0.00 to 1.09) 1.24 (0.01 to 
1.17)

*Significant at 0.05 level.
†Significant at 0.001 level.
‡Prebronchodilator FEV1.
 

FEV1, forced expiratory volume in one second.

Table 4A CAPS secondary trial analyses: mean or median values, with linear model coefficient estimates (95% CI) for continuous outcomes

Intervention Control Intervention versus control P value

FEV1, mean (SD) L* 1.02 (0.18) 0.97 (0.19) 0.02 (−0.01 to 0.06) 0.135

FVC, mean (SD) L* 1.16 (0.21) 1.09 (0.21) 0.04 (0.00 to 0.07) 0.033

FEV1/FVC, mean (SD) * 0.88 (0.06) 0.89 (0.06) −0.01 (−0.02 to 0.01) 0.411

%COHb, median (IQR)†‡ 3.50 (1.00 to 6.00) 4.85 (2.00 to 7.00) −0.89 (−1.53 to −0.26) 0.006

Mean CO ppm, median (IQR)§‡¶** 0.18 (0.05 to 0.55) 0.20 (0.08 to 0.52) 0.03 (−0.35 to 0.42) 0.857

Weight-for-age z-score, mean (SD)† −1.20 (0.89) −1.06 (0.85) −0.13 (−0.29 to 0.02) 0.096

Height-for-age z-score, mean (SD)† −1.10 (0.84) −1.06 (0.93) −0.04 (−0.20 to 0.12) 0.624

MUAC, mean (SD) cm†† 15.92 (1.29) 15.94 (1.30) −0.02 (−0.26 to 0.21) 0.846

*Spirometry data for 300 participants; 167 intervention, 133 control. FEV1, FVC and FEV1/FVC adjusted for age, sex, height and weight in regression model.
†COHb, height and weight data for 476 participants; 260 intervention, 216 control.
‡Adjusted for seasonality in linear regression model.
§24 hours CO monitoring for 436 participants; 239 intervention, 197 control.
¶Log10 CO values used in linear regression model.
**Mean exposure was estimated over the monitoring period per individual, the median of these values (and IQR) is presented for the study population.
††MUAC for 466 participants; 260 intervention, 206 control.
CO, carbon monoxide; COHb, carboxyhaemoglobin level; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; MUAC, mid-upper arm circumference.

Table 4b CAPS secondary trial analyses: proportions and OR (95% CI) for symptom outcomes (n=476)

Intervention n=260 Control n=216 Intervention versus control P value

Cough,
n (%)

30 (7.7%) 18 (8.3%) 0.92 (0.47 to 1.78) 0.797

Current wheeze,
n (%)

19 (7.3%) 17 (7.9%) 0.92 (0.47 to 1.82) 0.817

Severe asthma,
n (%)

11 (4.2%) 10 (4.6%) 0.91 (0.38 to 2.19) 0.833

Shortness of breath, n (%) 13 (5.0%) 14 (6.5%) 0.75 (0.34 to 1.63) 0.471

Any respiratory symptom, n (%) 37 (14.2%) 40 (18.5%) 0.72 (0.44 to 1.18) 0.193

There is rapid alveolar expansion and resulting lung growth 
during the first 2 years of life, which stabilises around 8 years of 
age.51 Alveolar number is reflected by FVC in childhood and so 
it is biologically plausible that we might see improved lung func-
tion in children from the intervention arm; the apparent differ-
ence of 70 mL in mean FVC between CAPS groups represents 
approximately 6% of a child’s lung volume. Furthermore, young 
children have increased susceptibility to air pollutants, exhib-
iting increased deposition of particles in the lung, due to phys-
iological and anatomical factors.52 CO exposure measures do 
not appear to be associated with lung function or respiratory 

symptoms—perhaps CO is an inadequate proxy for other pollut-
ants of interest, such as PM2.5 and nitrogen dioxide. Our previous 
air pollution monitoring work in Chikhwawa has demonstrated 
that monitored CO exposure correlates weakly with COHb, 
PM2.5 exposure, and measured black carbon in airway cells from 
induced sputum.20 45 53

This study was conducted in the context of the largest cook-
stove intervention trial to date—a major strength enabling 
us to assess the effect of a cookstove intervention on child-
hood spirometry and air pollution exposure outcomes. Other 
strengths include high participation rates for spirometry and 

6 Rylance S, et al. Thorax 2019;0:1–8. doi:10.1136/thoraxjnl-2018-212945
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CO exposure monitoring, and good quality spirometry in a 
representative sample of children, despite the highly chal-
lenging research environment of a rural area in a low-income 
country. We achieved our sample size, even though field work 
was disrupted by vampirism hysteria in the community. We 
acknowledge limitations to our study including that personal 
monitoring of CO for 48 hours provides only a snapshot of 
exposure to a single pollutant. There are substantial limitations 
to the methods currently available for monitoring personal 
exposure to other pollutants in this young age group; the Lascar 
CO-monitoring device represents one of the best options avail-
able, at present. Monitoring during a 48 hours exposure period 
may not describe individual variation in daily and seasonal 
routines but reflected a compromise in terms of feasibility and 
acceptability in this large study population. Questionnaire data 
may have been subject to recall bias, with limited information 
on contributing factors such as birth weight, gestation at birth, 
HIV-status and exposure to passive smoking.

In conclusion, the substantial burden of chronic respiratory 
symptoms, abnormal spirometry and air pollution exposures in 
children in rural Malawi is concerning and calls for strategies to 
maximise healthy lung development and to effectively manage 
chronic respiratory conditions. To achieve this, research will 
be needed to develop ways to increase awareness of non-com-
municable lung diseases, such as asthma, at a community level 
to inform healthcare seeking behaviours and ensure access to 
appropriately trained healthcare providers and effective long-
term treatment such as inhaled medication. Our finding of a 
potential beneficial effect of a cleaner burning biomass-fuelled 
cookstove on lung function (FVC) calls for further research 
into clean-air initiatives, tackling multiple sources of air pollu-
tion in a community-wide approach to promote lung health in 
children.
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