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Thesis abstract.  72 

Clinical trials of treatments for Plasmodium falciparum are an integral aspect of a continually evolving 73 
evidence base that informs public health policy with the aim of reducing malaria morbidity, mortality, 74 
preventing the emergence of parasite resistance to drugs and, eventually, permitting elimination of 75 
the disease. Despite their importance, obtaining useful information from in vivo trials can be hindered 76 
through methodological gaps that make it difficult to obtain or analyse results (through an inability to 77 
quantify important parameters in vivo), cost, required patient numbers or ethical considerations.  78 

This thesis uses a computer modelling approach to address two key research problems relating to in 79 
vivo trials: Firstly, it quantifies the accuracy failure rate estimates obtained during trials for routine 80 
monitoring of artemisinin-based combination therapy (ACT) efficacy in cases of uncomplicated 81 
malaria, noting that currently available methods for genotyping patient blood samples are imperfect, 82 
and that patients can be infected by new parasite clones (termed reinfection) during the follow-up 83 
period which may share (by chance) genetic data with clones present at the time of treatment. 84 
Consequently, it is possible for drug failure to be misclassified as a reinfection or vice versa, inducing 85 
error in drug failure rate estimates. The true drug failure rate cannot be known in vivo so the accuracy 86 
of each method is not known. The results presented here show that currently used methods (length-87 
polymorphic markers and microsatellite markers) are under-estimating true drug failure rate and 88 
preventing the detection of failing drugs (~10% failure rate). Accuracy of failure rate estimates was 89 
greatly improved by using alternative statistical algorithms or through use of novel Amplicon 90 
Sequencing techniques for genotyping blood samples.  91 

Secondly, clinical trials of severe malaria generally use reduction in circulating parasite numbers as a 92 
clinical endpoint but sequestered - not circulating - parasites are responsible for pathology in severe 93 
malaria. A mathematical model was developed to quantify the pathology of severe malaria in an in 94 
silico patient population based on sequestered parasite numbers. Results from this model then 95 
indicated that a simplified treatment regimen was generally non-inferior to the World Health 96 
Organization (WHO) recommended regimen, though specific sub-groups of patients may be at 97 
increased risk. Model results also indicated that the emergence of resistance to artesunate in parasite 98 
early ring-stages would have severe consequences for patient prognosis in cases of severe malaria.  99 

 100 
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Tables of abbreviations. 106 

General abbreviations. 107 

ACT Artemisinin-based Combination Therapy 

AmpSeq Amplicon Sequencing 

CDC Centers for Disease Control and Prevention 

CE Capillary Electrophoresis 

DNA Deoxyribonucleic Acid 

ETF Early Treatment Failure 

GMS Greater Mekong Subregion 

He Expected Heterozygosity 

HIV Human Immunodeficiency Virus 

i.m Intramuscular 

i.v Intravenous 

iRBC Infected Red Blood Cell 

MMV Malaria for Medicines Venture 

mPK/PD Mechanistic Pharmacokinetic/Pharmacodynamic 

PCR Polymerase Chain Reaction 

PD Pharmacodynamics 

PK Pharmacokinetics 

PK/PD Pharmacokinetic/Pharmacodynamic 

PRCC Partial Rank Correlation Coefficient 

RCT Randomized Controlled Trial 

rfu Relative Fluorescent Units 

ROC Receiver Operator Characteristic 

SNP Single Nucleotide Polymorphism 

TB Tuberculosis 

TES Therapeutic Efficacy Study 

VPC Visual Predictive Check 

WHO World Health Organization 
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Drug name abbreviations. 118 

AQ Amodiaquine 

AR Artemether 

AS Artesunate 

CQ Chloroquine 

DHA Dihydroartemisinin 

LF Lumefantrine 

MQ Mefloquine 

PPQ Piperaquine 

PYN Pyronaridine 

SP Sulfadoxine/pyrimethamine 

 119 

Genetic locus abbreviations. 120 

ama1-D3 Apical Membrane Antigen 

cpmp Conserved Plasmodium Membrane Protein 

cpp Conserved Plasmodium Protein 

csp Circumsporozoite Surface Protein 

glurp Glutamate rich protein 

msp-1 Merozoite surface protein-1 

msp-2 Merozoite surface protein-2 

msp-7 Merozoite Surface Protein-7 

PfHRP2 Plasmodium Falciparum Histidine Rich Protein 2 

pLDH Plasmodium Lactate Dehydrogenase 
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Abbreviations pertaining to model input or output. 136 

aEIR Annual Entomological Inoculation Rate 

AUCPL Area Under the Pathological Load Curve 

BW Patient Bodyweight 

CL Clearance 

CV Coefficient of Variation 

FOI Force of Infection 

IC50 Half Maximal Inhibitory Concentration 

k Elimination rate 

Ka Absorption rate constant 

MOI Multiplicity of Infection 

MPL Maximum Pathological Load 

n Slope of Concentration-Effect Curve 

n Slope Factor 

PL Pathological Load 

PMR Parasite Multiplication Rate 

PRR Parasite Reduction Ratio 

Q Intercompartmental Clearance rate 

SD Standard Deviation 

Vd Volume of Distribution 

Vmax Maximal Parasite Killing constant 

z Conversion rate 
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Chapter 1: Background to thesis. 152 

 153 

1.1 Descriptive epidemiology of falciparum malaria. 154 

Plasmodium falciparum is a protozoan parasite that is transmitted between humans by the bite of the 155 
female Anopheles mosquito. Following an infectious bite on a human from a mosquito, malaria 156 
parasites initially infect human liver cells where they mature, then infecting red blood cells. These 157 
infected red blood cells (iRBC) subsequently cause pathology in the host.  158 

In 2017, P. falciparum annual mortality was estimated by the World Health Organization (WHO) to be 159 
435,000 [1]. Most of this mortality (approximately 93%) occurred in African countries. Of the 435,000 160 
deaths in 2017, roughly 61% were in children less than 5 years old [1].  161 

Today’s mortality figure for falciparum malaria is large, development and deployment of these 162 
measures has led to a large reduction of the estimated 1,000,000 annual deaths in 1990 [2]. It is worth 163 
noting that the WHO has observed the rate of reduction in mortality slowing over the last several 164 
years [1]. From a public health perspective, the “end-game” for falciparum malaria control is 165 
elimination of the disease: In 2015, the WHO produced a technical strategy towards this goal [3]. The 166 
ultimate aim of the strategy is achieving elimination by 2020 in 10 countries where malaria is currently 167 
transmitted, increasing to 35 countries by 2030, while continuing to reduce malaria mortality and 168 
incidence worldwide. The public health strategies undertaken by the WHO, national governments, 169 
charitable organizations and the wider scientific community in pursuit of this goal are multi-faceted, 170 
including but not limited to: Prompt diagnosis and treatment of cases [1, 3], preventative treatment 171 
strategies including targeted mass drug administration (MDA) programmes [4-6], vector control 172 
strategies [7-9], and development and deployment of novel malaria vaccines [10-12]. In short, the 173 
ultimate goal (elimination of the disease) is ambitious, but a diverse toolbox of strategies is available, 174 
and great progress has been made.  175 

 176 

1.2 Drug treatment of falciparum malaria. 177 

Key to the battle against malaria is prompt treatment of infections with artemisinin and partner drugs. 178 
An artemisinin derivative (artemether [AR], artesunate [AS], dihydroarteminisin [DHA]) is either given 179 
as a monotherapy (parenterally, and only in cases in severe malaria), or as an artemisinin combination 180 
therapy (ACT); note that monotherapy for severe malaria will always be followed up by a full course 181 
of ACT [1]. ACTs consist of an artemisinin derivative given in combination with a partner drug such as 182 
lumefantrine (LF), mefloquine (MQ), amodiaquine (AQ), sulfadoxine/pyrimethamine (SP), piperaquine 183 
(PPQ), chlorproguanil/dapsone or pyronaridine (PYN). P. falciparum presents in one of two forms: 184 
“uncomplicated” or “severe” malaria, and whether treatment is a monotherapy, or an ACT depends 185 
on the form of malaria presented by a patient.  186 

In uncomplicated falciparum malaria, the patient has symptoms and detectable parasites in the blood 187 
stream but no signs of organ failure or dysfunction. Patients generally have a relatively mild fever, are 188 
conscious and capable of taking oral drug regimens; prompt treatment of uncomplicated malaria is 189 
associated with low mortality [13]. As such, total clearance of the parasites over the course of follow-190 
up (several weeks) is the primary objective of treatment as this will reduce the risk of onward 191 
transmission. ACTs are the front-line drug of choice for uncomplicated malaria across most of the 192 
world; the artemisinin component rapidly clears parasites and the partner drug ensures eventual 193 
parasite clearance and therapeutic cure [14, 15]. The clinical consequence of this is that parasites 194 
rapidly reduce to undetectable levels immediately after ACT treatment initiation but are often not 195 
completely cleared during a 3-day course of drugs. Because partner drugs all possess substantial half-196 
lives; infections surviving treatment may only recover to become detectable once partner drug 197 
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concentrations have decayed to ineffective concentrations - potentially weeks after treatment, 198 
termed “recrudescence”.  199 

Patients with severe malaria present with one, or a combination, of four syndromes: Severe anaemia, 200 
respiratory distress, metabolic derangement and cerebral malaria [16, 17]. Patients are treated with 201 
parenteral artesunate [1], which rapidly kills parasites, but resolution of pathology lags behind 202 
parasite killing; case fatality rates are high even once patients have been admitted to the formal health 203 
system (typically between 5 and 12% [13] although studies that are designed to consider small sample 204 
sizes report lower mortality of ~2% [18]). The primary objective of treatment for severe malaria is the 205 
survival of the patient; complete parasite clearance is a secondary objective [19].  206 

 207 

1.3 Antimalarial drug resistance. 208 

The pernicious spectre of drug resistance is a key threat to effective treatment of malaria and the 209 
elimination effort. “Drug resistance” in the context of malaria is defined by the WHO as delayed 210 
parasite clearance following treatment with either a monotherapy or an ACT; note that resistance 211 
emerging to partner drugs  carries a higher risk of treatment failure than resistance to artemisinin [1]. 212 
Anti-malarial resistance is currently “partial”, rather than “full” – i.e., treatment becomes less 213 
effective, not ineffective. Resistance (and known mechanisms) of parasite resistance to previous drugs 214 
(i.e. chloroquine [CQ]) and current partner drugs (particularly Piperaquine [20]) has been  well-215 
documented [21-23] in the Greater Mekong Subregion (GMS), where extensive multi-drug resistance 216 
has forced the hand of drug elimination efforts [24, 25] and it has now become a priority to eliminate 217 
the disease before P. falciparum becomes untreatable with the existing anti-malarial catalogue [1].  218 

In uncomplicated malaria, reduced parasite clearance due to resistance (either to artemisinin or a 219 
partner drug) leads to parasites being able to recover i.e. “recrudesce”) and continue causing disease 220 
in a patient. The consequences of artemisinin resistance for severe malaria are more immediate: 221 
Slower parasite clearance, or the inability to kill parasites before they sequester, can cause patient 222 
death. In either case resistance will lead to increased morbidity and mortality from malaria. 223 
Concerningly, resistance is self-propagating: When parasites become resistance to current drugs, 224 
treatment is less effective and so the resistant strains can spread more easily. Finally, resistance causes 225 
economic consequence through the cost of healthcare, loss of workforce productivity, and requiring 226 
the development of new drugs [26].  227 

 228 

1.4 Clinical trials of uncomplicated malaria (Therapeutic Efficacy Studies). 229 

The WHO consider an ACT to be “failing” in a country when failure rates of treatment for 230 
uncomplicated malaria within that country reach 10% [3] (i.e., that 10% of patients treated with an 231 
ACT fail to fully clear parasites over the course of follow-up). To maintain clinical effectiveness of 232 
drugs, the WHO recommends that countries change their first-line drug of choice at that point [27]. It 233 
follows that clinical evidence of drug efficacies are required to enact this policy and consequently, 234 
drug efficacy estimates are constantly monitored through therapeutic efficacy study / studies (TES), 235 
where a group of patients with uncomplicated malaria are recruited, treated, and followed up over 236 
several weeks [28].  237 

TES monitor patients for extended periods of time post-treatment to ensure recrudescent infections 238 
are detected. Duration of follow up  depends on the half-life of the drug being assessed [28, 29] , 239 
usually between 4 and 6 weeks (28 to 42 days) [14], sometimes extended to 9 weeks for research 240 
purposes. Patients are followed up at regular intervals to check for the presence of malaria parasites. 241 
Patients who have detectable parasites during this follow-up period are considered to have a 242 
“recurrent infection” or, equivalently, “recurrence”.  243 
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A critical problem of long follow-up periods is that in areas of high transmission, new infections (called 244 
“reinfections”) may be inoculated into patients by mosquitoes. These reinfections must be 245 
distinguished from recrudescence to allow accurate estimates of drug efficacy. This is not a trivial 246 
problem: Annual entomological inoculation rates (aEIR) of malaria, a measure of malaria exposure in 247 
a population, are typically >10 and >100 per patient in areas of moderate to high transmission, 248 
respectively. Moderate to high transmission sites are preferred for TES as morbidity from malaria is 249 
high, so these trials cover the most at-risk patient populations and patient recruitment is 250 
straightforward. Reinfections occurring late during TES follow-up, when partner drug concentrations 251 
have reduced from their initial levels, are not indicative of a failing partner drug. An example of the 252 
dynamics of malaria parasites in a patient post-treatment are shown graphically in Figure 1.1 253 
.Consequently, the ability to distinguish between reinfections and initial infections that are not cleared 254 
by treatment (termed “recrudescence / recrudescent”) is critical to obtain accurate failure rate 255 
estimates of ACTs. In theory, if it were possible to perfectly classify recurrent infections as reinfections 256 
or recrudescent infections, accurate drug failure rate estimates could be obtained simply. This is 257 
possible through sequencing the entire malaria genotype of the patient’s initial sample and recurrent 258 
sample, but this is (currently) impractical to perform for each patient in a TES as such trials occur 259 
frequently and with large numbers of patients.   260 

A variety of methods have been proposed that take a blood sample and genotype of a patient’s initial 261 
infection and any recurrent infection, subsequently using any difference between genetic profiles to 262 
classify a recurrent infection, with a “match” between genotypes indicating a recrudescence, and a 263 
“mis-match” a reinfection– this process is called “molecular correction”, or, equivalently, “PCR 264 
correction”. In 2008 the WHO and collaborators reached a consensus of using three length-265 
polymorphic markers  to achieve this  [14]. Alternative markers are available, including microsatellites 266 
(widely used by the Centers for Disease Control and Prevention [CDC]) [30, 31], single nucleotide 267 
polymorphisms (SNPs) [32, 33] (not explored in this thesis), and markers obtained from next-268 
generation amplicon sequencing (AmpSeq) [34-36].  Each choice of genetic marker carries their own 269 
perils that may induce misclassification of infections – for example, reinfections and initial infections 270 
sharing alleles by chance, inability to detect low frequency clones, and errors in correctly reading the 271 
base-pair length of a given allele. Length-polymorphic markers are the subject of chapter 3 of this 272 
thesis, microsatellite markers are the subject of chapter 4 and next-generation amplicon sequencing 273 
is the subject of chapter 5. A detailed description of each marker and their properties that can result 274 
in misclassification of recurrent infections is provided within these chapters, but a summary is 275 
provided in Table 1.1. Note that the terms “marker” and “locus” are often used interchangeably in the 276 
literature. In this thesis, the term “marker” will be used to refer to the choice of methodology i.e. 277 
length-polymorphic markers, microsatellite markers and AmpSeq markers, while the term “locus” or 278 
“loci” will be used to refer to specific genetic regions, (i.e., msp-1, msp-2, and glurp). Thus, the length-279 
polymorphic marker methodology concerns itself with genotyping the loci msp-1, msp-2 and glurp, 280 
the microsatellite marker concerns itself with genotyping a variety of microsatellite loci and the 281 
AmpSeq marker methodology concerns itself with genotyping a variety of AmpSeq loci.  282 

 283 

 284 

 285 

 286 

 287 

 288 
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 289 

Figure 1.1 : A graphical representation of the parasite dynamics produced by a mPK/PD model for a 290 
hypothetical patient post-treatment. Drug concentration is shown by the solid blue line; it’s change 291 
over time is determined by the specifics of the model and the patient’s PK parameters.   Initial clones 292 
can be cleared by the drug (green lines) or recrudesce at a later point (red line). New infections 293 
(termed “reinfections”) may emerge from the liver at a frequency of 105 parasites during follow-up 294 
and these can be cleared by the drug (grey dashed lines) or rise in number and eventually become 295 
detectable (the solid black line at 53 days denotes the point at which parasites are of a sufficient count 296 
to be detected in a blood sample during follow-up). Figure layout adapted from [37].  297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 
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Table 1.1 A brief summary of the types of genotyping for TES explored in this thesis, their proposed 312 
advantages, potential disadvantages, and important examples of their use.  313 

Marker Notable users  Examples Advantages Disadvantages 
Chapter 
of this 
thesis 

Length-
polymorphic 
markers 

WHO 
consensus 
methodology  

[14, 38] Well-
characterized, 
generally 
diverse 
markers. Msp-
1 and msp-2 
exist in 
families so 
family-
specific 
primers can 
be used to 
improve 
resolution of 
results.  Clear 
guidelines 
exist for use 
from WHO.  

Alleles below a certain 
frequency are ignored as 
noise in the PCR process 
(to avoid including false 
alleles that are “noise”). 
Shorter fragments are 
amplified preferentially 
(i.e., longer alleles are 
harder to detect). Failure 
to detect alleles in either 
the initial or recurrent 
sample means 
recrudescent infections 
and reinfections may be 
misclassified as the other.  

3 

Microsatellite 
markers 

CDC [30, 39, 
40] 

Lack of 
immune 
selection on 
microsatellite 
markers.  

Alleles below a certain 
frequency must be 
ignored in the PCR 
process (to avoid 
including false alleles that 
are “noise”). 
Microsatellite allele 
length may be mis-read 
due to polymerase 
slippage in the PCR 
process.  

4 

Amplicon 
Sequencing 

Novel 
methodology 
still in 
experimental 
use / 
developmental 
stage 

[36, 41] Able to detect 
low frequency 
genetic 
signals 

Novel method without 
(at the time of writing) 
clear procedures for best 
use. Requires use of next-
generation technology.  

5 

TES: Therapeutic efficacy study, WHO: World Health Organization, msp-1: merozoite surface protein-314 
1, msp-2: merozoite surface protein 2, glurp: glutamate rich protein, PCR: polymerase chain reaction, 315 
CDC: Centers for Disease Control and Prevention 316 

 317 

 318 

 319 

 320 
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Additionally, there are two inherent sources of error in TES, independent of the choice of marker: 321 

A patient who fails to clear their initial infections may have a reinfection that becomes detectable 322 
before the recrudescent clone reaches a detectable level; ethically, that patient must be treated and 323 
so is removed (or “censored”) from the study before the recrudescence can be observed (Figure 1.2 324 
(A)).   325 

A patient who fails to clear their initial infection may have that infection persist at a low-lying level, 326 
below the limit of detection of light microscopy, such that parasites are never detected during follow-327 
up; the frequency of this event is influenced by the duration of follow-up in the trial, i.e. the longer 328 
the follow-up, the less likely it is to occur (Figure 1.2 (B)).  329 

These issues have led some contributors to suggest the use of molecular correction may be 330 
undesirable and non-corrected estimates are better [42, 43],but such an approach would be likely to 331 
result in over-estimation of failure rates in the moderate to high transmission areas in which TES are 332 
conducted. Thus, a critical issue stands: The true failure rate of the drug cannot be known in vivo (due 333 
to errors in correctly classifying recurrence inherent to all approaches) and as such, neither can be 334 
accuracy of any given method.  335 

If failure rate estimates are inaccurate there are two critical consequences: Firstly, If current methods 336 
under-estimate the true failure rate, we fail to detect resistance to anti-malarial drugs at an 337 
appropriate time, leading to increased morbidity, mortality, economic consequence and further 338 
spread of resistance. Secondly, If current methods over-estimate the true failure rate, first-line 339 
treatments are changed un-necessarily with great economic cost and public health bodies / 340 
governments needlessly “waste” an effective treatment.   341 

The potentially dire consequences of inaccurate failure rate estimates lead to the first critical aim of 342 
this thesis: 343 

 344 

 345 

1.5 Clinical trials of severe malaria. 346 

The key goal of treatment for severe malaria is patient survival, particularly in the first 48 hours post-347 
treatment (in contrast to uncomplicated malaria where total clearance of parasites is the key 348 
objective). Consequently, TES are not conducted for severe malaria and clinical trials of severe malaria 349 
generally have a different goal: To explore new treatments or treatment strategies with the aim of 350 
improving patient survival rates; notable examples are trials comparing quinine with artesunate that 351 
supported eventual policy change replacing quinine with AS as the first line therapy for severe malaria 352 
[44, 45].  353 

Parasite clearance rates are a commonly used clinical outcome measure to compare outcomes of 354 
antimalarial treatment regimens for severe malaria [46, 47]. However, parasite clearance rates 355 
correlate poorly with disease outcome in severe malaria. Large trials comparing intramuscular AR with 356 
quinine in African children showed more rapid parasite clearance with AR but no difference in case 357 
fatality [48, 49]. With parenteral AS, parasite clearance rates are not different in patients dying from 358 
severe malaria compared to survivors (results cited in [50]). There are two potential explanations why 359 
parasite clearance is an unsuitable outcome measure in severe malaria: Firstly, parasite clearance 360 
rates following treatment for uncomplicated malaria appear to mainly reflect host immunity rather 361 

To develop a methodology that can accurately calculate true failure rates of ACTs in 
uncomplicated malaria TES, and, against that gold standard figure, compare the accuracy and 
utility of a range of current and proposed methods to estimate ACT failure rates, and ways in 

which the accuracy and usage of these methods may be optimized. 
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than drug effectiveness [51-53] so may be a poor metric of overall drug effectiveness. Secondly, 362 
parasite clearance rates are measured on circulating parasites [51] whereas non-circulating, 363 
sequestered parasites are generally assumed to be responsible for most clinical symptoms, pathology 364 
and deaths associated with severe malaria [16]. Given that patient survival is the key clinical outcome, 365 
death (and thus, comparison of mortality rates between trial arms) would be the ideal outcome of 366 
interest to use to compare the effectiveness of treatments for severe malaria. However, a trial would 367 
need to be unfeasibly large to have enough statistical power using death as the outcome of interest, 368 
and given that it is seemingly impossible, to obtain accurate estimates of sequestered parasite 369 
densities in vivo (though total parasite biomass can be estimated by measuring P. falciparum histidine 370 
rich protein 2 [PfHRP2] [16, 54]) , parasite clearance rates continue to be used as the outcome of 371 
interest despite the noted flaws in this approach.  372 

Consequently, the second critical aim of this thesis is:  373 

To develop a methodology to quantify the pathology of sequestered parasites in severe 
malaria and use this methodology to identify rational drug dosing regimens for treatment of 

severe malaria with AS and quantify the likely impact of AS drug resistance for treating severe 
malaria.   
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 374 

Figure 1.2 (A) shows a hypothetical patient with two initial infections (dashed red lines) and a reinfection (dashed orange line). An initial infection recrudesces 375 
over a long period of time, becoming detectable at day 63, but a reinfecting clone emerging from the liver on day 7 more quickly increases in frequency and 376 
becomes detectable on day 45. Consequently, this patient would be removed from follow-up due to the reinfection before the recrudescence can be 377 
observed. (B) shows a hypothetical patient with a single initial infection who has no reinfections during follow-up. Treatment fails to clear their initial infection, 378 
but the initial infection does not reach detectable levels during follow-up and so parasites are never detected. Figure layout adapted from [37].  379 
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1.6 Brief summary of mathematical modelling techniques. 380 

The premise of a mathematical model is to use a series of mathematical statements to describe an 381 
otherwise non-mathematical system or situation. The first example of modelling applied to malaria 382 
was by Ronald Ross in 1910 [55], who used a series of differential equations to describe malaria 383 
transmission. Over the last 100 years, particularly following the advent of computer modelling to 384 
handle complex calculations, the goals and achievements of models have grown bolder, and there 385 
now exists a broad range of applications for models in the context of falciparum malaria, and a rich 386 
tapestry of accomplishments [56]. Notable examples include modelling strategies for coping with the 387 
emergence of resistance [23], investigating important epidemiological parameters such as the basic 388 
reproduction number, endemic equilibrium, and aEIR [57-59], analysing co-morbidity of malaria and 389 
Human Immunodeficiency Virus (HIV) or malaria and tuberculosis (TB) [60, 61], the impact of 390 
hypothetical or novel malaria vaccines [62, 63], and cost-effectiveness studies of malaria control 391 
policies [64].  392 

The overarching goal of this thesis is to interface computational/mathematical modelling methods 393 
and anti-malarial drug trials, with the aim of improving patient outcomes either directly (i.e., 394 
investigating and providing supporting evidence for novel treatments) or through contributing to the 395 
malaria elimination efforts. Essentially, it will focus on simulating anti-malarial trials in a variety of 396 
scenarios with key advantages: Parameters that cannot be measured in vivo can be incorporated via 397 
sensitivity analysis, errors or flawed methodology can be accounted for (i.e., misclassification of 398 
results or inappropriate outcome measures), and the ability to simulate extremely large trials and a 399 
variety of treatments without regard to cost or time. Additionally, a modelling methodology can 400 
examine matters that would be ethically difficult in vivo (i.e., novel treatment regimens or drugs with 401 
unknown efficacy and/or safety) or simply impossible (i.e., simulating resistance to a drug that has 402 
never had resistance emerge in vivo, allowing for analysis of the consequences of resistance).  403 

1.6.1 History of within-host modelling of malarial parasite dynamics  404 

A wide variety of models have been constructed and deployed to model malaria parasite intra-host 405 
dynamics – more plainly, what happens over time to parasites / infected red blood cells (iRBCs) in the 406 
host. Broadly speaking, the critical aim of models of intra-host parasite dynamics is to mathematically 407 
describe and replicate observed in vivo parasite dynamics. Of key historical importance are trials of 408 
so-called malaria therapy for neurosyphilis, where patients presenting with neurosyphilis were 409 
experimentally treated with P. falciparum and P. vivax in the early 1900s, under the hypothesis that 410 
the fever induced by malaria would alleviate the symptoms of neurosyphilis [65-69]. Data on parasite 411 
dynamics that was produced by these trials has been used to inform mathematical models through 412 
the data they provided on parameters including infection length, parasite density, and the shape of 413 
the parasite growth curve. With this data, mathematical models can be adjusted to “fit”[70] in vivo 414 
dynamics of P. vivax (without real data to validate against, creating a model would be a fairly futile 415 
endeavour). In more simple terms, these trials provided the in vivo evidence base that models have, 416 
historically, sought to mathematically describe. These data were first used to validate a model by 417 
Molineaux et al. [71], who noted that previous models (not validated against clinical data) lacked 418 
realism – this approach was then used to inform future models by a range of authors [62, 72, 73]. 419 
More recently, advanced statistical methods have sought to better describe select parasite dynamics 420 
(i.e., duration of infection) from longitudinal genotyping studies [74] 421 

On the purpose of modelling parasite dynamics, I reference Molineaux and Dietz [75], who describe 422 
intra-host malaria models as having three purposes: i) explaining observed data with biologically 423 
plausible assumptions, ii) predicting the likely outcome of interventions and iii) estimating parameters 424 
that cannot be directly observed , noting that these purposes often overlap (as an example, Dietz, 425 
Raddatz and Molineaux developed a mathematical model to describe the first wave of P. falciparum 426 
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parasitaemia following infection, fitting four model parameters that were not directly observable, with 427 
the goal of using the model to predict the likely impact of a hypothetical vaccine [76]. 428 

Ultimately, available models differ widely in their goals and execution. I will not attempt an exhaustive 429 
review here (I describe the approach chosen to model intra-host parasite dynamics in this thesis at 430 
length in chapter 2), but I would refer readers to [70, 75] and the introduction of [77] for reviews of 431 
existing models. I would add that commentators have noted that, in general, models require a large 432 
number of parameters, many of which are difficult or impossible to measure in vivo and must have 433 
their values assumed for the purposes of modelling [70]. Many of these parameters relate to the 434 
dynamics of host immunity to malaria, which is still not fully understood [78] - note that observed 435 
parasite dynamics reflect the acquisition of human immunity to P. falciparum and as such are likely to 436 
be highly influenced by a process known as var switching, whereby parasite var genes (which are 437 
responsible for coding Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)) switch 438 
between ~60 members and allow P. falciparum to avoid the host immune response[79, 80].  This 439 
switching operates over multiple parasite generations [79] (compared to short term sequestration 440 
cycles which operate over 48 hours); and may be a major driver of malaria clones rapidly fluctuating 441 
in density. Additionally, there is difficulty in accurately measuring parasite numbers in vivo due to 442 
iRBCs sequestering as part of the parasite’s 48 hour life cycle [16, 81]. Consequently, there is a clear 443 
imperative to test the validity of model assumptions and the impact of altering parameters 444 
(particularly ones that cannot be measured in vivo) on model output and results. Throughout this 445 
thesis, I attempt to ensure that the impact of such parameters is investigated. 1.6.2 Pharmacokinetic 446 
/ Pharmacodynamic modelling. 447 

Particularly important to this thesis is the concept of Pharmacokinetic (PK) / Pharmacodynamic (PD); 448 
PK/PD modelling. Pharmacokinetics (PK) describes the eventual fate of a drug in a patient. In other 449 
words, a patient’s PK parameters describe the rate at which the drug the drug is absorbed, processed, 450 
and eventually eliminated from the body. Pharmacodynamics (PD) describes the effect of a drug on 451 
its target (in this case, the effect of drugs on malaria parasites), and specifically the relationship 452 
between drug concentration and drug effect. The goal of traditional PK/PD modelling is to investigate 453 
an in vivo population of patients and construct a model to estimate PK and PD parameters in that 454 
population to a high degree of accuracy. Mechanistic PK/PD (mPK/PD) models are distinct from 455 
traditional PK/PD models - they are generally calibrated with parameters obtained from these 456 
traditional models (although novel / arbitrary parameters can be used) but use a series of calculations 457 
to convert a given set of PK/PD parameters into a quantitative description of the change in parasite 458 
clone(s) over time in a patient following treatment (a number of thorough reviews exist in the 459 
literature [82-84]). In other words, whereas traditional PK/PD modelling uses drug concentrations and 460 
parasite dynamics in a population of patients to describe PK/PD parameters in that population, 461 
mPK/PD modelling uses a set of PK/PD parameters to simulate the parasite dynamics post-treatment 462 
in a hypothetical patient population.  463 

 mPK/PD models for anti-malarial drugs operate in three general steps: 464 

1: Calculate change in drug concentration over time in a patient, given that patient’s PK parameters.  465 

2: Calculate the relationship between drug effect and drug concentration, given a parasite clone’s PD 466 
parameters.  467 

3: Combine steps 1 and 2 to calculate the change in parasite count over time for a given patient 468 
following drug treatment.   469 

mPK/PD modelling has been used extensively to address a wide range of research questions in the 470 
malaria field; a non-exhaustive summary is displayed in Table 1.2.  471 

This thesis will address critical aim 1 by using mPK/PD modelling approaches to simulate parasite 472 
dynamics in populations of patients with uncomplicated malaria treated with ACTs and followed up 473 
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during the course of a TES. The modelling approach will allow the true fate of each patient’s initial 474 
infection (and thus, the true failure rate of the population) to be known. Consequently, the accuracy 475 
of a range of genotyping methods can be investigated, and their best use optimized.  476 

The results presented in chapters 3-5 are all generated using a general two-stage process:  477 

1: Simulate intra-host P. falciparum dynamics in a population of patients post-treatment using 478 
mPK/PD models 479 

2: By allocating genetic data to each parasite clone simulated in step 1, calculate the genetic signals 480 
detected from a patient’s blood samples during a therapeutic efficacy study (TES) and analyse these 481 
to generate drug failure rate estimates (and subsequently analyse the accuracy of these estimates). 482 

The critical difference between each chapter is the genetic markers used. Chapter 3 investigates the 483 
World Health Organization (WHO)/Malaria for Medicines Venture (MMV) recommended length 484 
polymorphic markers merozoite surface protein-1 (msp-1), merozoite surface protein-2 (msp-2) and 485 
the glutamate rich protein (glurp). Chapter 4 investigates the use of microsatellite markers, and 486 
chapter 5 investigates the use of next-generation amplicon sequencing (AmpSeq). As such, the second 487 
step in this process varies between chapters in both simulation and analysis of data. However, the first 488 
step – simulating parasite dynamics over time – occurs using the same core methodology – mPK/PD 489 
models of a set of ACTs in each chapter. The detailed methodology behind those mPK/PD models is 490 
described fully in Chapter 2.  491 

Critical aim 2 will be addressed in chapter 6 by using a distinct mPK/PD model of artesunate 492 
monotherapy in a population of patients. A model will be constructed that accounts for sequestered 493 
parasites and develops novel metrics to quantify the burden of disease associated with these 494 
parasites. This model will then be used to investigate outcomes with a selection of treatment regimens 495 
and compare outcomes between sensitive and resistant parasites.  496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 
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Table 1.2 Brief summary of published work utilizing mechanistic PK/PD models in a malarial context. 507 

Authors Issue Research question Practical limitations of in vivo studies References 

Hodel et al.  Optimal age/weight-
based dosing regimens 

Malaria drugs have a therapeutic index of 
around 2 but must, for practical reasons, be 
deployed to treat patients in weight or age-
bands. Weight often varies >2 fold in these 
bands. As such, a significant fraction of patients 
will be under- or over-dosed on a mg/Kg basis. 
What are the quantitative consequences of 
this dosing? 

Correctly dosing a band of patients 
whose weight varies >2 fold with a drug 
with a therapeutic index of around 2 is 
impossible in vivo. Consequently, 
heavier patients in the band will be 
under-dosed and/or lighter patients will 
be over-dosed.  

[85] 

Simpson et al.; 
Hodel et al.; Kay, 
Hodel & Hastings; 
Dini et al. 

Optimal dosage 
amount and treatment 
regimes 

How does dosage of drug (in mg/Kg) affect 
therapeutic outcome? 

Dose escalation trials are expensive and 
generally small. Useable data can be 
extracted post-deployment by meta-
analysis from drugs which are given in 
weight or age bands but must be 
processed with a modelling approach. 

[85-88] 

Hodel et al.; 
Challenger et al. 

Robustness of drug 
regimens to poor 
adherence 

Malaria patients often have poor adherence 
and do not complete a full course of treatment: 
what is the impact in terms of drug failure 
rates? 

Ethically extremely difficult or 
impossible to deliberately under-dose 
patients. 

[85, 89] 

Hastings, Hodel & 
Kay; 
Kay & Hastings 

Threat posed by the 
emergence of drug 
resistance 

How will the spread of resistance affect patient 
cure rates and public health interventions such 
as mass drug administration? 

Impossible to investigate in vivo until 
resistance has arisen – for many drugs, 
this has yet to occur.  

[15, 90] 

Kay & Hastings;  
Stepniewska & 
White 

Possible sources of de 
novo resistance 
mutations 

Where in the malaria lifecycle are de novo 
resistance mutations most likely to arise? 

Resistance often occurs extremely 
infrequently, so this is difficult to 
directly observe in vivo.  

[90, 91] 

Klonis et al. Inferring drug 
resistance patterns 

What are the physiological patterns of drug 
resistance? 

Sensitivity of parasites to drugs can be 
measured in vivo but must be placed in 
a mPK/PD framework to investigate 
likely impact on therapeutic outcome.  

[92] 
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Jaki et al.; 
Jones et al.  

Simulating data used 
for clinical trial analysis 

Analysis of drug clinical trials show that 
different methods and assumptions generate 
different estimates of failure rates: which is the 
most accurate and/or robust method? 

The true failure rate of drugs in real 
clinical trials is unknown so it is 
impossible to fully quantify the accuracy 
of analytical methods and/or whether 
biases occur. 

[37, 93] 

Jones et al.  Simulating pathology 
caused by sequestered 
malaria parasites 

Severe malaria pathology is generally caused 
by sequestered parasites. These cannot be 
directly observed in patient blood samples. 
What is their quantitative relationship to level 
of pathology? 

Impossible to directly quantify 
sequestered parasites in vivo.  

[94] 

Jonhston et al.; 
Geradin et al.  

Simulating the use of 
drugs in Mass Drug 
Administration (MDA) 
campaigns 

What is the optimal role of MDA campaigns in 
malaria control and elimination programmes?  

MDA programmes are extremely 
expensive and difficult to deploy. 
Comparisons between studies are 
limited because of the large number of 
differences between them 

[95, 96] 

Nguyen et al. Drug deployment 
policies and selection 
for resistance 

Do differential drug deployment policies (e.g. 
sequential, rotations, mosaics) have different 
impacts on the evolution of drug resistance? 

It would be virtually impossible to 
implement different polices for drug 
deployment in a sufficient number of 
locations to allow effective comparison 
of policies 

[97] 

MDA: Mass Drug Administration508 
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Chapter 2: Mechanistic Pharmacokinetic/Pharmacodynamic (mPK/PD) 509 

modelling to simulate parasite dynamics post-treatment with artemisinin-510 

based combination therapies (ACTs). 511 

 512 

All computer-based modelling in this thesis was conducted using the programming language R [98]. 513 
Due to the time over which this thesis was written, the version of R used varied between 3.1.2 and 514 
3.6.0.  515 

The mPK/PD models used in Chapter 3 – Chapter 5 are for Dihydroartemisinin-Piperaquine (DHA-516 
PPQ), Artemether-Lumefantrine (AR-LF; commonly referred to in the literature as AL) and Artesunate-517 
Mefloquine (AS-MQ). Other frontline ACTs, i.e. Artesunate-Amodiaquine (AS-AQ), 518 
Sulfadoxine/Pyrimethamine (SP) and Artesunate-Pyronaridine (AS-PYN) were not explored for the 519 
following reasons. Both the parent form and a metabolite of AQ have antimalarial activity and both 520 
are eliminated independently (e.g. [99]); there is currently no robust mPK/PD model [100]. SP exhibits 521 
strong synergy between the Sulfadoxine and Pyrimethamine components which has made a robust 522 
mPK/PD model difficult to create [101].Finally, PYN is a relatively new drug; thorough AS-PYN safety 523 
and efficacy studies are recent [102] and PK parameters are relatively limited and mostly derived from 524 
plasma assays (PYN concentrates in red blood cells and so these parameters are not reliable for use in 525 
mPK/PD models   [103]). 526 

mPK/PD models for DHA-PPQ, AR-LF and AS-MQ, however, have been explored, calibrated and 527 
validated in-depth and used by a variety of groups to explore a variety of research questions (see the 528 
summary table Table 1.2 in Chapter 1). The model structure I use in this thesis is derived from the 529 
work of Katherine Kay (who also published under her maiden name,  Winter), Eva Maria Hodel and 530 
Ian Hastings [85, 104, 105], and is described in full in [104]. I was provided with a set of code (R 531 
language, version 3.1.2) that relates to the publication in reference [104] by Katherine Kay to calculate 532 
(for each ACT) drug concentration over time and resulting parasite kill rates over time for any given  533 
set of PK/PD parameters (see below). The mechanistic simulations of drug concentration and parasite 534 
kill rates with a given set of parameters are described in those papers. I do not detail these methods 535 
here due to their length and complexity; rather this chapter details the way I parameterized these 536 
models and used them to generate data; expansions to the initial models were made by me (see later) 537 
to allow for reinfections to occur during the follow-up period and for patients to have polyclonal 538 
infections.  539 

Chapters 3, 4 and 5 investigate the accuracy of genotyping methods used in clinical trials. To do so (as 540 
explained fully in those chapters), they calculate which genetic signals are detectable in conventional 541 
finger-prick blood samples by genotyping a selection of loci; as later described this is based on the 542 
relative and absolute densities of parasite clones as well as specific characteristics of certain loci that 543 
are used as genetic markers (for example, msp-1 and msp-2 alleles occur in different families and this 544 
affects detectability of the alleles [106]). The purpose of this thesis is to investigate genotyping 545 
methods, not to provide a comprehensive study of PK/PD parameters (though see [87, 104, 105] for 546 
previous use and detailed discussion of the model used). Parasite dynamics (see Figure 1.1 in Chapter 547 
1) can be generated by other means. Examples include randomly assigning biomass to clones on both 548 
the initial day and a day of recurrence using a computer (i.e. [107]), using hazard functions to simulate 549 
time to recrudescence or time to reinfection for a range of patients [108], or sophisticated Markov 550 
Chain Monte Carlo models [109].  The reason for using a mPK/PD approach in this thesis was to 551 
increase realism and lay a foundation for future work – the methodology is adaptable for any group 552 
with their own set of PK/PD parameters, genetic data and other relevant information (i.e., multiplicity 553 
of infection [MOI], transmission intensity, and allelic distributions of their chosen marker) to 554 
investigate the accuracy of their failure rate estimates.  555 
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 556 

2.1 Mechanistic PK model to model drug concentrations over time. 557 

Throughout this thesis, PK parameters for artemisinins and partner drugs remain the same between 558 
chapters 3-5. These parameters determine drug concentration over time profiles for each patient in 559 
the population. The parameters for any given patient are drawn from a distribution described by the 560 
mean value and the coefficient of variation (CV). PK parameters are described in Table 2.1; the 561 
parameter is assumed to be normally distributed if the CV is < 0.5, and log-normal if the CV is ≥0.5.  562 

There is enormous variation in PK parameters described in the literature (see [85]), though this is not 563 
surprising, given that PK studies are conducted in different populations,  demographics and locations 564 
and different groups use different error models to describe additional variation within their 565 
population. For this thesis, I was not trying to replicate any particular population of patients but rather 566 
use a mPK/PD model to generate a large, “general” population in silico that could be used to test 567 
genotyping methods in trials. To achieve this, I selected mean values from the literature that were 568 
generally intermediate within the range of reported values and accompanied them with (generally 569 
large) CVs that would achieve a wide range of drug concentration over time profiles for the population. 570 

The mPK/PD model used to generate these drug concentrations (specifically, the PK portion of the 571 
model) uses parameters originally derived from in vivo, traditional PK studies (Table 2.1).  Such studies 572 
will typically provide a “visual predictive check” (VPC) of their model – which, simply, is a method of 573 
checking that the PK parameters and the error model generated by a PK study can then reproduce the 574 
variation in the data that was used to generate the parameters in the first place [110]. Although the 575 
goal of the mPK/PD modelling here is to generate a general population for further analysis, not to 576 
replicate the VPC of any given study (see above), comparisons to VPCs are useful to check that the 577 
range of drug concentrations produced by the mPK/PD model are within reasonable ranges and assure 578 
readers that this method of generating parasite dynamics in silico is robust.  579 
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Table 2.1  PK Parameter summary. A summary of the PK parameters used to simulate parasite dynamics post-treatment, adapted from Hodel et al. [85]. The 580 
table shows means with coefficient of variation in brackets.  581 

Drug Dihydroarteminisin-
Piperaquine  
(2 compartment model) 

Artesunate-Mefloquine Artemether-Lumefantrine 

DHA PPQ AS DHA MQ AR DHA LF 

Vd (L/kg) 1.49 (0.48)[85, 
104] 

 
346 
(0.93)[111] 

7.1 (0.94)[104] 1.49(0.48)[1
04] 

20.8(0.38)[10
4] 

46.6(0.82)[85] 15(0.48)[85, 104] 21(2.63)[85, 
104] 

Vd1 (L/kg) - 443 
(1.70)[111] 

- - - - - - 

ka (/day) - 11.2 
(2.17)[111] 

252(1.12)[104] - - 23.98(0.68)[85, 
104] 

- - 

z (/day) - - 30.96(0.362)[1
04] 

- - 11.97(0.65)[85, 
104] 

- - 

Q1(L/day/
kg) 

- 69.7(1.01)[11
1] 

- - - - - - 

k (/day) 19.8(0.23)[85, 
105] 

 
 
0.02*[111, 
112]  

- 25.4(0.23)[1
04] 

0.053(0.63)[1
04] 

- 44.15(0.23)[85, 
104] 

0.16(0.05)[85, 
104] 

PK: Pharmacokinetic, BW: Patient bodyweight, DHA: Dihydroartemisinin, PPQ: Piperaquine, AS: Artesunate, MQ: Mefloquine, AR: Artemether, LF: 582 
Lumefantrine, Vd: Volume of Distribution (central compartment for PPQ), Vd1: Volume of Distribution (peripheral compartment), Q1: Intercompartmental 583 
clearance (central-peripheral 1), ka: Absorption rate constant, z: Conversion rate of AR/AS into DHA, - : No data / not applicable.  584 

*  elimination rate for PPQ is calculated from clearance (CL) / Vd.  CL is not shown here but is 4.5 * BW0.75 as in [112]; This means that elimination rate varies 585 
with body weight ( a common PK observation) so  the value presented here is illustrative and represents a bodyweight of 42kg (the median bodyweight in 586 
previous studies[111, 112]). Partner drug IC50 values are not shown here; they vary between and within chapters, see individual chapters for these values. 587 
Piperaquine (PPQ) here follows a two-compartment model as described in Kay, Hodel & Hastings[111]. Patient bodyweight (BW) in all simulations was drawn 588 
from a uniform distribution between 45-75 kg and is involved in the calculations for PPQ parameters (see[111, 112]). Square brackets are citations in support 589 
of the parameter values590 
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Drug dosing in all models in chapters 3-5 followed the dosages and timings shown in Table 2.2. Dosing 591 
values have been chosen for consistency with the recommended dosing regimen published by the 592 
WHO in 2015 [19], noting that in practice drug formulations are a fixed weight and so doses are given 593 
banded by weight (or age; see references in Table 1.2 for more detailed discussion of such dosing), 594 
but in the mPK/PD models presented in this thesis each patient is given a precise dose according to 595 
their body weight.  596 

 597 

Table 2.2 Drug dosing of the artemisinin and partner drug components of the ACTs for the mechanistic 598 
simulation of DHA-PPQ, AR-LF and AS-MQ 599 

Drug DHA-PPQ AR-LF AS-MQ 

DHA PPQ AR LF AS MQ 

Dose at 0 days (mg/kg) 4 18 1.7 12 4 8.3 

Dose at 0.5 days 
(mg/kg) 

  
1.7 12 

  

Dose at 1 days 
(mg/kg) 

4 18 1.7 12 4 8.3 

Dose at 1.5 days 
(mg/kg) 

  
1.7 12 

  

Dose at 2 days 
(mg/kg) 

4 18 1.7 12 4 8.3 

Dose at 2.5 days 
(mg/kg) 

  
1.7 12 

  

DHA: Di-hydroartemisinin, PPQ: Piperaquine, AR: Artemether, LF: Lumefantrine, AS: Artesunate, MQ: 600 
Mefloquine. Dosages listed are mg/kg, e.g., for a 45kg patient, a dose of 180mg of DHA would be given 601 
at each interval.  602 

 603 

2.1.1 Partner drug concentrations over time. 604 

The drug concentration over time profiles produced by the model for PPQ (assuming a two-605 
compartment model for PPQ), LF and MQ, when given as DHA-PPQ, AR-LF and AS-MQ (i.e., only the 606 
concentration of the partner drug) produced for 5,000 patients with the parameters shown in Table 607 
2.1 and the dosing regimen in Table 2.2 are shown in Figure 2.1, Figure 2.2 and Figure 2.3 respectively.   608 
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 609 

Figure 2.1 PPQ concentration (in μg/L) over time for a population of 5,000 patients, treated with DHA-610 
PPQ parameterized as in Table 2.1 with drug dosing as in Table 2.2. The solid line is the median 611 
population concentration at each day and the dashed lines are the 5% and 95% quantiles. The figure 612 
follows patients for 63 days (the maximum length of patient follow-up investigated within this thesis).  613 

 614 

Figure 2.2 LF concentration (in μg/L) over time for a population of 5,000 patients, treated with AR-LF 615 
parameterized as in Table 2.1 with drug dosing as in Table 2.2. The solid line is the median population 616 
concentration at each day and the dashed lines are the 5% and 95% quantiles. The figure follows 617 
patients for 63 days (the maximum length of patient follow-up investigated within this thesis).  618 
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619 
Figure 2.3 MQ concentration (in μg/L) over time for a population of 5,000 patients, treated with AS-620 
MQ  parameterized as in Table 2.1 with drug dosing as in Table 2.2. The solid line is the median 621 
population concentration at each day and the dashed lines are the 5% and 95% quantiles. The figure 622 
follows patients for 63 days (the maximum length of patient follow-up investigated within this thesis).  623 

 624 

In chapter 3, a three-compartment calibration of PPQ is also analysed (to reflect the scientific debate 625 
over whether PPQ follows a two or three-compartment structure, i.e. [111]). The parameter values 626 
chosen were based on the mean values provided in table 2 of Tarning et al. [113] as a starting point. 627 
As with the two compartment model, I was not trying to reproduce the exact patient population of 628 
that study, but rather create a “general” population. Hence, I do not use their error structure but 629 
include sufficiently large CVs across 5,000 patients that the distribution of drug concentration over 630 
time curves covers a reasonably shaped parameter space (Table 2.3). The key difference between the 631 
drug concentrations produced by the two and three-compartment models is that the three-632 
compartment model is slightly more prophylactic (i.e., the drug concentration reduces at a slower rate 633 
over time, Figure 2.4).  634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 
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Table 2.3: A summary of the PK parameters for PPQ used to generate parasite dynamics post-644 
treatment with DHA-PPQ assuming a three-compartment model for PPQ (as opposed to the two 645 
compartment model parameters described in Table 2.1). 646 

Drug  Piperaquine (three compartment model) 

Vd (L) 3070 (0.86)[113] 

Vd1 (L) 4440 (1.21) [113] 

Vd2 (L) 31400 (0.65) [113] 

ka (/day) 1.99 (1.08) [51] 

Q1(L/hour) 427 (1.01)[113] 

Q2(L/hour) 160 (0.7)[113] 

k (/day) 0.47* [113] 
Vd: Volume of Distribution (central compartment), Vd1: Volume of Distribution (peripheral compartment 1), Vd2: 647 
Volume of Distribution (peripheral compartment 2),  ka: Absorption rate constant, Q1: intercompartmental 648 
clearance (central-peripheral 1), Q2 : intercompartmental clearance (central-peripheral 2). PK means are 649 
derived from [113]; the coefficient of variation (CV) in brackets for each parameter was added by me 650 
and is consistent with CV for the two-compartment calibration of PPQ in Table 2.1. Citations in support 651 
of the parameter values are provided in squared brackets. 652 

* elimination rate for PPQ is calculated from clearance (CL) / Vd; CL (from [113] is 60.2 and a CV of 653 
0.71 is included on this parameter)  so  the value presented here is illustrative and represents a 654 
bodyweight of 42kg.   655 

 656 

 657 

Figure 2.4 PPQ drug concentration (in μg/L) over time for a population of 5,000 patients, treated with 658 
DHA-PPQ under the assumption that PPQ is modelled with a three-compartment model - 659 
parameterized as in Table 2.3with drug dosing as in Table 2.2. The solid line is the median population 660 
concentration at each day and the dashed lines are the 5% and 95% quantiles. The figure follows 661 
patients for 63 days (the maximum length of trial follow-up investigated within this thesis).  662 

 663 

 664 

 665 
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2.1.2 Artemisinin concentrations over time. 666 

The drug concentration over time profiles produced by the model for DHA, AR and AS when given as 667 
DHA-PPQ, AR-LF and AS-MQ (i.e., only the concentration of the artemisinins) produced for 5,000 668 
patients with the parameters shown in Table 2.1and the dosing regimen in Table 2.2 are shown in 669 
Figure 2.5 , Figure 2.6 , and Figure 2.7 respectively. Both AR and AS are metabolized into DHA in these 670 
mPK/PD models  -see reference [104]  for a detailed mechanical description of this process.   671 

 672 

 673 

 674 

Figure 2.5 DHA concentration (in μg/L) over time for a population of 5,000 patients, treated with DHA-675 
PPQ parameterized as in Table 2.1 with drug dosing as in Table 2.2. The solid line is the median 676 
population concentration at each day and the dashed lines are the 5% and 95% quantiles. The figure 677 
follows patients for 4 days (after which all artemisinins have decayed to non-effective and/or zero 678 
concentrations). 679 

 680 

 681 

 682 

 683 

 684 

 685 
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 686 

687 
Figure 2.6 AR concentration (in μg/L) over time for a population of 5,000 patients, treated with AR-LF 688 
parameterized as in Table 2.1 with drug dosing as in Table 2.2. The solid line is the median population 689 
concentration at each day and the dashed lines are the 5% and 95% quantiles. The figure follows 690 
patients for 4 days (after which all artemisinins have decayed to non-effective and/or zero 691 
concentrations). 692 

 693 

 694 

Figure 2.7 AR concentration (in μg/L) over time for a population of 5,000 patients, treated with AR-LF 695 
parameterized as in Table 2.1 with drug dosing as in Table 2.2. The solid line is the median population 696 
concentration at each day and the dashed lines are the 5% and 95% quantiles. The figure follows 697 
patients for 4 days (after which all artemisinins have decayed to non-effective and/or zero 698 
concentrations). 699 

 700 
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2.2 Mechanistic PD model to describe drug effect and relation between drug concentration and drug 701 
effect. 702 

The PD parameters determine the rate of drug killing (at a given concentration of drug) for each 703 
parasite clone; the mechanistic relationship between these parameters and drug killing is described 704 
in [85, 104, 105] (specifically in [104]). The mPK/PD method requires three parameters: The maximal 705 
parasite killing constant, Vmax, and the slope factor, n, which remain the same for all drugs described 706 
in chapters 3-5, and the “half maximal inhibitory concentration” (IC50), which is the concentration of 707 
drug at which half-maximal parasite killing occurs. IC50 is identical across all chapters for the 708 
artemisinins only, but not for partner drugs, as non-failing / failing ACTs were simulated by altering 709 
only the partner drug IC50, given the desire to later investigate the accuracy of classification of 710 
recrudescence and reinfection over long follow-up periods. These parameters are shown in Table 2.4.  711 

 712 

Table 2.4 A summary of the PD parameters used to generate parasite dynamics in vivo with an mPK/PD 713 
model. 714 

Drug 
parameter 

Di-hydroarteminisin-
Piperaquine (2 
compartment model) 

Artesunate-Mefloquine Artemether-Lumefantrine 

DHA PPQ AS DHA MQ AR DHA LF 

IC50 (mg/L) 0.009 
(1.17)[
85, 
104] 

 
0.0016(0
.86)[104] 

0.009(1
.17)[10
4] 

 
0.002
3(0.79
)[85, 
104] 

0.009(1.
17)[85, 
104] 

 

Vmax 27.6[8
5, 104] 

3.45[105] 27.6[104
] 

27.6[10
4] 

3.45[1
04] 

27.6[8
5, 
104] 

27.6[85, 
104] 

3.45[
85, 
104] 

n 4[85, 
104, 
105] 

6[105] 4[104, 
105] 

4[104, 
105] 

5[104] 4[85, 
104, 
105] 

4[85, 
104, 105] 

4[85, 
104, 
105] 

IC50: Half maximal inhibitory concentration, Vmax: Maximal parasite killing constant, n: Slope factor. 715 
Half maximal inhibitory concentration (IC50) is shown for all artemisinins but not for partner drugs 716 
(partner drug IC50 is described in-chapter for chapter 3-chapter 5. Maximal parasite killing constant 717 
(Vmax) and the slope factor (n) are shown for all artemisinins and partner drugs. The coefficient of 718 
variation (CV) is provided in brackets where appropriate. Citations are provided in square brackets in 719 
support of parameter values.  720 

 721 

2.2.1 Partner drug IC50.  722 

A key incentive of pursuing accurate drug failure rate estimates (see introduction) is being able to 723 
detect when drug failure rates reach ~10% and are classed as failing [24].There is evidence of DHA-724 
PPQ having high estimated failure rates in vivo, and well-documented parameterization for this ACT 725 
as it fails. Saunders and colleagues [20], for instance, estimated PPQ IC50 had increased to 23.9ng/ml 726 
in recrudescent infections as resistance spread (equivalent to 0.024 mg/L). Consequently, simulating 727 
failing DHA-PPQ using in vivo data to calibrate the model was possible. There are field data allowing 728 
calibration of the model for non-failing AR-LF and AS-MQ, but failing AR-LF and AS-MQ have not been 729 
observed in any known PK/PD studies. Consequently, to model failing AR-LF and AS-MQ I based my 730 
parameterization on non-failing PK/PD data and increased the IC50 values to achieve ~10% failure 731 
rates.   732 
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Importantly, partner drug IC50 values had to vary both between and within chapters 3-5. Where 733 
possible, I wanted to use in vivo data on  genetic marker allele distributions and multiplicity of 734 
infection (MOI) distributions (see below). This meant that, for example, the MOI distribution for the 735 
length polymorphic markers (chapter 3) was different to the MOI distribution for microsatellite 736 
markers (chapter 4), as the data came from different locations.  737 

Furthermore, MOI was varied within chapters 3-5. Changing MOI while keeping the IC50 of the partner 738 
drug the same will result in different failure rate estimates because a higher MOI means more initial 739 
infections and subsequently a higher chance of that patient failing treatment. Because a key purpose 740 
of chapter 4 was to validate a Bayesian algorithm (see details in that chapter), I wanted to keep true 741 
failure rates within one percent of each other  as different MOI settings were investigated, and this 742 
required that IC50 values be changed for each of three MOI distributions in that chapter.  743 

Consequently, the IC50 values used in chapters 3-5 are not shown here to avoid listing multiple values 744 
and creating confusion, but rather are described and discussed within-chapter for chapters 3-5. Please 745 
note two important points: 746 

Values for failing AR-LF and AS-MQ are not directly derived from in vivo data (see above) and have 747 
been created computationally to achieve, for a given model scenario, a particular drug failure rate 748 
(~10%).  749 

The partner drug IC50 is altered. The IC50 of the artemisinin component is not. However, the partner 750 
drug is not given as a monotherapy in this thesis – the artemisinin component is still killing. 751 
Consequently, values of IC50 for a partner drug, for a given true failure rate, will be higher than the 752 
value of IC50 needed to produce that same true failure rate if the partner drug were given as a 753 
monotherapy.  754 

 755 

2.3 Number of parasite clones and clone density. 756 

Before the mPK/PD model can be used to track changes in parasite numbers over time post-treatment 757 
and produce descriptions of intra-host parasite dynamics, each patient must be “populated” with 758 
parasites. The mPK/PD models described here allow for multiple malaria clones to exist 759 
simultaneously in a patient, and for infections to emerge in a patient over the course of the treatment 760 
that were not present at the time of treatment.  761 

 762 

2.3.1 Parasite clones at the time of treatment – multiplicity of infection (MOI). 763 

A malaria infection may consist of several genetically-distinct parasite clones and the number of clones 764 
in a patient at the time of treatment is termed the multiplicity of infection (MOI) although the 765 
equivalent term “complexity of Infection” is also found in the literature. Each patient will have this 766 
number drawn from a distribution. The exact distribution varies both within and between future 767 
chapters of this thesis; for example, simulation of higher transmission areas will be accompanied by 768 
higher mean MOI. This thesis endeavours to utilize in vivo distributions of MOI where possible, but 769 
these distributions, ideally, must be derived from the same location as the allele distributions of 770 
whichever genetic markers are under investigation. This has been possible throughout this thesis and 771 
consequently these distributions will be provided within their respective chapters.  772 

Each initial clone was given a starting number of parasites drawn from a uniform (chapter 3) or log-773 
uniform (chapter 4, chapter 5) distribution. The distribution range was 1010 to 1011; note that a wider 774 
distribution of 108 to 1011 was additionally explored in chapter 5 only. For reference, assuming a 775 
patient with 4.5L of blood and a WBC count of 8,000/μl of blood, parasitaemia of 1010 and 1011  would 776 
correspond to densities of 2,222 parasites/μl of blood and 22,222 parasites/μl of blood respectively, 777 
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per WHO counting procedure [114]. Previous modelling approaches used 1012 parasites as the upper 778 
limit of parasitaemia; this level of parasitaemia is likely to be lethal or at least exceed the maximum 779 
parasite density exclusion criteria in a clinical trial (typically 100,000 parasites /μl); hence 1011 was 780 
chosen as the upper limit for any single clone at the time of treatment. The lower limit of 1010 would 781 
appear to disregard the presence of low density clones. However, the MOI distributions used in each 782 
chapter are derived from in vivo samples, and the MOI is calculated by genotyping samples from a 783 
population with either length-polymorphic markers (chapter 3 and chapter 5) or microsatellite 784 
markers (chapter 4). Thus, detection of clones (and quantifying MOI) is dependent on these methods 785 
– which cannot detect minority clones (this is explored later, but see 3.2.4 and 3.2.5), and so the lower 786 
limit of 1010 was chosen to ensure  that a patient’s initial clones reflect the MOI distributions observed 787 
in vivo and used to parameterize the model. Because of the greater sensitivity of AmpSeq to low 788 
density clones, a wider range of 108 to 1011 was explored in chapter 5 (5.2.2) – note that to the best 789 
of my knowledge no population MOI estimates obtained with AmpSeq that would be suitable to 790 
parameterize these models are available, and so, of necessity, MOI distributions obtained using 791 
length-polymorphic markers were used. 792 

 793 

2.3.2 Reinfection during follow-up – force of infection (FOI). 794 

The number of reinfections that will occur by emerging from the liver in a given patient during the 795 
course of follow-up is pre-determined by the “force of infection (FOI)”. The number of reinfections 796 
per year that emerge from the liver is drawn from a Poisson distribution where the mean of the 797 
distribution is the parameter FOI, which is varied to reflect the local intensity of malaria transmission.  798 

FOI is varied between 0 and 16 per year herein, with an FOI of 2 broadly considered to represent a low 799 
transmission area, an FOI of 8 broadly considered to represent a medium transmission area and an 800 
FOI of 16 broadly considered to represent a high transmission area. Selection of these FOI values were 801 
based on the following reasoning (described in the supplemental material of [93], which corresponds 802 
to work described in Chapter 3 of this thesis): “Data from northern Ghana indicates that the average 803 
number of new infections per patient per year is 16, and similar estimates can be  obtained from 804 
efficacy data of effective ACTs (see supplementary material of [90]). Mueller et al. [115] obtain 805 
estimates of between 3 and 9 new infections emerging per year with an average of 5.9 in Papa New 806 
Guinea. Additional work suggests the FOI in Ghana is highly seasonal with estimates ranging from 44 807 
in the high transmission season to 7 in the low transmission season [115]; but note that any yearly 808 
average (such as assumed here) inherently fails to capture the nuances of seasonal transmission. 809 
Smith et al [116] explicitly modelled the relationship between entomological inoculation rate (EIR) and 810 
FOI. It is technical, but some illustrative data are summarised in their Figure 2: Incidence during a 2 811 
week period at annual EIRs of 36.5 (moderate transmission) and 365 (high transmission) were roughly 812 
0.2 and 0.4 respectively implying annual FOI estimates of 0.2 x26=5.2 and 0.4x26= 10.4 respectively. 813 
These may be slight under-estimates because this simple calculation assumed that more than one 814 
infection could not become established in a 2 week period but serves as general illustrations of the 815 
relationship.”   The FOI values that are used within Chapter 3- Chapter 5 to parameterize any given 816 
model scenario are described within those chapters.  817 

The day of emergence of a reinfection clone was randomly chosen from any day in the trial follow-up 818 
period. When reinfections emerge, they emerge at a frequency of 105 parasites [91, 117] (note that all 819 
drugs investigated herein are assumed to be inactive against parasite hepatic stages). It is possible in 820 
the model for a reinfection to emerge extremely early (i.e., day 1, 2, 3, etc) post-treatment because it 821 
was assumed the drugs have no action against parasites while in their liver stages. However, the 822 
presence of high drug concentration at these time-points will likely quickly clear these reinfections.  823 

 824 
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2.3.3 Parasite growth rate and density-dependent effects. 825 

The PK/PD model calculates drug concentration over time and parasite kill rate (above), but also 826 
requires a the parasite growth rate; this was assumed to be 1.15 for every clone, consistent with 827 
previous modelling approaches [86, 105] and equivalent to  a parasite multiplication rate (PMR) of 10. 828 
The model progresses in daily time-steps to a given follow-up duration (generally 28, 42 or 63 days, 829 
but see specific chapters), recalculating the numbers of each parasite clone in a given patient each 830 
day until the final day. This is a simple process – each clone increases in number per day according to 831 
its growth rate and is killed according to the drug kill rate (known from the PD component of the 832 
model) at a given concentration of drug (known from the PK compartment of the model).  833 

The mPK/PD models assumed that if the total parasitaemia (i.e. the sum of parasitaemia of all clones) 834 
in a patient at any time, reached 1012, then density-dependent effects, such as fever, acted to control 835 
and stabilise the parasitaemia, effectively setting the growth rate of every clone in that patient to 0 836 
(equivalent to a PMR of 1).  837 

 838 

2.4 Model output and a note on parasite count versus parasite density. 839 

The models described above calculate the absolute number of parasites of a given clone at any time 840 
(i.e., parasitaemia) as opposed to the parasite density measure that may be more familiar to clinicians. 841 
Parasite density can be measured in vivo and converted to parasite count; though this conversion 842 
requires assumptions to made regarding the white (or red) blood cell count of a patient and is 843 
dependent on the ability of the microscopist to identify parasites in a sample [114], and furthermore, 844 
these counts may be highly variable [118]. Hence the mPK/PD models do not include blood cell counts, 845 
or their variability, and operate in terms of parasite count rather than density.  846 

2.5 Modelling gametocytes 847 

The life cycle of P. falciparum  is complex and contains multiple stages; while the ‘parasitaemia’ that 848 
causes acute disease relates to the numbers of mature asexual parasites in the blood, it is important 849 
to note that these merozoites can produce gametocytes that will be ingested by the mosquito vector. 850 
These gametocytes will also express genetic loci (be they msp-1, msp-2 and glurp, microsatellites, or 851 
AmpSeq alleles), meaning that they produce a genetic signal that can be picked up by genotyping. 852 
Furthermore, none of the ACTs investigated within this thesis have any impact on malarial 853 
gametocytes; following ACT treatment gametocytes can remain detectable in a patient’s blood for an 854 
average of 55 days [119]. Consequently, there is a concern that gametocytes from initial infections 855 
can cause later reinfection to be misclassified as recrudescence as it not possible to distinguish what 856 
proportion of the allelic signal comes from gametocytes or asexual parasitaemia, and gametocytes 857 
may persist after the initial asexual parasites have been cleared by treatment. I wrote a model to 858 
include gametocytes, though they were not eventually included in any chapter of this thesis. A 859 
discussion of why I did not eventually include them (a near zero impact on most results) is provided in 860 
Chapter 7.  861 

Gametocytes can be included in the mPK/PD model presented in this chapter with the following 862 
process: 863 

Each clone of malaria in a patient has an initial parasitaemia that reflects the number of asexual 864 
parasites in the blood. Each clone will also have some number of gametocytes that share the genetic 865 
signal of the earlier asexual form. This was modelled as a certain percentage (say, 10%) of the asexual 866 
parasitaemia of that clone. After x days, the number of gametocytes will decay according to their half-867 
life (g1/2). Between day 0 and day x the number of gametocytes will remain constant – this lag period 868 
reflects the time taken for drugs to kill asexual parasites – without replenishment (following death of 869 
asexual stages), the number of gametocytes can begin to fall.  870 
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On any day, the allelic signal from gametocytes and asexual parasites can be summed, and the alleles 871 
that would be observed, having accounted for missing minority alleles, can be determined. A large 872 
gametocyte signal may mean that alleles from new infections become undetectable minority alleles, 873 
and will inflate signal from clones that have fallen below detectable parasitaemia and make it 874 
incorrectly appear that they are detectable (a false recrudescence).  875 

The number of gametocytes of a clone present in the blood after t time following treatment can thus 876 
be expressed by the following equation: 877 

𝐺𝑡 = 𝐺0 ∗ 𝑒

ln(2)

𝑔
1
2

∗𝑡

    Equation 2.1 878 

Where ln(2) / g1/2 is the rate of decay of gametocytes when gametocyte half-life is g1/2 days and the 879 
unit of time is a day.  880 

 881 

 882 

 883 

 884 
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Chapter 3: Improving methods for analysing anti-malarial drug efficacy trials: 904 

molecular correction based on length-polymorphic markers msp-1, msp-2 905 

and glurp.  906 

A version of this work has been published in Antimicrobial Agents and Chemotherapy : Improving 907 
methods for analysing anti-malarial drug efficacy trials: molecular correction based on length-908 
polymorphic markers msp-1, msp-2 and glurp. S. Jones, K. Kay, E.M. Hodel, S. Chy, A. Mbituyumuremyi, 909 
A. Uwimana, D. Menard, I. Felger, I. Hastings. Antimicrobial Agents and Chemotherapy Jul 2019, 910 
AAC.00590-19; DOI: 10.1128/AAC.00590-19.  911 

Chapter-specific acknowledgements: Dr Katherine Kay, Dr Eva Maria Hodel and Dr Ian Hastings 912 
provided R code to generate parasite dynamics post-treatment (fully described in Chapter 2 of this 913 
thesis). Professor Ingrid Felger provided in-depth advice on genotyping processes for length-914 
polymorphic markers. Dr Sophy Chy, Dr Aimable Mbituyumuremyi and Dr Aline Uwimana performed 915 
additional genotyping on in vivo samples for re-analysis (3.2.8). Dr Didier Menard facilitated access to 916 
and performed additional genotyping on in vivo samples for re-analysis (3.2.8). Dr Jörg Möhrle and Dr 917 
Stephan Duparc provided the data shown in Table 3.4. 918 

 919 

3.1 Background. 920 

3.1.1 Length-polymorphic markers for genotyping TES. 921 

The current consensus method for distinguishing recrudescence from reinfections is molecular 922 
correction or, equivalently, polymerase chain reaction (PCR)-correction. A genetic profile of the 923 
malaria infection of each patient is taken just before treatment, with a second profile taken if the 924 
patient develops a detectable malaria infection during follow-up (known as “recurrent” parasitaemia). 925 
If the profiles ‘match’ then the patient is considered to have a recrudescent infection if they do not 926 
match the patient is considered to have a reinfection. This ‘matching’ is simple in principle, but in 927 
practice has substantial limitations. The main problem is that individual malaria infections may consist 928 
of several genetically-distinct clones. Current genotyping techniques struggle to detect minority 929 
clones that are present in relatively low numbers and/or which carry alleles that do not amplify well 930 
during the genotyping process. These limitations were recognised early in the development of 931 
molecular correction methodology [38, 42, 120] and led the World Health Organization (WHO) and 932 
Malaria for Medicines Venture (MMV) to co-sponsor a meeting in 2007 to identify a consensus 933 
methodology for molecular correction; their findings were published in 2008 [14]. The consensus 934 
methodology utilizes three length-polymorphic loci of P. Falciparum: Merozoite surface protein 1 935 
(msp-1), merozoite surface protein 2 (msp-2) and the glutamate-rich protein (glurp). Different alleles 936 
at all these loci are distinguished by differences in the lengths of their fragments (sequencing the 937 
entire allele is possible, but not feasible for the purposes of TES [38]) ; note also that msp-1 and msp-938 
2 exist in distinct families, whereas glurp does not.  939 

 940 

3.1.2 Sources of error with length-polymorphic markers. 941 

Concerns surrounding the limitations of this approach have persisted [121, 122]: Previous studies have 942 
noted that different algorithms give different results when applied to clinical data (e.g. Table 2 of 943 
[122]) and a recent publication quantifying the limitations inherent in PCR detection has led to 944 
renewed calls for this methodology to be re-examined [106]. There are three types of misclassification 945 
that may occur with length-polymorphic markers:    946 

Recrudescent infections can be misclassified as reinfection if alleles of the recrudescent clone(s) were 947 
not detected when genotyping the initial infection.  948 
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Recrudescent infections can be misclassified as reinfection if the recurrent infection is mixed (i.e., the 949 
recurrence is polyclonal and comprised of both recrudescence and reinfections), and alleles of the 950 
recrudescent clone(s) are not detected, but alleles of a reinfecting clone(s) are.  951 

A reinfection could be misclassified as recrudescent if it shares (by chance) alleles with clones present 952 
at time of treatment.  953 

Select properties of the three loci used in the length-polymorphic marker methodology and properties 954 
inherent in the genotyping  process may lead to alleles not being detected when they are truly present 955 
(and resulting in a) and b) above). Firstly, the products of PCR are compared using capillary 956 
electrophoresis (CE) [106]- note that a variety of genotyping techniques are described by the WHO in 957 
their 2008 guidelines [14], but CE has generally superseded comparison using agarose gel based 958 
methodology which has been used historically i.e. [123]. This process involves reading the heights of 959 
peaks shown in electropherograms that show the relative fluorescent units (rfu) of specific lengths of 960 
DNA, which in this context means different alleles (see Figure 1 of [124] for an example of an 961 
electropherogram. In this process, small rfu peaks (“stutter peaks”) are considered noise generated 962 
during the genotyping process and ignored. The size of the peaks at which signals are considered noise 963 
varies between laboratories, but for length-polymorphic markers is generally considered to be 964 
between 10% and 30% of the majority peak (i.e., the largest signal; for examples see [106, 121], but 965 
note the cut-off should be defined in the methodology section of any paper reporting genotyping 966 
results with these markers). The obvious consequence of this is that truly present minority alleles (i.e., 967 
those of a lower density parasite clone) may be ignored as noise.  968 

Secondly, alleles undergo template competition and so are amplified differently based on their length, 969 
with shorter fragments being amplified preferentially in the PCR process [106]. This effect occurs 970 
separately for different families of msp-1 and msp-2 (i.e., template competition between two alleles 971 
of a separate family is negligible). It occurs always with glurp, which does not possess allelic families. 972 
The consequence of this is that alleles will have varying levels of detectability based on their length, 973 
and for msp-1 and msp-2, this is affected by their families (i.e., it is more likely to detect alleles of msp-974 
1 and msp-2 in polyclonal infections if clones have different families).  975 

There now exist several proposed sets of rules (referred to hereafter as “algorithms”), including the 976 
current WHO/MMV consensus methodology, for interpreting genetic profiles with length-977 
polymorphic markers to classify patients (see definitions in Table 3.1). The true failure rate is unknown 978 
in vivo, so it has been impossible to identify the level of misclassification that occurs and which 979 
algorithm is most accurate; consequently, the molecular correction field is currently in a state of limbo 980 
with several alternative methods giving different results, but with no way of knowing which method 981 
is most accurate; furthermore, some of these algorithms are newly proposed and have not been used 982 
to return failure rate estimates in vivo.  983 

The final source of potential misclassification, c), will occur if a reinfection shares (by chance) a 984 
sufficient number (or type) of alleles with the initial sample. The exact number (or type) of alleles that 985 
must be shared depended on the molecular correction algorithm chosen (i.e., the no glurp algorithm 986 
was not affected by sharing an allele at the glurp locus, and the allelic family switch algorithm was 987 
sensitive to sharing an msp-1 or msp-2 family by chance, whereas the other algorithms were not). Of 988 
note is that the WHO/MMV algorithm would require matching alleles at all three loci for this 989 
misclassification to happen (i.e., it is the algorithm with the highest specificity).  990 

 991 

3.1.3 Research goals . 992 

Using an mPK/PD approach (Chapter 2) to simulate antimalarial therapy provides a gold-standard 993 
definition of true response to treatment, something un-obtainable from in vivo TES data, including the 994 
true status (reinfection or recrudescence) of all recurrent infections. Simulations of 5,000 patients 995 
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were conducted for three ACTs: DHA-PPQ, AR-LF and AS-MQ. Using this simulated data, this chapter 996 
had three main objectives:   997 

1: Investigate the accuracy of the range of available algorithms for molecular correction with length 998 
polymorphic markers (Table 3.1) by comparing the estimated failure rates produced using these 999 
methods to the true failure rate known through the mPK/PD model.   1000 

2 :Investigate the impact on failure rate estimates (and their accuracy) of varied lengths of follow-up 1001 
for the three ACTs 1002 

3: Re-analyse field data with the range of algorithms available to compare for consistency with 1003 
simulated results.   1004 

 1005 

Table 3.1.  Molecular correction algorithms proposed to decide whether a patient presenting with a 1006 
recurrent malaria infection during follow up is a recrudescence or a reinfection based on the WHO-1007 
recommended length-polymorphic markers: msp-1, msp-2 and glurp.  1008 

Algorithm Reference Definition Consequences (identified in the 
model) 

No 
Correction 

 All recurrent infections classified as 
recrudescence 

Grossly over-estimates failure 
rate at higher FOI 

WHO/MMV [28] Initial and recurrent samples must 
have shared alleles at all three loci to 
be classified as recrudescence.  

Stringent conditions for 
recurrences to be classified as 
recrudescence means that 
around 50% of true 
recrudescence are misclassified 
as reinfections resulting in 
greatly underestimated failure 
rates. Most reinfections are 
correctly classified, so FOI has 
little impact on estimated 
failure rate 

No glurp [106] As for the WHO/MMV algorithm but 
based on two loci (i.e. msp-1 and 
msp-2; glurp is omitted as it is prone 
to genotyping errors).  

Largely identical to the 
WHO/MMV method 

≥ 2/3 
markers 

[106] As for the WHO/MMV algorithm, but 
initial and recurrent samples must 
share alleles at least at two out of 
three loci to be classified as 
recrudescence.  

Generally intermediate 
between the no glurp and allelic 
family switchalgorithms 

Allelic 
family 
switch 

[106] Comparison initially based on msp-1 
and msp-2. Identical alleles observed 
at both loci indicate a recrudescence. 
Absence of shared alleles at both loci 
indicate a reinfection. If one loci 
shares alleles and one does not (i.e. 
the sample is “discordant”), a 
complete allelic family shift in the 
non-sharing loci is required to classify 
a recurrence as a reinfection 

Tendency to misclassify 
reinfections as recrudescences 
leads to a dependency on FOI 
and results in large 
overestimates of failure rates at 
higher FOI, though produces 
accurate failure rate estimates 
at low FOI.  

1009 
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3.2 Methodology. 1010 

3.2.1 Partner drug choice and IC50 parameterization. 1011 

Malaria parasite dynamics were generated using mPK/PD models (Chapter 2 of this thesis) for three 1012 
front-line ACTs: Dihydroarteminisin-Piperaquine (DHA-PPQ), Artemether-Lumefantrine (AR-LF) and 1013 
Artesunate-Mefloquine (AS-MQ).  1014 

All PK/PD parameters used in the model described in this chapter are described in Table 2.1, Table 2.3 1015 
and Table 2.4 with the exception of half maximal inhibitory concentration (IC50) of the partner drugs, 1016 
which are described here and shown in Table 3.2: 1017 

There is evidence of DHA-PPQ having high estimated failure rates in vivo (Chapter 2); a value of 1018 
23.9ng/ml in recrudescent infections as resistance spread was equivalent to 0.024 mg/L (rounded here 1019 
to 0.02mg/L).  There are field data allowing calibration of PK/PD parameters for non-failing AR-LF and 1020 
AS-MQ; ‘failing’ calibrations of AR-LF and AS-MQ were produced by artificially increasing the mean 1021 
IC50 values until failure rates reached around 10%. Coefficient of variation (CV) values were taken 1022 
from the literature for PPQ and non-failing LF and MQ and kept consistent for the failing calibrations 1023 
of LF and MQ.  1024 

 1025 

Table 3.2: Mean values of the half-maximal inhibitory concentration (IC50) for each calibration of 1026 
three partner drugs used within this chapter. 1027 

Partner Drug Mean IC50 (mg/L) Literature Justification 

Failing PPQ  0.02 (0.3) [20] 

Non-Failing LF 0.032 (1.02) [87] 

Failing LF 4 (1.02) N/A 

Non-Failing MQ 0.027 (0.78) [87] 

Failing MQ 0.37 (0.78) N/A 

PPQ: Piperaquine, LF: Lumefantrine, MQ: Mefloquine, IC50: Half-maximal inhibitory concentration. 1028 
Coefficient of variation (CV) is given in brackets. This table should be considered with Table 2.1, Table 1029 
2.3 and Table 2.4 for a full set of pharmacokinetic/pharmacodynamic parameters for all drugs 1030 
simulated in this chapter. Note that the IC50 value for a two and three-compartment model calibration 1031 
of PPQ are the same.  1032 

 1033 

3.2.2 Multiplicity of Infection and Force of Infection, and initial parasite number. 1034 

Two MOI distributions were used in this chapter. A “high MOI” representative of the MOI in an area 1035 
of intense transmission, in this case Tanzania  where MOIs of 1-8 were assigned with probabilities 1036 
0.036, 0.402, 0.110, 0.110, 0.183, 0.049, 0.061, 0.049 respectively, based on data described in [125]. 1037 
A  “low MOI”  distribution was based on data from Papua New Guinea with probabilities of 0.460, 1038 
0.370, 0.150 and 0.020 for an MOI of 1-4 respectively [37]; these two distributions were used  to check 1039 
if the accuracy of different algorithms were consistent across different MOIs. Each clone within the 1040 
MOI (later called “initial clones”) had their starting parasitaemia drawn from a uniform distribution 1041 
spanning from 1010 to 1011 asexual parasites per person (see 2.3.1 for discussion and justification of 1042 
initial parasitaemia).  1043 

The FOI values used to calibrate the model in this chapter varied between 0 and 16; all values in that 1044 
range inclusive were modelled.  1045 

 1046 
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3.2.3 Genetic Data – allele frequency distributions for msp-1, msp-2 and glurp.  1047 

Each clone, whether an initial clone present at treatment or a reinfection that emerged during the 1048 
follow-period, was assigned a genetic profile based on three loci: msp-1, msp-2, and glurp, using 1049 
previously established distributions for the frequency of alleles. Msp-1 and msp-2 allelic frequency 1050 
distributions and amplicon sizes were derived from 115 or 108 patients from Tanzania [126]. Glurp 1051 
distributions were drawn from a collection of field samples described in [106]. The length of each allele 1052 
and its allelic family (for msp-1 and msp-2) was also noted. The distributions used gave msp-1 expected 1053 
heterozygosity (He) of 0.915, msp-2 He of 0.963, glurp He of 0.956; [see Supplemental File 1 of [93]] 1054 
for full data). It was assumed that the genotypes of initial clones were independent of each other and 1055 
were also independent of the genotypes of reinfections (i.e. it was assumed there is no local genetic 1056 
structuring of the malaria population). Note that alleles at msp-1 and msp-2, exist in these 1057 
distributions as members of three or two distinct families, respectively (Families K1, MAD20 and RO33 1058 
for msp-1, and families 3D7 and Fc27 for msp-2).  1059 

 1060 

3.2.4 Follow-up length and detection of recurrence. 1061 

Multiple lengths of follow-up are permitted in the WHO guidelines [14] and used in practice [127] for 1062 
TES of DHA-PPQ, AR-LF and AS-MQ. The length of the follow-up period affects drug failure rate 1063 
estimates in two ways: Firstly, a longer follow-up period will allow more time for recrudescent clones 1064 
to become detectable (i.e. if a patient had parasites that would recrudesce and become detectable on 1065 
day 60 and the follow-up period was 28 days, this recrudescence would not be observed). Secondly, a 1066 
longer follow-up period leads to more reinfections emerging in each patient, some of which may be 1067 
misclassified as recrudescence and inflate failure rate estimates. Accurate, robust analyses need to 1068 
balance these two risks through appropriate choice of follow-up duration. WHO guidelines [28] 1069 
stipulate that patients are checked for recurrent parasitaemia by light microscopy on scheduled days 1070 
of follow-up. A 28-day follow-up schedule requires patients be examined on days 3, 7, 14, 21 and 28. 1071 
A 42-day follow-up period uses two additional days i.e. days 35 and 42. A 63-day follow-up period (not 1072 
recommended in routine surveillance) has scheduled visits as per the 42 days but with 3 extra days 1073 
i.e.  49, 56 and 63. Novel lengths of follow-up were simulated simply by “ending” the trial on any given 1074 
day of follow-up, i.e. to investigate a 35-day follow-up length, patients were checked on days 3, 7, 14, 1075 
21, 28 and 35.  1076 

The parasitaemia of each clone in each patient was tracked and updated each day as described by the 1077 
mPK/PD model and the PK parameters of the patient and the PD parameters of the clone (Chapter 2).  1078 

The model checked each day of scheduled follow-up to determine whether a patient had enough 1079 
parasitaemia that a recurrence would be detectable by light microscopy (a recurrence) – parasitaemia 1080 
was considered detectable if the total number in a patient was ≥ 108 on that day.  Note that variance 1081 
in the limit of detection by light microscopy exists with respect to the skill of the microscopist [128]; 1082 
It was assumed this limit was reflective of an “expert” microscopist (corresponding to roughly 20 1083 
parasites /μl of blood).  1084 

 1085 

3.2.5 Calculating which alleles are observed. 1086 

Once the patient parasite dynamics were modelled (as described above), and genetic profiles at the 1087 
three loci were assigned, the models followed the same process as in vivo trials.  Blood samples were 1088 
taken from each patient immediately prior to treatment (the initial sample), and at pre-determined 1089 
days during the follow-up period. Samples were screened for the presence of P. falciparum by light 1090 
microscopy to check for recurrent infection. Calculations then took place to determine the genetic 1091 
signal that would be observed at time of treatment and at any recurrence, using a process to replicate 1092 
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the technical limitations of acquiring blood samples and genotyping msp-1, msp-2 and glurp as 1093 
follows:  1094 

A “sampling limit” exists; a finite amount of blood is used for genotyping. A parasite clone (and 1095 
consequently, it’s alleles) would not be detected if its density were so low that no parasites are 1096 
included in the blood sample analysed.  Thus, the density and volume of the processed blood sample 1097 
define the limit of detection. Obviously, this sampling limit differs between methods and laboratories. 1098 
Here, its likely value is estimated using the genotyping methodology employed for malaria genotyping 1099 
by the Swiss Tropical and Public Health Institute (personal communication from Ingrid Felger to Sam 1100 
Jones, April 2016).   In this methodology, patient blood is obtained via finger prick. Typically, 3 lots of 1101 
paper each with a 3mm diameter will have a blood spot placed on them. If this paper is Whatman 1102 
3MM paper, as recommended in WHO protocol [14], then each spot will contain 2 μl of blood for a 1103 
total of 6 μl. The DNA from these spots are extracted  in solution to a total volume of 50 μl, of which 1104 
5 μl is then taken for PCR and genotyping. Consequently there will be, on average, 0.6 μl of blood 1105 
presented for PCR. Ideally for a clone to be detected in this process only a single parasite would need 1106 
to be present per 0.6 μl of blood. Assuming 5L of blood in the human body, there would need to be 1107 
(8.3 x 107) copies of a parasite of a given clone present for that clone to be detected in the genotyping 1108 
process.   It was also necessary to allow for the fact that sub-optimal storage conditions (such as 1109 
temperature) frequently occurs in the field and will lead to DNA template breakages, and there is 1110 
periodical absence from the peripheral blood of sequestered parasites. Consequently, the limit of 1111 
detection will be much higher than 1 parasite per 1μl of blood. It was therefore assumed 10 to 20 1112 
parasites per μl  would be required to reliably contribute a genetic signal and ensure its detection, 1113 
corresponding to a total parasitaemia of 5 x 107 to 108; the upper limit i.e. 108 was selected to ensure 1114 
reliable detection of that clone and because it is consistent with the microscopy  detection limit. The 1115 
sampling limit was not varied in chapter 3, but it’s impact was later investigated in simulations of 1116 
Amplicon sequencing (chapter 5) – a lower sampling limit was not found to affect results. More blood 1117 
being introduced into PCR (for example, if venous blood was taken) would decrease the sampling limit; 1118 
less blood being introduced would increase the sampling limit.   1119 

The magnitude of the genetic signal that will be produced by each malaria allele in the blood sample 1120 
was proportional to the number of parasites carrying that allele. 1121 

An inherent feature of PCR is “template competition” i.e. the relative detectability of alleles at each 1122 
loci depended on their length, with shorter length alleles being more detectable due to their being 1123 
better amplified in the PCR process [106] . A linear relationship between allele length and relative 1124 
detectability was assumed; this was done for simplicity but other relationships, for example log-linear, 1125 
could also be investigated. The shortest allele in each case was assumed to have a relative detectability 1126 
of 1 while the longest had a relative detectability of 0.001 i.e.  it was assumed the shortest allele 1127 
generated a thousand times the genetic signal of the longest. In vitro experiments have mixed ratios 1128 
of parasite clones of given lengths, quantifying the ratio at which the longer allele is no longer 1129 
detectable [106]. Such experiments do not directly quantify the relative detectability – the thousand 1130 
times detectability assumption was made based on Figure 2 of [106], where a 177 base pair length 1131 
allele of msp-1 (K1) was only not detected in a mixture with a 248 base pair length allele (3D7) when 1132 
the ratio of K1:3D7 was 1:1000. This ratio differed for other families (and for msp-2 and glurp – see 1133 
[106]) but the largest ratio (1:1000) was translated into a relative detectability assumption for the 1134 
purpose of these simulations. The sensitivity of the results to this relative detectability was tested by 1135 
shortening it to 0.1; it is later shown that altering this assumption did not affect the conclusions of the 1136 
model.  1137 

 Families within msp-1 and msp-2 were assumed to be amplified by separate reactions (i.e. are not 1138 
multiplexed), so the effect only occurred between alleles within the same families (glurp does not 1139 
have families so the effect applied to all alleles).  1140 
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The strength of the genetic signal contributed by an allele in a given blood sample was therefore the 1141 
product of two factors: The number of parasites carrying the allele times the detectability of the allele.  1142 
Note that genotyping detects alleles, not parasites. Hence, if two (or more) clones within the infection 1143 
shared the same allele, the signal for that allele was based on the total number of parasites in the two 1144 
(or more) clones. The final step was to recognise that, in practice, if one allele makes up a large 1145 
proportion of the genetic signal, then the smaller signals from ‘minority’ alleles would be rejected as 1146 
background “noise” (see 3.1.2). This threshold at which minority alleles were ignored was assumed to 1147 
be 25% i.e. that signals from alleles that were less than 25% of the highest allelic signal were rejected 1148 
as “noise”, though other values of this parameter were tested (5% and 30%).   1149 

 1150 

3.2.6 Classifying patients according to therapeutic outcome. 1151 

Analysis of parasitaemia during patient follow-up and, if required, application of molecular correction 1152 
algorithms to recurrent infections. Four molecular correction algorithms (and a non-PCR corrected 1153 
“algorithm”) were investigated. The current “WHO/MMV” algorithm [14], a “no glurp” algorithm that 1154 
only considers msp-1 and msp-2, a  “≥ 2/3 markers” algorithm that considers msp-1, msp-2 and glurp 1155 
but requires matching alleles at only two loci to classify a recrudescence, and an “allelic family switch” 1156 
algorithm that considers only msp-1 and msp-2 and requires a family shift to classify a recrudescence 1157 
if the loci are discordant (i.e., one has shared alleles between the initial and recurrent infections and 1158 
one does not). Full details of these algorithms are presented in Table 3.1; they enabled each patient 1159 
to be classified across four groups as would occur in a real trial i.e.  1160 

A patient was classified as an early treatment failure (ETF) if a recurrence occurs on or before day 7; 1161 
note that all such recurrences are regarded as drug failures and molecular correction is not required. 1162 
In these simulations, on day 3, if total parasitaemia exceeded 108 but was <25% of the total 1163 
parasitaemia of the initial sample, the patient continued in the trial per the WHO protocol 1164 
(consequently, no genotype was taken of the day 3 sample and no classification was made); if parasites 1165 
were present at >25% of initial parasitaemia, that patient was classified as an early treatment failure, 1166 
consistent with the WHO procedure [28] . For the purposes of estimating failure rates in this 1167 
methodology, early treatment failure and recrudescence were not distinguished, as both are 1168 
indicative of drug failure.  1169 

A patient was classified as a drug failure if  they had recurrent parasitaemia, and the recurrence was 1170 
classified as a recrudescence by a PCR-correction algorithm on Table 3.1. 1171 

 A patient was classified as reinfection if they had recurrent parasitaemia, and the recurrence was 1172 
classified as a reinfection by a PCR-correction algorithm on Table 3.1. 1173 

A patient was classified as ‘Cleared’  if no recurrent parasitaemia was detected during follow-up; in 1174 
these cases, the drug was assumed to have successfully killed all parasites present at time of 1175 
treatment. 1176 

A key objective of this research was to investigate how well the classification algorithms recovered 1177 
the true status of recurrent infections. Therefore, the following definitions were assigned according 1178 
to parasitaemia data produced by the mPK/PD model:  1179 

True recrudescence was defined as a recurrent infection that contained at least 108 parasites from a 1180 
clone present at time of treatment (this patient is, by definition, a drug failure). This included patients 1181 
who have a ‘mixed’ infection on the day of recurrence i.e. possessed malaria clones that survived 1182 
treatment plus reinfection clones that were acquired during follow up, providing the former exceed 1183 
108; note that all clones contributed to the genetic signal of the recurrence as described above. 1184 
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True reinfection was defined as a recurrent infection whose blood sample contained only parasites 1185 
from clone(s) that were reinfection(s) (note that such patients may harbour parasites from original 1186 
clones if these clones were sub-patent i.e. less than 108 parasites).  1187 

It was possible that recrudescent clones may not have reached microscopically detectable levels (i.e. 1188 
parasite numbers are <108) on the final day of follow-up; such patients would be classified as “cleared” 1189 
in vivo as recurrent infection would not be observed and thus, the patient would be considered a 1190 
treatment success. However, simulated data have confirmed that it is possible for some patients to 1191 
still harbour parasites below detection level at the end of follow up [129]. This modelling approach 1192 
classifies these patients as drug failures.  1193 

 1194 

3.2.7. Estimating drug failure rates in simulated TES. 1195 

The model was run for a cohort of 5,000 patients (although any number can be simulated). This is an 1196 
unrealistically high number for an in vivo clinical trial but is ideal for the purpose of this research and 1197 
utilizes the advantages of a modelling approach: A true drug failure rate of 10-12% provided a large 1198 
number of recurrences (the exact number varied depending on the ACT, FOI, and length of follow up) 1199 
that can be tested against the various classification algorithms to reduce any uncertainty around 1200 
results.  1201 

The four patient outcomes described above were used to calculate the estimated drug failure rate, �̂� 1202 
in the same manner as outcomes reported in vivo. It was assumed, for simplicity, that no patients 1203 
were lost to follow-up or removed from the trial for any reason other than recurrent parasitaemia. 1204 
There were three methods for calculating failure rates which differed in how they processed patients 1205 
with recurrent parasitaemia that had been classified as reinfections, noting that all patients with 1206 
recurrent parasitaemia would, in vivo, be re-treated with another antimalarial (for ethical reasons) 1207 
and removed from the trial. The three methods were: A non-PCR corrected failure rate, a “per 1208 
protocol” failure rate and a failure rate obtained using survival analysis. The latter two methods are 1209 
recommended by the WHO to analyse anti-malarial drug trials [14, 28]. Technically, they were 1210 
calculated as follows using the following nomenclature: 1211 

 𝐶𝑜 was the number of patients who cleared infection.  1212 

 𝑛𝐼𝑜, was the number of patients whose recurrent infections were classified as reinfections.   1213 

 �̂� was the estimated drug failure rate.  1214 

N was the total number of patients.   1215 

(i) The non-PCR corrected failure rate was obtained by considering all patients with recurrent 1216 
infections as patients who had failed drug treatment. This method did not require distinguishing 1217 

between reinfections and recrudescent infections. The failure rate  �̂� could then be estimated as:  1218 

 1219 

�̂� = 𝟏 −
𝑪𝒐

𝑵
            Equation 1 1220 

 1221 

(ii) The ‘per protocol’ method, recommended by WHO [14, 28, 29], simply removed patients who were 1222 
classified as reinfections from the total number of observations i.e.: 1223 

�̂� = 𝟏 −
𝑪𝒐

𝑵−(𝒏𝑰𝒐)
                 Equation 2 1224 

 1225 
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(iii) Survival analysis, as recommended by WHO [14], used the survivor function from a Kaplan Meier 1226 
plot on the final day of follow-up, right-censoring reinfections.  1227 

The Kaplan-Meier estimator (KM) of survivorship at time t was obtained as:  1228 

�̂�(𝒕) =  ∏
𝒏𝒊−𝒅𝒊

𝒏𝒊𝒕𝒊≤𝒕                    Equation 3  1229 

 1230 

Where t was a vector of all timepoints i.e. days of follow-up in which an event occurred in the study 1231 
population, ni was the number of individuals at time ti who remained uninfected, and di was the 1232 
number of events (drug failures in this case) that occurred at timepoint ti. Plainly, what this method 1233 
did was calculate the proportion of patients who remained free of recrudescence between 1234 
consecutive days of follow up, then multiplied all these time periods to obtain the overall probability 1235 
of ‘surviving’ recrudescence-free over the whole follow-up period. The advantage was that even those 1236 
patients who are “censored” (by acquiring a reinfection and leaving the study) will still contribute to 1237 
the analysis through their inclusion prior to their removal.  1238 

The estimator at the final time-point (i.e. the last day of follow-up) was the probability that their 1239 
treatment was considered a ‘success’ at the end of the trial. Consequently, it’s complement gave the 1240 
probability that a given individual will fail treatment i.e. 1241 

�̂� = 1 − �̂�(𝑡)                      Equation 4 1242 

 1243 

The final methodological step was to interrogate the modelled data to determine the “true failure 1244 
rate” – i.e., the drug failure rate calculated directly from the parasitaemia of each patient (thus, not 1245 
dependent on genotyped data). For each patient in the simulation, an outcome on the final day of 1246 
follow-up was determined: If, on the final day, the patient had any parasites from any initial clones 1247 
(i.e. even a single parasite), the patient was denoted as a drug failure. If no parasites had survived 1248 
from the initial clones present at treatment, that patient was denoted as a treatment success.  1249 

The true failure rate, F, for the patient population was then calculated:  1250 

𝐹 =
𝑓

𝑁
           Equation 5 1251 

Where f was the number of drug failures on the final day of follow-up and N was the total number of 1252 
patients.  1253 

This was the “gold standard” metric and cannot be obtained in vivo. It was compared to the estimated 1254 
failure rates obtained from modelling the clinical trial and molecular correction process and allowed 1255 
us to quantify the accuracy of different methods (i.e., their ability to recover the true failure rate).  1256 

 1257 

3.2.8 Reanalysis of existing in vivo data with molecular correction algorithms. 1258 

Given that it is the WHO-recommended method, failure rate estimates for TES in the published 1259 
literature have historically been calculated following analysis with the WHO/MMV algorithm. Failure 1260 
rate estimates can always be calculated using the no correction algorithm (Equation 1) as only the 1261 
number of recurrences and the total patient number are needed. However, it is not simple to track 1262 
through historic literature and re-calculate failure rates with the no glurp, ≥ 2/3 markers or allelic 1263 
family switch methodologies. The reason for this is that as the WHO/MMV algorithm requires a match 1264 
between the initial and recurrent sample at msp-1, msp-2, and glurp to classify a recrudescence, for 1265 
efficiency in the field laboratory practice is generally to genotype loci individually until there is a 1266 
discordance (no matching allele) between samples at a locus, at which point the infection is 1267 
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considered a recurrence and subsequent loci are not genotyped. In short, much data is technically 1268 
incomplete in that the recurrent sample is not genotyped at every loci. Collaborators were able to 1269 
provide me with data-sets with large numbers of “complete” recurrences (i.e., genotyped at all three 1270 
loci) such that the failure rate estimates with all algorithms could be calculated.  1271 

Clinical data was obtained from Rwanda (a relatively high transmission area) across 6 sites between 1272 
2013 and 2015, where patients were treated with either AR-LF or DHA-PPQ and genotyped at msp-1, 1273 
msp-2 and glurp. In patients treated with AR-LF, 137 recurrences were observed, of which 110 could 1274 
be classified as either a reinfection or a recrudescence (it was not possible to classify 27 patients 1275 
because they had incomplete genetic data). In patients treated with DHA-PPQ, 48 recurrences were 1276 
observed, of which 43 could be classified as either a reinfection or a recrudescence (it was not possible 1277 
to classify 5 patients because they had incomplete genetic data). This data was initially presented 1278 
internally to the National Malaria Control Programme in Rwanda (a manuscript describing clinical 1279 
efficacy studies for publication is in preparation).  1280 

Clinical data from Cambodia (a relatively low transmission area) was obtained from 6 sites between 1281 
2014-2016. Patients were treated with either artesunate plus amodiaquine (AS-AQ), artesunate plus 1282 
pyronaridine (AS-PYN) or DHA-PPQ, and genotyped at msp-1, msp-2, and glurp. In patients treated 1283 
with AS-AQ, 12 recurrences were observed, of which 5 could be classified as reinfection or 1284 
recrudescence (7 patients had incomplete genetic data). In patients treated with AS-PYN, 14 1285 
recurrences were observed, of which 12 could be classified as reinfection or recrudescence (2 had 1286 
incomplete genetic data). In patients treated with DHA-PPQ, 67 recurrences were observed, of which 1287 
48 could be classified as reinfection or recrudescence (19 had incomplete genetic data). This data was 1288 
initially presented internally to the National Malaria Control Programme in Cambodia. A description 1289 
of the AS-PYN trials has already been published [130].  1290 

For all data, the genetic signals (i.e., the msp-1, msp-2 and glurp alleles at the initial sample and any 1291 
recurrent sample) were re-interpreted using the novel molecular correction algorithms described in 1292 
Table 3.1 to investigate how varying the molecular correction algorithm changed the classification (as 1293 
reinfection or recrudescence) of patients and, consequently, failure rate estimates.  1294 

 1295 

3.3 Results. 1296 

3.3.1 Analysis of failing DHA-PPQ (two compartment model). 1297 

Figure 3.1 shows the failure rates obtained from simulated DHA-PPQ clinical trials using four molecular 1298 
correction algorithms and the non-corrected algorithm (Table 3.1), with a follow-up length of 42 days. 1299 
Both the true failure rate and the estimated failure rate are presented (calculated using survival 1300 
analysis) as a function of FOI.  1301 



44 
 

 1302 

Figure 3.1  Analysis of simulated trial data for DHA-PPQ with a follow-up period of 42 days. Estimated 1303 
failure rates are shown for the different algorithms of molecular correction (Table 3.1) as a function 1304 
of Force of Infection (FOI) and are calculated using survival analysis.   1305 

 1306 

The non-corrected algorithm always produced a higher failure rate estimate than any of the four 1307 
molecular correction algorithms. Failure rate estimates using no correction rose rapidly as FOI 1308 
increased and at moderate and high levels of transmission estimated failure rates were substantially 1309 
greater than the true failure rate: At high transmission intensities (FOI of 16) estimated failure rates 1310 
produced by this algorithm were above 50% - a clear over-estimate of the true failure rate (12%): This 1311 
pattern occurred because all the additional reinfections that occurred at as FOI increased were 1312 
misclassified as recrudescence. Conversely, in the absence of any reinfections (when FOI=0), the non-1313 
corrected algorithm produced an accurate failure rate estimate by correctly classifying all recurrences 1314 
as recrudescence (leaving only a slight under-estimate due to patients who had recrudescent parasites 1315 
at levels of <108, such that no recurrence occurred during follow-up). 1316 
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 1317 

Figure 3.2 Figure showing the ability of the various molecular correction algorithms to correctly 1318 
classify patients with recurrent malaria. The data are for DHA-PPQ with a 42-day follow-up obtained 1319 
with a FOI of 8 (i.e. used to obtain the results shown at FOI=8 in Figure 3.1). The X-axis shows the true 1320 
status of patients on the day of recurrence (i.e. reinfection or a recrudescence) and the colour-coding 1321 
shows how these patients were classified by each algorithm. The WHO/MMV recommended 1322 
algorithm correctly classifies nearly all reinfections, but misclassifies around one third of 1323 
recrudescences. The no glurp algorithm is similar to the WHO/MMV one; it misclassifies only a small 1324 
number of reinfections, but misclassifies around a third of recrudescences. The ≥2/3 markers 1325 
algorithm had fewer misclassifications and was also more balanced i.e. misclassified a similar 1326 
proportion of both reinfections and recrudescences. Finally, the allelic family switch algorithm 1327 
correctly classifies a large proportion of recrudescences but misclassifies around half of reinfections.  1328 

 1329 

The ability of the four molecular correction algorithms to accurately estimate drug failure rates 1330 
depended on their ability to correctly classify recrudescences and reinfections. This ability is shown 1331 
(for an FOI of 8, i.e. a moderate transmission area) in Figure 3.2. Each algorithm misclassified some 1332 
proportion of recrudescences and reinfections. The number of recrudescence misclassified as 1333 
reinfections was consistent as FOI changed, but the number of reinfections misclassified as 1334 
recrudescence increased as FOI increased – results shown in Figure 3.3 (note that while results for all 1335 
parameterizations DHA-PPQ and, later, AR-LF and AS-MQ are not shown, the proportion of 1336 
misclassification occurring was extremely robust between drugs).  General trends were extremely 1337 
clear: 1338 
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The WHO/MMV algorithm consistently under-estimated failure rates at all transmission intensities as 1339 
shown in Figure 3.1 . The algorithm frequently failed to detect drug failures i.e. it misclassified around 1340 
40% of recrudescent infections as reinfections (Figure 3.2). These misclassifications occurred because 1341 
of failure to detect recrudescent alleles in either the initial or recurrent blood sample – this algorithm 1342 
was so stringent (requiring matching alleles at all three loci) that even missing a single allele could 1343 
result in misclassification. As FOI increased, the estimated failure rate did not change to any 1344 
meaningful extent because the algorithm correctly classified nearly all reinfections (Figure 3.2).  1345 

The no glurp algorithm produced slightly higher estimated failure rates than the WHO/MMV algorithm 1346 
across all FOI settings (Figure 3.1 ). This occurred because recrudescences were slightly less likely to 1347 
be misclassified as reinfections while reinfections were slightly more likely to be misclassified as 1348 
recrudescences than under the WHO/MMV algorithm (Figure 3.2). At low FOI, this difference was 1349 
small; the high allelic diversity of msp-1 and msp-2 meant misclassification of reinfections as 1350 
recrudescences was rare. The difference between the no glurp algorithm and the WHO/MMV 1351 
algorithm increased as FOI increased, but, like the WHO/MMV algorithm, the no glurp algorithm 1352 
always under-estimated the true failure rate.  1353 

The ≥ 2/3 markers algorithm produced higher estimated failure rates than the no glurp algorithm 1354 
across all FOI levels. This occurred because this algorithm reduced the chance of a recrudescence 1355 
being misclassified as reinfection (due to failure to detect recrudescent alleles) and increased the 1356 
chance of a reinfections being misclassified as a recrudescence (Figure 3.2). Both effects occurred 1357 
because only needing matching alleles between samples at 2/3 loci gave the algorithm some tolerance 1358 
to un-detectable alleles.  1359 

The allelic family switch algorithm produced higher estimated failure rates than the ≥ 2/3 markers 1360 
algorithms at all but the lowest FOI (0-2) settings (Figure 3.1 ). A complete family switch in msp-1 or 1361 
msp-2 in a discordant sample (Table 3.1) would be sufficient to classify a recrudescence; this led to a 1362 
similar number of recrudescence being correctly classified as the ≥ 2/3 markers  algorithm, but this 1363 
algorithm misclassified the largest number of reinfections as recrudescence out of all the molecular 1364 
correction algorithms – the family switch could still occur (by chance); the difference in numbers 1365 
misclassified between the no glurp algorithm and the allelic family switch algorithm is the result of 1366 
this misclassification by chance.  1367 

Figure 3.2 shows the misclassification of recurrent infections (recrudescence classified as reinfection 1368 
and vice versa) for an FOI of 8. Figure 3.3 shows the same plot for an FOI of 2 and 16. These plots show 1369 
that the number of recrudescence misclassified as reinfection is stable as FOI increased for all 1370 
algorithms. Furthermore, it shows that increased FOI had nearly no impact on the number of 1371 
reinfections being misclassified for the WHO/MMV algorithm (which correctly classified all 1372 
reinfections), and a very minor impact for the no glurp algorithm. For the ≥ 2/3 markers and allelic 1373 
family switch algorithm, this figure demonstrates that increased FOI led to greatly increased numbers 1374 
of reinfections being misclassified as recrudescence. The proportion of reinfections misclassified was 1375 
stable as FOI increased, but the greater total number of misclassifications produced the increased 1376 
failure rates seen with these algorithms in Figure 3.1 .   1377 
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 1378 

Figure 3.3 Figure showing the ability of the various molecular correction algorithms to correctly classify patients with recurrent malaria. The data are for DHA-1379 
PPQ with a 42-day follow-up obtained with FOIs of 2 and 16 (see Figure 3.1 for an FOI of 8), showing how misclassification by each algorithm alters as FOI 1380 
changes. The X-axis shows the true status of patients on the day of recurrence (i.e. reinfection or a recrudescence) and the colour-coding shows how these 1381 
patients were classified by each algorithm.1382 
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Alternate durations of follow-up length were simulated for DHA-PPQ and their impact on estimated 1383 
failure rates are shown in Figure 3.4  for 28, 42 and 63 days of follow-up.  Longer durations of follow-1384 
up led to larger estimated failure rates for all algorithms. This occurred because longer follow-up (i) 1385 
allowed more time for recrudescences to become detectable, (ii) allowed more reinfections to 1386 
emerge, some of which were misclassified as recrudescences (Figure 3.3).  1387 

Under-estimation of the true failure rate occurred with all algorithms when a 28-day follow-up period 1388 
was chosen. With a 42-day follow-up period, the allelic family switch algorithm produced the most 1389 
accurate failure rate estimate with an FOI of <7, and the ≥ 2/3 markers algorithm produced the most 1390 
accurate failure rate estimate with FOI ≥7. As length of follow-up increased to 63 days, the ≥ 2/3 1391 
markers algorithm tended to slightly over-estimate the failure rate. This effect was more apparent as 1392 
FOI increased.  These patterns emerged because only a small number of initial clones recrudesced 1393 
after 42 days. Figure 3.5 shows the proportion of recurrent infections on each day of the follow-up 1394 
period that were truly recrudescent or reinfections. On days 49, 56 and 63, the number of recurrent 1395 
infections that were truly recrudescent was small. Almost all recurrent infections on these days were 1396 
reinfections and consequently, inclusion of these three extra days of follow-up inflated the estimated 1397 
failure rate due to misclassification of these reinfections as recrudescences (as alleles were shared by 1398 
chance between these reinfections and the initial blood sample).  However, the increased failure rate 1399 
of a 42 day follow-up compared to a 28 day follow-up (due to both detection of true recrudescence 1400 
and misclassification of extra reinfections) meant that a 42 day follow-up period analysed with either 1401 
the ≥2/3 markers or allelic family switch algorithm produced more accurate failure rate estimates than 1402 
the WHO/MMV algorithm.  1403 

 1404 

 1405 

 1406 
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 1407 

 1408 

Figure 3.4  Analysis of simulated trial data for DHA-PPQ showing the impact of changing follow-up period with follow-up lengths of (A) 28 days, (b) 42 days 1409 
(as in Figure 3.1 ), and (C) 63 days. Estimated failure rates are shown the different molecular correction algorithms (Table 3.1) as a function of FOI and 1410 
calculated using survival analysis.  1411 
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 1412 

Figure 3.5  The true status of recurrent infections on each day of follow-up for a simulated trial of 1413 
DHA-PPQ with a true failure rate of 12% and an FOI of 8. The total height of the bars indicates the 1414 
number of recurrent infections detected on that day of follow-up, and the color-coding shows the 1415 
number of those recurrent infections that were truly recrudescent or reinfections. 1416 

 1417 

3.3.3 Analysis of failing DHA-PPQ (three compartment model) 1418 

The principal difference between the parasite dynamics generated for DHA-PPQ under the 1419 
assumptions of a two-compartment for PPQ and a three-compartment model for PPQ is that the 1420 
three-compartment model is slightly more prophylactic and has a greater total area under the drug 1421 
kill curve (see 2.1.1); consequently, true failure rate is slightly lower, and a smaller number of 1422 
reinfections become patent (i.e., survive to become detectable). However, failure rate estimates 1423 
obtained using each algorithm are not significantly different between the two compartment and three 1424 
compartment models; results (the relative performance of molecular correction algorithms) are 1425 
qualitatively the same with both model calibrations. I am not attempting to comment, here, on 1426 
whether DHA-PPQ is best represented by a two or three compartment model or its exact 1427 
parameterization, but rather  confirm and stress the consistency of the molecular correction 1428 
algorithms across both parameterizations, suggesting that, regardless of the number of PPQ PK 1429 
compartments included, conclusions regarding the accuracy of these molecular correction algorithms 1430 
to estimate treatment failure rates are robust.  1431 

Parasite dynamics for each patient using a three-compartment model calibration for DHA-PPQ (rather 1432 
than the two-compartment calibration in Table 2.4), i.e. Table 2.3. Results are shown in Figure 3.6 , 1433 
the qualitative patterns were the same as for the two-compartment model, i.e., that WHO/MMV 1434 
algorithm produced the lowest failure rate estimate, then no glurp, then ≥ 2/3 markers, then allelic 1435 
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family switch (at most FOI, ≥ 2/3 markers produced a slightly higher failure rate estimate at 0-2 FOI). 1436 
True failure rate was slightly lower for the three compartment model (10% vs 12%). The relative failure 1437 
rate estimates of the algorithms and the no-correction approach were the same – i.e., that WHO/MMV 1438 
algorithm produced the lowest failure rate estimate, followed by no glurp, ≥ 2/3 markers, and the 1439 
allelic family switch algorithm. Failure rate estimates are lower across all algorithms than with the 1440 
shorter-prophylaxis two-compartment model, and a 63-day follow-up appears to be the most suitable 1441 
under this calibration; the ≥2/3 markers algorithm produced an accurate failure rate estimate at all 1442 
but the lowest FOI levels with this follow-up length). Crucially, the key message is the same: The 1443 
WHO/MMV algorithm under-estimates true failure rate and other algorithms can produce more 1444 
accurate failure rate estimates. Perhaps the most interesting difference between the two DHA-PPQ 1445 
compartment assumptions is that they suggested, given use of the same molecular correction 1446 
algorithm, different optimal length of follow-up. 1447 

 1448 

 1449 
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 1450 

Figure 3.6  Analysis of simulated trial data for DHA-PPQ using a three compartment model  with follow-up lengths of (A) 28 days, (b) 42 days and (C) 63 days. 1451 
Estimated failure rates are shown for the different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 1452 
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3.3.4 Analysis of failing AR-LF. 1453 

Failure rate estimates for failing AR-LF for 21-day and 28-day follow-up lengths are presented in Figure 1454 
3.7 . The true failure rate of AR-LF in these simulations was 0.918 (9%). The same pattern was observed 1455 
as for DHA-PPQ: The non-PCR corrected algorithm over-estimated the failure rate at any FOI higher 1456 
than 1, and severely overestimated failure rates   at high FOI; the WHO/MMV algorithm and the no 1457 
glurp algorithm slightly under-estimated the failure rate across all levels of FOI. Use of a 21-day follow-1458 
up period led to both the allelic family switch algorithm and the ≥ 2/3 markers algorithm under-1459 
estimating the failure rate, only at a high FOI of 13 did the allelic family switch algorithm accurately 1460 
recover the true failure rate. Use of a 28-day follow-up period produced more accurate failure rate 1461 
estimates: The ≥ 2/3 markers algorithm accurately recovered the true failure rate between an FOI of 1462 
5-16, with both the ≥ 2/3 markers algorithm and the allelic family switch algorithm under-estimating 1463 
the failure rate slightly at lower FOI. These results combined with the true classifications of recurrent 1464 
infections as recrudescence and reinfections (Figure 3.8 ) suggested a 28-day follow-up period led to 1465 
more accurate failure rate estimates.  1466 

 1467 

3.3.5 Analysis of failing AS-MQ. 1468 

Failure rate estimates for failing AS-MQ for a 42, 49 and 63-day follow-up length are presented in 1469 
Figure 3.9. The true failure rate of AS-MQ in these simulations was 0.1032(10%). With a 42-day follow-1470 
up period (Figure 3.9(A)), the ≥ 2/3 markers algorithm under-estimated the true simulated failure rate 1471 
at all FOI settings – the allelic family switch and ≥ 2/3 markers algorithm were close in value up to an 1472 
FOI of 9-10. As with DHA-PPQ and AR-LF, the WHO/MMV and no glurp algorithms under-estimated 1473 
the failure rate consistently and using no PCR correction generated a large over-estimate of the true 1474 
failure rate. A novel follow-up length of 49 days was simulated (Figure 3.9(B)) under which the ≥ 2/3 1475 
markers algorithm produced a more accurate failure rate estimate than a 42-day follow-up at all FOI 1476 
levels. With a 63-day follow-up period (Figure 3.9 (C)), the allelic family switch algorithm over-1477 
estimated the true failure rate from an FOI of 4 and upwards. The ≥ 2/3 markers algorithm over-1478 
estimated from an FOI of 8 and up, but only by a small amount. AS-MQ is more prophylactic than DHA-1479 
PPQ and AR-LF: Given the same period of follow-up, fewer reinfections became patent, and 1480 
recrudescences occurred later in the follow-up period (Figure 3.10 ). As such, it was unsurprising that 1481 
a longer period of follow-up led to more accurate failure rate estimates. Using the ≥ 2/3 markers 1482 
algorithm and assuming an FOI of <8, a 63-day follow-up period resulted in a more accurate estimate 1483 
than the 42 and 49-day follow-up lengths, but the differences in estimates between 49 and 63 days 1484 
were small and the operational, logistical advantages of a 49-day trial over a 63-day trial are likely to 1485 
be substantial. Furthermore, with an FOI of ≥8, a shorter follow-up (49 days) produced a more 1486 
accurate failure rate estimate with the ≥ 2/3 markers algorithm – a 63 day follow-up period over-1487 
estimated the true failure rate slightly with higher transmission intensity using this algorithm.  1488 

 1489 

3.3.6 Analysis of non-failing AR-LF and non-failing AS-MQ. 1490 

The simulations were run for the non-failing (i.e. effective drug) PK/PD calibrations for AR-LF (Figure 1491 
3.11) and AS-MQ (Figure 3.12), which had true failure rates of 0.0046 (0.5%) and 0.0208 (2%) 1492 
respectively. This was to investigate whether the new algorithms could incorrectly identify effective 1493 
drugs as failing. Crucially, the under-estimate associated with of the ≥ 2/3 markers algorithm was so 1494 
small in terms of absolute value that the use of the algorithm can be recommended without concern 1495 
for over-estimating the failure rate of effective drugs i.e. there was no danger in the model of an 1496 
effective drug being misclassified as failing. The large under-estimate of failure rate that was observed 1497 
using the WHO/MMV algorithm with failing AR-LF and AS-MQ (Figure 3.7 ; Figure 3.9) was not  1498 
observed with non-failing drugs as the number of recurrences and the true failure rate were small. 1499 
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However, these results highlighted the dangers of not using a molecular correction: The non-PCR-1500 
corrected algorithm generated estimated failure rates >10% in areas of high FOI when using long 1501 
durations of follow-up. Detailed investigations of the proportion of infections misclassified (i.e. Figure 1502 
3.2 (for DHA-PPQ)), or the times at which true recrudescence / reinfection occurred (i.e. Figure 3.5, 1503 
Figure 3.8 , Figure 3.10 ) were not conducted for non-failing AR-LF and AS-MQ due to the small number 1504 
of recurrences that occur with non-failing drugs and how close failure rate estimates with all molecular 1505 
correction algorithms are in absolute value to the true failure rate.  1506 

 1507 
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 1508 

Figure 3.7 Analysis of simulated trial data for failing AR-LF with follow-up lengths of 21 days (A) and 28 days (B). Estimated failure rates are shown for the 1509 
different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 1510 
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 1511 

Figure 3.8  The true status of recurrent infections on each day of follow-up for a simulated trial of AR-1512 
LF with a true simulated failure rate of 9% and an FOI of 8. The total height of the bars indicates the 1513 
number of recurrent infections detected on that day of follow-up, and the color-coding shows the 1514 
number of those recurrent infections that were truly recrudescent or reinfections.  1515 
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 1516 

Figure 3.9  Analysis of simulated trial data for failing AS-MQ with follow-up lengths of 42 days (A), 49 days (B) and 63 days (C). Estimated failure rates are 1517 
shown for the different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 1518 
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 1519 

Figure 3.10  The true status of recurrent infections on each day of follow-up for a simulated trial of 1520 
AS-MQ with a true simulated failure rate of 10% and an FOI of 8. The total height of the bars indicates 1521 
the number of recurrent infections detected on that day of follow-up, and the color-coding shows the 1522 
number of those recurrent infectoins that were truly recrudescent or reinfections.  1523 

 1524 
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 1525 

Figure 3.11  Analysis of simulated trial data for effective AR-LF with follow-up lengths of 21 days (A) and 28 days (B). Estimated failure rates are shown for the 1526 
different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 1527 

 1528 

 1529 
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 1530 

 1531 

Figure 3.12  Analysis of simulated trial data for effective AS-MQ with follow-up lengths of 42 days (A), 49 days (B) and 63 days (C). Estimated failure rates are 1532 
shown for the different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 1533 
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3.3.7 Comparison of failure rate estimates for “per protocol” method and survival analysis  1534 

 WHO guidelines [28] recommend two methods for statistical analysis of molecular-corrected data: 1535 
Survival analysis and per-protocol analysis. The results presented above for DHA-PPQ, AR-LF, and AS-1536 
MQ are failure rate estimates obtained using survival analysis. The same models were analysed to 1537 
obtain failure rate estimates calculated using per-protocol method (Figure 3.13, Figure 3.14, Figure 1538 
3.15). Comparison of these results showed that the per protocol method generates slightly higher 1539 
estimated failure rates than survival analysis. The differences were dependant on the FOI level and 1540 
duration of follow-up – the more reinfections that become patent over the course of follow-up (as 1541 
occurred with higher FOI and longer follow-up), the greater this difference. With a 63-day follow-up 1542 
and an FOI of 16 the failure rate estimate obtained for DHA-PPQ with the per-protocol method was 1543 
nearly 30%, compared to the estimate with survival analysis of 15%. The reason is a “denominator 1544 
effect”. The per-protocol analysis simply removes all patients identified with reinfections from the 1545 
analysis. Take the example where 20 of 200 patients are drug failures, giving a true underlying failure 1546 
rate of 20/(20+180)=10%. If, for example, 50 of the 180 cured patients had reinfections and were 1547 
removed from the analysis then the estimated per-protocol failure rate would rise to 20/(20+130)= 1548 
13% and if 100 of the cured patients had reinfections then failure rate would further increase to 1549 
20/(20+80)=20%.  This example is somewhat artificial because reinfections will also occur in the 1550 
recrudescence group and if they occur first, a later recrudescence could be masked, but it does serve 1551 
to illustrate this denominator effect.  It is important to appreciate that use of the per-protocol method 1552 
with the newly proposed ≥ 2/3 markers algorithm (which generally produced more accurate failure 1553 
rate estimates with appropriate follow-up length) will result in an over-estimate of failure rate. A 1554 
detailed discussion of statistical  analysis of malaria drug trials can be found elsewhere [131] but I 1555 
emphasise that reporting the failure rate estimate obtained through survival analysis is essential for 1556 
researchers wishing to utilize the ≥ 2/3 markers algorithm or the allelic family switch algorithm.    1557 
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 1558 

 1559 

Figure 3.13: Analysis of simulated trial data for DHA-PPQ with follow-up lengths of 28 days (A), 42 days (B) and 63 days (C). Estimated failure rates are shown 1560 
for the different algorithms of molecular correction as a function of FOI and calculated using the per protocol method.  1561 
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 1562 

Figure 3.14: Analysis of simulated trial data for failing AR-LF with follow-up lengths of 21 days (A) and 28 days (B). Estimated failure rates are shown for the 1563 
different algorithms of molecular correction as a function of FOI and calculated using the per protocol method.   1564 
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 1565 

Figure 3.15: Analysis of simulated trial data for failing AS-MQ with follow-up lengths of 42 days (A), 49 days (B) and 63 days (C). Estimated failure rates are 1566 
shown for the different algorithms of molecular correction as a function of FOI and calculated using the per protocol method.  1567 
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3.3.8 Sensitivity analysis of model parameters.  1568 

Sensitivity analysis was conducted on model parameters: MOI, relative detectability of alleles and the 1569 
minority allele detection threshold. Given the consistency of results for DHA-PPQ, AR-LF and AS-MQ, 1570 
sensitivity analysis was conducted modelling DHA-PPQ under the assumption of a two-compartment 1571 
model for PPQ.  1572 

The results presented above all assumed MOI at time of treatment is representative of high 1573 
transmission i.e. using Tanzanian data. This was assumed because high MOI makes detection of 1574 
recrudescent alleles more difficult (due to the issues with detection of minority alleles) so represents 1575 
a “worst case” scenario. Readers will notice that results presented earlier in this chapter used this high 1576 
MOI assumption even at low transmission intensities (quantified by FOI). This may not be a true 1577 
reflection of epidemiology in vivo (lower MOI would generally be assumed in a lower transmission 1578 
area), but a high MOI was used for the following reasons: 1579 

Keeping the same MOI across all transmission intensities allowed a direct comparison of molecular 1580 
correction algorithms. 1581 

This assumption of high MOI at treatment is conservative (i.e. “worst case” scenarios) for low 1582 
transmission areas because the results show that there is little operational difference between the 1583 
algorithms even if initial MOI is high; it is therefore a robust conclusion that algorithm choice is not 1584 
important in these areas because if MOI at treatment is lower, then there will be even less difference 1585 
between the algorithms (this is later  illustrated by Cambodian field data in Table 3.3).  1586 

High MOI at time of treatment can occur even in low transmission areas if people immigrate from 1587 
areas of higher transmission or have acquired sufficient protective immunity that several clones may 1588 
co-circulate asymptomatically before the patient falls ill. More plausibly, this scenario may arise in 1589 
areas of seasonally intense transmission where MOI at time of treatment is high, but trials are 1590 
conducted during the low-transmission season to reduce the impact of reinfections.  1591 

I investigated the impact of a reduced MOI to ensure that model findings would be consistent in 1592 
different MOI settings. Analysis of simulated data for DHA-PPQ with a 42-day follow-up and a low MOI 1593 
setting (the distribution obtained from PNG; see 3.3.2) is shown in Figure 3.16. First note that the true 1594 
failure rate was slightly lower than that obtained in a high MOI setting (Figure 3.4 ) because patients 1595 
harboured fewer clones at time of treatment which made their infection easier to clear. Reducing the 1596 
MOI to reflect a low-transmission setting reduced the difference between algorithms. Overall, the 1597 
results were consistent with those obtained from a high MOI setting i.e. the allelic family switch 1598 
algorithm produced an accurate failure rate estimate at an FOI of 4 and below, and the ≥ 2/3 markers 1599 
algorithm produced the most accurate failure rate estimate at all higher FOI.  1600 

The relative detectability of the longest allele to the shortest allele was altered from 0.001:1 to 0.1:1.  1601 
The results are shown in Figure 3.17. Failure rate estimates obtained using this altered relative 1602 
detectability are nearly identical to those obtained with the relative detectability of 0.001:1 used 1603 
elsewhere in this chapter (i.e. Figure 3.4 ).  1604 

The threshold at which minority genotyping signals are discounted as “noise” and disregarded was 1605 
varied from 0.25 to 0.05 (the value used in the results described above is 0.25, as described in 3.2.5). 1606 
Analysis of simulated data for DHA-PPQ with a 42-day follow-up under these conditions is shown in 1607 
Figure 3.18. The failure rate estimate produced by each algorithm increased as the threshold 1608 
decreased. At the lower threshold of 0.05 the no glurp algorithm (rather than the ≥ 2/3 markers 1609 
algorithm) produced the most accurate failure rate estimate from an FOI of 6 and higher. A minority 1610 
detection threshold of 0.05 is unrealistic because large amounts of experimental/laboratory noise 1611 
would be included in the signal, so this threshold could not be used in practice. The threshold was 1612 
changed to 0.2 (a more realistic value) in Figure 3.19. Under this assumption the ≥ 2/3 markers 1613 
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algorithm produced the most accurate failure rate estimate, robust across all FOI levels, the same as 1614 
when the minority detection threshold is set to 0.25.  1615 
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 1616 

Figure 3.16: Analysis of simulated trial data for DHA-PPQ with a follow-up period of 42 days in a low MOI setting. Estimated failure rates are shown for the 1617 
different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 1618 
 1619 
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 1620 

Figure 3.17: Analysis of simulated trial data for DHA-PPQ with a follow-up period of 42 days with the relative detectability of the longest allele to the shortest 1621 
allele set to be 0.1:1. Estimated failure rates are shown for the different algorithms of molecular correction as a function of FOI and calculated using survival 1622 
analysis. 1623 

 1624 
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 1625 

Figure 3.18: Analysis of simulated trial data for DHA-PPQ with a follow-up period of 42 days and a minority allele detection threshold of 0.05. Estimated failure 1626 
rates are shown for the different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 1627 
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 1628 

Figure 3.19: Analysis of simulated trial data for DHA-PPQ with a follow-up period of 42 days and a minority allele detection threshold of 0.2. Estimated failure 1629 
rates are shown for the different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 1630 
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3.3.9 Re-analysis of clinical data . 1631 

Clinical data from Rwanda (a relatively high transmission area) were re-analysed using the  proposed 1632 
molecular correction algorithms (Table 3.3), and were highly consistent with simulated results i.e. the 1633 
WHO/MMV algorithm produced the lowest estimated failure rate, followed by no glurp, then the ≥ 1634 
2/3 markers algorithm, then the allelic family switch algorithm. The pattern was quantitively 1635 
consistent: The WHO/MMV algorithm estimated failure rates to be around half that obtained by the 1636 
≥ 2/3 markers algorithm. Results are similarly consistent with re-analysis of a trial from low 1637 
transmission settings in Cambodia (Table 3.3). The impact of algorithm choice was not so large in 1638 
Cambodia because FOI was low: 62 of the recurrences had matching alleles at all 3 loci so were 1639 
presumably drug failures and would have been classified as such by all four algorithms. There were 1640 
only 3 potential reinfections (all following DHA-PPQ treatment): 1 had no shared alleles at any locus 1641 
so was classified as a reinfection under all four algorithms, but the other two patients shared alleles 1642 
at both msp-1 and msp-2 and were only classified as reinfections under the WHO/MMV algorithm 1643 
because no common alleles were noted at glurp. In contrast, the other algorithms all classified both 1644 
patients as being drug failures. In summary, as in the high transmission data, the WHO/MMV 1645 
algorithm had a higher tendency to classify recurrences as reinfections compared to the other 1646 
algorithms. Note also that, consistent with Figure 3.4 , the choice of algorithm makes little operational 1647 
difference at low FOI: using the WHO/MMV algorithm identified 62 drug failures and three 1648 
reinfections, while the other algorithms give 64 drug failures and one reinfections, a negligible 1649 
increase in number of drug failures.  1650 

 1651 

Table 3.3. Molecular correction with multiple algorithms from re-analysis of clinical trial data from 1652 
Rwanda (a high transmission area) and Cambodia (a low transmission area) 1653 

Country Drug*  Classification of 
recurrent infection 

WHO/MMV No glurp ≥ 2/3 markers Allelic family 
switch 

Rwanda AR-LF recrudescence 17 27 36 59 

reinfections 93 83 73 51 

DHA-
PPQ 

recrudescence 3 6 8 18 

reinfections 40 37 35 25 

Cambodia AS-
AQ 

recrudescence 5 5 5 5 

reinfections 0 0 0 0 

DHA-
PPQ 

recrudescence 45 47 47 47 

reinfections 3 1 1 1 

AS-
PYN 

recrudescence 12 12 12 12 

reinfections 0 0 0 0 

AR-LF: Artemether-Lumefantrine, DHA-PPQ: Di-hydroartemisinin-Piperaquine, AS-AQ: Artesunate-1654 
Amodiaquine, AS-PYN: Artesunate-Pyronaridine. Full details of study sites and methodology are 1655 
provided in 3.2.8. 1656 

 1657 

Finally, a review of clinical trials that reported failure rates based on no correction and the WHO/MMV 1658 
algorithm is provided in Table 3.4. The magnitude of differences in failure rate estimates were similar 1659 
to those noted in the results from simulations where the non-corrected algorithm and the WHO/MMV 1660 
algorithm produced the highest and lowest failure rate estimates respectively.  1661 

 1662 

 1663 

 1664 
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Table 3.4: The need for molecular correction: a comparison of estimated drug failure rates obtained 1665 
without correction vs with molecular correction performed according to the current WHO/MMV 1666 
recommended algorithm. 1667 

Drug tested Uncorrected vs corrected failure rates Country/yr Ref 

AR-LF 
AS-AQ 

54% vs 10% 
42% vs 10% 

Burkina Faso, 2014 [132] 

AS-AQ 17% vs 6% Congo, 2013 [133] 

AR-LF 22% vs 0% Tanzania, 2014 [134] 

AR-LF 13% vs 0% Benin, 2016 [135] 

AR-LF 9% vs 2% Mozambique, 2015 [136] 

AR-LF 2% vs 1% India 2015 [137] 

AR-LF 
AS-AQ 

16% vs 1% 
22% vs 5% 

Congo 2012 [138] 

AR-LF: Artemether-Lumefantrine, AS-AQ: Artesunate-Amodiaquine. Failure rate was calculated as 1 1668 
minus the 28-day adequate clinical and parasitological response reported in the studies (data collated 1669 
and provided by Drs Jörg Möhrle and Stephan Duparc). 1670 

 1671 

3.4 Discussion  1672 

The key message presented here is that none of the proposed algorithms using msp-1, msp-2 and 1673 
glurp correctly classified all recurrent infections (Figure 3.2; Figure 3.3) nor is it likely that such an 1674 
algorithm exists due to the limitations of the PCR correction process [106]. The ability of each 1675 
algorithm to accurately recover the true failure rate was dependent on the transmission intensity 1676 
(quantified in these models by FOI) due to the differing propensity of each algorithm to misclassify 1677 
reinfections as recrudescence (which occurred when alleles are shared by chance or a clone that later 1678 
recrudesces was not observed in the initial sample). The 2-fold under-estimation of true failure rates 1679 
that occurred at all FOI levels using the current consensus methodology of the WHO/MMV algorithm 1680 
is a cause for considerable concern. This under-estimate occurred because this algorithm was 1681 
extremely stringent – it did not misclassify any reinfections as recrudescence (Figure 3.2; Figure 3.3) 1682 
– but did misclassify some recrudescences as reinfections when a clone that later recrudesced wasn’t 1683 
detected in the initial sample (due to the issues inherent in the PCR methodology with detecting 1684 
minority alleles and longer alleles). These issues are shared between algorithms; however, no glurp, 1685 
≥2/3 markers and the allelic family switch algorithm are all less stringent and misclassified some 1686 
reinfections as recrudescence, which increased failure rate estimates and accounted – to some extent 1687 
– for the under-estimation of failure rates.   The ≥ 2/3 markers algorithm correctly classifies the largest 1688 
proportion of recrudescence; Requiring a match at only 2/3 markers allows for tolerance when 1689 
minority alleles at a single loci are not detectable in the molecular correction process.  1690 

Key to identifying a methodology that gives consistently accurate estimated failure rates is to minimise 1691 
and balance errors that arise from molecular correction, which are, in turn, influenced by factors 1692 
including FOI, duration of follow-up, and sensitivity of the PCR protocols. Despite these concerns, 1693 
these results show that operationally-important increases in accuracy of estimated failure rates for 1694 
anti-malarial efficacy trials are achievable with alternate genotyping algorithms. It is undesirable to 1695 
recommend different molecular correction algorithms for different ACTs and transmission intensity 1696 
levels (as this would be likely to cause confusion), hence the approach of investigating multiple ACTs 1697 
and varying transmission intensity through FOI to assess if a single algorithm may be identified that 1698 
gives robust and accurate estimates. Based on the results presented here, it appeared that the ≥ 2/3 1699 
markers algorithm was the most robust in areas of moderate to high transmission, and provided 1700 
estimated failure rates close (typically within 2 percentage units) to the true failure rate (Figure 3.4 ; 1701 
Figure 3.7 Figure 3.9).  1702 
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The other factor that can affect estimates of drug efficacy, given that molecular correction is 1703 
imperfect, is the duration of follow-up. Recommended duration has gradually increased over the last 1704 
20 to 30 years, with the objective of capturing all (or at least the majority) of recrudescences. However, 1705 
the objective of clinical trials is not to capture every recrudescence, but to obtain accurate and robust 1706 
estimates of efficacy. Figure 3.5 shows, for DHA-PPQ, that in areas of moderate to high FOI, the 1707 
penalty for detecting the last few recrudescences by extending the follow-up period was the inclusion 1708 
of a much larger number of reinfections. These reinfections inflate the estimated failure rate due to 1709 
the propensity of molecular correction algorithms to misclassify some reinfections as recrudescence 1710 
(as seen in Figure 3.2). It is obviously preferable to have the shortest follow-up possible while retaining 1711 
accuracy of failure rate estimates; based on the results shown in Figure 3.5, and analogous plots for 1712 
failing AR-LF (Figure 3.8 )and AS-MQ (Figure 3.10 ),  using the ≥ 2/3 markers algorithm provided 1713 
accurate estimates using a follow-up of 28 days for AR-LF, 42 days for DHA-PPQ and 49 days for AS-1714 
MQ, all roughly in line with current WHO recommendations [14, 28]. Importantly, the accuracy of the 1715 
estimates with this algorithm appeared to be relatively robust to changes in transmission intensity, 1716 
quantified in these models by FOI (the WHO/MMV and no glurp algorithms were also robust to 1717 
changes in FOI, but had an under-estimate of failure rate associated with them). Note that a different 1718 
DHA-PPQ parameterization (assuming a three compartment model for PPQ; Figure 3.6 ) favoured a 1719 
longer follow-up period more in line with MQ which also has longer prophylaxis post-treatment. The 1720 
trends across all drugs modelled are clear: it is highly likely that use of the current WHO/MMV 1721 
algorithm will generate substantial (near two-fold) underestimates of failure rates and that switching 1722 
to an alternative correction algorithm should be considered as matter of urgency.  1723 

Technical problems with molecular correction approaches exist (identified and explained in, for 1724 
example, [106, 121]) which gives rise to the temptation to simply ignore molecular correction and just 1725 
use uncorrected data. The results presented here strongly suggest that appropriate use of molecular 1726 
correction is essential. Trials conducted in areas of moderate to high transmission intensity, which are 1727 
the areas where most malaria morbidity and mortality occur, analysed without molecular correction 1728 
will lead to severe over-estimates of the true failure rate. This assertion is supported by clinical data 1729 
(Table 3.4), which clearly shows that large discrepancies may arise in the absence of molecular 1730 
correction. Ignoring molecular correction (i.e. non-PCR corrected algorithm in Figure 3.6 Figure 3.7 1731 
and Figure 3.9) only produced accurate estimates of failure rates when FOI is very low (a fact generally 1732 
acknowledged in the literature [14, 28]).  However, caution must be taken even when using no-1733 
correction in low transmission areas. Malaria transmission is highly focal and even if an area is, on 1734 
average, very low transmission, it is plausible that most patients will be recruited from foci of high 1735 
transmission where FOI may well be sufficient to invalidate estimates based on no-correction.  1736 

Confidence in this modelling approach was assured given the past success of pharmacological 1737 
modelling to correctly reflect and predict clinical data e.g. [15, 87, 104, 105, 139, 140], and the 1738 
consistency of the simulated results with in vivo Rwandan and Cambodian data-sets (Table 3.3). This 1739 
model may not reflect the in vivo PK parameters of these trials (see discussion of mPK/PD modelling 1740 
methods in 2.1), however, the purpose of re-analysis of these data were to investigate the change in 1741 
failure rates from us of proposed algorithms on in vivo data – analysis of trial results with these 1742 
algorithms has not previously taken place. This re-analysis is not dependent on model parameter 1743 
space (nor vice versa), and all algorithms require the same data (the msp-1, msp-2 and glurp alleles 1744 
(and families for the former two)); consequently, this re-analysis showing similar trends to modelled 1745 
results is encouraging.  1746 

There is concern in the literature that reinfections may share alleles with the initial infection purely by 1747 
chance and that subsequent  misclassification of reinfections as recrudescence would lead to over-1748 
estimation of failure rates  [121]. This could arise in areas of high transmission [120] as increased MOI 1749 
leads to more alleles in the initial sample; these can later be shared with a reinfection purely by 1750 
chance. It could also occur in low-transmission areas where genetic diversity is lower and there is more 1751 
chance of a match by chance.  Importantly, large-scale over-estimation is not observed (e.g. the low 1752 
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impact of FOI on estimated failure rate using the ≥ 2/3 markers algorithm in Figure 3.6 Figure 3.7 and 1753 
Figure 3.9) with increased transmission intensity with either a high MOI (Figure 3.6) or a low MOI 1754 
(Figure 3.16), suggesting these fears are unlikely to have a large impact in practice.  1755 

In conclusion, this modelling approach of the length-polymorphic markers msp-1, msp-2 and glurp, 1756 
and re-analysis of clinical data both suggest that more accurate and easily implemented algorithms 1757 
are available to analyse clinical data and the field should consider implementing these methods. Which 1758 
algorithm will perform best will depend on factors in the patient population/area – the results here 1759 
demonstrate this explicitly for transmission intensity (FOI) and follow-up length. The four algorithms 1760 
investigated here are not mutually exclusive and are based on the same data. A firm recommendation 1761 
is that initial and recurrent samples should be genotyped at all three loci:  when using the current 1762 
WHO/MMV algorithm, there is no need to genotype after a mismatch has occurred at one locus (see 1763 
3.2.8), so genotyping is often incomplete. These complete data would allow results obtained from all 1764 
four algorithms be presented; this maintains consistency with previous analyses based on the 1765 
WHO/MMV algorithm while also providing results that are likely to provide a substantially more robust 1766 
estimate of malaria drug clinical failure rates. 1767 

  1768 



75 
 

Chapter 4: Evaluating accuracy of microsatellite markers for classification of 1769 

recurrent infections during routine monitoring of anti-malarial drug efficacy: 1770 

A computer modelling approach. 1771 

 1772 

A version of this work has been submitted for publication (26/07/2019): Evaluating accuracy of 1773 
microsatellite markers for classification of recurrent infections during routine monitoring of anti-1774 
malarial drug efficacy: A computer modelling approach. Authors: Sam Jones, Mateusz Plucinski, 1775 
Katherine Kay, Eva Maria Hodel, Ian Hastings.  1776 

Chapter-specific acknowledgements: Dr Katherine Kay, Dr Eva Maria Hodel and Dr Ian Hastings 1777 
provided R code to generate parasite dynamics post-treatment (fully described in Chapter 2 of this 1778 
thesis). Dr Mateusz Plucinski provided extensive advice on genotyping microsatellite markers, 1779 
provided access to R code to run a Bayesian analysis algorithm (4.2.7) and provided code to generate 1780 
plots for distributions of posterior probability of recrudescence, receiver operator characteristic 1781 
curves and contour plots. Additionally, Dr Plucinski provided access to sets of microsatellite allele 1782 
frequency data. Dr Simon Wagstaff and Mr Andrew Bennett provided access to the high-performance 1783 
computing required to analyse simulated data-sets using a Bayesian algorithm.  1784 

 1785 

4.1 Introduction.  1786 

4.1.1 Microsatellite markers for genotyping Therapeutic Efficacy Studies (TES).  1787 

In the “molecular correction” process to genotype the results of therapeutic efficacy studies (TES) and 1788 
distinguish between recrudescence and reinfections, microsatellite markers are an alternative method 1789 
to the length-polymorphic markers msp-1, msp-2, and glurp – the WHO consensus methodology [14] 1790 
that was explored in Chapter 3 of this thesis.  Microsatellites are (generally small) segments of 1791 
repeated genetic motifs; they have been extensively explored for this purpose [40, 141, 142], with one 1792 
key proposed advantage being the lack of immune selection on microsatellite loci [39] – note, 1793 
however, that this is a historic reason for the development of microsatellite markers for TES, and 1794 
whether or not markers are under immune selection should not have any bearing on the simulated 1795 
results in this thesis for the purposes of calculating efficacy estimates as markers being under immune 1796 
selection, whilst having consequences for population genetic structure [39] should not affect allelic 1797 
frequency distributions in the 4-6 week period of a TES  1798 

In this methodology, researchers genotype microsatellite loci in both initial   and recurrent infections 1799 
and count the number of matching loci in each patient i.e. the number of loci at which at least a single 1800 
allele is shared between the initial and recurrent infection. They then define a certain number of 1801 
matches to be indicative of recrudescence. In addition to their use in TES, microsatellites have also 1802 
been commonly used to assess treatment failure in returning travellers in non-endemic areas [143-1803 
145].  1804 

Typically, microsatellite data are analysed by applying a mathematically simple match counting 1805 
algorithm which uses an arbitrary threshold for the number of loci that have common alleles between 1806 
the initial and day of failure samples. In these algorithms, if the two samples have matching alleles at, 1807 
or above, the threshold number of loci, they are classified as recrudescence, and otherwise, 1808 
reinfections. Typically, classification of an infection as a recrudescence requires a match at most, if not 1809 
all, sampled loci [40, 98, 146], though the specific microsatellites used, the total number of 1810 
microsatellites genotyped, and the number of matches at which a recrudescence is classified is 1811 
variable in the literature. For example, Hwang et al. [98] used 8 loci and defined a match at 7 or more 1812 
loci to be a recrudescence. Greenhouse et al. [40] investigated 6 loci, and subsequently used 4 to 1813 
analyse samples, with a match at every locus being required to classify a recurrence as  a 1814 



76 
 

recrudescence. Mwangi et al. [146] used 5 loci and considered a match at 5 to be a recrudescence, 0 1815 
to be a reinfection, and intermediary values to be mixed infections.  1816 

 1817 

4.1.2 Sources of error with microsatellite markers. 1818 

As with length-polymorphic markers, there are three potential mechanisms by which misclassification 1819 
of a recurrent infection can occur using microsatellite markers: 1820 

a) Recrudescent infections can be misclassified as reinfection if alleles of the recrudescent 1821 
clone(s) were not detected when genotyping the initial infection.  1822 

b) Recrudescent infections can be misclassified as reinfection if the recurrent infection is mixed 1823 
(i.e., the recurrence is polyclonal and comprised of both recrudescence and reinfections), and alleles 1824 
of the recrudescent clone(s) are not detected, but alleles of a reinfecting clone(s) are.  1825 

c) A reinfection could be misclassified as recrudescent if it shares (by chance) alleles with clones 1826 
present at time of treatment. 1827 

The types of misclassification a) and b) may occur due to imperfect detectability of microsatellite 1828 
alleles. Alleles at each microsatellite loci are defined purely by their length in base pairs – they are not 1829 
characterized by families (as the length-polymorphic loci msp-1 and msp-2 are) and so are comparable 1830 
to the length-polymorphic marker glurp in this respect. The process of characterizing microsatellite 1831 
alleles in a blood sample is broadly similar to that undertaken for length-polymorphic markers: The 1832 
sample is induced into PCR, amplified, and examined through electropherograms produced after 1833 
electrophoresis (i.e., Figure 1 of [39]). Low frequency peaks are discounted in the electropherogram 1834 
as they are considered to be noise induced during the PCR process with the consequence that truly 1835 
present minority alleles may be ignored [40]. The peak height (relative to the highest peak) at which 1836 
minority peaks are ignored will vary between laboratories, software and operators but is generally 1837 
considered to be between 20 and 30%.   1838 

Additionally, it is possible to “mis-read” the length of microsatellite alleles. That is to say, if a given 1839 
allele was 100 base pairs in length, that allele might instead be observed as 98, 99, 101, or 102 base 1840 
pairs (depending on the potential range of mis-reading). This has obvious consequences as a 1841 
researcher may falsely observe shared alleles between the initial and recurrent sample or fail to 1842 
observe shared alleles that are truly there. In other words, mis-reading allele length could cause 1843 
reinfections to be misclassified as recrudescence or vice-versa. Amplifying microsatellites in PCR has 1844 
the potential to induce mutations in the genetic material (i.e., errors in reading base-pair length) 1845 
through so-called “replication slippage” of Taq DNA polymerase, [147]. Evidence shows that the choice 1846 
of sequencing method (or machine) will induce variation in the allele length observed [148]. Finally, 1847 
external factors such as laboratory temperature have been shown to induce variation in observed 1848 
allelic length [149].  1849 

As with length polymorphic markers, it is theoretically possible for a third type of misclassification to 1850 
occur, i.e: 1851 

c) A reinfection can be misclassified as a recrudescence if sufficient alleles are shared, by chance, 1852 
between a reinfecting clone and clones of the initial infection. The probability of this occurring will 1853 
depend on the MOI, transmission intensity, level of genetic diversity, and when using the match 1854 
counting method of classifying recrudescence described above, is also dependant on the number of 1855 
loci at which an allele is shared between the initial and recurrent sample that is required to classify a 1856 
recrudescence.  1857 

4.1.3 Bayesian methodology for microsatellite markers. 1858 
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A recent publication [150] presented a statistical method based on  Bayesian probability to analyse 1859 
microsatellite data to calculate drug failure rates. This method generates the posterior probability that 1860 
a recurrent infection is a recrudescence and has subsequently been used to analyse TES data [30, 31, 1861 
151]. The problems inherent in accurately genotyping a blood sample using microsatellite markers 1862 
listed above mean that a simple method of counting matching microsatellites between samples may 1863 
never be able to reliably classify a patient as reinfection or recrudescence. Bayesian analyses 1864 
constitute a better, more flexible approach capable of dealing with these uncertainties. The full 1865 
advantages of a Bayesian approach, and a detailed description of the Bayesian algorithm later used to 1866 
analyse simulated data-sets in this thesis chapter are explained in exhaustive detail elsewhere [150].  1867 

 1868 

4.1.4 Research goals. 1869 

Using an mPK/PD approach (Chapter 2) to simulate antimalarial therapy provides a gold-standard 1870 
definition of true response to treatment, something un-obtainable from field trial data, including the 1871 
true status (reinfection or recrudescence) of all recurrent infections. Simulations of 10,000 patients 1872 
were conducted for two ACTs: AR-LF and AS-MQ. Using this simulated data, this chapter had three 1873 
main objectives:   1874 

Evaluate the accuracy of failure rate estimates generated using microsatellite data in conjunction with 1875 
a match counting algorithm (as is currently typical), and determine whether the stringent requirement 1876 
of a match between the initial and recurrent sample at all or most loci to classify a recrudescence is 1877 
able to recover accurate failure rate estimates.   1878 

Assess the advantages of a previously published Bayesian analysis methodology [150], both in its 1879 
ability to recover the true failure rate and the diagnostic ability to distinguish recrudescence from 1880 
reinfections.  1881 

Determine whether the methodologies based on microsatellite loci are robust across drugs with 1882 
different post-treatment prophylactic profiles (i.e., partner drugs with varying half-lives) which 1883 
determine when reinfections start to occur, across different transmission intensities (which determine 1884 
rates of reinfection in TES) and in regions with differing levels of genetic diversity at microsatellite loci.  1885 

 1886 

4.2 Methodology. 1887 

4.2.1 Trial scenarios: Partner drug IC50, Multiplicity of Infection (MOI) and Force of Infection (FOI). 1888 

10,000 patients treated with AR-LF and AS-MQ were simulated under a selection of “scenarios” with 1889 
pre-defined parameters multiplicity of Infection (MOI; 2.3.1), force of infection (FOI; 2.3.2 ), level of 1890 
genetic diversity and partner drug half maximal inhibitory concentrations (IC50; 2.2.1) to represent in 1891 
vivo scenarios using microsatellite markers for molecular correction. This was possible due to the 1892 
wealth of data (MOI and allele frequency distributions) provided to me by Mateusz Plucinski of the 1893 
Centers for Disease Control and Prevention (CDC). This approach differs to that undertaken in Chapter 1894 
3 for the length-polymorphic markers, where there were two available MOI settings, FOI was varied 1895 
arbitrarily and only a single set of allele frequency distributions were available. The goal of modelling 1896 
set scenarios was to increase realism (i.e., a low transmission area is generally more likely to have 1897 
lower MOI, FOI and reduced genetic diversity compared to a medium or high transmission area) to 1898 
make the model as robust as possible for investigating the accuracy of the Bayesian approach (see 1899 
research goal 2 in 4.1.4).  1900 

Initially, 6 scenarios were modelled for two different drugs (AR-LF and AS-MQ), for a total of 12 1901 
different scenarios.  1902 
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Non-failing drug in a low transmission setting 1903 

Non-failing drug in a medium transmission setting 1904 

Non-failing drug in a high transmission setting 1905 

Failing drug in a low transmission setting 1906 

Failing drug in a medium transmission setting 1907 

Failing drug in a high transmission setting. 1908 

“Transmission setting” was defined by the FOI, the MOI, and the frequency distribution of 1909 
microsatellite alleles. Whether the drug is “non-failing” or “failing” was determined by modifying the 1910 
half maximal inhibitory concentration (IC50) parameter of the drug in the PK/PD model. 1911 

In this chapter, parasite dynamics post-treatment were simulated with AR-LF and AS-MQ (see Chapter 1912 
2 for mPK/PD methodology and PK parameterization) in order to model a drug with a relatively short 1913 
post-treatment prophylactic period (AR-LF) and a drug with a relatively long post-treatment 1914 
prophylactic period (AS-MQ). DHA-PPQ was not modelled here due to computational limits imposed 1915 
by running the Bayesian algorithm, which are fully described later in this chapter (4.2.9), due to the 1916 
length of follow-up needed (42 days) and the number of recurrences that would occur (DHA-PPQ is 1917 
not as prophylactic as AS-MQ and so more reinfections will occur; AS-MQ simulations already take a 1918 
long computation time, (see section 4.2.9). This is without considering the debate in the field about 1919 
whether DHA-PPQ should is represented by a 2 or 3-compartment model. To simulate both 1920 
calibrations, as parameterized in Chapter 2, would take an extremely long time. The goal of this 1921 
chapter was to investigate the accuracy of failure rate estimates using microsatellite markers – while 1922 
simulating both a drug with short post-treatment prophylaxis and long post-treatment prophylaxis 1923 
was important to ensure the validity of the model, the goal was not to simulate every available 1924 
Artemisinin-based combination therapy (ACT; 2.1.1) and so in the context of this thesis, it was prudent 1925 
to simulate AR-LF and AS-MQ  in this chapter.  1926 

Three MOI distributions were modelled: Low, medium and high MOI. These distribution were data-1927 
sets obtained in vivo from Angola [31, 151] and are represented graphically in  Figure 4.1 .   All low 1928 
transmission scenarios used an FOI of 2, all medium transmission scenarios used an FOI of 8 and all 1929 
high transmission scenarios used an FOI of 16. Partner drug IC50s were altered such that true failure 1930 
rates were ~2% for non-failing drugs and ~10% for failing drugs (the true failure rate is directly 1931 
observable from the mPK/PD model and is described mathematically in 3.2.7. A ~2% failure rate in 1932 
“non-failing” drugs was allowed because even very good drugs occasional fail due to factors such as 1933 
sub-optimal patient adherence (e.g. vomiting up one of the doses). True failure rate increases as 1934 
multiplicity of infection (MOI) increases, which  meant altering the IC50 between scenarios  for failing 1935 
drugs. For non-failing drugs, it wasn’t necessary to alter the IC50 as MOI changed to keep true failure 1936 
rates close to 2%. The IC50 values for the partner drugs used for each scenario are shown Table 4.1. 1937 

Three additional scenarios were modelled for AR-LF only. These scenarios utilized an “extremely low 1938 
genetic diversity” distribution of alleles in order to investigate the impact on failure rate estimates of 1939 
extremely low genetic diversity, which could occur naturally in low transmission areas or even in high 1940 
transmission areas due to effects such as a genetic bottleneck. Microsatellite allelic distributions were 1941 
not available in vivo for an area of extremely low diversity so these had to be created arbitrarily by me 1942 
(4.2.2.2). The three scenarios were then low, medium and high transmission with the MOI distribution, 1943 
FOI values and IC50 values for LF described above.  1944 
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 1945 

Figure 4.1 Multiplicity of infection (MOI) distributions for three different transmission intensity scenarios, based on data from Angola [31, 151].  The MOI for 1946 
each patient in the simulation was sampled from one of these distributions, depending on which scenario was being simulated. 1947 
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Table 4.1 Drug concentration at which half maximal inhibitory concentration (IC50) occurs for each of six model scenarios in these simulations for Artemether-1948 
Lumefantrine (AR-LF) and Artesunate-Mefloquine (AS-MQ). Corresponding true failure rates for each modelled scenario are provided.  1949 

Transmission Drug Failure 

Artemether-Lumefantrine (AR-LF) Artesunate-Mefloquine (AS-MQ) 

IC50 
(μg/L) 

True Failure 
IC50 
(μg/L) 

True Failure 

Low 

Non-fail 

500 0.0149 27 0.006 

Mid 500 0.0167 27 0.0097 

High 500 0.0204 27 0.0119 

Low 

Fail 

220000 0.0965 450 0.0978 

Mid 20000 0.0997 400 0.106 

High 10000 0.103 370 0.1058 

AR: Artemether, LF: Lumefantrine, AS: Artesunate, MQ: Mefloquine, IC50: Half-maximal inhibitory concentration.  1950 
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4.2.2 Genetic Data – allele frequency distributions for seven microsatellite loci. 1951 

4.2.2.1 Low, medium and high genetic diversity allelic frequency distributions. 1952 

Genotypes were assigned to every clone (both initial and reinfections) at seven microsatellite loci: 1953 
313, 383, TA1, polya, PfPK2, 2490 and TA109; alleles at each loci were defined by their length (base 1954 
pairs). The sources of data were studies in Angola, described in [31, 151]. Relative frequencies and 1955 
length of alleles used to parameterize these simulations are shown in Table 4.2 for a low genetic 1956 
diversity setting, Table 4.3 for a medium genetic diversity setting and Table 4.4 for a high genetic 1957 
diversity setting.  1958 

 1959 

4.2.2.2 Extremely low genetic diversity allelic frequency distributions. 1960 

I simulated an area of extremely low genetic diversity (for AR-LF). In the absence of in vivo distribution 1961 
for such an area, I took the number of unique alleles for each locus in the low transmission setting and 1962 
divided that number by 4 (rounded up). This resulted in: 1963 

• 313: 4 alleles 1964 

• 383: 4 alleles 1965 

• TA1: 3 alleles 1966 

• POLYA: 4 alleles 1967 

• PFPK2: 5 alleles 1968 

• 2490: 2 alleles 1969 

• TA109: 4 alleles 1970 

It was then assumed these remaining alleles were those with the highest frequency in the low 1971 
transmission setting. They were then assigned equal frequency, such that (for example) 313 has 4 1972 
alleles, each with 25% frequency. The relative frequency of alleles and their length for this extremely 1973 
low genetic diversity setting is shown in Table 4.5.  1974 

This distribution is obviously arbitrary but is likely to be conservative (single or two extremely frequent 1975 
alleles would reduce diversity even further) and is useful to illustrate the point that low genetic 1976 
diversity leads to higher failure rate estimates as the rate of false positives from reinfections being 1977 
misclassified as recrudescence increases and examine to what extent this will threaten the accuracy 1978 
of failure rate estimates.   1979 
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Table 4.2 Frequency distributions for alleles at seven microsatellite loci for a low transmission setting.  1980 

Frequency distributions for low transmission setting 

MS 313 MS 383 MS TA1 MS POLYA MS PFPK2 MS 2490 MS TA109 
Number 13 Number 16 Number 11 Number 13 Number 19 Number 5 Number 13 

Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency 

220 0.111111 124 0.243243 178 0.2 155 0.181818 162 0.137255 82 0.571429 163 0.230769 
222 0.111111 140 0.216216 163 0.171429 152 0.151515 168 0.117647 79 0.25 160 0.192308 
244 0.111111 104 0.081081 166 0.114286 164 0.121212 171 0.117647 73 0.107143 148 0.134615 
262 0.111111 86 0.054054 169 0.114286 167 0.121212 177 0.098039 85 0.035714 175 0.134615 
224 0.074074 122 0.054054 175 0.114286 158 0.090909 174 0.078431 88 0.035714 172 0.096154 
226 0.074074 144 0.054054 172 0.085714 143 0.060606 165 0.058824   151 0.057692 
232 0.074074 146 0.054054 73 0.057143 170 0.060606 180 0.058824   169 0.038462 
238 0.074074 88 0.027027 181 0.057143 173 0.060606 150 0.039216   166 0.019231 
240 0.074074 136 0.027027 160 0.028571 104 0.030303 156 0.039216   178 0.019231 
250 0.074074 138 0.027027 184 0.028571 113 0.030303 159 0.039216   181 0.019231 
218 0.037037 148 0.027027 202 0.028571 161 0.030303 186 0.039216   184 0.019231 
230 0.037037 150 0.027027   176 0.030303 195 0.039216   187 0.019231 
246 0.037037 152 0.027027   179 0.030303 138 0.019608   196 0.019231 
  162 0.027027     141 0.019608     
  164 0.027027     183 0.019608     

  170 0.027027     189 0.019608     
        192 0.019608     

        198 0.019608     

        201 0.019608     
1981 
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Table 4.3 Frequency distributions for alleles at seven microsatellite loci for a medium genetic diversity setting.  1982 

Frequency distributions for medium transmission setting 

MS 313 MS 383 MS TA1 MS POLYA MS PFPK2 MS 2490 MS TA109 
Number 17 Number 18 Number 10 Number 13 Number 13 Number 3 Number 15 

Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency 

219 0.117647 124 0.225 160 0.228571 155 0.205128 165 0.2 82 0.666667 163 0.220339 
245 0.117647 140 0.125 166 0.171429 164 0.179487 162 0.133333 73 0.166667 160 0.152542 
259 0.117647 86 0.075 169 0.114286 158 0.102564 168 0.133333 79 0.166667 175 0.152542 
217 0.088235 138 0.075 172 0.114286 149 0.076923 159 0.088889   172 0.101695 
225 0.088235 144 0.075 175 0.114286 152 0.076923 171 0.088889   148 0.067797 
233 0.088235 102 0.05 178 0.114286 170 0.076923 177 0.088889   151 0.067797 
235 0.058824 122 0.05 181 0.057143 176 0.076923 174 0.066667   166 0.067797 
237 0.058824 136 0.05 73 0.028571 161 0.051282 156 0.044444   154 0.033898 
211 0.029412 146 0.05 163 0.028571 167 0.051282 180 0.044444   181 0.033898 
221 0.029412 88 0.025 187 0.028571 137 0.025641 186 0.044444   169 0.016949 
231 0.029412 100 0.025   143 0.025641 183 0.022222   178 0.016949 
239 0.029412 108 0.025   182 0.025641 189 0.022222   202 0.016949 
241 0.029412 128 0.025   188 0.025641 192 0.022222   205 0.016949 
247 0.029412 150 0.025         208 0.016949 
249 0.029412 152 0.025         211 0.016949 
257 0.029412 154 0.025           
275 0.029412 156 0.025           

  170 0.025           
 1983 

 1984 

 1985 

 1986 

 1987 

 1988 

 1989 
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Table 4.4 Frequency distributions for alleles at seven microsatellite loci for a high genetic diversity setting.  1990 

Frequency distributions for high transmission setting 

MS 313 MS 383 MS TA1 MS POLYA MS PFPK2 MS 2490 MS TA109 

Number 18 Number 23 Number 14 Number 15 Number 16 Number 4 Number 16 

Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency 

217 0.145455 138 0.142857 160 0.180328 155 0.196721 162 0.2375 82 0.627451 172 0.19 
225 0.127273 140 0.142857 166 0.131148 152 0.163934 168 0.1625 79 0.313725 160 0.18 
233 0.127273 124 0.12987 172 0.114754 167 0.114754 171 0.125 85 0.039216 163 0.15 
221 0.109091 102 0.090909 178 0.114754 149 0.081967 159 0.1 73 0.019608 175 0.12 
229 0.072727 136 0.090909 163 0.098361 179 0.081967 165 0.0875   151 0.07 
243 0.072727 84 0.051948 169 0.098361 173 0.065574 174 0.05   184 0.07 
239 0.054545 122 0.038961 184 0.065574 143 0.04918 177 0.0375   148 0.06 
241 0.054545 142 0.038961 139 0.04918 158 0.04918 180 0.0375   166 0.04 
223 0.036364 86 0.025974 175 0.04918 161 0.04918 183 0.0375   178 0.04 
231 0.036364 98 0.025974 181 0.032787 140 0.032787 153 0.025   187 0.02 
251 0.036364 100 0.025974 136 0.016393 164 0.032787 186 0.025   145 0.01 
211 0.018182 130 0.025974 142 0.016393 170 0.032787 189 0.025   154 0.01 
215 0.018182 164 0.025974 187 0.016393 119 0.016393 135 0.0125   157 0.01 
235 0.018182 172 0.025974 193 0.016393 137 0.016393 138 0.0125   169 0.01 
237 0.018182 88 0.012987   182 0.016393 144 0.0125   181 0.01 
245 0.018182 90 0.012987     147 0.0125   196 0.01 
255 0.018182 104 0.012987           
261 0.018182 106 0.012987           

  144 0.012987           
  148 0.012987           

  150 0.012987           
  152 0.012987           

  162 0.012987           
 1991 

 1992 

 1993 

 1994 
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Table 4.5 Frequency distributions for alleles at seven microsatellite loci for an extremely low genetic  diversity setting.  1995 

Frequency distributions for very low genetic diversity setting 

MS 313 MS 383 MS TA1 MS POLYA MS PFPK2 MS 2490 MS TA109 

Number 4 Number 4 Number 3 Number 4 Number 5 Number 2 Number 4 

Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency Length Frequency 

220 0.25 124 0.25 178 0.33 155 0.25 162 0.2 82 0.5 163 0.25 
222 0.25 140 0.25 163 0.33 152 0.25 168 0.2 79 0.5 160 0.25 
244 0.25 104 0.25 166 0.33 164 0.25 171 0.2   148 0.25 
262 0.25 86 0.25   167 0.25 177 0.2   175 0.25 
        174 0.2     

1996 
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4.2.3 Follow-up length and detection of recurrence. 1997 

In this chapter, a 28 day follow-up period was used for models of AR-LF and a 42 day follow-up period 1998 
was used for models of AS-MQ, as permitted by WHO guidelines [14]. Unlike in Chapter 3, novel 1999 
lengths of follow-up were not explored for microsatellite markers. A 28-day follow-up schedule 2000 
required patients be examined on days 3, 7, 14, 21 and 28. A 42-day follow-up period used two 2001 
additional days i.e. days 35 and 42. The parasitaemia of each clone in each patient was tracked and 2002 
updated each day as described by the mPK/PD model and the PK parameters of the patient and the 2003 
PD parameters of the clone (Chapter 2).  2004 

The model checked each day of scheduled follow-up to determine whether a patient had enough 2005 
parasitaemia that a recurrence would be detectable by light microscopy (a recurrence) – parasitaemia 2006 
was considered detectable if the total number in a patient was ≥ 108 on that day.  Note that variance 2007 
in the limit of detection by light microscopy exists with respect to the skill of the microscopist [18]; it 2008 
was assumed this limit was reflective of an “expert” microscopist (corresponding to roughly 20 2009 
parasites /μl of blood).  In short, follow-up length and detection of recurrence proceeded in an 2010 
identical manner to as described for length polymorphic markers in Chapter 3.  2011 

 2012 

4.2.4 Calculating which alleles are observed. 2013 

The genotype of the initial malaria infection of each patient was taken on the day of treatment. This 2014 
genotype signal is a composite of all the clone(s) present in the initial infection and is determined by 2015 
the technical accuracy and sensitivity of genotyping.   2016 

On all days of follow-up except day 3, a recurrence was identified if the sum parasitaemia of all clones 2017 
in a patient exceeded 108 which was assumed to be the minimum parasitaemia at which detection by 2018 
light microscopy was possible [152].  This corresponded to a parasite density of roughly 20 parasites/μl 2019 
of blood. If total parasitaemia was less than 108 then recurrent parasites would not be observed by 2020 
microscopy (and thus, the patient would not be genotyped on that day). On day 3, if total parasitaemia 2021 
exceeded 108 but was <25% of the total parasitaemia on the initial sample, the patient continued in 2022 
the trial; if parasites were present at >25% of initial parasitaemia, that patient was classed as an early 2023 
treatment failure,  per WHO procedure [28]. Note that for subsequent calculations and analysis, an 2024 
early treatment failure is considered to be identical to a recrudescence.  Calculations then occurred 2025 
using a three-step process to replicate the technical limitations of acquiring a profile of microsatellite 2026 
alleles from a blood sample  2027 

Firstly, a “sampling” limit was included: A finite volume of blood is available for genotyping. A parasite 2028 
clone would not be detected if its density were so low that no parasites were included in the blood 2029 
sample analysed.  Thus, the density and volume of the processed blood sample defined the limit of 2030 
detection. It was assumed this limit was 108 (i.e., no clone present in less than 108 parasites would be 2031 
detected).  This limit is identical to that used in Chapter 3, see 3.2.5 for calculations and justification.  2032 

Secondly, the “majority” allele for each microsatellite locus is the allele with the highest parasitaemia 2033 
(if multiple clones share alleles at a locus, the allelic signal for that loci is the sum of parasitaemia of 2034 
the clones. It was assumed that for an allele to be detected, the parasitaemia of that allele must be 2035 
≥25% of the parasitaemia of the majority allele.  2036 

Finally, the chance that the length of each allele may be mis-read due to genotyping errors was 2037 
included (see 4.1.2). The chance of an  error of +/- length x was assumed to be described by the 2038 

geometric distribution 0.8 * (0.2)x ; this distribution has been described and validated in [150].  2039 

The output of these simulations was, for each patient, the microsatellite alleles (quantified by their 2040 
length in base-pairs for each loci) at each of the seven loci, observed in the initial sample, and at any 2041 
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recurrent infection in that patient. This is exactly the data recorded in standard TES using 2042 
microsatellites (and is the input used for the Bayesian algorithm in vivo as in [31, 150]).  2043 

 2044 

4.2.5 Classifying patients: True failures, high and low density recrudescence. 2045 

A key advantage of simulating patients with microsatellite markers using an mPK/PD model is the 2046 
ability to interrogate the Bayesian algorithm; i.e., investigate diagnostic ability and determine in which 2047 
circumstances it would misclassify recurrences. 2048 

The term “true failure” is consistent with the mathematical description given in Chapter 3 (3.2.7) but 2049 
is re-summarised here for ease of reading: It was determined whether each patient was a “true 2050 
failure” based on parasitaemia: A patient was a true failure if, on the final day of follow-up (day 28 for 2051 
AR-LF, day 42 for AS-MQ), they still harboured any parasites from any initial clone. The true failure 2052 
rate is the frequency of these patients across the entire population. The model tracked patients over 2053 
the full length of follow-up, thus this “true failure” classification captured patients who would in vivo, 2054 
have been removed earlier in the TES with a recurrent infection classified as a reinfection (and whose 2055 
recrudescent clones would not then be observed).  2056 

For this chapter,  true failures were separated into ‘high’ and ‘low’ density recrudescence. A high 2057 
density recrudescence was defined as occurring when three conditions were met: (i) the sum 2058 
parasitaemia of all recrudescent clones on the day of recurrence is >25% the sum parasitaemia of all 2059 
clones on the day of recurrence (i.e., if there is a mixed infection of new and recrudescent clones on 2060 
the day of recurrence, recrudescent clones must be >25% of the total infection) and (ii), the sum 2061 
parasitaemia of all recrudescent clones on the day of recurrence must have been  >25% of the total 2062 
parasitaemia of all clones in the initial sample (i.e., clones that later recrudesce constitute at least 25% 2063 
of the initial infection) . (iii) the total number of recrudescing clones on the day of recurrence must be 2064 
≥108 (to be consistent with the sampling limit defined above).  If any one of these conditions is not 2065 
met then the failure is defined as “low density”.  In this manner, the true classification of each 2066 
recurrence as a reinfection, high density recrudescence or low density recrudescence was defined. 2067 

 2068 

4.2.6 Estimating drug failure rates: Match counting algorithm. 2069 

A match counting algorithm compared the number of microsatellite loci that have at least a single 2070 
allele shared between the initial and recurrent sample (termed a “matching” loci). Typically, use of 2071 
microsatellite markers in vivo  requires a high number of matching loci to classify an infection as 2072 
recrudescent (either all loci, or permitting a single locus not to match, i.e.: [40, 98, 146]). Herein, with 2073 
the 7 loci modelled, threshold number of matching loci required to classify a recrudescence was varied 2074 
in order to determine the impact of this choice of threshold on failure rate estimates.  This is a counting 2075 
algorithm where a recurrent infection is defined as a recrudescence when the number of matching 2076 
loci is greater than or equal to a specified threshold. Six threshold values were analysed for this 2077 
method: 2, 3, 4, 5, 6 and 7 matching loci (e.g. if a recurrent infection had 3 matching loci with the initial 2078 
infection, that recurrence was classified as a recrudescence with a threshold of 2 or 3 loci, but as a 2079 
reinfection with the other thresholds. When all recurrent samples had been classified as a 2080 
recrudescence or reinfection based on this algorithm, failure rates were estimated using survival 2081 
analysis as described in 3.2.7. 2082 

 2083 

4.2.7 Estimating drug failure rates: Bayesian analysis method. 2084 

The Bayesian analysis method described in [150] was used to interpret simulated results and obtain 2085 
posterior probabilities of recrudescence for each patient. R code was provided to me by Mateusz 2086 



88 
 

Plucinski (the original author of the Bayesian algorithm) to run this Bayesian algorithm; computational 2087 
expansions (4.2.9) were made by me to allow the algorithm to run for 10,000 patients across all the 2088 
scenarios modelled.   2089 

The Bayesian algorithm is extremely complex and is fully described in [150]. In brief, the Bayesian 2090 
algorithm uses a Markov chain Monte Carlo approach to sample from the posterior probability of 2091 
recrudescence for each sample, with the ratio of likelihoods of a reinfection versus a recrudescence 2092 
derived from the frequencies of the observed alleles. The algorithm jointly estimates several key 2093 
parameters, such as the error rate, and accounts for missing data by sampling hidden alleles. The 2094 
Bayesian algorithm was used to define a recurrence as being a recrudescence when posterior 2095 
probability of recrudescence in that patient exceeded a value p, where p lies between 0 and 1. I 2096 
investigated the impact on failure rate estimates of the value of p by varying it between 0.1 and 1 2097 
inclusive. The situation in which p = 0 indicated a recrudescence was not investigated, as that would 2098 
be reflective of assuming every recurrence was a recrudescence (i.e., a non-molecular correction 2099 
approach). When all recurrent samples had been classified as a recrudescence or reinfection based on 2100 
this algorithm, failure rates were estimated using survival analysis as described in 3.2.7. 2101 

 2102 

4.2.8 Assessment of algorithm accuracy. 2103 

Both the match-counting algorithm and Bayesian analysis classified a recurrent infection as either 2104 
reinfection or recrudescence depending on the choice of threshold (for the match counting algorithm) 2105 
or posterior probability  p (for the Bayesian analysis). These classifications were then used to generate 2106 
failure rate estimates for the simulated TES  using survival analysis. The failure estimates for both 2107 
methods were then compared with the true failure rate to assess their accuracy.  2108 

The distribution of the posterior probability of recrudescence calculated using the Bayesian algorithm 2109 
was plotted for each scenario, with recurrences stratified into their true status: low-density 2110 
recrudescence, high-density recrudescence or reinfection. Receiver operator characteristic (ROC) 2111 
curves were constructed using the posterior probability at which an infection would be classified as a 2112 
recrudescence (from 0 to 1). The area under the ROC curve (AUC)  was used to quantify the diagnostic 2113 
ability of the method [153]. An AUC of >0.8 is considered to be a “good” test and an AUC of >0.9 is 2114 
considered to be an “excellent” test.  2115 

The ability of the Bayesian algorithm to detect low-density recrudescence was evaluated by calculating 2116 
the posterior probability of recrudescence estimated by the Bayesian algorithm for each recurrent 2117 
infection (4.2.7) and categorizing each infection  as reinfection, low-density recrudescence or high-2118 
density recrudescence (4.2.5).   2119 

 2120 

4.2.9 Computational considerations. 2121 

All modelling and subsequent analysis was conducted using the statistical programming language R 2122 
(version 3.5.1) [98]. The mPK/PD simulations, assigning genetic signals to initial and recurrent 2123 
infections, obtaining failure rate estimates using the match counting method and all analysis (i.e., 2124 
generating ROC curves, producing plots, etc) takes an inconsequential amount of computational time 2125 
and should not be a concern to anyone looking to replicate this methodology.  2126 

The Bayesian analysis method is extremely computationally intense. The exact amount of time 2127 
required to analyse a given trial depends on the number of patients in the trial, the number of 2128 
recurrences, and the average number of microsatellites observed at both initial and recurrent 2129 
samples. Naturally, this means that higher transmission scenarios took longer to analyse than lower 2130 
transmission scenarios and failing drug scenarios took longer than non-failing drugs.   2131 
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Simulations were run on an Ubuntu 18.04 Virtual Machine with 104 dedicated processor cores and 2132 
128GB of RAM, hosted on a 4 socket Ubuntu 18.04 Dell PowerEdge R940 server (768TB DDR4-2666 2133 
RAM,  4x Intel Xeon Gold 6154) running KVM. This machine was made available by the scientific 2134 
computing department at the Liverpool School of Tropical Medicine (in particular, Simon Wagstaff and 2135 
Andrew Bennett). I parallelized the simulations and analysis using the R packages doParallel and 2136 
foreach to simulate 10,000 patients as 100 trials of 100 patients each. Run-time per scenarios varied 2137 
between 1 day (low transmission scenario, non-failing AR-LF) and 6 days (high transmission scenario, 2138 
failing AS-MQ). Most of this run-time is allocated to the Bayesian algorithm (generating the 2139 
parasitaemia data and assigning microsatellites took around an hour for all scenarios). Consequently, 2140 
running these simulations would not have been feasible without a multi-core computing and 2141 
parallelization approach. For groups seeking to use the Bayesian method in vivo to analyse smaller 2142 
trials a parallelization approach should still be taken to lower run-times, i.e., separating a trial of 300 2143 
patients into three 100 patient trials for analysis should be feasible on most current personal 2144 
computers.   2145 

 2146 

4.3 Results. 2147 

4.3.1 Analysis of AR-LF. 2148 

4.3.1.1 Failure rate estimates and comparison to true failure rate.  2149 

The  match counting algorithm was sensitive to transmission intensity; no threshold value of matching 2150 
loci at which a recurrence was classified as recrudescent was able to accurately estimate true failure 2151 
rate across all transmission scenarios for either failing (Figure 4.2 ) or non-failing (Figure 4.3 ) AR-LF. 2152 
Failure rate estimates declined as the threshold increased. Failure rate estimates increased as 2153 
transmission increased, presumably due to the greater number of reinfections, some of which were 2154 
misclassified as recrudescence; this effect was greater at low thresholds when the probability of such 2155 
misclassification was greater. A threshold of 4 produced estimates close to the true failure rate for all 2156 
non-failing AR-LF scenarios. For failing AR-LF scenarios, a threshold of 3 produced the closest estimate 2157 
to true failure in the low transmission scenario, and a threshold of 4 produced the closest estimate in 2158 
the high transmission scenario, with the medium transmission scenario intermediate between the 2159 
two. However, using a threshold of 3 in a high transmission scenario over-estimated failure rate 2160 
(estimated failure rate of 0.18 compared to a true failure rate of 0.1). A threshold of 4 gave an estimate 2161 
of 0.08 relative to a 0.0997 true failure rate for the failing, medium transmission scenario and an 2162 
estimate of 0.077 relative to a true failure rate of 0.0965 for the failing, low transmission scenario. A 2163 
threshold of 7 (requiring all 7 loci to be matching) resulted in extremely large under-estimates of 2164 
failure rates for failing AR-LF: 0.005 relative to true failure rate of 0.0965 in the low transmission 2165 
scenario, 0.008 relative to true failure of 0.0997 in the medium transmission scenario and 0.006 2166 
relative to true failure rate of 0.1 in the high transmission scenario.  2167 

In contrast to the match-counting method, the Bayesian algorithm recovered true failure rate to a 2168 
high degree of accuracy across all transmission settings and for both calibrations of true drug failure 2169 
rate (Figure 4.2 and Figure 4.3 ). Values of the posterior probability p used to distinguish 2170 
recrudescence from reinfection between 0.1 and 0.9 produced good, consistent failure rates 2171 
estimates with only a slight decline as p increased; using p = 1 to classify a recrudescence resulted in 2172 
a substantial decrease in failure rate estimates from using p ≥ 0.9. For all non-failing and failing drug 2173 
scenarios, treating all infections with p ≥ 0.1 as recrudescence generated a failure rate estimate within 2174 
0.01 (1%) of the true failure rate. 2175 

 2176 

 2177 
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 2178 

Figure 4.2 Failure rate estimates obtained using  the  match counting algorithm and the Bayesian analysis algorithm for  failing AR-LF under low, medium and 2179 
high transmission scenarios. The true failure rate is denoted in each plot by the horizontal grey line. For the match counting algorithm, the  threshold for the 2180 
number of matching loci at which a recurrence is classified as a recrudescence varies between  2 and 7.  For the Bayesian analysis, the cut-off for posterior 2181 
probability at which a recurrence is classified as a recrudescence varies between ≥0.1 and ≥0.9. 2182 
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 2183 

 2184 

Figure 4.3 Failure rate estimates obtained using the match counting  algorithm and the Bayesian analysis algorithm for non-failing AR-LF under low, medium 2185 
and high transmission scenarios. The true failure rate is denoted in each plot by the horizontal grey line. For the match counting algorithm, the  threshold for 2186 
the number of matches at which a recurrence is classified as a recrudescence varies between  2 and 7.  For the Bayesian analysis, the cut-off for posterior 2187 
probability at which a recurrence is classified as a recrudescence varies between ≥0.1 and ≥0.9. 2188 
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4.3.1.2 Receiver Operator Characteristic (ROC) curves for the Bayesian algorithm. 2189 

Figure  4.4 shows the analysis of the specificity and sensitivity of the Bayesian algorithm in its ability 2190 
to identify low and high density recrudescences. The general trend was that the AUC of the ROC curve 2191 
decreased as transmission intensity increased with values of 0.872 and 0.835 in the failing and non-2192 
failing high transmission scenarios respectively – these correspond to a “good” diagnostic test. AUC 2193 
was higher for any given transmission scenario in failing AR-LF than non-failing AR-LF. When the ROC 2194 
curve was calculated for only high-density recrudescence AUC increased to ≥0.968 in all scenarios – 2195 
an “excellent” diagnostic test.  2196 

 2197 

4.3.1.3 Distribution of posterior probability of recrudescence. 2198 

Figure 4.5 shows the distribution of the posterior probabilities of recrudescence for all recurrences, 2199 
stratified according to the true classification of their recurrence: Reinfection, low-density 2200 
recrudescence, or high-density recrudescence. The distributions were nearly binary in every scenario: 2201 
Nearly all posterior probabilities in the patient population were <0.1 or≥0.9. Some trends here were 2202 
intuitive (note different scales on the Y axes): i.e., larger number of reinfections occurred as 2203 
transmission intensity increased and larger number of recrudescences occurred in scenarios in which  2204 
failing drugs were administered. The small number of patients whose infections had estimated 2205 
probabilities of recrudescence between (but not including) 0.1 and 0.9 was reflected in the minor 2206 
changes in failure rate estimates as p changed in Figure 4.2 and Figure 4.3 .  2207 

Most patients whose recurrence had   p <0.1 were reinfections. Given that ≥0.1 was the choice of p 2208 
that produces the most accurate failure rate estimate , the cause of the (slight) under-estimate of 2209 
failure rate was due to the proportion of patients with infections at p <0.1 who had, in reality, 2210 
recrudescent infections. For failing drugs, ~5% of recurrent infections were recrudescent infections 2211 
with  p <0.1 at all transmission intensities. For non-failing drugs, ~2.5% of recurrent infections were 2212 
recrudescent infections with p <0.1 at all transmission intensities. Notably most of these were low 2213 
density recrudescence; only 0.03%-0.05% of recurrent infections with p <0.1 were high-density 2214 
recrudescences for failing drug scenarios, and 0.02%-0.06% of recurrent infections with p <0.1 were 2215 
high-density recrudescences for non-failing drug scenarios. There were a small number of recurrent 2216 
infections with p ≥0.1 which were truly reinfections but in all scenarios this number was small relative 2217 
to the number of recrudescent infections where  p <0.1. Consequently, the under-estimation due to 2218 
truly recrudescent infections having p <0.1 was greater than the over-estimation due to reinfections 2219 
having p ≥0.1; thus these reinfections with p ≥0.1 were not leading to an over-estimation of failure 2220 
rate.  2221 

Figure 4.2 Figure 4.3 and Figure 4.5 show that over-estimation of failure rate due to misclassification 2222 
of reinfection as recrudescence did not significantly affect the Bayesian algorithm due to its high 2223 
specificity (an assertion that is further supported by ROC analysis in Figure  4.4); nearly all reinfections 2224 
had a posterior probability of recrudescence of <0.1. A slight-under-estimate of failure rate occurred 2225 
with all values of p ≥0.1 to ≥0.9 inclusive to classify a recrudescence, due to the algorithm assigning 2226 
posterior probabilities of <0.1 to a small proportion of infections with low density recrudescence.   2227 
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Figure  4.4 Receiver operator characteristic (ROC) curves showing diagnostic ability of the Bayesian analysis method for 3 scenarios of transmission intensity 2229 
for non-failing and failing artemether-lumefantrine (AR-LF). ROC curves and area under the roc curve (AUC) are shown for all recrudescence and for high 2230 
density recrudescence. A high density recrudescence was defined as explained in 4.2.5. 2231 
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Figure 4.5 Distribution of the posterior probabilities of recrudescence estimated  by the Bayesian algorithm for 3 scenarios of transmission intensity for non-2233 
failing and failing artemether-lumefantrine (AR-LF). A high density recrudescence was defined as explained in 4.2.52234 
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4.3.1.4 Determinants of posterior probability of recrudescence. 2235 

Figure 4.6   is a contour plot showing the estimated posterior probabilities of recrudescence estimated 2236 
by the Bayesian algorithm as a function of the densities of the recrudescent clone(s) in the recurrent 2237 
and initial sample. There was a clear trend of the posterior probability of recrudescence increasing as 2238 
both densities increase, reinforcing the result illustrated in Figure 4.5: the density of recrudescent 2239 
clones was an important determinant of the posterior probability of recrudescence returned for a 2240 
given patient. The slight under-estimate of failure rates that occurred using the Bayesian algorithm 2241 
(4.3.1.1) were due almost entirely to the finite sensitivity of genotyping causing some low-density 2242 
clones to be missed during genotyping. 2243 

 2244 

Figure 4.6  Contour plot of the posterior probability of recrudescence estimated by Bayesian algorithm 2245 
as a function of the density of recrudescent clones (i.e., the proportion of the recrudescent clones in 2246 
the total infection biomass) in the initial sample and the recurrent sample. This plot is the combined 2247 
data of all 6 scenarios modelled for artemether-lumefantrine (AR-LF). Each contour line indicates the 2248 
posterior probability of recrudescence and the area between the lines the number of recurrent 2249 
infections in the population with those posterior probabilities. 2250 

 2251 

 2252 
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4.3.1.5 The impact of patients with undetectable parasitaemia during follow-up. 2253 

It is possible, both in vivo and in silico, for patients to bear infections (either initial infections or 2254 
reinfections) that do not fully clear during follow-up but also never become detectable (see Figure 2255 
1.1). More specifically, some patients possessed low, but non-detectable parasitaemia on the final day 2256 
of follow-up, but never had observable recurrence during follow-up. This occurred because  the 2257 
patient had a total parasitaemia of <108, throughout follow-up so parasites were unobservable 2258 
through microscopy (unless venous blood was taken, which is not current practice); thus, no genotype 2259 
was taken. 2260 

A patient with an initial infection that does not clear is, by definition, a true failure. However, in the 2261 
absence of detectable parasites, the patient cannot be classified as a recrudescence or a reinfection 2262 
(correctly or incorrectly) and is classified as a treatment success on the final day of follow-up. Because 2263 
one of the purposes of this research is determining the accuracy of the Bayesian algorithm, it was 2264 
necessary to quantify the number of these patients exactly.   2265 

The number of patients who had undetectable parasitaemia throughout follow-up (i.e. a total <108  2266 
parasites, either reinfection or initial infection) was calculated, as was the proportion of these patients 2267 
who had undetectable recrudescent infections (as opposed to undetectable reinfections). These 2268 
results are shown in Table 4.6 . The proportion of patients with non-detectable parasitaemia increased 2269 
as transmission intensity increased, but the proportion of patients with non-detectable parasitaemia 2270 
who are true failures was consistently extremely low. The chance of a patient having an initial clone 2271 
that does not clear, does not increase to detectable levels, and that patient not having reinfections 2272 
that lead to parasites become detectable is extremely low. In other words there is a negligible (nearly 2273 
zero)  under-estimation of failure rate from patients who are true failures but who never have an 2274 
observed recurrence.  2275 

 2276 

Table 4.6 The proportion of patients who have undetectable parasites during follow-up (due to having 2277 
total parasitaemia <108 , such that parasites are not observed by light microscopy and no genotype is 2278 
taken), and the proportion of patients with undetectable parasites and a recrudescent clone(s) (i.e. 2279 
the proportion of patients who are true failures but do not have a recurrence). 2280 

Scenario Proportion of patients with non-
detectable parasitaemia on the final day 
of the follow-up  

Proportion of patients 
with non-detectable 
parasitaemia during 
follow-up who are also 
true failures  

Low transmission, non-
failing AR-LF 

0.0377 0.0006 

Medium transmission, 
non-failing AR-LF 

0.1462 0.001 

High transmission, non-
failing AR-LF 

0.2269 0.0017 

Low transmission, failing 
AR-LF 

0.0313 0 

Medium transmission, 
failing AR-LF 

0.0746 0.0004 

High transmission, failing 
AR-LF 

0.1023 0.0004 

AR: Artemether, LF: Lumefantrine 2281 

 2282 
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4.3.2 Analysis of AS-MQ.  2283 

AS-MQ treatment was simulated and analysed in the same manner as for AR-LF, i.e., the ability to 2284 
recover the true failure rate of the match counting algorithm and Bayesian analysis across a variety of 2285 
cut-off points, the diagnostic ability in the form of receiver operator characteristic (ROC) curves and 2286 
analysis of the distribution of the posterior probability of recrudescence in the Bayesian analysis.  2287 

Results were very consistent with those of AR-LF: The match counting algorithm for classifying 2288 
recurrences as reinfection or recrudescence could not consistently provide accurate  failure rate 2289 
estimates across a variety of scenarios and often resulted in extreme over or under-estimates of true 2290 
failure rate, depending on the choice of threshold. The Bayesian analysis method generated failure 2291 
rate estimates to a high degree of accuracy across all scenarios, although there was an under-estimate 2292 
of 1.6 percentage units in the high transmission, failing drug scenario. As with AR-LF, using  p ≥ 0.1 to 2293 
classify an infection as a recrudescence provided the most accurate failure rate estimate for AS-MQ in 2294 
every scenario.  2295 

 2296 

4.3.2.1 Failure rate estimates and comparison to true failure rate. 2297 

Six thresholds (2 to 7 matching loci between initial and recurrent sample inclusive) were analysed and 2298 
the results presented in Figure 4.7 Figure 4.8 for non-failing AS-MQ. The trends were similar to those 2299 
seen for AR-LF: using a low threshold over-estimated failure rates, using a higher threshold under-2300 
estimated the true failure rate, and no threshold consistently recovered an accurate estimate across 2301 
all failing drug scenarios – while a threshold of 3 produces a relatively accurate failure rate in a low 2302 
transmission, failing drug scenario, the same threshold will over-estimate true failure rate in medium 2303 
and high transmission scenarios. Note, though, for non-failing drugs, a threshold of 3 recovered the 2304 
true failure rate in all transmission scenarios – this did not occur with AR-LF and likely occurs with AS-2305 
MQ because the number of reinfections that occur is lower due to the superior post-treatment 2306 
prophylactic properties of MQ compared to LF. The over-estimate of true failure rate that occurred in 2307 
medium and high transmission scenarios with a threshold of 2 or 3 was much lower with AS-MQ for 2308 
both failing and non-failing drugs than with AR-LF – again, this occurred because the prophylactic 2309 
effects of AS-MQ meant there were fewer reinfections occurring that could be misclassified as 2310 
recrudescence (and the chance of misclassifying a reinfection is, obviously, greater at lower 2311 
thresholds).   2312 

The Bayesian analysis method for AS-MQ was analysed using 9 break-points of p from 0.1 to 1 (i.e., 2313 
the posterior probability above which a patient’s recurrence was classified as recrudescence) across 2314 
all scenarios. The Bayesian algorithm under-estimates true failure rate slightly using all values of p 2315 
≥0.1 and thus classifying recurrent infections as recrudescence at p ≥0.1 is the value of p that will result 2316 
in the most accurate failure rate estimate. This under-estimate is not large: with a p of 0.1, the low 2317 
transmission scenario has a failure rate estimate of 0.914 relative to a true failure of 0.0978, the 2318 
medium transmission scenario has a failure rate estimate of 0.915 relative to a true failure of 0.106 2319 
and the high transmission scenario has a failure rate estimate of 0.915 relative to a true failure of 2320 
0.1058. In short, using  p of ≥0.1 to classify recrudescence, the Bayesian estimate is within 0.016 (1.6%) 2321 
of the true failure rate in all failing drug scenarios. Failure rate estimates were highly consistent across 2322 
transmission intensities (as was observed with AR-LF), highlighting the robustness of the Bayesian 2323 
analysis method.   2324 

 For all non-failing drug scenarios, the Bayesian estimate is even closer to the true failure rate; for 2325 
example  p ≥0.1 produces a failure rate estimate of 0.0061 relative to a true failure rate of 0.0119 for 2326 
the high transmission scenario, so while this is an under-estimate the absolute difference is so small 2327 
that, practically, the method recovers the true failure rate with extreme accuracy for the non-failing 2328 
drug parameterization (as it does for AR-LF).  2329 
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 2330 

Figure 4.7 Failure rate estimates obtained using either the match counting algorithm or the Bayesian analysis algorithm for failing AS-MQ in low, medium and 2331 
high transmission scenarios. The true failure rate is denoted in each plot by the horizontal grey line. For the match counting algorithm, the threshold for the 2332 
number of matching loci with which a recurrence is classified as a recrudescence varies between 2 and 7.  For the Bayesian analysis, the cut-off for posterior 2333 
probability at which a recurrence is classified as a recrudescence varies between ≥0.1 and ≥0.9. This plot is analogous to Figure 4.2  for failing AR-LF.  2334 
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 2335 

Figure 4.8 Failure rate estimates obtained using either the match counting algorithm or the Bayesian analysis algorithm for non-failing AS-MQ in low, medium 2336 
and high transmission scenarios. The true failure rate is denoted in each plot by the horizontal grey line. For the match counting algorithm, the  threshold for 2337 
the number of matching loci with which a recurrence is classified as a recrudescence varies between  2 and 7.  For the Bayesian analysis, the cut-off for 2338 
posterior probability at which a recurrence is classified as a recrudescence varies between ≥0.1 and ≥0.9. This plot is analogous to Figure 4.3  for non-failing 2339 
AR-LF. 2340 



102 
 

4.3.2.2 Receiver Operator Characteristic (ROC) curves for the Bayesian algorithm. 2341 

ROC curves for the Bayesian algorithm are shown in Figure 4.9, where the ROC curve was constructed 2342 
using the posterior probability at which an infection would be classified as a recrudescence (from 0 to 2343 
1). An area under the curve (AUC) of ≥0.8 is considered a “good diagnostic test” while an AUC of ≥0.9 2344 
is considered an “excellent diagnostic test”.  2345 

The ROC curves show the Bayesian method to be an excellent diagnostic test for both non-failing and 2346 
failing AS-MQ in all transmission intensity scenarios. There was a notable trend in the failing drug 2347 
scenarios that AUC decreases as transmission intensity increases (AUC is “only” 0.905 in the failing 2348 
drug, high transmission scenario). Similar to the results for AR-LF, the method had a higher diagnostic 2349 
ability when considering only high density recrudescence (where AUC was very close to 1 in all 2350 
scenarios).  2351 

AUC was greater in all scenarios for AS-MQ than AR-LF, and this difference was more pronounced in 2352 
the non-failing drug scenarios than the failing drug scenarios. This difference appeared to arise from 2353 
differences in sensitivity rather than specificity and was negligible when considering only high-density 2354 
recrudescence. Consequently, these results appear to show that the Bayesian method had a higher 2355 
sensitivity when analysing AS-MQ than AR-LF – the cause of this is most likely the increased 2356 
prophylactic effect of AS-MQ resulting in fewer reinfections becoming patent; thus, recurrences are 2357 
less likely to be reinfections, which could mask low density recrudescence (i.e., the recrudescing clone 2358 
was not able to increase in frequency to a detectable parasitaemia before the reinfection became 2359 
detectable and the patient was removed from follow-up for further treatment).  2360 

 2361 

4.3.2.3 Distribution of posterior probability of recrudescence. 2362 

Figure 4.10 shows the distribution of the posterior probabilities of recrudescence for all recurrent 2363 
infections, stratified according to the true classification of their recurrence: Reinfection, low density 2364 
recrudescence, or high density recrudescence. As with AR-LF, distributions are nearly binary in every 2365 
scenario: Nearly all posterior probabilities in the patient population are <0.1 or ≥0.9.  2366 

Results were markedly similar to those of AR-LF (Figure 4.5); the under-estimate of failure rate at p 2367 
≥0.1 was due to the small proportion of infections with p ≥0.1 that are a low-density recrudescence. 2368 
The number of infections that are low density recrudescence and p ≥0.1 is extremely low (and is 0 for 2369 
all the non-failing drug scenarios). 2370 

 2371 

 2372 

 2373 

 2374 

 2375 

 2376 

 2377 

 2378 
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Figure 4.9 : Receiver operator characteristic (ROC) curves showing diagnostic ability for the Bayesian analysis method for 6 model scenarios for artesunate-2380 
mefloquine (AS-MQ). ROC curves and area under the roc curve (AUC) are shown for all recrudescence and for high density recrudescence, where a high 2381 
density recrudescence is defined in 4.2.5. This plot is complementary to the plot for artemether-lumefantrine (AR-LF) shown in Figure  4.4 2382 
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Figure 4.10 Distribution of the posterior probability of recrudescence estimated the by Bayesian algorithm across 6 different scenarios for artesunate-2384 
mefloquine (AS-MQ). A high density recrudescence was defined as explained in 4.2.5. This plot is complementary to the plot for artemether-lumefantrine 2385 
(AR-LF) shown in  Figure 4.5.2386 
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4.3.3 Analysis of AR-LF in extremely low genetic diversity scenarios. 2387 

Failing AR-LF and non-failing AR-LF in an area of extremely low genetic diversity (4.2.2.2) was 2388 
simulated under scenarios of low, medium and high transmission. The model parameters MOI, FOI 2389 
and PK/PD parameters (including IC50) are the same as for other simulations of failing AR-LF (i.e., as 2390 
described in 4.2.1).  2391 

Note that the parasite dynamics of each clone are identical to those in the results for AR-LF in the main 2392 
text, i.e., the parasitaemia over time of clone 1 in patient 1 for the failing, high transmission scenario 2393 
(main text) is the same as the failing, high transmission scenario presented here; however,  the 2394 
microsatellite alleles assigned to each clone differs, so the classification of each recurrent infection 2395 
may also differ.   2396 

 2397 

4.3.3.1 Failure rate estimates and comparison to true failure rate. 2398 

True failure rate for failing and non-failing AR-LF at low, medium and high transmission scenarios, all 2399 
calibrated with allelic distributions of extremely low genetic diversity were identical to the true failure 2400 
rates of AR-LF when calibrated as described in 4.2.1 (Figure 4.2 ). Failure rate estimates obtained using 2401 
the match counting algorithm and the Bayesian analysis algorithm are shown for failing AR-LF and 2402 
non-failing AR-LF in  2403 

Figure 4.11  and Figure 4.12 respectively.  2404 

Six thresholds for the match counting algorithm (2 to 7 matches between initial and recurrent sample 2405 
inclusive) were analysed. Compared to AR-LF with higher levels of genetic diversity (4.3.1), there was 2406 
a clear trend of greatly increased failure rate estimates, particularly as transmission intensity 2407 
increases. For example, a threshold of 3 matching loci for the failing, high transmission scenario gave 2408 
a failure rate estimate of 35% with extremely low genetic diversity compared to 18% with the allelic 2409 
distribution of a “high” transmission area i.e. Figure 4.2  – this is an over-estimate of the true failure 2410 
rate by 25%; an area of high transmission but very low genetic diversity could represent a genetic 2411 
bottleneck in vivo. The results in  2412 

Figure 4.11 and Figure 4.12 should be compared with those in Figure 4.2  and Figure 4.3 ; they clearly 2413 
show that a reduction in genetic diversity will lead to increased failure rate estimates using a match 2414 
counting algorithm and a threshold of 3 or 4 (i.e., the thresholds that produced the failure rate 2415 
estimates closest to the true failure rate in areas of higher genetic diversity) as reinfections are 2416 
misclassified as recrudescence. Failure rate estimates at a threshold value of at least 6 matching loci 2417 
will still under-estimate the failure rate in all scenarios because, even in a very low diversity setting, 2418 
the mathematical chance of a reinfection matching an initial clone at 6 or 7 loci is small.  2419 

The Bayesian analysis algorithm was then applied to the extremely low genetic diversity AR-LF 2420 
simulations with nine values of p at which to classify a recurrence as a recrudescence ranging from 2421 
≥0.1 to 1 across all patients, as previously described.  2422 

Failure rate estimates obtained using the Bayesian analysis algorithm are higher across the board with 2423 
extremely low genetic diversity compared to the higher genetic diversity scenarios; though note that 2424 
using p ≥ 0.1 to classify a recrudescence will still produce the best failure rate estimate (and it 2425 
remained highly accurate here, as it was with higher diversity). Note, though, that while using this p 2426 
as the threshold at which to classify a recrudescence would under-estimate true failure (slightly, see 2427 
Figure 4.2 and Figure 4.3 with higher diversity, here there was a slight over-estimate in the high 2428 
transmission intensity scenarios for both failing and non-failing AR-LF.   2429 

The most notable trend is that the decrease in failure rate estimates obtained from the Bayesian 2430 
method was considerably sharper in a very low diversity setting – more so with higher transmission 2431 
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intensity, such that using high p values as the threshold at which to classify a recurrence as a 2432 
recrudescence resulted in larger under-estimates of true failure rate in a very low diversity setting 2433 
than in a higher diversity setting.  2434 

 2435 

4.3.3.2 Receiver Operator Characteristic (ROC) curves for the Bayesian algorithm. 2436 

ROC curves for the Bayesian algorithm for AR-LF with very low genetic diversity are shown in Figure 2437 
4.13 where the ROC curve was constructed using the posterior probability at which an infection would 2438 
be classified as a recrudescence (from 0 to 1). An area under the curve (AUC) of ≥0.8 was considered 2439 
a “good diagnostic test” while an AUC of ≥0.9 was considered an “excellent diagnostic test”.  2440 

AUC is similar between the extremely low genetic diversity scenarios and the higher diversity 2441 
scenarios; the trends shown in Figure 4.13 follow the same key trends as those in Figure  4.4 i.e., that 2442 
AUC decreases as transmission intensity increases, driven by a decrease in sensitivity, and that the 2443 
diagnostic ability for “high density recrudescence” is notably higher than that for all recrudescence. 2444 

 2445 

 2446 
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Figure 4.11 Failure rate estimates obtained using either the match counting algorithm or the Bayesian analysis algorithm for failing AR-LF in an extremely low 2463 
genetic diversity setting and with low, medium and high transmission intensity (MOI and FOI). The true failure rate is denoted in each plot by the horizontal 2464 
grey line. For the match counting algorithm, the threshold for the number of matching loci with which a recurrence is classified as a recrudescence varies 2465 
between 2 and 7.  For the Bayesian analysis, the cut-off for posterior probability at which a recurrence is classified as a recrudescence varies between ≥0.1 2466 
and ≥0.9. This plot is analogous to  Figure 4.2 .  2467 

 2468 
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Figure 4.12 Failure rate estimates obtained using either the match counting algorithm or the Bayesian analysis algorithm for failing AR-LF in an extremely low 2471 
genetic diversity setting and with low, medium and high transmission intensity (MOI and FOI). The true failure rate is denoted in each plot by the horizontal 2472 
grey line. For the match counting algorithm, the threshold for the number of matching loci with which a recurrence is classified as a recrudescence varies 2473 
between 2 and 7.  For the Bayesian analysis, the cut-off for posterior probability at which a recurrence is classified as a recrudescence varies between ≥0.1 2474 
and ≥0.9. This plot is analogous to  Figure 4.3 .  2475 
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Figure 4.13 Receiver operator characteristic (ROC) curves showing diagnostic ability for the Bayesian analysis method for 6 model scenarios for artemether-2477 
lumefantrine (AR-LF) in a very low genetic diversity setting. ROC curves and area under the roc curve (AUC) are shown for all recrudescence and for high 2478 
density recrudescence, where a high density recrudescence was defined as explained in 4.2.5.2479 
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4.3.2.3 Distribution of posterior probability of recrudescence. 2480 

Figure 4.14 shows the distribution of the posterior probabilities of recrudescence for all recurrences, 2481 
stratified according to the true classification of their recurrence: Reinfection, low density 2482 
recrudescence, or high density recrudescence. 2483 

A notable, important difference between the extremely low diversity scenarios and the higher 2484 
diversity scenarios was that  posterior probabilities under the assumption of extremely low genetic 2485 
diversity were less binary than those for higher diversities (i.e., Figure 4.5), where only a small number 2486 
of patients had p between 0.1 and 0.9 (non-inclusive). By contrast, in the extremely low diversity 2487 
genetic scenarios, recurrences with a p of <0.1 and ≥0.9 were the largest groups, but larger numbers 2488 
of recurrences possessed interim values. This distribution explains why the decrease in failure rate 2489 
estimate shown in  2490 

Figure 4.11 and Figure 4.12  as p increased was much sharper than occurred in the higher genetic 2491 
diversity scenarios (Figure 4.2 and Figure 4.3 ) – each unit increase in p moved a greater proportion 2492 
of recurrences from being classified as a reinfection to being classified as a recrudescence.  2493 

There were a larger number of recurrences that were high density recrudescence with p values of <0.1 2494 
in the extremely low genetic diversity scenarios compared to the higher genetic diversity scenarios. 2495 
Specifically, in the failing drug scenarios: 27, 56 and 81 recurrences for low, medium and high 2496 
transmission respectively, relative to 5, 9 and 21 recurrences with higher genetic diversity. In the non-2497 
failing drug scenarios these figures are 11, 18 and 22 patients relative to 5, 7 and 6 for higher genetic 2498 
diversity. The distribution of low-density recrudescence also changed – there are comparable numbers 2499 
of recurrences with p < 0.1 in the extremely low genetic diversity scenarios to the higher genetic 2500 
diversity scenarios, but a reduction in the number of recurrences which have p ≥0.9 and low density 2501 
recrudescence – the posterior probabilities of these recurrences have shifted to the interim posterior 2502 
probabilities between 0.1 and 0.9. Both effects occurred because of the increased probability of 2503 
shared alleles between initial and recurrent samples due to reduced genetic diversity – this can also 2504 
be observed by the reduced specificity shown in the ROC curves (Figure 4.13). Ultimately the increased 2505 
failure rate observed when classifying a recrudescence as a given value of p, but specifically p ≥ 0.1 2506 
was because of the larger numbers of recurrences with p ≥0.1 who are truly reinfections when 2507 
compared to the higher genetic diversity scenarios. There was a modest increase in the numbers of 2508 
recurrences that were high density recrudescence which had p < 0.1, which would drive an under-2509 
estimate of true failure rate, but this was not enough to fully offset the impact of reinfections having 2510 
increased values of p.  2511 

 2512 

 2513 
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Figure 4.14 Distribution of the posterior probability of recrudescence estimated the by Bayesian analysis algorithm for 6 model scenarios for artemether-2521 
lumefantrine (AR-LF) in an extremely low genetic diversity setting. A high density recrudescence was defined as explained in 4.2.2522 
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4.4 Discussion. 2523 

4.4.1 Evaluation of the match counting algorithm.  2524 

Despite its wide use, match counting of microsatellites for distinguishing recrudescence from 2525 
reinfection does not appear to be a robust approach because the estimated drug failure rate is   highly 2526 
dependent on the threshold used to define a recrudescence. The same clone of malaria will have, by 2527 
definition, the same genotype between the initial and recurrent sample. However, the observed 2528 
genotype (described by the microsatellite alleles) may differ due to issues inherent in the genotyping 2529 
method (failure to detect minority alleles or errors in measuring base-pair length of alleles) – 2530 
accounting for this difference is the purpose of including a degree of flexibility in the molecular 2531 
correction process i.e., varying thresholds.   2532 

The high thresholds generally used to classify a recurrence as a recrudescence in vivo (either most, or 2533 
all, of the available loci must match to define a recrudescence, see 4.1) are likely resulting in 2534 
substantial under-estimate of failure rate. For the in silico failing AR-LF results presented here, failure 2535 
rate estimates with a threshold of 2 ranged between 15% in a low transmission scenario to 50% in a 2536 
high transmission scenario, relative to true failure rates of ~10% (Figure 4.2 ). However, a threshold 2537 
of 7 provided estimates that ranged between 0.5% and 0.6% relative to true failure rates of ~10% . For 2538 
non-failing AR-LF (Figure 4.3 ) failure rate estimates with a threshold of 2 ranged from 7% in a low 2539 
transmission scenario to 24% in a high transmission scenario, relative to true failure rates of ~2%. In 2540 
other words, the potential bias induced by choice of a break-point for the match counting algorithm 2541 
could result in either rejecting an efficacious drug or continuing to use a failing drug and this is further 2542 
complicated by the sensitivity of the break-point to transmission intensity; it is difficult to recommend, 2543 
for policy use, a specific number of microsatellites to type or a specific number of matching loci at 2544 
which to classify a recurrence as recrudescent, because these specifics would have to vary across areas 2545 
of different transmission intensities. The same issues are present in using the match counting 2546 
algorithm for AS-MQ (Figure 4.7 and Figure 4.8).  2547 

The results presented here strongly suggest that stringent thresholds (i.e., requiring all or most loci to 2548 
have matching alleles) will under -estimate failure rate (i.e., over-estimate efficacy). With the seven 2549 
microsatellites used in these simulations, failure rate estimates produced by the match counting 2550 
algorithm varied with both the choice of threshold and the transmission intensity but in all scenarios 2551 
(assuming “normal” levels of genetic diversity) a threshold of 5 matching loci under-estimated failure 2552 
rate; either 3 or 4 produced the closest estimate (Figure 4.2 , Figure 4.3 , Figure 4.7 and Figure 4.8). 2553 
Note that the threshold producing the most accurate estimate increased from 3 to 4 as transmission 2554 
increased from low to high – this is because in higher transmission areas there was a greater number 2555 
of reinfections, and consequently the impact of reinfections being incorrectly classified as 2556 
recrudescence due to sharing alleles by chance was increased.  A threshold of 2 would lead to large 2557 
over-estimates of failure rate. The reason that stringent thresholds under-estimated failure rate is 2558 
two-fold: 2559 

Firstly, low-density recrudescence can be overlooked in patients who have a polyclonal initial or 2560 
recurrent infection. This is best observed in the figures showing the distribution of the posterior 2561 
probabilities of recrudescence; Figure 4.5 for AR-LF and Figure 4.10 for AS-MQ. The mechanistic cause 2562 
of missing low density recrudescence is due to the inability to detect minority alleles in the PCR 2563 
process, as described in 4.1.2. Secondly, mis-reading the length of microsatellite alleles (also described 2564 
in 4.1.2) both occurs in reality and was included in the model. Mis-reading allelic length by one or 2565 
more base pairs can result in the conditions for the stringent matching threshold not being met.  2566 

 2567 

 2568 

 2569 
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4.4.2 Evaluation of the Bayesian analysis algorithm.  2570 

Application of the Bayesian analysis algorithm produced accurate and stable estimates of failure rate 2571 
in all transmission scenarios for both failing and non-failing drugs with use of a posterior probability p 2572 
of ≥0.1. This result is consistent for analysis of AR-LF, AS-MQ and even for AR-LF in an extremely low 2573 
genetic diversity scenarios. Existing in vivo studies that have utilized the Bayesian analysis algorithm 2574 
used in this research have considered a p of ≥0.5 to be indicative of recrudescence [31, 150]. Applying 2575 
the Bayesian analysis algorithm to simulated data where the true failure rate is known permits 2576 
calculation of it’s sensitivity and specificity (Figure  4.4 and Figure 4.9). This is not possible in vivo, and 2577 
the results obtained show that the algorithm is highly specific, producing posterior probabilities  ≥0.1 2578 
for reinfections at a very low frequency (Figure 4.5 and Figure 4.10 ). Because of this, and because the 2579 
results produced by the algorithm are very binary (a result that also occurs when the algorithm has 2580 
been applied to in vivo data elsewhere, see Figure 1 of [150]), a small increase in accuracy of failure 2581 
rate estimates produced by this algorithm may be realised by using the lower threshold of  p ≥0.1.  2582 

The slight under-estimate of true failure rate that occurs in all scenarios (apart from the extremely low 2583 
genetic diversity scenarios) when using the Bayesian analysis algorithm occurs primarily because the 2584 
algorithm is unable to accurately identify low density recrudescence (Figure 4.5 and Figure 4.10 ); this 2585 
occurred because of the inherent inability to detect minority alleles during the genotyping process of 2586 
microsatellite markers; nonetheless, the number of recurrences that were, in truth, low density 2587 
recrudescence was low; most recurrences were either high density recrudescence or reinfection. The 2588 
diagnostic ability of the Bayesian analysis algorithm for high density recrudescence was extremely high 2589 
(Figure  4.4 and Figure 4.9) and consequently the algorithm is able to estimate failure rates to a high 2590 
degree of accuracy.  2591 

 2592 

4.4.3 Microsatellite markers in areas of extremely low genetic diversity. 2593 

Extremely low diversity has been a key concern in the field due to the increased threat of misclassifying 2594 
reinfection as recrudescence, and the stringent thresholds that have been used with the match 2595 
counting algorithm were likely chosen, historically, to help mitigate the frequency of these 2596 
misclassifications. Extremely low genetic diversity was simulated in low, medium and high 2597 
transmission scenarios here for AR-LF. A low transmission, extremely low diversity scenario is simply 2598 
a plausible situation that is likely to occur, while medium and high transmission scenarios with 2599 
extremely low genetic diversity may reflect phenomena such as genetic bottlenecks. 2600 

Under the assumption of extremely low genetic diversity, the match counting algorithm becomes 2601 
critically compromised. The stringent thresholds (5, 6 and 7 matching loci) still result in under-2602 
estimates of the true failure rate, while requiring matches at 3 or 4 loci over-estimates failure rates 2603 
for failing AR-LF (Figure 4.12 ).  As with areas of higher genetic diversity, failure rate estimates obtained 2604 
with a given threshold of matches increase as transmission intensity increases. The match counting 2605 
algorithm is able to estimate an accurate failure rate for non-failing AR-LF at a threshold of 5, 6 or 7 2606 
matching loci (Figure 4.12 ) 2607 

Crucially, the Bayesian algorithm was able to recover accurate failure rate estimates for failing AR-LF 2608 
even under the assumption of extremely low genetic diversity (Figure 4.12 ). The results here show 2609 
that, while failure rate estimates using the Bayesian analysis algorithm will increase slightly with 2610 
extremely low genetic diversity, the algorithm is still highly specific (Figure 4.13) and sensitive to high-2611 
density recrudescence (the majority of recrudescence). This is likely to be a result of using seven 2612 
microsatellite loci – use of fewer loci would be more compromised by extremely low genetic diversity.  2613 

 2614 

 2615 
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4.4.4 Policy recommendations for use of microsatellite markers. 2616 

The main practical drawback of the Bayesian algorithm is the need to run a Bayesian analysis. The 2617 
methodology is published and available [150] but application requires some experience in 2618 
programming and Bayesian statistics. The analysis is computationally expensive (see [SI]) and may be 2619 
difficult to run on an average personal computer (fully described in 4.2.9). However, this should not 2620 
be allowed to be an impediment, given the importance of accurate malaria drug trials, and one 2621 
solution to this would be for a central body to offer such analyses as a service, or to support application 2622 
of the algorithm through an internet-based application.   2623 

Nonetheless, match counting algorithms will likely continue to be used due to their considerable ease 2624 
and inertia in the field. When a match counting algorithm for interpreting microsatellite data is  used, 2625 
the results presented here strongly suggest that  failure rates obtained with multiple thresholds  points 2626 
are reported, (for example Plucinski et al. reported failure rate estimates based on thresholds of 2627 
matching at all loci and matching at all except a single locus [150]; their table 2). This reflects the 2628 
difficulty (or the impossibility) of identifying a robust number of matching loci which to consider a 2629 
recurrence as a recrudescence, a priori. Additionally, the results presented here suggest that stringent 2630 
thresholds (requiring all or a very high proportion of loci to be matching) should generally be avoided 2631 
due to the under-estimate of true failure rate induced by these stringent thresholds.  2632 

In the results presented here, a threshold of 4 matching loci to classify a recurrent infection as 2633 
recrudescent appeared to be a reasonable approach in non-failing drug scenarios (Figure 4.3 and 2634 
Figure 4.8). In non-failing drug scenarios, most recurrences were likely to be reinfection and 4 2635 
appeared to be a sufficient threshold to prevent over-estimation of failure rates due to misclassifying 2636 
reinfections as recrudescence (such as would be observed using 2 or 3 matching loci as a threshold, 2637 
particularly for AR-LF).  Consequently, perhaps a feasible approach for using microsatellites in TES 2638 
would be to use the match counting algorithm initially, assess the failure rate estimates produced with 2639 
a range of thresholds and pass any result that indicates a drug failure rate of higher than 5% through 2640 
a Bayesian algorithm for re-analysis. In the results presented here,  the failure rate estimates produced 2641 
when varying the  threshold number of matching loci are sensitive to transmission intensity, but even 2642 
in a high transmission intensity, a threshold of 4 would  not mistakenly indicate that a failing drug was 2643 
non-failing (Figure 4.3 and Figure 4.8).   2644 
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Chapter 5: Validation of next-generation amplicon sequencing for molecular 2656 

correction using a computer modelling approach. 2657 

Chapter-specific acknowledgements: Dr Katherine Kay, Dr Eva Maria Hodel and Dr Ian Hastings 2658 
provided R code to generate parasite dynamics post-treatment (fully described in Chapter 2 of this 2659 
thesis). Professor Ingrid Felger, Dr Anita Lerch and Maria Gruenberg provided data-sets detailing 2660 
amplicon allele frequency distributions.   2661 

 2662 

5.1 Introduction. 2663 

5.1.1 Next-generation amplicon sequencing for molecular correction. 2664 

Sequencing of length-polymorphic markers (msp-1, msp-2 and glurp; Chapter 3) and microsatellite 2665 
markers (Chapter 4) for molecular correction follow the same general laboratory methods, i.e. that 2666 
blood samples are passed through Polymerase Chain Reaction (PCR), and the products of PCR are 2667 
sequenced using gel or capillary electrophoresis so the frequency of alleles (identified by their length 2668 
in base pairs) can be determined [14].  2669 

Amplicon deep-sequencing (AmpSeq) is able to quantify, in greater detail, the genetic information 2670 
present in a given blood sample. This technique has seen notable use in a malaria context: Genotyping 2671 
infections for the purpose of describing and tracking specific genes (i.e., for resistance) within 2672 
populations [154-156], and for evaluating efficacy of  the novel RTS,S/AS01 vaccine [157]. Using 2673 
AmpSeq as a method for the molecular correction process in therapeutic efficacy studies (TES) is now 2674 
being investigated [36, 41, 158]. Amplicon deep-sequencing amplifies a target region of 2675 
Deoxyribonucleic acid (DNA), creating a large amount of genetic material that can then be sequenced 2676 
using next generation sequencing (NGS; alternatively known as deep sequencing). The region 2677 
amplified is the amplicon locus and NGS is able to identify individual variants of that locus through 2678 
their distinctive genetic sequences. The large amount of genetic material generated through 2679 
amplification allows the genetic sequence to be read an extremely large number of times, with the 2680 
consequence that amplicon variants can be fully sequenced and identified with a high degree of 2681 
accuracy, and the number of “reads” of a specific amplicon variant denotes its frequency in the blood 2682 
sample.  In principle, any short region of DNA can be used as an amplicon locus (for example, 2683 
merozoite surface protein-1 (msp-1) and merozoite surface protein-2 (msp-2), typically used in the 2684 
length-polymorphic marker methodology for genotyping malaria infections [Chapter 3] have been 2685 
characterized using an AmpSeq approach [159]), but it is hypothesized that select loci with high 2686 
numbers of single nucleotide polymorphisms (SNPs)  are the best candidates for effective genotyping 2687 
of malaria infections [36].  2688 

Note that some existing AmpSeq literature has a tendency to refer individual gene variants as 2689 
“haplotypes” (see [36, 41, 160]), while other AmpSeq literature uses the term haplotype in the more 2690 
traditional sense i.e. a group of alleles that are inherited together i.e. [157] ; in this thesis the term 2691 
haplotype is avoided and individual gene variants will be referred to as “alleles” to avoid confusion 2692 
and for consistency of comparisons with other approaches (i.e., traditional use of length-polymorphic 2693 
markers and microsatellite markers [Chapter 3, Chapter 4]).   2694 

A critical proposed advantage of amplicon sequencing in the context of molecular correction to 2695 
distinguish between recrudescence and reinfection in anti-malarial TES is its ability to detect low 2696 
frequency alleles, and because the allele is fully sequenced there is no risk of introducing errors by 2697 
mis-reading allelic length, as can happen with microsatellite markers [122]. Consequently, low-2698 
frequency alleles appear to be considerably more detectable using amplicon deep-sequencing than 2699 
when using traditional methods [36, 158]. Deep-sequencing techniques have been experimentally 2700 
shown to identify more alleles in a selection of samples than the length-polymorphic markers msp-1 2701 
and msp-2 [159]. Additionally, minority clones were consistently detected in mixtures using the 2702 
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amplicon conserved Plasmodium membrane protein (Cpmp) at a frequency of >1% of the majority 2703 
clone, but for the amplicon circumsporozoite surface protein  (csp)  this was accomplished with a 2704 
frequency of >0.7% of the majority clone [36] –so  while the exact ability to detect minority clones 2705 
does vary between amplicons, it has been experimentally shown that there is consistently a much 2706 
higher detectability of minority alleles compared to similar experiments involving mixtures of clones 2707 
and using traditional genotyping of msp-1, msp-2 and glurp [36, 106].  2708 

 2709 

5.1.2 Sources of misclassification of recurrent infections when genotyping with AmpSeq.  2710 

There were three manners of misclassification of recurrent infections with length-polymorphic and 2711 
microsatellite markers – these may also occur using AmpSeq.   2712 

a) Recrudescent infections can be misclassified as reinfection if alleles of the recrudescent 2713 
clone(s) were not detected when genotyping the initial infection.  2714 

b) Recrudescent infections can be misclassified as reinfection if the recurrent infection is mixed 2715 
(i.e., the recurrence is polyclonal and comprised of both recrudescence and reinfections), and alleles 2716 
of the recrudescent clone(s) are not detected, but alleles of a reinfecting clone(s) are.  2717 

c) A reinfection could be misclassified as recrudescent if it shares (by chance) alleles with clones 2718 
present at time of treatment. 2719 

Misclassification a) and b) above both require an allele that is truly present in a blood sample to not 2720 
be detected. How could this occur using an AmpSeq methodology? Low frequency false alleles 2721 
(artefacts) can be generated in the amplicon deep-sequencing process – this is a similar concept to 2722 
minority “noise” peaks generated in traditional genotyping and is explained in detail elsewhere [36]. 2723 
Consequently, there must be a user-defined cut-off point for allelic frequency (generally termed in the 2724 
AmpSeq literature “number of reads”) below which an allele would be considered to be an artefact, 2725 
with the consequence that truly present low frequency alleles will also be considered noise. These 2726 
false alleles have been observed experimentally at frequencies of up to 0.01% [36] and this cut-off 2727 
point has been utilized in a longitudinal infection dynamics study [160]. However, for TES, a 1% cut-2728 
off is generally used for two purposes: Firstly, malaria gametocytes may persist at low levels, and use 2729 
of an extremely minor cut-off risks misclassifying gametocyte genetic signals as a recrudescent 2730 
infection. Secondly, to further mitigate the impact of artefacts (they have not been observed at 2731 
frequencies of 1% of the majority allele, so a 1% cut-off is more conservative). Development of 2732 
AmpSeq for genotyping is a very recent development and a limited number of labs have explored the 2733 
implications of cut-off points, but see [36, 41, 160] for details.    2734 

 2735 

5.1.3 Research Goals. 2736 

AmpSeq is purported to be a highly accurate means of genotyping infections during TES [41]. However, 2737 
the true failure rate of a drug cannot be known in vivo and so the quantitative accuracy of AmpSeq 2738 
used in molecular correction remains unknown. Using a mechanistic 2739 
pharmacokinetic/pharmacodynamic (mPK/PD) approach (Chapter 2), 5,000 patients were modelled 2740 
in silico following treatment of an uncomplicated malaria infection with either Dihydroartemisinin-2741 
Piperaquine (DHA-PPQ) or Artemether-Lumefantrine (AR-LF) in a range of different levels of 2742 
transmission intensity. These ACTs were chosen to investigate both a drug with a relatively long post-2743 
treatment prophylactic period (DHA-PPQ) and one with a relatively short post-treatment prophylactic 2744 
period (AR-LF). Parasite clones were allocated genetic data at AmpSeq loci. The simulated patient 2745 
populations were analysed with two goals: 2746 
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1. Quantify the accuracy of failure rate estimates obtained from a variety of simulated patient 2747 
populations when infections are genotyped using AmpSeq markers by comparing the 2748 
estimated failure rates to the true failure rate, which is known from the mPK/PD model.  2749 

2. Quantify how accuracy of failure rate estimates changed when fewer AmpSeq markers are 2750 
genotyped (increasing ease and decreasing cost) and identify the fewest number of AmpSeq 2751 
markers that should be genotyped while maintaining the accuracy of failure rate estimates.  2752 

 2753 

5.2 Methodology. 2754 

Parasite dynamics post-treatment with DHA-PPQ and AR-LF were simulated for 5,000 patients using a 2755 
mPK/PD approach (see Chapter 2 for full description of the mechanistic simulations for these drugs). 2756 
DHA-PPQ and AR-LF were the drugs modelled for the purpose of investigating failure rate estimates 2757 
produced by AmpSeq.  All PK/PD parameters (with the exception of partner drug IC50, below) are 2758 
given in Table 2.1 and Table 2.4.  2759 

 2760 

5.2.1 Partner Drug choice and IC50. 2761 

Failing DHA-PPQ and AR-LF were simulated. The IC50 values used for the partner drugs in this chapter 2762 
were identical to those used for failing PPQ and LF in Chapter 3 and are shown in Table 5.1. As 2763 
previously described in Chapter 2 and Chapter 3, failing LF was simulated by arbitrarily increasing its 2764 
IC50 until simulated true failure was ~10%. Only a two-compartmental model of PPQ was used in this 2765 
chapter, a three-compartmental model (i.e., as described in Table 2.3) was not considered for the 2766 
reasons provided in 2.1.1. 2767 

 2768 

Table 5.1 Mean values of the half-maximal inhibitory concentration (IC50) for each calibration of two 2769 
partner drugs (PPQ and LF) used within this chapter. 2770 

Partner Drug Mean IC50 (mg/L) Literature Justification 

Failing PPQ  0.02 (0.3) [20] 

Failing LF 10 (1.02) N/A 

PPQ: Piperaquine, LF: Lumefantrine, IC50: Half-maximal inhibitory concentration. Coefficient of 2771 
variation (CV) is given in brackets. This table should be considered with Table 2.1 and Table 2.4 for a 2772 
full set of PK/PD parameters for DHA-PPQ and AR-LF.   2773 

 2774 

5.2.2 Multiplicity of Infection (MOI), Force of Infection (FOI), and initial parasite number. 2775 

In this chapter, two Multiplicity of Infection (MOI) distributions were modelled, from which the 2776 
number of clones in a given patient’s initial infection were drawn. A “high MOI” was representative of 2777 
the MOI in an area of intense transmission, in this case Tanzania where MOIs of 1-8 were assigned 2778 
with probabilities 0.036, 0.402, 0.110, 0.110, 0.183, 0.049, 0.061, 0.049 respectively [14]. A “low MOI” 2779 
distribution was based on data from Papua New Guinea with probabilities of 0.460, 0.370, 0.150 and 2780 
0.020 for an MOI of 1-4 respectively [15]; these two distributions were subsequently used to check if 2781 
the accuracy of different algorithms were consistent across different MOIs.  2782 

These MOI distributions are identical to those used for simulation of length-polymorphic markers 2783 
described in 2.3.1. Note that the MOI distributions were derived, in the first instance, from in vivo 2784 
data using length-polymorphic markers, not AmpSeq. Given that AmpSeq provides a higher 2785 
detectability of minority clones [158, 160], MOI estimates from a given population with AmpSeq 2786 
should be higher than MOI estimates with length-polymorphic markers. However, use of AmpSeq for 2787 
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this purpose is extremely novel, and useable MOI distributions obtained with are limited. To the best 2788 
of my knowledge, the only available MOI distributions obtained using AmpSeq are across multiple 2789 
countries or study sites [41, 157] and would not be appropriate to use the source for a population MOI 2790 
distribution for this mPK/PD approach. The purpose of simulating different MOIs was to investigate 2791 
whether qualitative conclusions regarding the accuracy of failure rate estimates obtained using 2792 
AmpSeq were consistent in different MOI (i.e., different endemicity) settings and so use of a low and 2793 
high MOI distribution obtained using length-polymorphic markers was appropriate, even though MOI 2794 
estimates from those same populations obtained with AmpSeq would result in different distributions 2795 
(presumably a higher number of clones on average).  2796 

The Force of Infection (FOI) values used to calibrate the model in this chapter were 0, 2, 8 and 16, 2797 
broadly representing an area with no, low, medium and high ongoing transmission, respectively. 2798 
Intermediate values were not modelled as previous work on length-polymorphic markers (Chapter 3) 2799 
showed the relationship between failure rate estimates and FOI to be relatively linear, so an approach 2800 
of modelling four specific values to represent scenarios of transmission intensity (similar to the 2801 
approach taken in the microsatellite work, Chapter 4) was chosen to reduce computational time 2802 
compared to investigating the whole range of FOI values.  2803 

In short, 8 different scenarios were simulated for treatment with each of DHA-PPQ and AR-LF: Two 2804 
MOI distributions with four FOI values each. Sensitivity analysis was later conducted by varying select 2805 
model parameters and re-simulating these scenarios.  2806 

Each clone within the MOI (later called “initial clones”) had their starting parasitaemia drawn from a 2807 
log-uniform distribution. This log-uniform distribution was varied between two ranges within this 2808 
chapter. Firstly, a log-uniform distribution spanning from 1010 to 1011 asexual parasites per person was 2809 
used (2.3.1). Previous modelling approaches [15] used 1012 parasites as the upper limit of parasitaemia 2810 
because this level of parasitaemia is likely to be lethal or at least be a parasite density sufficiently high 2811 
that such patients would not be enrolled in a clinical trial; hence 1011 was used as the upper limit for 2812 
any single clone at the time of treatment (see 2.3.1 for full discussion). 2813 

Secondly, a wider log-uniform distribution of 108 to 1011 parasites was investigated. This wider 2814 
distribution was investigated only for AmpSeq (and not for length-polymorphic markers (Chapter 3) 2815 
or microsatellite markers (Chapter 4)) due to the theorized advantage of AmpSeq being able to detect 2816 
minority alleles down to 1% of the majority allele. For other markers, where this minority detection 2817 
threshold is ~25% (though see additional values investigated for length-polymorphic markers in 3.3.8), 2818 
varying this initial parasite distribution would have little impact on results compared to the large 2819 
number of alleles that would be missed due to the minority detection threshold (i.e., the increased 2820 
number of alleles that would be missed by creating a wider distribution would be negligible). However, 2821 
because of the higher detectability of minority alleles afforded by AmpSeq, it was theoretically 2822 
possible that the lower range of initial parasitaemia could impact results and it was important to check 2823 
that it does not.  2824 

 2825 

5.2.3 Genetic Data of Malaria Clones. 2826 

Genetic information was assigned to each parasite clone in a patient at five  AmpSeq loci: conserved 2827 
plasmodium protein (cpp), conserved plasmodium membrane protein (cpmp), circumsporozoite 2828 
surface protein (csp), apical membrane antigen (ama1-D3) and merozoite surface protein 7 (msp-7).  2829 

Details of the identification, sequencing and additional information for these loci can be found in [36, 2830 
41, 160]. For the simulations herein, I was provided with frequency distributions for alleles at each of 2831 
these loci by Maria Gruenberg, Anita Lerch and Ingrid Felger. The data were drawn from a worldwide 2832 
mix of samples, fully described across [36, 41, 147, 160] . Each allele was uniquely by genetic variation 2833 
in their sequence (note that this is as opposed to length-polymorphic markers and microsatellite 2834 
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markers which are identified by their length (and, for msp-1 and msp-2, family). The expected 2835 
heterozygosity (He) of each loci in these distributions were: 0.975 for cpp, 0.982 for cpmp, 0.949 for 2836 
csp, 0.966 for ama1-D3 and 0.899 for msp-7.  2837 

To investigate the accuracy of AmpSeq molecular correction when genotyping fewer loci (a strategy 2838 
designed to reduce the complexity and cost of conducting AmpSeq), the total number of loci 2839 
investigated was 5 (the maximum), 4 and 3. To simulate genotyping of 4 total loci, the least diverse 2840 
locus (msp-7) was excluded, and to simulate genotyping 3 total loci, the second least diverse locus 2841 
(csp) was also excluded – this is a consistent approach with laboratory experiments that used 4 loci 2842 
(excluding msp-7) for genotyping, and only using csp to adjudicate in the event that any of the other 2843 
three loci failed to amplify [41]. 2844 
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Table 5.2 Allele frequency distribution for 5 AmpSeq loci simulated: Ama1-D3, cpmp, cpp, csp, msp-7. 2845 

Ama1-D3 cpmp cpp csp msp-7 

Allele name Frequency Allele name Frequency Allele name Frequency Allele name Frequency Allele name Frequency 

ama1-D3-1 4.39 cpmp-1 0.83 cpp-1 0.83 csp-1 1.89 msp7-1 23.33 

ama1-D3-10 0.88 cpmp-10 0.83 cpp-10 7.44 csp-10 0.94 msp7-10 1.11 

ama1-D3-11 6.14 cpmp-11 2.50 cpp-11 0.83 csp-12 5.66 msp7-11 1.11 

ama1-D3-13 1.75 cpmp-117 0.83 cpp-12 0.83 csp-13 10.38 msp7-12 2.22 

ama1-D3-14 1.75 cpmp-118 0.83 cpp-13 3.31 csp-14 0.94 msp7-14 2.22 

ama1-D3-15 2.63 cpmp-119 0.83 cpp-14 1.65 csp-16 2.83 msp7-15 3.33 

ama1-D3-16 7.89 cpmp-12 3.33 cpp-15 1.65 csp-17 3.77 msp7-16 1.11 

ama1-D3-2 0.88 cpmp-123 0.83 cpp-16 0.83 csp-18 1.89 msp7-17 5.56 

ama1-D3-20 0.88 cpmp-127 0.83 cpp-17 2.48 csp-19 1.89 msp7-19 1.11 

ama1-D3-21 0.88 cpmp-128 0.83 cpp-18 0.83 csp-2 8.49 msp7-2 3.33 

ama1-D3-22 2.63 cpmp-129 0.83 cpp-19 0.83 csp-20 2.83 msp7-20 1.11 

ama1-D3-23 4.39 cpmp-13 2.50 cpp-2 1.65 csp-21 1.89 msp7-21 1.11 

ama1-D3-24 4.39 cpmp-130 0.83 cpp-20 0.83 csp-24 1.89 msp7-25 1.11 

ama1-D3-25 0.88 cpmp-14 1.67 cpp-23 0.83 csp-25 0.94 msp7-26 1.11 

ama1-D3-26 2.63 cpmp-15 0.83 cpp-24 1.65 csp-29 5.66 msp7-28 1.11 

ama1-D3-27 0.88 cpmp-16 0.83 cpp-26 4.13 csp-3 3.77 msp7-29 1.11 

ama1-D3-28 2.63 cpmp-17 1.67 cpp-27 0.83 csp-30 0.94 msp7-3 10.00 

ama1-D3-29 1.75 cpmp-174 0.83 cpp-28 1.65 csp-31 1.89 msp7-30 3.33 

ama1-D3-3 0.88 cpmp-18 1.67 cpp-29 2.48 csp-32 0.94 msp7-31 6.67 

ama1-D3-31 1.75 cpmp-2 4.17 cpp-30 1.65 csp-33 0.94 msp7-33 1.11 

ama1-D3-32 4.39 cpmp-21 0.83 cpp-31 3.31 csp-34 0.94 msp7-35 1.11 

ama1-D3-33 0.88 cpmp-24 1.67 cpp-32 2.48 csp-35 2.83 msp7-36 1.11 

ama1-D3-35 3.51 cpmp-25 0.83 cpp-33 0.83 csp-37 2.83 msp7-37 1.11 

ama1-D3-36 0.88 cpmp-26 0.83 cpp-36 0.83 csp-38 0.94 msp7-38 1.11 

ama1-D3-37 1.75 cpmp-27 1.67 cpp-37 2.48 csp-39 0.94 msp7-39 1.11 

ama1-D3-38 0.88 cpmp-28 2.50 cpp-38 0.83 csp-4 8.49 msp7-4 14.44 

ama1-D3-39 0.88 cpmp-3 0.83 cpp-39 0.83 csp-40 1.89 msp7-45 1.11 

ama1-D3-4 4.39 cpmp-30 3.33 cpp-4 0.83 csp-44 0.94 msp7-5 2.22 

ama1-D3-40 0.88 cpmp-31 1.67 cpp-40 0.83 csp-45 0.94 msp7-6 1.11 

ama1-D3-42 4.39 cpmp-32 0.83 cpp-41 1.65 csp-5 5.66 msp7-7 2.22 

ama1-D3-43 0.88 cpmp-33 0.83 cpp-42 0.83 csp-6 0.94 msp7-9 1.11 

ama1-D3-44 0.88 cpmp-34 1.67 cpp-43 2.48 csp-7 3.77   
ama1-D3-45 0.88 cpmp-35 0.83 cpp-44 0.83 csp-8 6.60   
ama1-D3-46 1.75 cpmp-36 0.83 cpp-45 0.83 csp-9 1.89   
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ama1-D3-48 0.88 cpmp-4 0.83 cpp-48 2.48     
ama1-D3-49 0.88 cpmp-41 0.83 cpp-49 0.83     
ama1-D3-5 1.75 cpmp-43 0.83 cpp-50 1.65     
ama1-D3-50 0.88 cpmp-44 1.67 cpp-51 2.48     
ama1-D3-51 0.88 cpmp-45 0.83 cpp-52 0.83     
ama1-D3-52 0.88 cpmp-46 1.67 cpp-53 0.83     
ama1-D3-54 0.88 cpmp-48 0.83 cpp-54 0.83     
ama1-D3-55 1.75 cpmp-49 0.83 cpp-56 0.83     
ama1-D3-59 0.88 cpmp-5 0.83 cpp-57 1.65     
ama1-D3-60 0.88 cpmp-50 1.67 cpp-59 0.83     
ama1-D3-61 0.88 cpmp-51 0.83 cpp-6 1.65     
ama1-D3-62 0.88 cpmp-52 1.67 cpp-60 3.31     
ama1-D3-64 0.88 cpmp-53 1.67 cpp-62 0.83     
ama1-D3-65 0.88 cpmp-54 0.83 cpp-64 0.83     
ama1-D3-66 0.88 cpmp-55 0.83 cpp-66 0.83     
ama1-D3-8 5.26 cpmp-56 0.83 cpp-68 0.83     
ama1-D3-9 1.75 cpmp-58 0.83 cpp-69 0.83     

  
cpmp-59 2.50 cpp-7 3.31     

  
cpmp-6 3.33 cpp-70 1.65     

  
cpmp-60 2.50 cpp-71 1.65     

  
cpmp-62 1.67 cpp-78 1.65     

  
cpmp-63 0.83 cpp-8 3.31     

  
cpmp-66 0.83 cpp-80 1.65     

  
cpmp-7 3.33 cpp-84 0.83     

  
cpmp-70 0.83 cpp-85 0.83     

  
cpmp-71 0.83 cpp-9 3.31     

  
cpmp-72 0.83 cpp-93 0.83     

  
cpmp-73 0.83 cpp-96 0.83     

  
cpmp-75 0.83 cpp-99 0.83     

  
cpmp-76 0.83       

  
cpmp-77 0.83       

  
cpmp-79 0.83       

  
cpmp-80 1.67       

  
cpmp-81 0.83       

  
cpmp-83 0.83       

  
cpmp-84 0.83       

  
cpmp-85 0.83       

  
cpmp-86 1.67       

  

cpmp-87 0.83 
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cpmp-9 1.67 

      

  

cpmp-95 1.67 

      

  

cpmp-99 1.67 

      

 2846 

Ama1-D3: apical membrane antigen, cpmp: conserved plasmodium membrane protein, cpp: conserved plasmodium protein, csp: circumsporozoite surface 2847 
protein, msp-7: merozoite surface protein 7. Data is presented in tabulated form despite it’s length to improve clarity, noting the high  number of low-frequency 2848 
alleles  at loci Ama1-D3, cpmp and cpp. 2849 
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5.2.4 Follow-up length and detection of recurrence. 2850 

In this chapter, a 28 day follow-up period was used for models of AR-LF and a 42 day follow-up period 2851 
was used for models of DHA-PPQ, as permitted by WHO guidelines [14]. Unlike in Chapter 3, novel 2852 
lengths of follow-up were not explored for microsatellite markers. A 28-day follow-up schedule 2853 
required patients be examined on days 3, 7, 14, 21 and 28. A 42-day follow-up period used two 2854 
additional days i.e. days 35 and 42. The parasitaemia of each clone in each patient was tracked and 2855 
updated each day as described by the mPK/PD model and the PK parameters of the patient and the 2856 
PD parameters of the clone (Chapter 2).  2857 

The model checked each day of scheduled follow-up to determine whether a patient had enough 2858 
parasitaemia that a recurrence would be detectable by light microscopy (a recurrence) – recurrent 2859 
parasitaemia was considered detectable if the total number in a patient was ≥ 108 on that day.  Note 2860 
that variance in the limit of detection by light microscopy exists with respect to the skill of the 2861 
microscopist [18]; it was assumed this limit was reflective of an “expert” microscopist (corresponding 2862 
to roughly 20 parasites /μl of blood).  In short, follow-up length and detection of recurrence proceeded 2863 
in an identical manner to as described for length-polymorphic markers and microsatellite markers 2864 
(3.2.4; 4.2.3).  2865 

 2866 

5.2.5 Calculating which alleles are observed. 2867 

The genotype of the initial malaria infection of each patient was calculated on the day of treatment. 2868 
This genotype signal is a composite of all the clone(s) present in the initial infection and is determined 2869 
by the technical accuracy and sensitivity of genotyping.  This is broadly similar to the method described 2870 
in 3.2.5 for length-polymorphic markers, though note differences in the minority allele detection 2871 
threshold, and that there is no differential detectability of alleles based on length or allelic families for 2872 
AmpSeq markers.  2873 

On all days of follow-up except day 3, a recurrence was identified if the sum parasitaemia of all clones 2874 
in a patient exceeded 108 which was assumed to be the minimum parasitaemia at which detection by 2875 
light microscopy was possible [152]. This corresponded to a parasite density of roughly 20 parasites/μl 2876 
of blood. If total parasitaemia was less than 108 then recurrent parasites would not be observed by 2877 
microscopy (and thus, the patient would not be genotyped on that day). On day 3, if total parasitaemia 2878 
exceeded 108 but was <25% of the total parasitaemia on the initial sample, the patient continued in 2879 
the trial; if parasites were present at >25% of initial parasitaemia, that patient was classed as an early 2880 
treatment failure, per WHO procedure [28]. Note that for subsequent calculations and analysis, an 2881 
early treatment failure is considered to be identical to a recrudescence. Calculations then occurred 2882 
using a three-step process to replicate the technical limitations of acquiring a profile of microsatellite 2883 
alleles from a blood sample  2884 

Firstly, a “sampling” limit was included: A finite volume of blood is available for genotyping. A parasite 2885 
clone would not be detected if its density were so low that no parasites were included in the blood 2886 
sample analysed. Thus, the density and volume of the processed blood sample defined the limit of 2887 
detection. Two assumptions were made for this value. 2888 

Firstly, it was assumed this limit was 108 (i.e., no clone present in less than 108 parasites would be 2889 
detected).  This limit is identical to that used in Chapter 3, see 3.2.5 for calculations and justification.  2890 

Secondly, the limit was varied to the lower limit of 107. The sampling limit was based on in vivo 2891 
considerations on whether parasites would enter genotyping using finger-prick blood samples stored 2892 
on sample paper (3.2.5) but does still include simplifications and assumptions. This was deemed not 2893 
to be an issue for investigation of length-polymorphic and microsatellite markers as the large minority 2894 
detection thresholds would far overweight the impact of small changes in the sampling limit, but 2895 
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under the increased resolution of the AmpSeq methodology, the assumed value of sampling limit was 2896 
theorized to be more important, and so the impact of varying it was investigated here.  2897 

A “minority allele detection threshold” was included in a similar principle to that included for length-2898 
polymorphic markers and microsatellite markers. The “majority allele” in a sample is the most 2899 
frequent allele. The threshold at which minority alleles were ignored as artefacts or gametocytes in 2900 
the AmpSeq process was varied herein between 0%, 1% and 2%, noting that 1% is reflective of the 2901 
value used experimentally and 0% would mean perfect detection of all alleles, providing their 2902 
frequency met the sampling limit. Note that this modelling methodology does not attempt to include 2903 
false alleles generated as artefacts or genetic signals originating from gametocytes, and 0% is 2904 
modelled simply to explore the difference in failure rate estimates between this hypothetical perfect 2905 
detection limit and other values.   2906 

 2907 

5.2.6 Classifying patients: True failures and failure rate estimates with a match counting algorithm. 2908 

The term “true failure” is consistent with the mathematical description given in 3.2.7 but is re-2909 
summarised here for ease of reading: It was determined whether each patient was a “true failure” 2910 
based on parasitaemia: A patient was a true failure if, on the final day of follow-up (day 28 for AR-LF, 2911 
day 42 for DHA-PPQ), they still harboured any parasites from any initial clone. The true failure rate is 2912 
the frequency of these patients across the entire population. The model tracked patients over the full 2913 
length of follow-up, thus this “true failure” classification captured patients who would in vivo, have 2914 
been removed earlier in the TES with a recurrent infection classified as a reinfection (and whose 2915 
recrudescent clones would not then be observed).  2916 

To calculate estimated failure rates using AmpSeq, a “match-counting” algorithm was employed in a 2917 
similar manner to the match-counting algorithm described for microsatellite markers in 4.2.6. This is 2918 
a counting algorithm where a recurrent infection is defined as a recrudescence when the number of 2919 
AmpSeq loci which share at least one allele between the initial and recurrent sample (i.e., a “matching” 2920 
loci or a “match”) is greater than or equal to a specified threshold. As five AmpSeq loci were simulated 2921 
herein, the threshold was varied between ≥1 and =5 matching loci. For simulations that used a lower 2922 
total number of AmpSeq loci (i.e., 3 and 4), the threshold was varied between ≥1 and =3 and ≥1 and 2923 
=4 respectively. Under each threshold, a failure rate estimate was then calculated for the patient 2924 
population using survival analysis as described in 3.2.7.  2925 

 2926 

5.3 Results. 2927 

5.3.1 Failure rate estimates using AmpSeq for DHA-PPQ and AR-LF: 5 AmpSeq loci. 2928 

Failure rate estimates were obtained under the “baseline” scenario for DHA-PPQ and AR-LF as 2929 
described above (i.e., minority allele detection threshold of 1%, a “sampling limit” of 108 parasites 2930 
(5.2.5) and initial parasite number drawn from a log-uniform distribution between 1010 and 1011 2931 
(5.2.2). The true failure rate for DHA-PPQ was 0.138 and 0.0774 in areas of high and low MOI 2932 
respectively. The true failure rate for AR-LF was 0.1376 and 0.0928 in areas of high and low MOI 2933 
respectively. Note that, as would be expected, the true failure rate is higher in the high MOI area 2934 
because the IC50 value of the partner drug was not changed between MOI settings (see 5.2.1), and so 2935 
an area of higher MOI (and thus, on average a larger number of initial clones per patients) gives a 2936 
greater chance of a given patient having a recrudescence during follow-up.  2937 

Patients were classified as a recrudescence if the number of AmpSeq loci with shared alleles between 2938 
the initial and recurrent samples (“matches”) was equal to or greater than a given threshold, which 2939 
varied between 1 and 5 (5.2.5). Failure rate estimates were then calculated using survival analysis, per 2940 
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WHO procedure [28], and are shown in Figure 5.1. Several trends were clear for both drugs, both MOI 2941 
settings and all FOI values: the failure rate estimates obtained using ≥3, ≥4 and =5 matching loci to 2942 
classify a recrudescence were very close in value and very close to the true failure rate (in all instances, 2943 
classifying a recrudescence at ≥3 matches produced the failure rate estimate closest to the true failure 2944 
rate). Classifying a recrudescence at ≥1 or ≥2 matches lead to over-estimation of true failure rate with 2945 
any non-zero value of FOI. When FOI = 0, failure rate estimates did not change as the required number 2946 
of matches changed (there were no reinfections, so every recurrence was a recrudescence). For both 2947 
DHA-PPQ and AR-LF at both high and low MOI, failure rate was slightly under-estimated using ≥4 or 2948 
≥5 matches to classify a recrudescence; this under-estimate was higher with higher MOI. In summary: 2949 
Classifying a recurrence as a recrudescence at ≥ 3 matches produced accurate failure rate estimates 2950 
for both DHA-PPQ and AR-LF in all MOI and FOI settings modelled.  2951 
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Figure 5.1 Failure rate estimates obtained using AmpSeq for Di-hydroartemisinin-Piperaquine (DHA-PPQ) and Artemether-Lumefantrine (AR-LF) in low and 2953 
high Multiplicity of Infection (MOI) settings with a range of Force of Infection (FOI) values. Failure rate estimates were obtained using a given number of 2954 
matching loci between the initial and recurrent sample to classify a recrudescence (x axis). The true failure rate is marked by the horizontal dashed black line.  2955 
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5.3.2 Failure rate estimates using AmpSeq for DHA-PPQ and AR-LF: 3 and 4 AmpSeq loci.  2956 

The simulations used to generate Figure 5.1 were repeated, but the total number of AmpSeq loci 2957 
genotyped was reduced to 4, then again to 3, excluding msp-7 first then excluding csp (see 5.2.3 and 2958 
5.2.5). Results are displayed in Figure 5.2 and Figure 5.3 respectively.  True failure rates were identical 2959 
to those in Figure 5.1 and described above – the same simulated patients are analysed, just with fewer 2960 
total loci genotyped.  2961 

For both drugs and MOI settings, failure rate estimates with an FOI of 0 (i.e., representing an area with 2962 
zero ongoing transmission) did not change as the number of loci genotyped was reduced. For all other 2963 
FOI values, failure rate estimates fell as the total number of AmpSeq loci genotyped fell, provided that 2964 
the threshold number of matches required to classify a recurrent infection as a recrudescence 2965 
remained the same. Note that, when requiring a match at ≥4 loci to classify a recrudescence, the fall 2966 
in the failure rate estimate going from 5 to 4 total loci was negligible. However, the reduction in failure 2967 
rate estimate using when using ≥1 match to classify a recrudescence was significant. In other words, 2968 
the decrease in failure rate estimates that occurred as the total number of AmpSeq loci genotyped fell 2969 
increased in significance at a lower number of matches required to classify a recrudescence. However, 2970 
classifying a recrudescence at ≥1 or ≥2 loci still over-estimated true failure rate at all except the lowest 2971 
(0-2) FOI. To improve clarity, these results have also been tabulated in Table 5.3 for DHA-PPQ and 2972 
Table 5.4 for AR-LF.  2973 

Genotyping 3 or 4 rather than 5 total AmpSeq loci still produced highly accurate failure rate estimates 2974 
in all MOI and FOI settings (within 1% of true failure rate when recrudescence is classified at an 2975 
appropriate number of matching loci; Table 5.3, Table 5.4). When genotyping 4 loci, classifying a 2976 
recurrence as a recrudescence with ≥2 matches produced accurate failure rate estimates in low MOI 2977 
areas for both DHA-PPQ and AR-LF, at all values of FOI (though there was a slight over-estimate of 2978 
failure rate for AR-LF with an FOI of 16). This was not true when using 4 total loci in high MOI areas, 2979 
as classifying a recrudescence at ≥2 matches caused over-estimation of failure rates at higher FOI, 2980 
more substantially for AR-LF than DHA-PPQ (Figure 5.2). In the high MOI simulations when genotyping 2981 
4 total loci, classifying a recrudescence at ≥3 matches produced generally accurate failure rate 2982 
estimates. The difference in estimates between classifying a recrudescence at ≥2 or ≥3 matches was 2983 
only notable at FOI 16 (3% for DHA-PPQ, 4% for AR-LF). The difference between classifying a 2984 
recrudescence at ≥3 or ≥4 matches was never more than 1%, but as both ≥3 and ≥4 matches always 2985 
slightly under-estimated the true failure rate, classifying a recrudescence at ≥3 matches was always 2986 
more accurate. It was dependant on FOI whether ≥2 or ≥3 matches were more accurate; at higher 2987 
FOIs ≥2 matches tended to over-estimate. ≥3 matches would slightly under-estimate at all FOIs.   2988 

When genotyping 3 total loci, classifying a recurrence as a recrudescence with ≥2 matches produced 2989 
accurate failure rate estimates for both drugs in both low and high MOI areas and at all FOI values 2990 
(Figure 5.3). Notably, the changes in failure rate estimates as FOI increased were very small (<1% as 2991 
FOI changed from 0 to 16) in all simulations when genotyping 3 total loci and classifying a 2992 
recrudescence at ≥2 matches, so genotyping a smaller number of loci appeared to still be robust 2993 
against changes in transmission intensity.  2994 
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Figure 5.2 Failure rate estimates obtained using 4 Amplicon Sequencing (AmpSeq) loci for Di-hydroartemisinin-Piperaquine (DHA-PPQ) and Artemether-2996 
Lumefantrine (AR-LF) in low and high Multiplicity of Infection (MOI) settings with a range of Force of Infection (FOI) values. Failure rate estimates were 2997 
obtained using a given number of matching loci between the initial and recurrent sample to classify a recrudescence (x axis). The true failure rate is marked 2998 
by the horizontal dashed black line.   2999 
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Figure 5.3 Failure rate estimates obtained using 3 Amplicon Sequencing (AmpSeq) loci for Di-hydroartemisinin-Piperaquine (DHA-PPQ) and Artemether-3002 
Lumefantrine (AR-LF) in low and high Multiplicity of Infection (MOI) settings with a range of Force of Infection (FOI) values. Failure rate estimates were 3003 
obtained using a given number of matching loci between the initial and recurrent sample to classify a recrudescence (x axis). The true failure rate is marked 3004 
by the horizontal dashed black line.   3005 
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Table 5.3 Failure rate estimates obtained for modelled scenarios of DHA-PPQ when genotyping 5, 4 and 3 AmpSeq loci, to two significant figures. 3024 

Drug DHA-PPQ 

MOI High Low 

FOI 0 2 8 16 0 2 8 16 

AmpSeq loci genotyped 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 

Failure rate estimate: 1 match 0.13 0.13 0.13 0.17 0.16 0.15 0.27 0.22 0.19 0.35 0.29 0.24 0.07 0.07 0.07 0.10 0.09 0.08 0.16 0.13 0.11 0.23 0.17 0.13 

Failure rate estimate: 2 match 0.13 0.13 0.13 0.14 0.13 0.13 0.16 0.14 0.13 0.19 0.15 0.13 0.07 0.07 0.07 0.08 0.07 0.07 0.08 0.07 0.07 0.10 0.07 0.07 

Failure rate estimate: 3 match 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.13 0.12 0.11 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 

Failure rate estimate: 4 match 0.13 0.13   0.13 0.13   0.12 0.12   0.12 0.11   0.07 0.07   0.07 0.07   0.07 0.07   0.06 0.06   

Failure rate estimate: 5 match 0.13     0.13     0.12     0.11     0.07     0.07     0.07     0.06     

AmpSeq: Amplicon Sequencing, DHA-PPQ: Di-hydroartemisinin-Piperaquine, MOI: Multiplicity of Infection, FOI: Force of Infection, “Match” refers to the 3025 
number of AmpSeq loci at which at least one allele must be shared between the initial and recurrent blood samples for the recurrence to be classified as a 3026 
recrudescence. 3027 

 3028 
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Table 5.4 Failure rate estimates obtained for modelled scenarios of AR-LF when genotyping 5, 4 and 3 AmpSeq loci, to two significant figures.  3038 

 Drug AR-LF 

MOI High Low 

FOI 0 2 8 16 0 2 8 16 

Total AmpSeq loci genotyped 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 

Failure rate estimate: 1 match 0.14 0.14 0.14 0.18 0.16 0.15 0.29 0.24 0.20 0.40 0.32 0.26 0.09 0.09 0.09 0.12 0.11 0.10 0.19 0.15 0.13 0.28 0.21 0.17 

Failure rate estimate: 2 match 0.14 0.14 0.14 0.14 0.14 0.14 0.18 0.15 0.14 0.22 0.17 0.14 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.09 0.09 0.12 0.10 0.09 

Failure rate estimate: 3 match 0.14 0.14 0.14 0.14 0.13 0.13 0.14 0.13 0.13 0.15 0.13 0.13 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 

Failure rate estimate: 4 match 0.14 0.14   0.13 0.13   0.13 0.13   0.13 0.13   0.09 0.09   0.09 0.09   0.09 0.09   0.08 0.08   

Failure rate estimate: 5 match 0.14     0.13     0.13     0.12     0.09     0.09     0.09     0.08     

AmpSeq: Amplicon Sequencing, AR-LF: Artemether-Lumefantrine, MOI: Multiplicity of Infection, FOI: Force of Infection, “Match” refers to the number of 3039 
AmpSeq loci at which at least one allele must be shared between the initial and recurrent blood samples for the recurrence to be classified as a recrudescence. 3040 
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5.3.3 Failure rate estimates using AmpSeq for DHA-PPQ and AR-LF: Sensitivity analysis of model 3041 
parameters.  3042 

Three important model assumptions were varied to assess their impact on results: The minority 3043 
detection threshold (5.2.5), the sampling limit (5.2.5), and the lower limit of the initial parasite number 3044 
distribution (5.2.2).  3045 

 3046 

5.3.3.1 Sensitivity analysis: Minority detection threshold.  3047 

The minority detection threshold was 1% in the baseline model (i.e., alleles were detected as long as 3048 
they were at least 1% the frequency of the most frequent (majority) allele). The rationale behind this 3049 
threshold is described in 5.1, but importantly it is user-defined on genotyping software when AmpSeq 3050 
markers are genotyped in vivo (i.e., [36]) and thus assessing the impact of this parameter on the 3051 
findings of the models within this chapter was important. It was varied up to 2% to assess the impact 3052 
of a user-defined higher cut-off point, and down to 0% to assess the difference between 1% and 2% 3053 
from a hypothetical perfect detection, noting that 0% is unfeasible in vivo because that would permit 3054 
inclusion of false alleles created by genotyping artefacts or gametocytes. The true failure rates of DHA-3055 
PPQ and AR-LF in each MOI setting were identical to those in the baseline model (Figure 5.1, and 3056 
described in 5.3.1).  3057 

Failure rate estimates for DHA-PPQ and AR-LF with low and high MOI and a range of FOI values are 3058 
shown in Figure 5.4 for a minority allele detection threshold of 0% and Figure 5.5 for a minority allele 3059 
detection threshold of 0.02%. When compared to a minority allele detection threshold of 1% (Figure 3060 
5.1), a threshold of 0% resulted in slightly higher failure rate estimates and a threshold of 2% resulted 3061 
in slightly lower failure rate estimates. In both cases, the difference was extremely negligible and 3062 
failure rate estimates obtained using all minority allele detection thresholds were close in value (less 3063 
than 0.1% difference at every FOI value modelled).   3064 

 3065 

5.3.3.2 Sensitivity analysis: Sampling limit.  3066 

The sampling limit (the parasitaemia of a clone required for that clone to be included on a blood 3067 
sample) was 108 in the baseline model (5.2.5). This limit was based on calculations derived from real 3068 
processes but given the high ability to detect low frequency alleles using AmpSeq markers, it was 3069 
necessary to check this assumption was not biasing results. The sampling limit was thus varied by 3070 
reducing it to 107 (i.e., so lower frequency clones would be able to be included in the blood sample). 3071 
The true failure rates of DHA-PPQ and AR-LF in each MOI setting are identical to those in the baseline 3072 
model (Figure 5.1). The minority allele detection threshold was 1%, as for the baseline model. As in 3073 
the baseline model, 5 loci were genotyped.  3074 

Failure rate estimates under the assumption of lower sampling limit are shown for DHA-PPQ and AR-3075 
LF in Figure 5.6. Results were qualitatively extremely similar to the baseline model (Figure 5.1). There 3076 
was an extremely minor increase in failure rate estimates at higher FOI (8 and 16) of ~0.02% when 3077 
using lower number of matches (≥1 or ≥2) to classify a recrudescence. In short, results were 3078 
functionally identical to the baseline assumption of a sampling limit of 108, so the assumed value of 3079 
the sampling limit did not appear to affect the failure rate estimates obtained using AmpSeq markers.   3080 

 3081 

5.3.3.3 Sensitivity analysis: Lower limit of Initial parasite numbers. 3082 

The lower limit of the log-uniform distribution was varied from 1010 (the baseline lower limit) to 108 3083 
(the upper limit remains as 1011, see 5.2.2).  This was done to investigate if the accuracy of failure rate 3084 
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estimates generated using AmpSeq markers were affected by assuming a wider range of initial 3085 
parasitaemia across clones (this will lead to an average increase in the number of low frequency 3086 
alleles). The true failure rate changed as the range of this distribution changed: 0.1358 and 0.0758 for 3087 
DHA-PPQ in high and low MOI settings respectively and 0.1342 and 0.092 for AR-LF in high and low 3088 
MOI settings respectively.  These true failure rates are slightly lower than the baseline scenario (DHA-3089 
PPQ true failure of 0.138 and 0.0774 in areas of high and low MOI respectively; AR-LF true failure of 3090 
0.1376 and 0.0928 in areas of high and low MOI respectively), due to initial clones with a lower starting 3091 
parasitaemia being less likely to recrudesce (though the absolute change in true failure rate was 3092 
negligible, so this effect did not appear to be large). The minority allele detection threshold was 1%, 3093 
as for the baseline model. The sampling limit was 108, as for the baseline model.  3094 

Failure rate estimates using a wider initial parasite number distribution are shown for DHA-PPQ and 3095 
AR-LF in Figure 5.7. Failure rate estimates were slightly lower in all cases with a wider distribution, 3096 
though this should be considered relative to the slightly lower true failure rate. The relative distance 3097 
of each estimate from the true failure rate and thus, the qualitative conclusions, were identical to the 3098 
baseline model i.e. classifying a recrudescence at ≥3 matching loci accurately recovered the true 3099 
failure rate for both drugs, both MOI settings and all FOI values. 3100 
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Figure 5.4 Failure rate estimates obtained using 5 Amplicon Sequencing (AmpSeq) loci for Di-hydroartemisinin-Piperaquine (DHA-PPQ) and Artemether-3102 
Lumefantrine (AR-LF) in low and high Multiplicity of Infection (MOI) settings with a range of Force of Infection (FOI) values, using a minority allele detection 3103 
threshold of 0%. Failure rate estimates were obtained using a given number of matching loci between the initial and recurrent sample to classify a 3104 
recrudescence. The true failure rate is marked by the horizontal dashed black line.   3105 
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Figure 5.5 Failure rate estimates obtained using 5 Amplicon Sequencing (AmpSeq) loci for Di-hydroartemisinin-Piperaquine (DHA-PPQ) and Artemether-3107 
Lumefantrine (AR-LF) in low and high Multiplicity of Infection (MOI) settings with a range of Force of Infection (FOI) values, using a minority allele detection 3108 
threshold of 2%. Failure rate estimates were obtained using a given number of matching loci between the initial and recurrent sample to classify a 3109 
recrudescence. The true failure rate is marked by the horizontal dashed black line.   3110 
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Figure 5.6 Failure rate estimates obtained using 5 Amplicon Sequencing (AmpSeq) loci for Di-hydroartemisinin-Piperaquine (DHA-PPQ) and Artemether-3113 
Lumefantrine (AR-LF) in low and high Multiplicity of Infection (MOI) settings with a range of Force of Infection (FOI) values, using a sampling limit of 107.  3114 
Failure rate estimates were obtained using a given number of matching loci between the initial and recurrent sample to classify a recrudescence. The true 3115 
failure rate is marked by the horizontal dashed black line.   3116 
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Figure 5.7 Failure rate estimates obtained using 5 Amplicon Sequencing (AmpSeq) loci for Di-hydroartemisinin-Piperaquine (DHA-PPQ) and Artemether-3118 
Lumefantrine (AR-LF) in low and high Multiplicity of Infection (MOI) settings with a range of Force of Infection (FOI) values, using a wider initial parasite 3119 
number range of 108 to 1011. Failure rate estimates were obtained using a given number of matching loci between the initial and recurrent sample to classify 3120 
a recrudescence. The true failure rate is marked by the horizontal dashed black line.  3121 
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5.4 Discussion. 3122 

I have presented  an in silico approach designed to quantify the accuracy of failure rate estimates 3123 
obtained using novel AmpSeq methodology. The proposed advantages of AmpSeq for molecular 3124 
genotyping of have been explored in vivo and in vitro [36, 41, 158-160]. In particular, existing research 3125 
has identified suitable AmpSeq loci for genotyping [36, 41, 157], quantified greater detectability of 3126 
minority alleles relative to traditional genotyping methods [36, 159], provided improved estimates of 3127 
MOI [160] and developed and compared analysis tools and identified appropriate exclusion thresholds 3128 
for minority alleles [36, 41, 158]. However, while the true failure rate of patient populations remains 3129 
unknown in vivo, the accuracy of the failure rate estimates and best practice of using AmpSeq (i.e., 3130 
how many loci should be genotyped, what should be the number of matching alleles between the 3131 
initial and recurrent samples at which a recurrence is classified as a recrudescence) have not been 3132 
possible to quantify. The modelling approach presented here bridges this gap and validates the 3133 
accuracy of using AmpSeq for molecular correction.  3134 

 3135 

5.4.1 Accuracy of failure rate estimates. 3136 

Modelled results with an FOI of 0 (i.e., representing an area of zero ongoing transmission) show the 3137 
degree to which AmpSeq under-estimated the true failure rate by failing to observe minority alleles. 3138 
In an area of FOI=0, there are only two reasons a recrudescence would not be detected: Firstly, if the 3139 
recrudescing clone(s) did not reach detectable levels by the time the follow-up period ends. Secondly, 3140 
if a recrudescing clone (and thus, it’s alleles) was not detected in either blood sample. Because 3141 
AmpSeq is capable of detecting minority clones at a frequency of 1% of the majority clone, failure rate 3142 
estimates obtained when an FOI value of 0 is assumed were extremely close to true failure rates, with 3143 
negligible under-estimates (note that with an FOI of 0, the number of matches at which a recurrence 3144 
was classified as a recrudescence had no impact on the failure rate estimate).  3145 

As FOI was increased, failure rate estimates varied as the number of matching loci required to classify 3146 
a recurrent infection as a recrudescence was varied. This occurred because introducing reinfections a) 3147 
meant there were more total clones and thus a higher chance for recrudescent clones to be below the 3148 
minority detection threshold in the recurrent sample (i.e., some truly recrudescent alleles may not be 3149 
observed and b) more alleles are, on average, in the recurrent blood sample and so the chance of 3150 
misclassifying a reinfection as a recrudescence increases (note this chance will be close to 0 when a 3151 
match is required at all loci genotyped). Unsurprisingly, the higher the FOI, the greater the difference 3152 
in failure rate estimates as the matching loci threshold was changed (Figure 5.1). The key operational 3153 
question is thus: What matching loci threshold produces the failure rate estimate closest to the true 3154 
failure rate, and is this finding consistent for multiple drugs and in multiple MOI and FOI settings?  3155 

When genotyping five total AmpSeq loci, classifying a recrudescence with three or more matching loci 3156 
produced the most accurate failure rate estimates. With more stringent thresholds (≥4 or =5 matches), 3157 
there was an under-estimate of the true failure rate in every instance. Notably the under-estimate 3158 
was higher as FOI increased; the increased number of alleles meant there was a greater chance of an 3159 
allele not being detected in either the initial or the recurrent sample, and with a threshold of 5, only 3160 
a single allele would have to be missed in this way to misclassify a recrudescence as a reinfection. On 3161 
the other hand, classifying a recrudescence with ≥1 or ≥2 matching loci would clearly be inappropriate 3162 
and lead to large over-estimates of failure rate with any FOI value above 0.  3163 

In vitro AmpSeq experiments have excluded the loci msp-7 based on its low diversity relative to other 3164 
AmpSeq loci, and only used csp as a back-up locus if ama1-D3, cpmp or cpp failed to amplify [41]. The 3165 
impact of genotyping a smaller number of total loci was investigated in silico here, under the theory 3166 
that genotyping fewer loci is operationally easier and more economical. The modelling approach was 3167 
able to quantify the difference in the accuracy of failure rate estimates that arose from genotyping a 3168 
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lower number of loci. Comparison of failure rate estimates obtained here (Figure 5.1, Figure 5.2, 3169 
Figure 5.3) showed that accurate failure rate estimates could be obtained by genotyping only the 3170 
three most diverse loci. Notably, when genotyping three loci instead of five (Figure 5.3), the most 3171 
accurate failure rate estimates will be obtained when classifying a recurrence as recrudescence when 3172 
≥2 matches occurred between the initial and recurrent sample. When using 5 loci (Figure 5.1), 3173 
classifying a recrudescence with ≥2 matches over-estimated the true failure rate; removing the lower 3174 
diversity loci reduced the chance of a reinfection sharing alleles with an initial clone (and so being 3175 
misclassified as a recrudescence at lower thresholds). The difference in failure rate estimates obtained 3176 
through classifying a recrudescence at ≥2 or 3 matching loci with 3 loci genotyped was extremely small 3177 
in these simulations; researchers may wish, in vivo, to classify a recrudescence when 3/3 loci match 3178 
as this will be more conservative with regards to potential misclassification of reinfection, particularly 3179 
if lower diversity AmpSeq loci than the ones presented here must be used. In short, genotyping 3 total 3180 
amplicon loci appeared to be sufficient for the purposes of producing accurate failure rate estimates 3181 
in these simulated TES. It is important to note, however, that genotyping a greater number of total 3182 
loci is likely to be useful in practice as it allows results to be interpreted even if samples fail to amplify 3183 
at any given locus (see [41]).  3184 

Note that the loci used in these simulations (Table 5.2) were relatively diverse. Lower diversity 3185 
distributions of AmpSeq loci were not currently available (as this is a relatively new methodology, 3186 
populations with low genetic diversity have not been genotyped using AmpSeq to date). The impact 3187 
of lower genetic diversity would be increased failure rate estimates as the frequency of reinfections 3188 
being misclassified as recrudescence increases due to them sharing alleles purely by chance. In such 3189 
areas, it may be necessary to consider a) genotyping a larger number of total loci and b) to use higher 3190 
(more stringent) thresholds of matching loci to classify a recurrence as a recrudescence. Use of 3191 
AmpSeq in TES should involve obtaining MOI estimates of the initial samples and quantifying the level 3192 
of genetic diversity of those samples, such that informed decisions around the total number of 3193 
markers to analyse and the threshold chosen can be made. Fortunately, obtaining accurate MOI and 3194 
diversity estimates is possible with AmpSeq due to their high resolution (5.1) [160]. If and when lower 3195 
diversity data-sets become available, this modelling work can be repeated to quantify the accuracy of 3196 
failure rate estimates in such areas.   3197 

Importantly, the qualitative findings of the model were robust as key model parameters were altered. 3198 
A lower sampling limit did not affect results, and the qualitative findings when changing the initial 3199 
parasite number distribution were identical (given the low true failure rate). The difference between 3200 
a 0% minority detection threshold (i.e., hypothetical perfect detection) and a 1% (baseline) and 2% 3201 
threshold were negligible. This indicates that a 1-2% cut-off can be safely included to prevent the 3202 
inclusion of false alleles in the analysis without any notable decrease in accuracy from misclassifying 3203 
minority recrudescent clones.  3204 

 3205 

5.4.2 Policy implications and future work.  3206 

AmpSeq for molecular correction recovers the true failure rate to an extremely high degree of 3207 
accuracy. Based on this modelling work, my strong recommendation is that the field should consider 3208 
seeking to implement its wide-spread use as the new gold standard for genotyping in TES. Crucially, 3209 
provided an appropriate number of sufficiently diverse loci are genotyped, failure rate estimates are 3210 
robust for drugs with either a long or short post-treatment prophylactic effect and across a range of 3211 
transmission intensities. Highly diverse loci are desirable for genotyping and the modelling work here 3212 
shows that increases in accuracy were produced by removing lower diversity loci from analysis.  3213 
Consequently, efforts should be made to identify, in vivo, diverse loci for use in each sentinel site 3214 
where TES are conducted by using large data-sets such as those curated by the Malaria Genomic 3215 
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Epidemiology Network (MalariaGEN) [147]. A full discussion of a strategy for identifying AmpSeq loci 3216 
suitable for genotyping can be found in [36].  3217 

Traditional molecular correction with either length-polymorphic markers or microsatellite markers 3218 
has been conducted using either gel-based or capillary electrophoresis (CE) of PCR products. The 2008 3219 
WHO guidelines contained protocols for both gel-based electrophoresis and CE [14, 161] but CE 3220 
offered higher sensitivity and ability to discriminate between alleles with minimal size differences; CE 3221 
is now widely used and has generally phased out gel-based electrophoresis for molecular correction 3222 
[106, 161]. The adoption of AmpSeq will require use of next-generation sequencing platforms such as 3223 
454 GS Junior (Roche), Ion Torrent PGM (Life Technologies) or MiSeq (Illumina); see [36, 162] for a 3224 
comparison of these platforms and note that existing literature using AmpSeq in a malaria context has 3225 
preferred the MiSeq platform [36, 41, 160]. The economic cost of deploying these machines to sub-3226 
Sarahan Africa and South East Asia for use in a malaria context has not been fully quantified but is 3227 
likely to be significant and will necessarily include training, reagent supply and maintenance. Having 3228 
one in every sentinel site is likely to  be  extremely unfeasible, particularly in the short term. Prompt 3229 
deployment of AmpSeq for analysis of malaria TES should focus on equipping a central site – one per 3230 
country or even regionally if necessary with the technology required for the methodology.   This 3231 
economic factor appears to be the largest obstacle for AmpSeq as a molecular correction 3232 
methodology, but should be balanced against the long-term economic benefits of accurate failure rate 3233 
estimates (warding against drug resistance).  3234 

 3235 

 3236 

 3237 

 3238 

 3239 

 3240 
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 3242 
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 3244 
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Chapter 6: Optimal treatments for severe malaria and the threat posed by 3254 

artemisinin resistance. 3255 

A version of this work has been published in The Journal of Infectious Diseases: Sam Jones, Eva Maria 3256 
Hodel, Raman Sharma, Katherine Kay, Ian M Hastings, Optimal Treatments for Severe Malaria and the 3257 
Threat Posed by Artemisinin Resistance, The Journal of Infectious Diseases, Volume 219, Issue 8, 15 3258 
April 2019, Pages 1243–1253, https://doi.org/10.1093/infdis/jiy649 3259 

Chapter-specific acknowledgements: Dr Eva Maria Hodel provided R code with which to simulate the 3260 
duration of artesunate killing of parasites from a given set of pharmacokinetic parameters. Dr Raman 3261 
Sharma provided R code  with which to run a Partial Rank Correlation Coefficient analysis on outcome 3262 
metrics and specific covariates of interest. Dr  Katherine Kay provided R code with which to calculate 3263 
correlation between select pharmacokinetic parameters.  3264 

 3265 

6. 1 Background. 3266 

6.1.1 Severe malaria.  3267 

Plasmodium falciparum is the malaria species responsible for the largest number of deaths worldwide 3268 
[1] and presents clinically in two forms. Patients with “uncomplicated” malaria have a relatively mild 3269 
fever, are conscious and capable of taking oral drug regimens; prompt treatment of uncomplicated 3270 
malaria is associated with low mortality [13]. Patients with “severe” malaria present with one, or a 3271 
combination, of four syndromes: Severe anaemia, respiratory distress, metabolic derangement and 3272 
cerebral malaria [16, 17]. Patients are treated with parenteral artesunate, which rapidly kills parasites, 3273 
but resolution of pathology lags behind parasite killing; case fatality rates are high even once patients 3274 
have been admitted to the formal health system (typically between 5 and 12% [13] although these 3275 
have been falling to ~2% [18]).  3276 

A key factor responsible for severe malaria is the binding of parasitized erythrocytes (subsequently 3277 
called infected red blood cells, iRBCs) to microvascular endothelium, a process known as 3278 
sequestration. iRBC sequestration induces pathology through three main causes: (i) impairing blood 3279 
flow to organs through direct physical blockage of the capillaries [163], (ii) indirect blockage via host 3280 
defence mechanisms such as inflammation [16, 164] and (iii) physical damage to microvascular 3281 
endothelium and the blood/brain barrier [165]. High case fatality rates occur, even if the drug kills 3282 
parasites within sequestered iRBCs, because the molecules responsible for sequestration (for 3283 
example, P. falciparum erythrocyte membrane protein 1 (PfEMP1) [166]) are still present on iRBC 3284 
surfaces and it takes a significant amount of time for these ligands to decline sufficiently for the 3285 
sequestered iRBC to detach and/or for the pathology associated with sequestration to resolve[167, 3286 
168].  3287 

 3288 

6.1.2 Parasite clearance rates as an endpoint for severe malaria clinical trials. 3289 

Parasite clearance rates are a commonly used clinical outcome measure to compare efficacy of 3290 
antimalarial treatment regimens. However, parasite clearance rates correlate poorly with disease 3291 
outcome in severe malaria. Large trials comparing intramuscular artemether with quinine in African 3292 
children showed more rapid parasite clearance with artemether but no difference in case fatality [48, 3293 
49]. With parenteral artesunate, parasite clearance rates are not different in patients dying from 3294 
severe malaria compared to survivors (results cited in [50]). There are two potential explanations why 3295 
parasite clearance is an unsuitable outcome measure in severe malaria: Firstly, parasite clearance 3296 
rates following treatment for uncomplicated malaria appear to mainly reflect host immunity rather 3297 
than drug effectiveness [52, 53, 129] so may be a poor metric of overall drug effectiveness. Secondly, 3298 



155 
 

parasite clearance rates are measured on circulating parasites [129] whereas non-circulating, 3299 
sequestered parasites are responsible for most clinical symptoms, pathology and deaths associated 3300 
with severe malaria [16].  3301 

There is considerable interest in conducting clinical trials for severe malaria to test new treatments 3302 
and treatment regimens with the goal of improving patient survival (the key clinical aim of treating 3303 
severe malaria), and a clinical outcome is required to quantify the differences between trial arms. 3304 
Mortality would be a good clinical outcome to use, but a trial would have to be unfeasibly large to 3305 
have sufficient statistical power for this to be acceptable.  It is extremely difficult (if not impossible) to 3306 
measure sequestered parasite load in vivo, and so, despite the noted flaws in using parasite clearance 3307 
rates (or half-life) as the clinical outcome in severe malaria trials as listed above, they continue to be 3308 
widely used.  3309 

 3310 

6.1.3 Research Goals. 3311 

1: To develop a mechanistic pharmacokinetic(PK)/pharmacodynamic(PD); (mPK/PD) model that 3312 
describes the dynamics of sequestered parasites (and their pathology) in severe malaria in the first 48 3313 
hours following treatment with artesunate.  3314 

2: To use this model to compare the differences between existing and proposed novel drug regimens 3315 
on the pathology of severe malaria.  3316 

3: To use this model to investigate the likely consequences of artemisinin resistance on the pathology 3317 
of severe malaria.  3318 

 3319 

6.2 Methodology. 3320 

A computer-based mPK/PD model was utilized to track changes in the number of sequestered iRBCs 3321 
following drug administration. This model was for AS monotherapy and was implemented in the 3322 
statistical programming software R [169] version 3.4.1. P. falciparum parasites undergo a 48-hour 3323 
developmental cycle in human erythrocytes with two main implications for pathology and treatment. 3324 
Firstly, parasites initially circulate freely in blood vessels but sequester (i.e. bind to capillaries) at 3325 
mature stages of their intra-erythrocytic cycle. Secondly, parasites differ in their sensitivity to drugs 3326 
over the course of this 48-hour cycle.  3327 

As previously described [15], the parasite population was separated into within patient 48 ‘age-bins’ 3328 
that each represented a one-hour long development stage in the parasite’s 48-hour life-cycle within 3329 
human erythrocytes. Parasites within age-bins had differing propensities to sequester and had varying 3330 
degrees of drug sensitivity.  The model tracked the number of iRBCs in each of four classes at any time 3331 
post-treatment depending on whether the parasites are alive or dead, and whether the iRBC is 3332 
circulating or sequestered: Alive & circulating, alive & sequestered, dead & circulating, and dead & 3333 
sequestered (see Figure 6.1  for illustration). Note that iRBCs classed as “dead & sequestered” are 3334 
those iRBCs whose parasites have died while sequestered and are either: (i) still sequestered and 3335 
causing pathology or (ii) have ruptured/detached from the capillary but are still associated with 3336 
continued, lingering pathology.  3337 

I initially wrote the model to simulate a single patient with a user-defined duration and rate of 3338 
artesunate killing. In other words, the methodology to analyse a single patient with a given duration 3339 
of AS killing was developed by me. As it was felt at a relatively early stage that this research project 3340 
was better served by simulating a large population of patients with explicit variation in AS killing 3341 
duration (via variation in PK/PD parameters), Eva Maria Hodel provided me with R code to calculate 3342 
artesunate killing from sampled PK parameters. I sampled durations of killing using this code with a 3343 
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variety of PK parameters from different sources (6.2.3).  Katherine Kay contributed code to calculate 3344 
correlation between Volume of Distribution (VD) and Clearance (CL); described in 6.2.3. 3345 

A cohort of 10,000 patients were then simulated who had parasitological, pharmacological, and 3346 
patient-specific parameters drawn from the distributions given in Table 6.1 .  Individual patient profiles 3347 
allowed individual PK/PD variation to be incorporated to generate individual patient post-treatment 3348 
parasite clearance dynamics. Each patient was simulated three times under different scenarios: Once 3349 
for drug sensitive parasites treated by the standard WHO regimen (2.4mg/kg artesunate twice a day 3350 
in the first 24h), once for sensitive parasites treated with the simplified regimen (4mg/kg artesunate 3351 
once a day, as proposed by Kremsner et. al [170]), and once for artemisinin resistant parasites treated 3352 
by the standard WHO regimen. This allowed us to compare the two dosing regimens (“standard” 3353 
versus “simplified”) and the impact of resistance (“sensitive” versus “resistant”), in each patient. 3354 
Follow-up time was 48 hours after drug administration; this reflected a whole parasite life-cycle within 3355 
an iRBC but, more importantly, covers the period post-treatment where a patient is most likely to die 3356 
[171, 172].  3357 

 3358 

 3359 
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 3360 

 3361 
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Figure 6.1 A schematic of how the model tracks parasitaemia and pathology post-treatment.  3362 

Panel (A) shows how the simulation tracks parasitaemia and pathology. The parasite population is separated into 48 hourly ‘age-bins’ corresponding to their 3363 
developmental age within their 48hour intra-erythrocytic cycle.  A certain proportion of parasites in each age-bin will be sequestered, with 0% of parasites 3364 
sequestering in age-bins 1 to 11 and ~100% sequestering in age-bins 14-48 (the proportions given in the figure are illustrative). Parasites in age-bin 48 rupture 3365 
to produce new ‘daughter’ parasites that enter age-bin 1; the number of daughter parasites that successfully invade new erythrocytes is the parasite 3366 
multiplication rate PMR.  The simulation runs in one-hour time steps and, if drug is present, it kills parasites according to their drug sensitivity which is given 3367 
in the second row of boxes as a proportion of basal kill rate (Supplementary information). Parasites that survive drug action are moved forward one age-bin 3368 
(unless they are in age-bin 48 in which case they rupture to produce daughter parasites as described above). Parasites killed by drug in the time-step have 3369 
two fates depending on their status. Those killed in circulating stages enter a pool of “dead circulating parasites” and will eventually be removed by splenic 3370 
or other host clearance mechanisms. Those parasites that are killed while sequestered are removed from the simulation but their pathology does not instantly 3371 
disappear with their death, so their “post-mortem pathology” (second term of equation 1) is tracked – this pathology resolves at the user-defined 3372 
“pathological recovery rate”. 3373 

Panel B shows how this methodology is used to simulate treatment of one exemplar individual. The number of alive circulating plus dead circulating parasites 3374 
can be tracked over time post treatment. These two classes can be directly observed (but not distinguished) in human blood samples and their rate of 3375 
clearances, usually known as “parasite clearance rate” is often used as a proxy of clinical outcome; this enables verification of simulations (in terms of the 3376 
ability of simulations to recover these clinical observations). Live sequestered parasites are added to the lingering effects of sequestered parasites killed in 3377 
earlier stages (i.e. those contributing to “post-mortem pathology”) to obtain the pathological load  L(t) at any time point post-treatment (Equation 1). The 3378 
dynamics of L(t) following treatment are used to calculate key  pathology metrics i.e.  area under the pathology curve (AUCPL) and the maximum parasite load 3379 
(MPL).   3380 

 3381 

 3382 

 3383 

 3384 

 3385 

 3386 

 3387 

 3388 
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Table 6.1 Parameter values used in the simulations. (Not including volume of distribution (Vd) /  clearance (Cl) that determine artesunate killing duration, see 3389 
6.2.3 for discussion of these parameters).  3390 

Parameter Unit Abbreviation  Range Format Distribution Justification 

Initial parasite number  P0 10x, where (𝑥 ∈ ℝ|10 < 𝑥 < 12) Double Uniform [173, 174] 

Mean of initial age bin distribution  [h] Mean  x + 0.5, where (𝑥 ∈ ℕ|0 ≤ 𝑥 ≤ 47) Integer Triangular with 
mode = 10  

[174, 175] 

Standard deviation of initial age bin 
distribution 

[h] SD x, where (𝑥 ∈ ℕ|2 ≤ 𝑥 ≤ 4) Integer Uniform [173] 

Parasite multiplication rate  PMR x, where (𝑥 ∈ ℕ|1 ≤ 𝑥 ≤ 10) Integer Triangular with 
mode = 1  

[173, 175] 

Pathological recovery rate half-life  [h-1] r = ln(2)/x x, where (𝑥 ∈ ℕ|4 ≤ 𝑥 ≤ 12) Integer Uniform  

Splenic clearance rate half-life [h-1] u = ln(2)/x x, where mean = 2.7 and CV = 0.3 Double Normal  [176, 177] 

Half-maximum inhibitory 
concentration of AS 

[mg/L] IC50AS x, where mean = 0.0016 and CV = 
0.86 

Double Log-normal  [87] 

Half-maximum inhibitory 
concentrations  of DHA 

[mg/L] IC50DHA x, where mean = 0.009 and CV = 
1.17 

Double Log-normal  [87] 

Maximal rate of drug killing [h-1]  Vmax x, where mean = 1.78 and CV = 0.1 Double Normal [87, 140] 

Slope factor  n x, where mean = 4 and CV = 0.3 Double Normal [87] 

AS: artesunate; CV: coefficient of variation; DHA: dihydroartemisinin; i.m: intramuscular 3391 
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6.2.1 Modelling parasite age-bins. 3392 

Note that it was  explicitly assume only a single clone is responsible for sequestration-based pathology, 3393 
consistent with existing research [178, 179]. Modelling a mixed infection with this model, should a 3394 
reader desire, is straightforward: Two or more clones can be simultaneously tracked in  the same 3395 
individual by running one simulation for each clone. It is assumed that pathology is additive so total 3396 
pathology would be the sum of the individual clonal pathologies.  3397 

Developmental age-bins were enumerated chronologically: Bin 1 represents an infected red blood cell 3398 
(iRBC) in the first hour following parasite invasion, and bin 48 is the final age-bin. Parasite development 3399 
ends after bin 48 with the rupturing of the iRBC to release merozoites that re-invade RBCs and re-3400 
enter age-bin 1. The intra-host model tracks the number of parasites in each of the 48 age-bins at each 3401 
time point post-treatment. Specifically, the number of alive iRBCs (both circulating and sequestered) 3402 
at each time-point in each bin was tracked and used to calculate the number of alive iRBCs in the next 3403 
age bin at the next time-point as:  3404 

 3405 

                    Equation 6.1 3406 

       3407 

where  represents the number of alive iRBCs in age-bin b+1 at time t+1 post-treatment, which 3408 

depended on the iRBCs in the current age-bin and time period  and the proportion which survived 3409 

drug treatment in the bin at time  where  is the drug-specific killing rate for that age 3410 

bin, i.e. the proportion of parasites killed in age bin b at time t (see below). The only exception is for 3411 
age-bin 1 which reflected parasites released from iRBCs at age-bin 48 i.e. 3412 

 3413 

                    Equation 6.2 3414 

       3415 

where PMR is the parasite multiplication rate, i.e. the number of merozoites released from a schizont 3416 
that successful infect a new erythrocyte (Table 6.1 ).  3417 

 3418 

6.2.2 Modelling parasite sequestration. 3419 

Sequestration was incorporated by following, for convenience, the assumption of Saralamba et al. 3420 
[173], i.e. that parasites begin to leave circulation and sequester in/after age-bin 11, with a half-life of 3421 
z=3 hours, such that 50% of parasites are sequestered when reaching age-bin 14. Consequently, the 3422 
proportion of parasites in age-bin, b that remain in the circulation, Pc , is 3423 

𝑃𝐶 = 2
11−𝑏

𝑧         (for 12 ≤ b ≤ 48)        Equation 6.3 3424 

and 3425 

𝑃𝐶 = 0        (for 1 ≤ b ≤ 11)       Equation 6.4 3426 
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The number of alive iRBCs (            Equation 6.1 &           Equation 6.2) in each stage can then be 3428 
multiplied by the proportion of iRBCs circulating in each stage (Equation 6.3 & Equation 6.4) to 3429 
calculate the number of parasites in the alive circulating and alive sequestered compartments (this is 3430 
done before incorporating drug killing in that stage).  3431 

 3432 

6.2.3 Modelling artesunate killing and stage specificity of drug killing 3433 

The duration of artesunate killing was determined as follows: First the kill rate-over-time profiles for 3434 
artesunate and its active metabolite dihydroartemisinin (DHA) were calculated using standard 3435 
equations [105, 180] based on the dose and an individual’s PK/PD parameters (Table 6.1 ).  The time 3436 
at which the half-maximal rate of drug killing (Vmax/2) occurs for both artesunate and DHA was used 3437 
to estimate the duration of killing by both; duration of artesunate killing was set to whichever was 3438 
longer. Artesunate is eliminated so rapidly that it decays from concentrations generating maximal 3439 
killing rates to physiologically negligible concentrations very rapidly; this means that it can be regarded 3440 
as being either present (and killing at maximum rate) or absent [15]. 3441 

The mPK/PD model used one-hour time steps. Thus, a patient with “extra” killing over an hour would 3442 
have that “extra” killing added to the next hour, such that a patient with 2.2 hours killing would have 3443 
2 hours of killing at Vmax and would have 0.2*Vmax killing in the third hour. Any values of artesunate 3444 
duration below 1 hour or above 12 hours (for a single dose) were deemed unrealistic and resampled.  3445 

Recall that a key objective of this research was to model the likely extent of pathology caused by 3446 
sequestered iRBCs in patients treated with two alternative regimens of AS treatment i.e. The 3447 
“Standard” WHO recommended regimen [181] of 2.4 mg/kg i.m., given twice in the first day and daily 3448 
thereafter, i.e. at 0, 12, 24, and 48 hours (referred to by Kremsner et al. [170] as the “five dose 3449 
regimen” - an additional dose is given at 72 hours), and the “Simplified” regimen as proposed by 3450 
Kremsner et al. [170] (and referred to by them as the “three dose regimen”) consisting of larger doses 3451 
of 4 mg/kg i.m. given once each day i.e. at 0, 24 and 48 hours. Consequently, the PK parameters 3452 
provided by Kremsner et al. [170] were initially utilized (Table 6.2 ) to generate artemisinin killing 3453 
durations for the patient population, but found the distribution to be an atypical shape to that which 3454 
would usually be expected (Figure 6.2) – this is likely because it was not possible  to model the 3455 
correlation between the PK parameters Volume of Distribution (Vd) and Clearance (CL) using the 3456 
parameters provided by Kremsner et al. [170]. Notably, however, use of their PK parameters and this 3457 
distribution did later allow for the recovery of Kremsner’s clinical observations (Figure 5 of [170]; see 3458 
results).  3459 

 3460 

 3461 

 3462 

 3463 

 3464 

 3465 

 3466 

 3467 

 3468 

 3469 
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Table 6.2  Pharmacokinetic (PK) parameters drawn from Kremsner et al. [170] 3470 

Parameter  Unit Abbreviation Range 

Volume of distribution i.m. AS [170] [L] VAS,i.m x, where mean = 
21.1 and CV = 
0.97 

Volume of distribution i.m. DHA [170] [L] VDHA,i.m x, where mean = 
25.3 and CV = 
0.81 

Clearance i.m. AS [170] [L/h] CLAS,i.m x, where mean = 
33.3 and CV = 
0.81 

Clearance i.m. DHA [170] [L/h] CLDHA,i.m x, where mean = 
8.5 and CV = 0.87 

 3471 

 3472 
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 3473 

Figure 6.2  Distribution of artemisinin killing duration obtained when using the pharmacokinetic (PK) 3474 
parameters reported in Kremsner et. al [170]  3475 

 3476 

As mentioned above, the atypical distribution of artemisinin killing durations obtained using the 3477 
parameters in Table 6.2  may be due to correlation between Vd and CL, but this was impossible to 3478 
calculate using the parameters given in [170]. Thus, the PK parameters from Hendriksen et al. [182] 3479 
were utilized, who provided the random effects that allowed for the incorporation parameter 3480 
correlation (these calculations were performed for this research by Katherine Kay). Specifically, 3481 
population estimates for the mean of Vd and CL were drawn from the fixed effects in Table 2 of [182] 3482 
and the associated CV of these parameters from the random effects (ETA), where CV was calculated 3483 
assuming they used a proportional or exponential error structure: CV = sqrt(exp(ETA)-1). The 3484 
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correlation term “ηCL/F ~ ηV/F” listed under random effects was incorporated and it was assumed 3485 
that Vd and CL were correlated in subsequent simulations. The final PK values used in these 3486 
simulations to generate results are thus summarized in Table 6.3.  3487 

The resulting distribution using Hendriksen et al. [182] parameters (Figure 6.3) was appropriately 3488 
shaped.  3489 

 3490 

Table 6.3 Pharmacokinetic (PK) parameters drawn from Hendriksen et al. [182] 3491 

Parameter Unit Abbreviation Range 

Volume of distribution 
i.m. AS [182] 

[L] VAS,i.m x, where mean = 28.2 and CV = 0.98 

Volume of distribution 
i.m. DHA [182] 

[L] VDHA,i.m x, where mean = 13.5 and CV = 0.98 

Clearance i.m. AS 
(Hendriksen) 

[L/h] CLAS,i.m x, where mean = 45.8 and CV = 0.71 

Clearance i.m. DHA 
(Hendriksen) 

[L/h] CLDHA,i.m x, where mean = 22.4 and CV = 0.59 

Correlation of random 
effects on V and CL 

 ηCL/F ARS ~ ηV/F 
ARS 

X, where mean = 0.497 

AS: Artesunate, DHA: Di-hydroartemisinin 3492 

 3493 
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 3494 

Figure 6.3 Distribution of Artesunate killing duration. Data for 10,000 patients following treatment 3495 
with a single dose of artesunate of either 2.4mg/kg (top panel) or 4mg/ml (bottom); note the duration 3496 
includes that of the active metabolite dihydroartemisinin (DHA). This distribution was obtained using 3497 
parameters from Hendriksen et al. [182].    3498 

Most malaria mortality occurs in children under 5 years old (and pregnant women) in areas of intense 3499 
falciparum transmission in sub-Saharan Africa [183]. However, severe malaria does occur in adults in 3500 
areas of low transmission, where patients have low levels of acquired immunity. The PK parameters 3501 
from Hendriksen et al. used in these simulations were obtained from children [182], as were the PK 3502 
parameters from Kremsner et al. [170]. To check the robustness of the model, it was adapted to 3503 
replicate treatment in adults with the longer durations of artesunate killing that would be expected.  3504 



166 
 

A distribution of ‘adult’ durations of artesunate killing were produced by increasing the duration 3505 
obtained from each set of paediatric PK values by 50%, based on the assumption that:  3506 

Data from Zaloumis et al. [184] can be used to calculate artesunate clearance as: 3507 

𝐶𝑙 =  
𝐷𝑜𝑠𝑒 ∗ 𝐹

𝐴𝑈𝐶
 3508 

Using their DHA exposure figure of 2,077 h *ng/ml and assuming that a 60kg adult has an exposure of 3509 
2800 h *ng/ml, noting that F and dose are equal across groups, the ratio of CL of children: adults can 3510 
be calculated as 1.35. This is not as large as a 50% increase between adults and children (as was 3511 
assumed). However, combined with subsequent results of the simulations presented here, the larger 3512 
duration serves to illustrate that there is little difference in the ratios of  outcome metrics between 3513 
children and adults, and so it was used.  3514 

This produced the distribution shown in Figure 6.4. Typical values of this distribution are around 4 to 3515 
6 hours artesunate killing, consistent with expectations in adults.  3516 

 3517 

 3518 

 3519 

 3520 
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 3521 

Figure 6.4  Distribution of artemisinin killing duration obtained when using the pharmacokinetic (PK) 3522 
parameters reported in Hendriksen et al. [182], and increased by 50% to better represent expected 3523 
distributions for adult patients.  3524 

 3525 

Stage-specific drug sensitivity was incorporated into the model as previously described [15] using their 3526 
“hyper sensitive” profile to  include  findings from the rings-stage assay (described by [92]) which 3527 
revealed parasites to be very sensitive to artemisinin just after their invasion of erythrocytes. Thus, a  3528 
“sensitive” profile of parasites was calibrated by assuming a “baseline” sensitivity of parasites to 3529 
artesunate in parasite age-bins 18 to 44 inclusive (Equation 6.7), hyper-sensitivity in age-bins 2 to 4 3530 
inclusive (Equation 6.5) which were ten times more sensitive than baseline, and reduced-sensitivity 3531 
stages between age-bins 6 and 17 inclusive which were ten times less sensitive than baseline (Equation 3532 
6.6). Drug killing in other age-bins is 0 (Equation 6.8). The factor D x-y denotes drug killing between age-3533 
bins x to y inclusive and is defined as  3534 

D2-4 =         Equation 6.5 3535 

 3536 

10max**1 Vde−−
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D6-17 =         Equation 6.6 3537 

 3538 

D18-44=         Equation 6.7 3539 

 3540 

𝐷1 = 𝐷5 = 𝐷45−48 = 0        Equation 6.8 3541 

 3542 

where d is the duration of the time-step (i.e. one hour in this case). The mean value of Vmax is 1.78 as 3543 
estimated previously [185] (Table 6.1 ).  3544 

 3545 

Recent reports of artemisinin “resistance” suggest resistance is restricted to the early “hyper-3546 
sensitive” stages [186] so the impact of this resistance was investigated by setting the artesunate 3547 
sensitivity of parasites in these age-bins (i.e. 2-4) to zero, while killing in other age-bins is unchanged. 3548 
This “resistant” profile was therefore described as 3549 

D6-17 =          Equation 6.9 3550 

 3551 

D18-44=          Equation 6.10 3552 

 3553 

𝐷1−5 = 𝐷45−48 = 0            Equation 6.11 3554 

 3555 

The mean age bin must be grouped as a categorical variable for the purposes of later carrying out 3556 
Partial Rank Correlation Coefficient (PRCC) analysis; each category must be given an ordinal rank. Age-3557 
bins have different sensitivity to artesunate (Equation 6.7-Equation 6.11) and so were ranked 3558 
according to the amount of drug killing that occurred in that age-bin, the category with lowest killing 3559 
being the lowest rank and the category with highest killing being the highest rank. The categories are 3560 
shown in Table 6.4 for sensitive parasites and Table 6.5 for resistant parasites.  3561 

Note that, for sensitive parasites, while age bins 45-1 and 5 have the same (lack of) killing, 45-1 is given 3562 
a lower rank as it is a longer, more continuous section without killing, so it felt prudent to separate 3563 
45-1 and 5 into different categories.  3564 

 3565 

Table 6.4 Grouping of the mean age-bin parameter for sensitive parasites into ordinal categories 3566 
according to the amount of killing that occurs in that age-bin, suitable for partial rank correlation 3567 
coefficient (PRCC) analysis  3568 

Age bin Rank Killing in age bins 

45-1 1 None (i.e. 0*Vmax) 

5 2 None (i.e. 0*Vmax) 

6-17 3 0.1*Vmax 

18-44 4 1*Vmax 

2-4  5 10*Vmax 

 3569 

1.0max**1 Vde−−

max*1 Vde−−

1.0max**1 Vde−−

max*1 Vde−−
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Table 6.5 Grouping of the mean age-bin parameter for resistant parasites into ordinal categories 3570 
according to the amount of killing that occurs in that age-bin, suitable for partial rank correlation 3571 
coefficient (PRCC) analysis 3572 

Age bin Rank Killing in age bins 

45-5 1 None (i.e. 0*Vmax) 

6-17 2 0.1*Vmax 

18-44 3 1*Vmax 

 3573 

 3574 

The standard deviation (SD) of the mean age-bin was constrained between 2 and 4. This results in 3575 
reasonably narrow age-bin distributions and reflects existing belief and observations that severe 3576 
malaria infections are synchronized [185, 187]. Mathemtically, 95% of the population fall with +/-  1.96 3577 
SD of the mean. A maximum of SD=4 therefore means that 95% of parasites fall within a 16 hour 3578 
develolment perod which is one third of the 48 hour intraerythrocyte developmental cycle This  is 3579 
consistent with clinical observations that some clones are  genetically unobservable one day (i.e, 3580 
sequestered) and observable (i.e, circulating) the next day (see [187] for a complete discussion of the 3581 
synchronization of parasites and note that in this model, 100% of parasites are circulating hours 1-11 3582 
then gradually sequester, see [173]).  3583 

In vivo, fever brought on by host immunity is thought to play a role in killing parasites in cases of severe 3584 
malaria. Various existing models of malaria account for this effect by preventing parasite numbers 3585 
reaching unfeasibly high levels [71, 188]. This regulation was induced into the model presented here 3586 
by assuming “fever” and/or other immune mechanisms act to slow the multiplication rate of the 3587 
parasites. This  is the “parasite multiplication rate” (PMR) which was varied from 1 to 10 using a 3588 
triangular distribution with mode =1  (Table 6.1 ). Obviously, a value of 1 indicates the parasitaemia is 3589 
being controlled and held constant by host mechanisms but it was important to investigate situations 3590 
where parasitaemia is not completely regulated (hence PMR can go up to 10). This assumption is 3591 
justified in the publications cited in Table 6.1 . Additionally, note that PMR is not a parameter that is 3592 
later correlated with ratios of outcomes for either comparison of regimens or resistant / sensitive 3593 
parasites.  3594 

 3595 

6.2.4 Modelling Pathological load and pathological recovery rate. 3596 

Severity of the malaria infection is determined by a novel metric generated by this model: 3597 
‘pathological load’, i.e. the number of sequestered iRBCs (containing either living or dead parasites) 3598 
physically restricting blood flow and/or eliciting patient’s immune and/or inflammatory response that 3599 
may also contribute to pathology [16, 189]. It is unlikely that the iRBC immediately ruptures on death 3600 
of the parasites (which would reduce physical blockage of the capillary) or that the 3601 
immune/inflammatory responses immediately disappear when the parasite dies, so it was assumed 3602 
that pathology persists for a period after the death of the sequestered parasites. This effect was 3603 
captured  by defining a ‘pathological recovery rate’, r, which is the rate at which the pathology caused 3604 
by sequestered iRBCs disappears with time following the death of the parasite. As will be discussed 3605 
later, there are no clinical estimates of this ‘recovery rate’ so a strategy was undertaken to quantify 3606 
the impact of dosing regimen and artemisinin resistance across a range of values of recovery rate to 3607 
test whether results of the model  were dependent on assumed values for recovery rate (it will be 3608 
later shown that they were not). The ‘recovery rate’ r in the simulations was varied by altering its half-3609 
life  (Table 6.1 ), which is the time it takes pathology caused by dead sequestered parasites to reduce 3610 
by half. It was assumed that parasite death, with consequent rupturing of the iRBC or reduction of 3611 
binding ligands (allowing iRBCs to detach from blood vessel walls), was essential to allow the start of 3612 
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pathological recovery, hence sequestered iRBCs with living parasites were not subject to the 3613 
pathological recovery rate. The pathological load L(t) at any time t post-treatment was quantified as 3614 
the sum of the current number of sequestered iRBCs with living parasites α(t) and the lingering 3615 
pathological effects of once-sequestered iRBC whose parasites were killed in the current or previous 3616 
time periods, β(i), i.e. 3617 

                                                                  Equation 6.12 3618 

                   3619 

Two metrics were used to analyse treatment regimens and resistance: (i) Maximum pathological load 3620 
(MPL), the maximum value of L(t) occurring during a defined time period post-treatment, and (ii) the 3621 
area under the pathological load curve (AUCPL) during a defined time period post-treatment, i.e. the 3622 
total pathology in that period. For example, the AUCPL in the period 0 to 24 hours post-treatment is:  3623 

                                                                         Equation 6.13 3624 

   3625 

6.2.6 Measuring parasite clearance: Parasite reduction ratios. 3626 

The model was used to track the number of circulating and sequestered iRBCs, containing both dead 3627 
and alive parasites (Figure 6.1 ). The number of circulating parasites were used to determine the rate 3628 
at which the observed (i.e. circulating) number of iRBC declined post-treatment: These metrics are 3629 
often measured in clinical trials, including those of Kremsner et al. [170, 190] and allowed for 3630 
comparison of the simulation against clinical data. The number of sequestered iRBCs were tracked 3631 
until they are cleared from the host.  3632 

The number of circulating iRBCs containing either living or dead parasites at time t is represented as 3633 
Q(t) which can be calculated as 3634 

                  Equation 6.12 3635 

 3636 

where x(t) is the number of living parasites in circulating iRBC at time t, Y(i) is the number of parasites 3637 
killed while in circulating iRBCs during time period i post treatment, and c was the rate of ‘splenic’ 3638 
clearance of circulating iRBCs containing dead parasites (by the spleen and other possible host 3639 
mechanisms such as “pitting”). The clearance half-live, u, and its equivalent rate, c, are interconverted 3640 
using the formula 3641 

𝑢 =
𝑙𝑛(2)

𝑐
                    Equation 6.13 3642 

   3643 

The parasite reduction ratio (PRR) is simply the ratio of iRBC circulating at time of treatment to the 3644 
number circulating at a given time of follow-up Q(t). PRR is usually measured over 48 hours (PRR48) 3645 
but the model was also later checked against the clinical observations of Kremsner et al. [170] who 3646 
measured PRR over 24 hours (PRR24).  3647 

 3648 
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6.2.7 Sensitivity analysis.  3650 

Partial rank correlation coefficient (PRCC) using Spearman’s Rho was conducted to establish the 3651 
strength of the relationship between model parameters and dependent variables (i.e. the pathology 3652 
metrics AUCPL and MPL). Raman Sharma provided me with R code with which to perform the PRCC 3653 
analysis described here.  3654 

 3655 

Most parameters are quantitative so can enter the PRCC without modification. The exception is mean 3656 
age-bin which, although numeric, has a ‘circular’ scale, age-bin 1 being adjacent to age-bin 48, due to 3657 
parasites from ruptured iRBCs (at hour 48) reinvading to restart the asexual lifecycle. The mean age-3658 
bin variable was therefore split into either 5 or 3 ordinal classes (depending on whether parasites were 3659 
hyper-sensitive or resistant to artemisinin) as described in Table 6.4 and Table 6.5 3660 

The following parameters were included in the PRCC analysis: 3661 

Duration of artesunate killing post-treatment; this captures all the PK/PD parameters in Table 1 except 3662 
maximal artesunate kill rate 3663 

Maximal rate of artesunate killing (Vmax) 3664 

Initial mean age-bin as a categorical variable (see above) 3665 

Variation of initial age-bin distribution (measured as the standard deviation (SD) around the mean).  3666 

Initial parasite number  3667 

Parasite multiplication rate (PMR) 3668 

Half-life of the ‘pathological recovery rate’ (r)   3669 

The splenic clearance rate was not included in the analysis as it has no impact on sequestered iRBC 3670 
based pathology.  3671 

 3672 

6.3 Results. 3673 

6.3.1 Consistency of model outputs with existing field data. 3674 

The mPK/PD model calculated parasite reduction ratios (PRR) from circulating parasite numbers to 3675 
allow for direct comparison of the model to published clinical data. The clinical endpoint of the trials 3676 
by Kremsner and colleagues was the proportion of patients in each arm whose PRR at 24 hours (PRR24) 3677 
was >99% [170], reported as 79% and 78% for the five-dose standard and the three-dose simplified 3678 
regimen, respectively. When calibrated with PK parameters from Kremsner’s study [170], the 3679 
modelled results here were consistent with these clinical observations, i.e. the model predicted 78% 3680 
and 74% for the standard and simplified regimen with hyper-sensitive parasites, respectively (Table 3681 
6.6). However, the results presented in later in this chapter are calibrated using PK parameters from 3682 
Hendriksen et al. [182] (6.2.3), with which lower values of 70% and 62% of patients with PRR24>99% 3683 
were observed for the standard and simplified i.m regimens, respectively.  3684 

Hendriksen et al. [182] did not report the percentage of patients with PRR24 > 99% in their study, so it 3685 
was not possible to simultaneously compare the findings of the model presented here with the 3686 
findings of Kremsner et al. [170] and Hendriksen et al. [182]. However, Hendriksen et al. [182] reported 3687 
the population geometric mean of the fractional reduction in parasite counts at 24 hours as 96% (94-3688 
98%, 95% CI) following treatment with the standard regimen. The population geometric mean 3689 
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obtained for the reduction in parasite counts at 24 hours (i.e. PRR24) in these simulation using 3690 
parameters from Hendriksen et al. [182] was >99%.  3691 

The general accepted value for PRR48 following artemisinin treatment is 10-4 [191] which is very close 3692 
to the value obtained here: For the standard regimen, using the artesunate duration derived from 3693 
Hendriksen’s PK parameters a mean PRR48 of 5.18-5 was obtained (Table 6.6).  3694 

 3695 
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Table 6.6 Clinical outcome (Parasite Reduction Ratio, PRR) observed in simulations using three different pharmacokinetic (PK) parameterizations. (from 3696 
Kremsner et al. [170], Hendriksen et al. [182], and Hendriksen et al. [182] with increased duration).  3697 

Parameter choice Kremsner et. al [170] Hendriksen et. al [182] Hendriksen et. al [182] (50% increase in 
artesunate duration) 

Regimen Standard Simplified Standard Simplified Standard Simplified 

Artesunate duration 
figure 

Figure 6.2 Figure 6.3 Figure 6.4 

% of patients with >99% 
PRR at 24h 

78% 74% 70% 62% 77% 72% 

Population geometric 
mean PRR at 48h 

5.56-6 2.33-5 5.18-5 0.0009 5.21-6 5.28-5 

PRR: Parasite Reduction Ratio3698 
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6.3.2 Comparison of pathological load metrics. 3699 

The model calculated pathological load and returns two outcome metrics: AUCPL and MPL. Figure 6.5 3700 
shows the values of these metrics for 3 model scenarios: Patients with sensitive parasites treated with 3701 
the standard WHO regimen, a comparison of the ratios of AUCPL and MPL for treatment with simplified 3702 
regimen v standard regimen, and the impact or artemisinin resistance on outcomes following 3703 
treatment with standard WHO regimen.   3704 

Ratios of outcome metrics are calculated as simplified regimens scaled by standard regimen and as 3705 
resistant parasites scaled by sensitive parasites. High metrics are deleterious, thus ratios of >1 indicate 3706 
worse prognosis associated with the simplified or resistant parasites. These ratios quantify the impact 3707 
e.g. a ratio of 5 for resistant vs sensitive parasites indicates pathological metrics are 5 times higher 3708 
when treating resistant parasites. Four time periods post-treatment were investigated: 0-12h, 0-24h, 3709 
12-24h and 24-48h.   3710 

 3711 

6.3.2.1 Standard regimen treatment of artemisinin-sensitive parasites (“baseline scenario”).  3712 

Treatment of drug-sensitive parasites with the standard regimen was simulated, and the key drivers 3713 
of pathology were identified by calculating which parameters were most correlated with absolute 3714 
values of AUCPL and MPL (Figure 6.6, Table 6.7).   The most highly correlated parameter for both 3715 
metrics was the initial parasite number: Large positive PRCCs (between 0.88 and 0.98) were observed 3716 
with associated p values <=0.001 at all time-periods. The half-life of the recovery rate r had PRCC of 3717 
0.46 for AUCPL and 0.34 for MPL in the 24-48h time-period (p values <=0.001), but PRCC of <0.3 in 3718 
earlier time periods. All other parameters had PRCC values of <0.3, indicating that outcome metrics 3719 
were not highly correlated as per accepted statistical criteria [192]. All other model parameters had 3720 
negligible correlation. The most likely explanation is that such a large proportion of parasites are killed 3721 
by artesunate that small differences in number killed are negligible compared to the initial parasite 3722 
number and pathological recovery rate.   3723 
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 3724 

Figure 6.5 Values or ratios of area under the pathological load curve (AUCPL) and maximum pathological load  (MPL) obtained for each of 3 model scenarios 3725 
across four time periods post-treatment: 0-12h, 0-24h, 12-24h and 24-48h. The left-hand plot shows absolute values of AUCPL and (MPL in the “baseline 3726 
scenario” when artemisinin sensitive parasites are treated with the standard regimen. The centre plot shows a comparison of the simplified v standard 3727 
regimen (ratios >1 show the standard regimen is superior). The right-hand plot shows a comparison of the standard regimen when used to treat resistant v 3728 
sensitive parasites (ratios >1 show that sensitive parasites produce better outcomes). 3729 
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Figure 6.6 Analysis of the baseline scenario. The impact of underlying factors on the standard World Health Organization (WHO) regimen used to treat patients 3731 
with artemisinin-sensitive parasites. Top panel:  Partial rank correlation coefficients (PRCC) using Spearman’s Rho of model parameters on values of area 3732 
under the pathological load curve (AUCPL) and  maximum pathological load (MPL) obtained from a population. Lower panel: Values of AUCPL and MPL are 3733 
plotted against the most highly correlated parameter, i.e. initial parasite number, for four time periods post-treatment.  3734 

 3735 

 3736 

 3737 

 3738 

 3739 

 3740 

 3741 

 3742 
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 3750 
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Table 6.7  Partial rank correlation coefficient (PRCC) values with corresponding p values (brackets) for values of AUCPL and MPL for a patient population 3752 
simulated with sensitive parasites and treated with the standard regimen, using seven key model parameters.  3753 

Outcome 
Metric 

Time period Parameter 

Initial 
parasite 
number 

Initial mean 
age-bin 

Standard 
deviation  

PMR Vmax Half-life of r Artesunate 
duration  

AUCPL 0-12h 0.95 (<0.001)  
 

0.05 (<0.001) 0.001 (0.71) -0.012 
(0.003) 

-0.02 
(<0.001) 

0.05 (<0.001) -0.004 (0.27) 

0-24h 0.97 (<0.001) -0.01 
(<0.001) 

-0.001 (0.77) -0.003 
(0.386) 

-0.02 
(<0.001) 

0.11 (<0.001) -0.02 
(<0.001) 

12-24h 0.95 (<0.001) -0.14 
(<0.001) 

0.002 (0.52) 0.003 (0.34) -0.02 
(<0.001) 

0.22 (<0.001) -
0.04(<0.001) 

24-48h 0.83 (<0.001) -0.09 
(<0.001) 

0.015 
(<0.001) 

0.015 
(<0.001)  

-0.02 
(<0.001)  

0.46 (<0.001) -0.04 
(<0.001) 

MPL  0-12h 0.97 (<0.001) 0.08 (<0.001) -0.02 
(<0.001) 

-0.013 
(<0.001) 

-0.02 
(<0.001) 

0.008 (0.03) -0.005 (0.17) 

0-24h 0.97 (<0.001) 0.09 (<0.001) -0.02 
(<0.001) 

-0.007 (0.06) -0.02 
(<0.001) 

0.01 (0.01)  -0.01 (0.01)  

12-24h 0.096 
(<0.001) 

-0.14 
(<0.001) 

-0.005 (0.21) 0.003 (0.47)  -0.03 
(<0.001) 

0.14 (<0.001) -0.03 
(<0.001)  

24-48h 0.89 (<0.001) -0.1 (<0.001) 0.02 (<0.001) 0.01 (0.001)  -0.02 
(<0.001) 

0.35 (<0.001) -0.04 
(<0.001) 

PRCC: Partial Rank Correlation Coefficient, AUCPL: Area under the pathological load curve, MPL: Maximum value of pathological load, PMR: Parasite 3754 
multiplication rate, Vmax : Maximal rate of artesunate killing, r: pathological load recovery rate.3755 
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6.3.2.2 Comparison of simplified and standard regimen.  3756 

Alternative treatment regimens on artemisinin-sensitive parasites were evaluated using the model. 3757 
These results are presented as ratios of AUCPL and MPL. The simplified regimen had a slightly higher 3758 
median ratio in 0-24h of 1.03; MPL was 1. At 24-48h, higher medians of 1.49 and 1.45 for AUCPL and 3759 
MPL respectively were observed (Figure 6.5; Table 6.8). There was negligible difference in outcome 3760 
metrics between assumption of paediatric artesunate killing duration and adult artesunate killing 3761 
duration (Table 6.8) 3762 

 3763 

Table 6.8 Median ratios of the area under the pathological load curve (AUCPL) and maximum 3764 
pathological load (MPL) across the patient population for 4 time-periods and for comparison of 3765 
standard and simplified regimen with sensitive parasites and for sensitive and resistant parasites 3766 
treated with standard regimen. Parameters are from Hendriksen et al. [182] (top; assuming paediatric 3767 
artesunate duration) and from Hendriksen et al. with 50% increase in artesunate killing duration 3768 
(bottom, inside square brackets and assuming adult artesunate killing duration). A ratio of <1 indicates 3769 
lower metric with the simplified regimen or resistant parasites respectively: 3770 

Median ratios for standard v simplified regimen with sensitive parasites 

Time (h) 0-12 0-24 12-24 24-48 

AUCPL 
0.99 

[0.99] 

1.03 

[1.007] 

1.12 

[1.03] 

1.49 

[1.18] 

MPL 
1 

[1] 

1 

[1] 

0.98 

[0.98] 

1.45 

[1.17] 

Median ratios for sensitive v resistant parasites, treated with standard regimen 

Time (h) 0-12 0-24 12-24 24-48 

AUCPL 
1.000003 

[1.000003] 

1.000203 

[1.000161] 

1.000615 

[1.000505] 

1.006516 

[1.00208] 

MPL 

1 

[1] 

1 

[1] 

1.000092 

[1.000081] 

 

1.002546 

[1.001053] 

AUCPL: Area under the pathological load curve, MPL: maximum pathological load  3771 

 3772 

Parameter analysis with PRCC (Figure 6.7, Table 6.9) revealed that patients whose initial infections 3773 
were in either very late or very early initial mean age-bins will have worse outcomes with the simplified 3774 
regimen. This occurred because parasites in these stages are largely insensitive to artesunate at first 3775 
treatment, and the simplified regimen lacks the second dose, 12 hours later, of the standard regimen 3776 
that would effectively target these parasites that had matured into more artemisinin sensitive age-3777 
bins.  3778 

The half-life of the recovery rate r had a moderate correlation with outputs in the 12-24h and 24-48h 3779 
periods indicating that assumption of slower recovery made the simplified regimen perform relatively 3780 
better (Figure 6.8). This parameter does not appear to affect the validity of results; for complete 3781 
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discussion see 6.3.3.  No other parameters have notable correlation with sequestration-based 3782 
pathology when comparing regimens. This is probably because they “cancel out” as explained above 3783 
e.g. initial parasite numbers is the same within patients thus cancels when comparing the impact of 3784 
different regimens within the same patient  3785 

This analysis was repeated to compare regimens when treating resistant (as opposed to drug-3786 
sensitive) parasites.  Results were extremely similar to those for comparison of regimens with drug-3787 
sensitive parasites (shown in Figure 6.7) and are displayed in Figure 6.9 and Table 6.10.  3788 

 3789 

 3790 

 3791 

 3792 

 3793 

 3794 

 3795 
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Figure 6.7  Evaluation of alternative drug treatment regimens. Comparison of the simplified v. World Health Organization (WHO) standard regimen for 3797 
treatment of artemisinin-sensitive parasites; ratios of >1 indicate the simplified regimen produces worse outcome metrics. Top panel:  Partial rank correlation 3798 
coefficients  (PRCC) using Spearman’s Rho of model parameters on the ratios of area under the pathological load curve (AUCPL) and  maximum pathological 3799 
load (MPL). Lower panel: Ratios of AUCPL and MPL are plotted against the most highly correlated parameter (initial mean age bin), for four time periods post-3800 
treatment.  3801 
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Table 6.9  PRCC values with corresponding p values (brackets) for ratios of area under the pathological load curve (AUCPL) and maximum pathological load 3818 
(MPL) for the simplified v standard regimen for a patient population simulated with sensitive parasites using seven key model parameters. The ratio is 3819 

calculated as 
𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑓 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑟𝑒𝑔𝑖𝑚𝑒𝑛

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑟𝑒𝑔𝑖𝑚𝑒𝑛
 such that higher ratios (and thus, positive correlation) indicate better performance of the standard regimen.  3820 

 3821 

Outcome 
Metric 

Time period Parameter 

Initial 
parasite 
number 

Initial mean 
age-bin 

Standard 
deviation  

PMR Vmax Half-life of r Artesunate 
duration  

AUCPL 0-12h 0.007 (0.07) 0.64 (<0.001) 

 

-0.02 
(<0.001) 
 

-0.006 (0.1) 0.02 (<0.001) 
 

0.13 (<0.001) 
 

0.24 (<0.001) 
 

0-24h -0.003 (0.41) -0.63 
(<0.001) 

0.09 (<0.001) 0.013 
(<0.001) 

0.007 (0.06) -0.16 
(<0.001) 

0.009 (0.02) 

12-24h -0.003 (0.35) -0.64 
(<0.001) 

0.1 (<0.001) 0.012 (0.002) -0.006 (0.1) -0.28 
(<0.001) 

-0.03 
(<0.001) 

24-48h -0.005 (0.24) -0.66 
(<0.001) 

-0.08 
(<0.001) 

0.04 (<0.001) -0.04 
(<0.001) 

-0.38 
(<0.001) 

-0.09 
(<0.001) 

MPL  0-12h -0.009 (0.02)  0.59 (<0.001) 0.003 (0.4) -0.00005 
(0.89) 

-0.02 
(<0.001) 

-0.003 (0.52) 0.1 (<0.001) 

0-24h 0.002 (0.58) 0.55 (<0.001) 0.11 (<0.001) 0.06 (<0.001) 0.002 (0.52) -0.02 
(<0.001) 

0.03 (<0.001) 

12-24h 0.01 (0.002)  0.62 (<0.001) 0.06 (<0.001) 0.03 (<0.001) 0.01 (<0.001) 0.22 (<0.001) 0.14 (<0.001) 

24-48h -0.006 (0.15) -0.67 
(<0.001) 

0.08 (<0.001) 0.007 (0.08) -0.008 (0.04) -0.33 
(<0.001) 

-0.04 
(<0.001) 

PRCC: Partial Rank Correlation Coefficient, AUCPL: Area under the pathological load curve, MPL: Maximum value of pathological load, PMR: Parasite 3822 
multiplication rate, Vmax : Maximal rate of artesunate killing, r: pathological load recovery rate. 3823 

 3824 
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 3825 

 3826 

Figure 6.8 Ratios of area under the pathological load curve (AUCPL) and maximum pathological load (MPL) for sensitive v resistant parasites treated with 3827 
standard regimen, plotted according to half-life of the pathological load recovery rate r across four time periods post-treatment: 0-12h, 0-24h, 12-24h and 3828 
24-48h. 3829 

 3830 
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 3831 

Figure 6.9  Partial rank correlation coefficient (PRCC) analysis using Spearman’s Rho of model parameters on the ratios of area under the pathological load 3832 
curve (AUCPL) and maximum pathological load (MPL) for the standard v the simplified regimen when parasites are resistant. A PRCC of over 0.3 (+ or -) indicates 3833 
that the parameter has notable correlation with the ratio.  3834 

 3835 
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Table 6.10  Partial rank correlation coefficient (PRCC) values  with corresponding p values (brackets) for ratios of area under the pathological load curve 3841 
(AUCPL) and maximum pathological load (MPL) for the simplified v standard regimen for a patient population simulated with resistant parasites using seven 3842 

key model parameters. The ratio is calculated as 
𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑓 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑟𝑒𝑔𝑖𝑚𝑒𝑛

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑟𝑒𝑔𝑖𝑚𝑒𝑛
 such that higher ratios (and thus, positive correlation) indicate better 3843 

performance of the standard regimen.  3844 

Outcome 
Metric 

Time period Parameter 

Initial 
parasite 
number 

Initial mean 
age-bin 

Standard 
deviation  

PMR Vmax Half-life of r Artesunate 
duration  

AUCPL 0-12h 0.007 (0.05) 0.63 (0) -0.02 
(<0.001) 

-0.07 (0.08) 0.019 
(<0.001) 

0.13 (<0.001) 0.23 (0) 

0-24h -0.007 (0.08) -0.57 (0) 0.11 (<0.001) 0.03 (<0.001) 0.01 (<0.001) -0.15 (2.22) 0.02 (<0.001) 

12-24h -0.008 (0.04)  -0.6 (0) 0.11 (<0.001) 0.03 
s(<0.001) 

-3.45-5
 (0.99) -0.28 (0) -0.01 

(<0.001) 

24-48h -0.006 (0.11) -0.64 (0) 0.07 (<0.001)  0.05 (<0.001) -0.03 
(<0.001) 

-0.4 (0) -0.09 
(<0.001) 

MPL  0-12h -0.002 (0.48) 0.54 (0) -0.008 (0.03) -0.002 (0.47) -0.02 
(<0.001) 

0.001 (0.73) 0.08 (<0.001) 

0-24h -0.01 (0.002) 0.31 (0) 0.16 (0) 0.04 (<0.001) 0.003 (0.44) -0.01 
(<0.001) 

0.05 (<0.001) 

12-24h 0.002 (0.47) 0.41 (0) 0.1 (<0.001) 0.015 
(<0.001) 

0.027 
(<0.001) 

0.19 (0) 0.15 (0) 

24-48h -0.007 (0.06) -0.66 (0) 0.085 
(<0.001) 

0.017 
(<0.001) 

0.003 (0.41) -0.33 (0) -0.01 
(<0.001) 

PRCC: Partial Rank Correlation Coefficient, AUCPL: Area under the pathological load curve, MPL: Maximum value of pathological load, PMR: Parasite 3845 
multiplication rate, Vmax : Maximal rate of artesunate killing, r: pathological load recovery rate.3846 
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6.3.2.3 The impact of artemisinin resistance on treatment by the standard regimen. 3847 

Unsurprisingly ratios of AUCPL and MPL when comparing resistant and sensitive parasites are never 3848 
less than 1 (Figure 6.5) i.e. under no circumstance did patients have a better outcome when parasites 3849 
are resistant. Differences in median values (Figure 6.5, Table 6.8) were extremely small (in other 3850 
words, while better outcomes were never observed with resistant parasites, the impact of resistance 3851 
across the entire 10,000 patient population seemed negligible.  3852 

PRRC analysis (Figure 6.10,6.3.3.1) was conducted to investigate whether this small difference 3853 
obscured the presence of a vulnerable sub-group of patients. This appeared to be the case: Patients 3854 
whose infections are clustered in the early age-bins at time of treatment had pathological outcomes 3855 
which were significantly worse in the presence of resistance (Figure 6.10).  3856 

In these early age bins, ratios for AUCPL and MPL are as high as 5 in the 0-24h period (comparisons 3857 
based on the upper quartile value). This occurs because artesunate presence post-treatment largely 3858 
coincides with parasites in age-bins insensitive to artesunate through resistance, rendering the initial 3859 
dose nearly or completely ineffective.  3860 

SD of the initial mean age-bin had a positive correlation with the ratio (indicating that resistant 3861 
parasites had worse outcomes as SD increased). This occurred because higher SD “nudged” parts of 3862 
the age-bin distribution into (or out of) resistant age-bins (i.e. the contiguous bin 45-48 and 1-5 where 3863 
killing is absent). PRCC analysis showed no other parameter had a PRCC value of >0.01, suggesting the 3864 
initial mean age-bin (and, to a lesser extent, it’s SD) are the sole determinants of whether a patient’s 3865 
outcome will be worse in the presence of resistance.  3866 

There was negligible difference in outcome metrics when comparing sensitive and resistant parasites 3867 
between assumption of paediatric artesunate killing duration and adult artesunate killing duration 3868 
(Table 6.8) 3869 
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Figure 6.10  Analysis of the impact of artemisinin-resistance. The effectiveness of the World Health Organization (WHO) standard regimen used to treat 3871 
resistant v sensitive parasites; ratios of >1 indicate that resistant parasites have worse  outcome metrics.  Top panel: Partial rank correlation coefficients 3872 
(PRCC)  using Spearman’s Rho of model parameters on the ratios of area under the pathology curve (AUCPL) and maximum pathological load  (MPL) Lower 3873 
panel: Ratios of AUCPL and MPL are plotted against the most highly correlated parameter (mean age bin), for four time periods post-treatment.  3874 
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Table 6.11  Partial rank correlation coefficient (PRCC) values  with corresponding p values (brackets) for ratios of area under the pathological load curve 3892 
(AUCPL) and maximum pathological load (MPL) for resistant v sensitive parasites for a patient population simulated treated with the standard regimen, using 3893 

seven key model parameters. The ratio is calculated as 
𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑓 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠

𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑓 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠
 such that higher ratios (and thus, positive correlation) indicate 3894 

better outcomes with sensitive parasites 3895 

Outcome 
Metric 

Time period Parameter 

Initial 
parasite 
number 

Initial mean 
age-bin 

Standard 
deviation  

PMR Vmax Half-life of r Artesunate 
duration  

AUCPL 0-12h 0.003 (0.51) -0.55 

(<0.001) 

0.18 (<0.001) 0.004 (0.32)  0.009 (0.03) -0.005 (0.18) -0.01 
(<0.001) 

0-24h 0.009 (0.03) -0.42 
(<0.001) 

0.29 (<0.001) 0.025 
(<0.001) 

-0.005 (0.15) -0.02 
(<0.001) 

-0.03 
(<0.001) 

12-24h 0.01 (0.02)  -0.4 (<0.001) 0.3 (<0.001) 0.24 (<0.001) -0.006 (0.15) -0.04 
(<0.001) 

-0.02 
(<0.001) 

24-48h 0.01 (0.001)  -0.19 
(<0.001) 

0.31 (<0.001) 0.06 (<0.001) -0.07 
(<0.001) 

-0.13 
(<0.001) 

-0.11 
(<0.001) 

MPL  0-12h 0.003 (0.36) -0.4 (<0.001) 0.05 (<0.001) -0.0007 
(0.87) 

-0.001 (0.71) 0.01 (0.02) -0.05 
(<0.001) 

0-24h 0.002 (0.52) -0.35 
(<0.001) 

0.06 (<0.001) 0.02 (<0.001) -0.0001 
(0.97) 

0.02 (<0.001) -0.05 
(<0.001) 

12-24h 0.004 (0.3) -0.51 
(<0.001) 

0.21 (<0.001) 0.007 
(<0.001) 

0.01 (0.02) -0.01 (0.04) -0.0002 
(0.96) 

24-48h 0.01 (0.002) -0.33 
(<0.001) 

0.32 (<0.001) 0.03 (<0.001) -0.01 
(<0.001) 

-0.1 (<0.001) -0.05 
(<0.001) 

PRCC: Partial Rank Correlation Coefficient, AUCPL: Area under the pathological load curve, MPL: Maximum value of pathological load, PMR: Parasite 3896 
multiplication rate, Vmax : Maximal rate of artesunate killing, r: pathological load recovery rate3897 
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6.3.3 Impact of the recovery rate r (and its half-life).  3898 

The key unknown parameter in these simulations is the pathological recovery rate r. It’s value was 3899 
varied by altering its half-life, i.e. the amount of time it took pathology from sequestered parasites to 3900 
reduce by half, following the death of the parasite. There are no clinical estimates of this parameter, 3901 
so it was arbitrarily varied between 4 and 12 hours in these simulations. Most death occurs within 24 3902 
hours of admission, so a 12-hour half-life as the upper limit was selected because, if pathology lingered 3903 
longer, then presumably more deaths would be expected in the post-24hour period. Four hours was 3904 
taken as the minimum because under this assumption 50% of the pathology disappears by 4 hours, 3905 
75% by 8 hours, 87.5% by 12 hours, and this seemed rapid. Future researchers can change these values 3906 
as they see fit or these simulations can be re-run to their specifications. The key operational question 3907 
is to what extent assumptions of the value of r alter the results on treatment outcome presented by 3908 
the model. There is negligible impact of this parameter on two key comparisons i.e. the impact of 3909 
alternative regimens and the impact of resistance – this is described and justified in extensive detail 3910 
below.  3911 

6.3.3.1 Impact of pathological recovery rate on the baseline scenario i.e. treatment of artemisinin-3912 
sensitive parasites with the standard, WHO-recommended regimen. 3913 

The  impact of half-life on the values of AUCPL and MPL (for patients with sensitive parasites treated 3914 
under the standard regimen) is shown in Figure 6.11; a shorter half-life (indicating a faster rate of 3915 
clearance) resulted in lower outcome metrics. This is unsurprising – a faster resolution of pathology 3916 
from dead sequestered parasites would result in better outcomes. Analysis of the baseline was 3917 
conducted purely to establish basic dynamics of treatment and pathology and to check the results 3918 
were consistent with expectations. This is clearly the case i.e. that increased recovery rate half-life r 3919 
causes increased pathology.  3920 

 3921 

 3922 
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 3923 

Figure 6.11 Population values of area under the pathological load curve (AUCPL) and maximum pathological load (MPL) for patients with sensitive parasites 3924 
treated with the standard regimen, plotted according to half-life of the pathological load recovery rate r across four time periods post-treatment: 0-12h, 0-3925 
24h, 12-24h and 24-48h. 3926 
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6.3.3.2 Impact of pathological recovery rate on the impact of artemisinin resistance. 3927 

 3928 

The assumed value of pathological recovery rate had no effect on estimates of the impact of 3929 
artemisinin resistance. This can be seen in Figure 6.10, 6.3.3.1  and additionally in  Figure 6.12.  3930 

 3931 

 3932 

 3933 

 3934 

 3935 

 3936 

 3937 

 3938 

 3939 

 3940 

 3941 

 3942 

 3943 

 3944 

 3945 
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 3946 

 3947 

Figure 6.12 Ratios of area under the pathological load curve (AUCPL) and maximum pathological load (MPL) for sensitive v resistant parasites treated with 3948 
standard regimen, plotted according to half-life of the pathological load recovery rate r across four time periods post-treatment: 0-12h, 0-24h, 12-24h and 3949 
24-48h.3950 
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6.3.3.3 Impact of pathological recovery rate on the relative performance of alternative regimens. 3951 

 3952 
The assumed value of pathological recovery rate had a negligible impact when comparing the relative 3953 
performance of simplified versus standard regimen in the 0-12, 12-24 and 0-24h time periods (Figure 3954 
6.7, Table 6.9). However, at 24-48h there was notable negative correlation between AUCPL and MPL 3955 
and half-life of r meaning that the simplified regimen performs increasingly worse during this period 3956 
as pathological recovery rate increases (i.e. half-life decreases) – this is shown in Figure 6.13 .  3957 

The most plausible reason for the pattern can be explained by recalling that pathological load is the 3958 
sum of two contributions:  the pathology caused by alive sequestered parasites (first term of Equation 3959 
6.12) and the lingering pathology due to previously-killed parasites (the second term of Equation 6.12). 3960 
The pathological recovery rate only affects the second term and so alters the relative size of the two 3961 
contributions to the overall pathological load. This effect will be explained intuitively and illustrated 3962 
by dynamics of treatment in an exemplar patient shown on Figure 6.14, (note that this is an illustrative 3963 
patient out of the 10,000 sampled). Consider the first term of Equation 6.12 i.e. number of alive 3964 
sequestered parasites. The two doses of artemisinin in the first day means that the WHO-standard 3965 
regimen kills more parasites (for reasons more fully explained in [111]); so the alive, sequestered 3966 
component is always higher in the simplified than standard treatment (Figure 6.14 Panel A v B and 3967 
Panels C vs D). However, the lingering post-mortem pathology from previously killed parasites (the 3968 
second term in Equation 6.12) obscures this difference in live parasites. In the first 24 hours post 3969 
treatment, the lingering pathology of killed parasites is large, more than an order of magnitude higher 3970 
than live sequestered burden (Figure 6.14), and there is negligible difference between the regimens.  3971 
After 24 hours the lingering pathology is not such a dominant component, the effect of live 3972 
sequestered parasites starts to become noticeable.  Increased values of pathological recovery rate 3973 
(lower half-life, r) means the lingering pathology becomes a smaller contribution to pathological load 3974 
and the difference between the regimens becomes more apparent; hence after around 24 hours, the 3975 
value of pathological recovery does start to have an impact on the comparison between the simplified 3976 
and standard regimen. To make this algebra clearer, recall that comparisons are being conducted with 3977 
ratios of outcome metrics rather than their absolute values: 3978 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑚𝑒𝑡𝑟𝑖𝑐3979 

=
𝑎𝑙𝑖𝑣𝑒 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑟𝑒𝑑 𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠 (𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑟𝑒𝑔𝑖𝑚𝑒𝑛) + 𝑙𝑖𝑛𝑔𝑒𝑟𝑖𝑛𝑔 𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦 (𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑟𝑒𝑔𝑖𝑚𝑒𝑛)

𝑎𝑙𝑖𝑣𝑒 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑟𝑒𝑑 𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑟𝑒𝑔𝑖𝑚𝑒𝑛) + 𝑙𝑖𝑛𝑔𝑒𝑟𝑖𝑛𝑔 𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑟𝑒𝑔𝑖𝑚𝑒𝑛)
 3980 

(see also Equation 6.12) 3981 

Lingering pathology is extremely large in the first 24 hours due to the large amount of killed parasites 3982 
after initial treatment and makes up an overwhelming proportion of the pathological load. There is 3983 
negligible difference between the regimens in terms of the lingering pathology (which is primarily 3984 
governed by the recovery rate, r), and so because the lingering pathology component of the equation 3985 
is by far the largest, the ratio of the outcome metrics will be very close to 1.  However, the magnitude 3986 
of lingering pathology values falls over time post treatment (due to it being resolved by the rate of 3987 
recovery, r) and is lower in the 24-48h period than in 0-24h. These lower values are less able to obscure 3988 
the difference in effectiveness between the regimens in terms of the number of alive sequestered 3989 
parasites, so the ratios increase and become more variable (Figure 6.13 ). This can be observed in 3990 
Figure 6.14: Compare panels A and B to panels C and D – with the faster resolution of pathology 3991 
afforded by a shorter half-life (A, B), the alive sequestered parasites constitute the largest proportion 3992 
of pathological load by hour 48. With a longer half-life (C, D), the lingering pathology is still the largest 3993 
component.  The faster pathology is resolved, the smaller the magnitude of lingering pathology and 3994 
the larger the value of the ratio.  3995 

Using illustrative values, at 24h when lingering pathology is high: 3996 
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𝑟𝑎𝑡𝑖𝑜 =
1𝑒8 (𝑎𝑙𝑖𝑣𝑒 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑟𝑒𝑑) + 1𝑒10 (𝑙𝑖𝑛𝑔𝑒𝑟𝑖𝑛𝑔 𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦)

1𝑒7 (𝑎𝑙𝑖𝑣𝑒 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑟𝑒𝑑) +  1𝑒10 (𝑙𝑖𝑛𝑔𝑒𝑟𝑖𝑛𝑔 𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦)
= 1.009 3998 

At 48h, when lingering pathology is low: 3997 

𝑟𝑎𝑡𝑖𝑜 =
1𝑒8 (𝑎𝑙𝑖𝑣𝑒 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑟𝑒𝑑) + 1𝑒8 (𝑙𝑖𝑛𝑔𝑒𝑟𝑖𝑛𝑔 𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦)

1𝑒7 (𝑎𝑙𝑖𝑣𝑒 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑟𝑒𝑑) +  1𝑒8 (𝑙𝑖𝑛𝑔𝑒𝑟𝑖𝑛𝑔 𝑝𝑎𝑡ℎ𝑜𝑙𝑜𝑔𝑦)
= 1.81 3999 

In summary, pathological recovery rate  has no impact in the first 24 hours but has an important 4000 
impact on the relative performance of the regimens (quantified as ratios of  AUCPL) in the later, 24-4001 
48h post-treatment period (see Figure 6.7 and Table 6.9) (note that it is not important for MPL as the 4002 
value of MPL in the 24-48h period typically occurs at 24 hours, this is reflected in the PRCC analysis 4003 
showing no correlation between MPL at 24-48h and the half-life of r). This analysis of different drug 4004 
regimens to treat severe malaria is robust to assumptions of the value of recovery rate for the 4005 
following two reasons. Firstly, in the critical first 24 hour period following treatment (the period 4006 
focused on by Kremsner et al. [170]), PRCC results indicate that the half-life parameter has no impact 4007 
on the ratio of AUCPL and MPL of the regimens. This is further evidenced by Figure 6.13  and Figure 4008 
6.14 – even with an extremely short half-life, the pathological load did not differ sufficiently in the first 4009 
24 hours to make any difference between the regimens when r changes. Secondly, pathological load 4010 
is much higher in the 0-24h period than the 24-48h period, so the lack of impact of r in the 0-24h 4011 
period is critical (AUCPL and MPL at 24-48h are generally 20-30% of the values at  0-24h, though this 4012 
will vary depending on the value of patient parameters, including the half-life of the pathological 4013 
recovery rate) This reflects the belief that pathology/death in the 24-48 hour period post-treatment 4014 
is not described solely by pathological metrics  in that period: rather it is the cumulated damage since 4015 
treatment was initiated that is important and that includes the metrics in the 0-24h period. Finally, it 4016 
is clear from the full set of results presented here that while an extremely low half-life is associated 4017 
with better outcome from the standard regimen in all time periods except 0-12h, the standard 4018 
regimen produces lower AUCPL across the entire range of parameter values (MPL is equivalent at 0-4019 
24h and 12-24h), so no matter the parameterization of the half-life of r, the standard regimen still 4020 
produces lower outcome metrics. 4021 
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 4022 

Figure 6.13 Ratios of area under the pathological load curve (AUCPL) and maximum pathological load (MPL) for standard v simplified regimen with sensitive 4023 
parasites, plotted according to half-life of the pathological load recovery rate r across four time periods post-treatment: 0-12h, 0-24h, 12-24h and 24-48h. 4024 

 4025 
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 4026 

Figure 6.14 Plots to illustrate the proportion of total pathological load contributed by alive sequestered parasites and by lingering post-mortem pathology, 4027 
and the differences in these contributions when the half-life of the recovery rate r is varied. With a lower half-life (faster recovery), alive sequestered parasites 4028 
constitute a larger proportion of pathological load and so differences between standard and simplified regimens with respect to the number of alive, 4029 
sequestered parasites become more apparent with the assumption of faster recover.  4030 
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6.4 Discussion. 4031 

6.4.1 Model validity. 4032 

An mPK/PD modelling methodology capable of investigating the treatment of severe malaria was 4033 
developed. Kremsner et al. [47] recognised the clinical necessity of this, and noted that “for the first 4034 
time, we [i.e. Kremsner et al.]  are assessing artesunate using similar pharmacokinetic and dynamic 4035 
approaches”. Parasite clearance is likely to be a poor measure of regimen effectiveness (and, by 4036 
extension, clinical outcome) in severe malaria where pathology is due to sequestered parasites. The 4037 
effects of alternative regimens and the impact of drug resistance can only be investigated by 4038 
traditional clinical outcomes using large scale clinical trials, so pharmacological modelling of the type 4039 
proposed here is essential to help generate the evidence base for rational treatment design.  This  4040 
modelling was highly flexible and, of necessity, reflected limitations in understanding of pathology, for 4041 
example, how rapidly pathology is resolved following parasite death and whether pathology depends 4042 
on maximal sequestered load (measured as MPL) or on total exposure (measured as AUCPL). An 4043 
interesting, highly important result is that the key quantitative assumption made in the analysis, the 4044 
rate of resolution of pathology (measured as the half-life of r), had little effect on the conclusions 4045 
when comparing alternative regimens or the impact of resistance (6.3.3.3) implying that the 4046 
pathological model is a robust to assumptions made in this comparative investigation Importantly, 4047 
while circulating parasite loads do not reflect the pathology of severe malaria they are currently the 4048 
regular endpoint of choice in severe malaria trials, including those undertaken by Kremsner et al. [170, 4049 
190]; this model was able  to reproduce the clinical outcomes reported in [170, 182] (when 4050 
appropriately parameterized), and recover expected PRR48, so confidence that it is reflective of in vivo 4051 
scenarios is present.  4052 

 4053 

6.4.1.1 Model metrics and alternatives. 4054 

To the best of my knowledge, there is no biological proxy, or direct clinical measurement, for the rate 4055 
of detachment of iRBCs containing dead parasites in vivo, and it is unknown whether all sequestered 4056 
iRBCs cause the same pathological burden irrespective of how long they have been sequestered. 4057 
Therefore two simple metrics of pathology were used to enable comparison of the impact of different 4058 
drug regimens and resistance. Note that this is not attempting to be definitive description of severe 4059 
malaria pathology but present a flexible methodology that allows users to construct more 4060 
sophisticated models of pathology should they so wish. A simple exponential decline of pathology was 4061 
assumed, quantified as the pathological recovery rate r and that it applies to all sequestered iRBCs 4062 
containing dead parasites, but this could be expanded in a number of ways, most likely: 4063 

Pathology may be affected by duration of binding e.g. a iRBC that has been sequestered for three 4064 
hours may have caused less damage than one sequestered for 30 hours; it would be possible to 4065 
construct a pathology index that reflects this (although this would entail constructing an index to 4066 
quantify this relationship between duration and pathology). 4067 

The reduction in pathology may not be linear. For example, it may decline very slowly for the first few 4068 
hours following parasite death, then very rapidly thereafter (or vice versa). 4069 

It was assumed pathology was proportional to the number of sequestered parasites and their lingering 4070 
pathology. Readers may prefer to set a pathological trigger (e.g. >109 sequestered parasites) and use 4071 
time above that limit as a metric for pathology. 4072 

In short there is great flexibility to model pathology, but there is little precedent on how to properly 4073 
construct or calibrate a definitive model. Hence, this simple methodology was chosen to minimise 4074 
complexity and arbitrary choice of parameters and to avoid “cherry picking” metrics to support results.  4075 

 4076 
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Severe malaria is the result of a myriad symptoms and patients often present with different levels of 4077 
cerebral malaria, severe anaemia, metabolic derangement and respiratory distress. It was assumed 4078 
that reducing sequestered parasitaemia is the key therapeutic objective and that the MPL and AUCPL 4079 
are realistic metrics to compare treatment regimens of severe malaria. These metrics do not have to 4080 
reflect pathology exactly, but are sufficiently accurate proxies that they can serve as comparisons for 4081 
the clinical efficacy of treatment regimens. The simplifications in model calibrations primarily reflect 4082 
the currently poor understanding of the pathology of severe malaria [81], however, one advantage of 4083 
this methodology is that it is highly flexible and transparent. Users may easily change the calibration 4084 
to reflect their beliefs of the underlying pathology and test how treatment regimens impact prognosis. 4085 
For example, respiratory distress syndrome is associated with higher levels of circulating parasitaemia 4086 
and the clinical priority may be to reduce circulating parasitaemia [16], in which case more detailed 4087 
analysis of apparent PRR could be conducted [193].  4088 

The results of this research focused on pathology in the first 24 and 48 hour periods. Pathological 4089 
effects are known to last much longer and, for example, neurological sequalae can be observed 4090 
months after treatment[194]. This long-lasting pathology may not be due to parasites present at the 4091 
time of observations but may instead be a long-lasting consequence(s) of the parasitaemia and 4092 
pathology that occurred within the first 48 hours as the pathological load has typically fallen by 4 4093 
orders of magnitudes by 48 hours. Therefore, these results should apply equally well to these longer 4094 
lasting pathological effects as to the more immediate metrics of death within 24 or 48 hours. 4095 

Little difference was observed between ratios of AUCPL and MPL when comparing regimens or 4096 
resistance (i.e., the ratios of AUCPL are close to the ratios of MPL). This occurs because, for each time 4097 
period, the highest point of pathological load is almost always the earliest hour (i.e., highest 4098 
pathological load is at 0 hours in 0-12h, 12 hours in 12-24h, so on). Consequently, the MPL for each 4099 
patient in a time period typically occurs at the very beginning of that time period. It follows that the 4100 
largest contributions to AUCPL also occur at the very beginning of the time period; Figure 6.1  of an 4101 
exemplar patient shows that pathological load follows a linear decline over time.  4102 

The similarity between ratios of AUCPl and MPL was thus un-concerning, it follows that a patient with 4103 
a higher MPL will have a higher AUCPl and any parameters that affect one will affect the other equally 4104 
(i.e., initial parasite number, mean age-bin).   4105 

 4106 

6.4.2 Standard v Simplified regimen.  4107 

Kremsner and colleagues [170, 190] concluded that their simplified regimen was non-inferior to the 4108 
standard WHO regimen and possessed operational advantages due to less frequent drug 4109 
administration[170, 190]. This work was influential and initiated a wider debate about the best drug 4110 
regimen(s) to treat severe malaria [47, 50, 195] to which the results presented herein can contribute.  4111 
Comparison of the 0-24h and 12-24h period was used to compare the effects of the initial, larger dose 4112 
of the simplified regimen against the additional dose at 12h with the standard regimen. The standard 4113 
regimen produced slightly lower median AUCPL within the first 24 hours post-treatment (Figure 6.5, 4114 
Table 6.8). This difference was greater in the 24-48h period, but the majority of pathological load 4115 
occurred within the first 24 hours as artesunate rapidly kills parasites– AUCPL in the 24-48h period is, 4116 
on average, between 20-30% that of AUCPL in the 0-24h period (data not shown). The first 24 hours 4117 
are critical for patient survival[171], so outcome metrics at 24-48h may have little relevance in 4118 
choosing between regimens. However, the simplified regimen performed much worse in the sub-4119 
group of patients with very late or very early initial mean age-bins. Based on these results, care should 4120 
be taken if recommending use of the simplified regimen but there is an important rider to this. 4121 
Kremsner et al. never claimed this simplified regimen would be superior, but argued that any 4122 
inferiority, if it exists, would be within acceptable margins. I will not comment on this, and leave  it to 4123 
clinically qualified personnel to judge whether 50% in some subgroups is within an acceptable margin 4124 
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of inferiority, especially given the inability to directly link the pathological outcomes investigated here 4125 
with the likelihood of mortality.  4126 

An important note is that any value of SD can be modelled. The key change as the distribution widens 4127 
is that the mean age-bin parameter becomes less important. This is intuitive as the importance of this 4128 
parameter derives from the fact that, with a narrow distribution, patients with certain initial mean 4129 
age-bins have treatment falling in less/non-sensitive bins. The technical problem with this distribution 4130 
is that there is no “mean age bin” so it is not possible to  analyse its impact nor incorporate this 4131 
distribution into formal sensitivity analyses. Under the circumstances of uniformly distributed parasite 4132 
age-bins, it is fair to claim, as Kremsner et al. did, that the simplified regimen is “non-inferior”. This 4133 
occurs because when parasites are uniformly distributed there are no “at risk” patients with infections 4134 
clustered in early mean age-bins at the time of treatment, and all patients will experience high levels 4135 
of killing from the initial artesunate dose.  4136 

 4137 

6.4.3 Impact of artemisinin resistance. 4138 

The impact of artemisinin resistance on treatment of severe malaria was assessed, i.e. the extent to 4139 
which resistance increased MPL and AUCPL. Resistance prevents drug killing in age-bins 2-4 (these bins 4140 
are otherwise hyper-sensitive) resulting in no killing for a contiguous 8 hour period in resistant 4141 
parasites (i.e. age-bins 45 to 5). Results show the initial mean age-bin and it’s SD are the only 4142 
parameters that distinguish outcomes between sensitive and resistant parasites (Figure 6.10) . It has 4143 
been argued previously [15] that artemisinin resistance would have a negligible impact on eventual 4144 
cure rates in uncomplicated malaria  (provided there was no resistance to partner drugs) but 4145 
artemisinin resistance clearly poses a much larger threat to treatment of severe malaria than it does 4146 
to uncomplicated malaria. Although differences between sensitive and resistant parasites across the 4147 
entire population are minor (Figure 6.5, Table 6.8), there is an extremely vulnerable sub-group of 4148 
patients whose infections at the time of treatment are clustered in very late or very early age-bins 4149 
(i.e., where parasites are resistant in the model; Figure 6.10).   4150 

 4151 

 4152 

 4153 

 4154 

 4155 

 4156 

 4157 

 4158 

 4159 

 4160 

 4161 

 4162 

 4163 

 4164 
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Chapter 7:  Thesis Conclusions. 4165 

 4166 

This thesis has used a computer modelling approach to achieve two critical objectives, one focusing 4167 
on uncomplicated falciparum malaria and one focusing on severe falciparum malaria: 4168 

1: To develop a methodology that can accurately calculate true failure rates of Artemisinin-based 4169 
combination therapies (ACTs) in uncomplicated malaria therapeutic efficacy studies (TES), and, 4170 
against that gold standard figure, compare the accuracy and utility of a range of current and 4171 
proposed methods to estimate ACT failure rates, and ways in which the accuracy and usage of these 4172 
methods may be optimized. 4173 

2: To develop a methodology to quantify the pathology of sequestered parasites in severe malaria 4174 
and use this methodology to identify rational drug dosing regimens for treatment of severe malaria 4175 
with artesunate (AS) and quantify the likely impact of AS drug resistance for treating severe malaria.   4176 

 4177 

7.1 A Computer modelling approach to improving failure rate estimates from TES through 4178 
simulation of molecular correction.  4179 

Three methodologies for molecular correction in therapeutic efficacy studies (TES) were explored 4180 
within this thesis. Each are topical: The length polymorphic marker methodology using merozoite 4181 
surface protein-1 (msp-1), merozoite surface protein-2  (msp-2) and the glutamate rich protein (glurp) 4182 
is the presently recommended methodology by the World Health Organization (WHO) [14], but the 4183 
accuracy of this approach has long been under scrutiny [121]. Microsatellite markers are used in TES 4184 
by the Centers for Disease Control and Prevention (CDC), and novel methods have suggested that 4185 
simple statistical analysis may be severely under-estimating drug failure rates [31, 150]. Finally, use of 4186 
next-generation amplicon sequencing (AmpSeq) for molecular correction is still in exploratory stages, 4187 
and a small but promising selection of research has been undertaken [36, 41, 160].  4188 

The computer modelling approach undertaken in this thesis had, broadly, the same goal for all three 4189 
methods: Determine the accuracy of failure rate estimates produced using each methodology  4190 
through comparison to a true failure rate calculated using mechanistic 4191 
pharmacokinetic/pharmacodynamic (mPK/PD) modelling. (Chapter 2). The simulation of each 4192 
methodology has, necessarily, had different requirements and different goals. The objectives, core 4193 
methodology and key findings of modelling TES using length-polymorphic markers (Chapter 3), 4194 
microsatellite markers (Chapter 4) and AmpSeq (Chapter 5) are briefly summarized below:  4195 

 4196 

7.1.1 Length-polymorphic Markers (Chapter 3). 4197 

A selection of algorithms are available to classify recurrent infections as either recrudescence or 4198 
reinfection using length-polymorphic markers (Table 3.1). The accuracy of each algorithm in a variety 4199 
of settings describing transmission intensity was modelled. The impact on failure rate accuracy of 4200 
altered follow-up length of TES was also investigated.  4201 

The currently recommended WHO/MMV algorithm was extremely conservative in classifying 4202 
recurrent infections as recrudescent and misclassified a large proportion of recrudescence as 4203 
reinfection. Consequently, modelling work suggested that use of this algorithm is likely to under-4204 
estimate the failure rate of failing drugs (DHA-PPQ, AR-LF and AS-MQ were modelling with ~10% true 4205 
failure rates). Failure rates for non-failing drugs were also under-estimated, but the absolute 4206 
difference between the true and estimated failure rate was small and so the operational 4207 
consequences are minor.  4208 
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Novel algorithms each misclassified some proportion of recrudescence and reinfection, and  which 4209 
was most accurate was determined by transmission intensity (and thus, the number of reinfections). 4210 
As a general trend, a novel “allelic family switch” algorithm was the most accurate in areas of lower 4211 
transmission intensity and a “≥2/3 markers” algorithm was most accurate in areas of higher 4212 
transmission intensity. Follow-up lengths of 28 days for AR-LF and 42 days for DHA-PPQ and AS-MQ 4213 
(49 days would also be appropriate for AS-MQ) were appropriate to recover accurate failure rate 4214 
estimates with the algorithms described above; this was consistent with current WHO 4215 
recommendations of 28 days for AR-LF and 42 days for DHA-PPQ and AS-MQ. Sensitivity analysis of 4216 
model parameters showed that conclusions were robust to model assumptions, and re-analysis of 4217 
existing clinical data with the new algorithms showed qualitatively the same trends observed with the 4218 
modelling approach.  4219 

 4220 

7.1.2 Microsatellite Markers (Chapter 4). 4221 

Microsatellite markers are not recommended for use in molecular correction by the WHO but are used 4222 
in practice by the CDC and other groups (examples:[40, 150, 151], Chapter 4). The use of microsatellite 4223 
markers to classify recurrent infections was modelled here. The accuracy of failure rate estimates for 4224 
AR-LF and AS-MQ calculated with both a simplified “match counting algorithm”- where a recurrent 4225 
infection was classified as recrudescent when a threshold number of microsatellite loci had matching 4226 
alleles between the initial and recurrent sample- and a novel Bayesian algorithm [150] were 4227 
investigated. A detailed analysis of Bayesian algorithm was then conducted to determine how robust 4228 
it was in a variety of transmission intensity settings and how well it could identify low density 4229 
recrudescent infections.  4230 

Failure rate estimates obtained using the match counting algorithm consistently under-estimated the 4231 
true failure rate of failing AR-LF and AS-MQ when the threshold number of matching loci was all or 4232 
most microsatellite loci genotyped. Lower thresholds increased the failure rate estimate, but no 4233 
threshold was able to consistently recover the true failure rate as failure rate estimates varied widely 4234 
as transmission intensity was changed. Low thresholds lead to large over-estimation of true failure 4235 
rate in high transmission settings.  4236 

A novel Bayesian algorithm was able to recover the true failure rate to a high degree of accuracy in all 4237 
scenarios. The Bayesian algorithm was highly specific (negligible misclassification of recrudescence as 4238 
reinfection) and classifying every recurrence with a posterior probability of recrudescence, p, ≥0.1 as 4239 
a recrudescence was the most accurate approach.  A slight under-estimate of failure rate still occurred; 4240 
some low-density recrudescences were not correctly identified by the algorithm. The Bayesian 4241 
algorithm was able to accurately estimate failure rate even in a simulation area of extremely low 4242 
genetic diversity.  4243 

 4244 

7.1.3 Amplicon Sequencing (Chapter 5). 4245 

Use of AmpSeq for molecular correction is a subject of recent interest; they have not (to my 4246 
knowledge) been formally used to obtain failure rate estimates in a TES, and research is currently 4247 
focusing on developing protocols for their use [36, 41, 158]. The purpose of modelling work was to 4248 
determine the accuracy of failure rate estimates using AmpSeq markers and answer two important 4249 
operational questions: (i) How many (and which AmpSeq loci must be genotyped to obtain accurate 4250 
failure rate estimates in a variety of scenarios of transmission intensity?  (ii) can a simple matching 4251 
algorithm return accurate and robust failure rate estimates? 4252 

AmpSeq methods were able to estimate the true failure rate with a high degree of accuracy in multiple 4253 
MOI settings and levels of transmission intensity. It was sufficient to base classification of recurrent 4254 
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infections as recrudescence or reinfection on genotyping 3 highly diverse AmpSeq loci, and the 4255 
AmpSeq methodology was capable of estimating failure rates to be within 1% of the true failure rate 4256 
at all levels of transmission intensity investigated in the model.  4257 

 4258 

7.1.4 Approaches for obtaining accurate failure rate estimates in TES.  4259 

The two molecular correction methods that are currently most widely used (i.e., the WHO/MMV 4260 
algorithm for length-polymorphic markers and the match counting algorithm with a stringent 4261 
threshold for microsatellite markers) will result in large under-estimates of failure rate of failing drugs. 4262 
Under-estimation of true failure rate with these approaches has previously been inferred from field 4263 
data and in vitro studies for both length-polymorphic markers [106] and microsatellite markers [31, 4264 
150]. However, the true failure rate cannot be known in vivo, and such comparisons have been based 4265 
on the simple fact that, for length-polymorphic markers, alternative algorithms produce different 4266 
failure rate estimates, and for microsatellite markers that failure rate estimates differ as the threshold 4267 
changes for a match-counting algorithm and that a Bayesian algorithm produced different estimates 4268 
to match-counting algorithms. The modelling work presented here has been able to quantify these 4269 
differences and reveals the magnitude of under-estimation with current methods.  4270 

The WHO/MMV algorithm and the microsatellite match-counting algorithm share an important trait: 4271 
They have both been extremely conservative (stringent) when classifying recurrent infections as 4272 
recrudescent. The WHO/MMV algorithm requires shared alleles between the initial and recurrent 4273 
sample at all three loci to classify a recrudescence [14], and the microsatellite match-counting 4274 
algorithm has historically requires matching alleles at “all” or “all but one” loci, when the number of 4275 
loci has varied but has generally been 6 or 7 [31, 40, 98, 142, 151].  4276 

There is a clear problem with this approach of classifying recurrent infections: length-polymorphic 4277 
markers and microsatellite markers methodologies will both fail to detect low-frequency alleles during 4278 
the PCR process (3.1.2; 4.1.2) The practical consequence of this is that, for both methodologies, 4279 
minority alleles <20-30% of the majority allele will not be detected (see individual chapters for full 4280 
discussion). The modelling approach undertaken in this thesis quantified the impact on failure rate 4281 
estimates of the inability to detect these minority alleles.  4282 

Before discussing the impact of modelling less stringent algorithms, an important note must be made: 4283 
It was possible for a given allele(s) (of any type of marker) of a clone to be detected while others were 4284 
not.  For all three methodologies, alleles could be shared between clones and the sum frequency of a 4285 
given allele in a sample was determined by the number of clones with that allele in the sample. In 4286 
other words, alleles on a given clone may exist in different relative frequencies because some were 4287 
present on multiple clones while others were not. This could result in one allele on a clone being the 4288 
majority allele in the sample while the others were minority alleles. For length-polymorphic markers, 4289 
alleles were variable in their detectability according to their relative lengths (this is family-specific for 4290 
msp-1 and msp-2). Consequently, a situation could arise where an allele at a given locus of a clone was 4291 
not observed but alleles at another locus on that same clone were, due to the length (and frequency) 4292 
of other alleles at that locus present in the sample. Finally, it was possible for microsatellite alleles at 4293 
a given locus to not be correctly observed through errors in reading microsatellite length (4.1.2) 4294 

As such, less stringent methodology may allow recrudescent clones to be accurately identified in 4295 
circumstances where an allele(s) of that clone was not observed whereas a stringent methodology 4296 
requiring an allele to be shared at all loci between the initial and recurrent samples would misclassify 4297 
that sample as a reinfection.  4298 

It is almost inevitable that less stringent algorithms misclassify reinfections as recrudescence at a 4299 
greater frequency than stringent algorithms. Intuitively, this seems extremely undesirable, but the 4300 
results herein suggest that in practical terms “two wrongs can make a right” – less stringent algorithms 4301 
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allowed for opposing sources of misclassifications to cancel out, given that low density recrudescence 4302 
are difficult to detect with length polymorphic or microsatellite markers (resulting in the under-4303 
estimate of true failure rate using stringent algorithms described above). This may seem extremely 4304 
unscientific but the modelled results for length-polymorphic markers suggest that novel algorithms 4305 
are relatively robust across a variety of transmission scenarios and produce reasonably accurate 4306 
failure rate estimates (Chapter 3). It is not presently possible to increase detection of low density 4307 
recrudescence with these markers (this is a goal that is achieved using AmpSeq markers instead), but 4308 
using different algorithms, as shown in Chapter 3, can improve the accuracy of failure rates by a) 4309 
correctly identifying more recrudescent infections and b) misclassifying some proportion of 4310 
reinfections as recrudescence, cancelling out under-estimation of true failure rate due to low density 4311 
recrudescence.     4312 

A less stringent approach for microsatellite markers using a traditional match counting algorithm 4313 
appeared to be unsuitable. The modelled results in Chapter 4 showed that no threshold number of 4314 
matching loci produced accurate failure rate estimates that were robust across a variety of 4315 
transmission intensity scenarios. Lower thresholds induced over-estimates of true failure rates in high 4316 
transmission scenarios, and stringent thresholds consistently under-estimated true failure rate (as 4317 
described above).   4318 

However, use of a Bayesian analysis methodology produced extremely accurate failure rate estimates. 4319 
The mPK/PD methodology used here allowed for a detailed analysis of results using this algorithm. 4320 
Current usage of the algorithm in vivo has classified recurrent infections as recrudescence when the 4321 
posterior probability of recrudescence, p, was ≥0.5 [31, 150]; modelling results indicate that the 4322 
algorithm has extremely high specificity and classifying recurrences with p ≥0.1 will produce slightly 4323 
more accurate failure rate estimates (generally an extremely small under-estimate of the true failure 4324 
rate. However, the as the algorithm calculated p as either <0.1 or ≥0.9 for most recurrences, the 4325 
difference between using p ≥0.1 and p ≥0.5 to classify a recrudescence will be small in practice.   4326 

Modelling of AmpSeq markers showed an extremely high ability to recover the true failure rate in all 4327 
scenarios modelled. It was sufficient to genotype three highly diverse loci and classify a recrudescence 4328 
with matching alleles between the initial and recurrent sample at ≥2 loci. Note that the length-4329 
polymorphic markers and microsatellite markers (with the exception of the extremely low diversity 4330 
setting) were similarly diverse (as quantified by expected heterozygosity; He), so it is the greatly 4331 
increased detectability of low-density clones that enables this method to provide  a marked 4332 
improvement over the status quo.  4333 

A direct comparison of all the failure rate estimates obtained from the different methodologies 4334 
investigated in this thesis is difficult because different drugs were investigated for each chapter (see 4335 
earlier chapters for reasoning), and where possible the models were calibrated with MOI distributions 4336 
obtained using the markers of interest (i.e., the MOI distributions used in chapter 3 and chapter 5 4337 
were obtained from field data using length-polymorphic markers and the MOI distributions used in 4338 
chapter 4 were obtained using microsatellite markers. However, failing AR-LF was modelled for all 4339 
three methods and a comparison of AR-LF failure rate estimates obtained during a 28 day follow-up 4340 
assuming a “high” MOI (the MOI from Tanzania for length-polymorphic markers and AmpSeq markers 4341 
and the MOI from the “high transmission” scenario for microsatellites) is possible for illustrative 4342 
purposes, noting that the true failure rate of AR-LF differed between chapters. Failure rate estimates 4343 
at different transmission intensity levels (quantified by FOI) can be shown for FOI 0, 2, 8 and 16 for 4344 
length-polymorphic markers and AmpSeq markers. For microsatellite markers the “high transmission 4345 
scenario” was calibrated only with an FOI of 16. Consequently, length-polymorphic marker results and 4346 
AmpSeq results are directly comparable as the same MOI distribution and FOI values were used for 4347 
the “low”, “medium” and “high” transmission scenarios. However, microsatellite markers are 4348 
calibrated differently, so comparison of microsatellite results with other markers requires caution. 4349 
Comparison of estimates is shown in Figure 7.1  for length-polymorphic markers and AmpSeq and 4350 
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Figure 7.2 for microsatellite markers, noting that the “best” estimate is presented (i.e., the Bayesian 4351 
algorithm classifying a recurrence as recrudescence with a posterior probability of recrudescence, p, 4352 
of ≥0.1 for microsatellite markers and for AmpSeq, genotyping 3 loci and classifying a recurrence as a 4353 
recrudescence when either 2 or 3 loci match between samples; all length-polymorphic marker 4354 
algorithms are shown). These values of failure rate estimates are all calculated using survival analysis 4355 
and correspond to those shown in Figure 3.7  for length-polymorphic markers, Figure 4.2  for 4356 
microsatellite markers and Figure 5.1 for AmpSeq.  4357 

Modelling work evaluating the three methodologies  available to recover accurate failure rate 4358 
estimates for failing drugs, is summarized in Table 7.1 according  to the order they are discussed in 4359 
this thesis: The length-polymorphic markers using novel algorithms, microsatellite markers using a 4360 
Bayesian algorithm, and finally AmpSeq markers with failure rates estimated using a match counting 4361 
algorithm. These methods are distinct from those currently being employed in the field for TES; the 4362 
modelling work presented in this thesis, combined with existing literature [31, 41, 106, 122] and re-4363 
analysis of TES data (Table 3.3) strongly suggest that drug failure rates are being under-estimated in 4364 
vivo with current practice for length-polymorphic markers and microsatellites.  4365 

If the field were to adopt any of these new methods, it should be expected to observe failing drugs in 4366 
areas they were previously thought to be efficacious, particularly for DHA-PPQ where drug failure has 4367 
already been observed (using length-polymorphic marker methodology) in vivo [20].  Given their high 4368 
level of accuracy and the lack of need for a complicated Bayesian analysis, AmpSeq markers appears 4369 
to be the most desirable methodology, but it is important to note that currently used methods (length-4370 
polymorphic markers, microsatellites) can achieve more accurate failure rate estimates with the 4371 
described methodological tweaks.  4372 

 4373 

 4374 

 4375 

 4376 
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 4377 

Figure 7.1 Comparison of failure rate estimates obtained using length-polymorphic marker algorithms 4378 
and AmpSeq (with 3 loci genotyped and classifying a recurrence as recrudescence at either 2/3 4379 
matching loci or 3/3 matching loci), with a high Multiplicity of Infection (MOI) distribution as described 4380 
in 2.3.1 and with Force of Infection (FOI) set to either 0, 2, 8 or 16 4381 

 4382 

 4383 

 4384 

Figure 7.2 Comparison of failure rate estimates obtained using microsatellite markers calculated with 4385 
a Bayesian algorithm, with transmission scenarios varied as described in 4.2.1.  4386 

 4387 

 4388 

 4389 
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Table 7.1 Summary of failure rate estimates obtained with each of three types of genetic marker, and 4390 
how improvements in the accuracy of these estimates may be realized according to the output of 4391 
modelling work.  4392 

Genetic 
marker 

Current use in vivo and 
consequences (identified from 
modelling work) 

Proposed improvements 
(identified from modelling work) 

Key 
sections 
of thesis 

Length-
polymorphic 
markers 

WHO/MMV algorithm is extremely 
conservative at classifying 
recrudescence and consistently 
under-estimates true failure rate at 
all levels of transmission intensity 

Use of an allelic family switch 
algorithm (in areas of low 
transmission intensity) and a 
≥2/3 markers algorithm (in areas 
of high transmission intensity 
permits more accurate 
estimation of failure rates.  

3.3 

Microsatellite 
markers 

Match-counting algorithm with 
stringent thresholds is extremely 
conservative and consistently 
under-estimates true failure rate. 
Lower thresholds produce higher 
failure rate estimates but are not 
viable for use as failure rate 
estimates are extremely sensitivity 
to changes in transmission 
intensity.   

A novel Bayesian algorithm is 
capable of estimating failure rate 
estimates to a high degree of 
accuracy. The Bayesian algorithm 
is highly specific and recurrences 
with posterior probabilities of 
recrudescence of ≥0.1 should be 
classified as recrudescence 

4.3 

Deep-
sequenced 
Amplicons 

Novel methodology not currently 
under wide-spread use. Modelling 
work supports the approach in the 
only existing use of AmpSeq for 
molecular correction [41] i.e. 
genotyping three highly diverse 
loci ama1-D3, cpmp and cpp 
permits accurate estimation of 
failure rates.  

This methodology accurately 
estimates failure rates in all 
transmission intensity scenarios, 
and steps should be taken for it’s 
wide-spread deployment. It was 
sufficient to only genotype three 
highly diverse loci (ama1-D3, 
cpmp and cpp were modelled 
here), and classify a 
recrudescence when the initial 
and recurrent sample share 
alleles at 2 or more loci.  

5.3 

WHO/MMV: World Health Organization/Malaria for Medicines Venture, AmpSeq: Amplicon 4393 
Sequencing, cpp: conserved plasmodium protein, cpmp: conserved plasmodium membrane protein, 4394 
ama1-D3: Apical membrane antigen 4395 

 4396 

7.1.5 Molecular correction for TES: Next steps. 4397 

Modelling work such as that undertaken here, while valuable, is not a substitute for real, clinical data, 4398 
and a clear next step is apparent from this work: A clinical trial (a TES) of sufficient size that genotyped 4399 
blood samples using all three methods (i.e., length polymorphic markers, microsatellite markers and 4400 
AmpSeq markers) in all patients would allow, for the first time, the failure rate estimates produced 4401 
using each methodology (including different algorithms and varied match-counting thresholds) to be 4402 
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directly compared. Of course, the true failure rate cannot be known in vivo, but the wealth of data 4403 
available from such a trial, combined with modelling work such as that presented here and in vitro 4404 
approaches aimed at quantifying detectability of clones in samples (i.e., [40, 41, 106] ) could be 4405 
combined to create a unified evidence base to inform policy design.  4406 

Note that to take a sufficient amount of blood to genotype such a large number of markers (3 length-4407 
polymorphic marker loci, 7 microsatellite loci and between 3 and 5 AmpSeq loci) is likely to require 4408 
more than the single finger prick (a simple and relatively unobtrusive procedure) that is currently 4409 
taken for TES. Potential options include taking two finger pricks (from separate fingers), but if more 4410 
blood was required venous blood may have to be taken – a more intrusive procedure with potential 4411 
implications for obtaining patient consent. I will not attempt, here, to design such a trial, other than 4412 
to note that an in vivo TES that attempts molecular correction using multiple methodologies will 4413 
permit direct comparison of failure rate estimates between those methodologies. An obvious, yet 4414 
important note is that when samples have been genotyped, calculating failure rates using different 4415 
algorithms (i.e., for length-polymorphic markers) is a purely statistical procedure and does not require 4416 
any additional blood from patients.  4417 

The expectation from this modelling work is that an AmpSeq approach as defined in chapter 5 (or a 4418 
more refined version of this approach in the future) should become the gold standard for obtaining 4419 
failure rate estimates from TES. However, the relative nascency of this methodology and the next-4420 
generation technology required for its use is likely to mean its eventual roll-out takes place over the 4421 
course of years, whilst accurate failure rates estimates are required now to aid the malaria elimination 4422 
effort.  Thus, in the interim period, improvements should be made to existing length-polymorphic 4423 
marker and microsatellite methodology for TES: Length-polymorphic markers should be analysed with 4424 
alternate algorithms, with the modelling work undertaken here suggesting use of an allelic family 4425 
switch algorithm in areas with low ongoing transmission (quantified in the models by FOI) and a ≥2/3 4426 
markers algorithm in areas with mid to high ongoing transmission. Microsatellite markers should be 4427 
analysed as standard with a Bayesian algorithm for accurate failure rate estimates (this has begun to 4428 
occur [31])– but given the complexity of running this algorithm (4.2.9), development of a hub service 4429 
or software to allow TES sites to submit trial results (microsatellites in initial and recurrent samples 4430 
and day of recurrence is all that would be needed, preserving anonymity of samples) would be a 4431 
worthwhile endeavour.  4432 

The improvement in failure rate estimates using a Bayesian algorithm  to analyse microsatellite 4433 
markers was notable (Chapter 4). Bayesian methodology would be equally applicable to length-4434 
polymorphic markers and AmpSeq methods, and improvements in the accuracy of efficacy estimates 4435 
generated using these markers would be expected from the development and implementation of a 4436 
Bayesian algorithm. Given the high accuracy of AmpSeq using simple calculations (Chapter 5), it is 4437 
questionable whether developing Bayesian methods for AmpSeq would be a worthwhile endeavour. 4438 
However, meaningful increases in accuracy could be expected from a Bayesian approach applied to 4439 
length-polymorphic markers, and if the field is unable (or slow) to implement AmpSeq methodology, 4440 
development of a Bayesian method for length-polymorphic markers is likely to be useful with relevant 4441 
implications for policy makers. Note that a Bayesian method could be used to re-analyse historic trial 4442 
data, and such a method would also be able to account for missing data (i.e., if only one or two of the 4443 
three length-polymorphic markers were genotyped in a sample, see discussion in 3.2.8).  4444 

Perhaps the major issue in the future of molecular genotyping for malaria TES will be consistency of 4445 
results across the field. The proposed methods outlined in Table 7.1 will produce relatively 4446 
comparable results with differences that are negligible relative to the under-estimation of true drug 4447 
failure rates occurring with current methods. However, inertia in the field is likely to result in all three 4448 
methods being used in practice with different algorithms (or thresholds for classifying a recrudescence 4449 
within a match counting algorithm) being employed. Such a situation may lead to confusion where 4450 
multiple failure rate estimates are available from a single TES. Multiple estimates from a single trial 4451 
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are useful for modellers and policy makers as they can be cross-referenced against modelled results 4452 
and permit validation of the models themselves (see 3.2.8 for an example of this). However, having to 4453 
calculate and report multiple estimates from a single trial is likely to be undesirable for teams 4454 
conducting these trials. Thus, it will be imperative that regulatory bodies such as the WHO and CDC 4455 
produce revised guidelines as soon as possible. An exploratory trial genotyping and comparing 4456 
multiple methodologies will be a crucial asset to allow them to do so.  4457 

7.1.6 Modelling gametocytes 4458 

A gametocyte model (Figure 7.3 ) was explored for use with the length-polymorphic markers and later 4459 
not used. This model required three gametocyte-related parameters: The gametocyte number per 4460 
clone (as a proportion of  the asexual parasitaemia of that clone), the lag period of x days before 4461 
gametocyte numbers start to fall (they are not affected by drugs and so, while asexual parasites are 4462 
still present in high numbers, gametocytes will continue to be produced – then fall when asexual 4463 
parasites are cleared), and the gametocyte half-life g1/2.  4464 

It was assumed that gametocytes are present for each clone at a density of 10% of the parasitaemia 4465 
for that clone. That is to say, if there were 100 asexual parasites, there would be 10 gametocytes. This 4466 
is likely to be a large over-estimate, it may be as few as 1 gametocyte to every 156 asexual parasites 4467 
[196]. Any over-estimate of the true gametocyte/asexual parasite ratio will exaggerate the importance 4468 
of gametocytes on failure rate estimates.  4469 

It was assumed that the lag period x was 4 days after the asexual parasites are killed via ACT for 4470 
gametocyte numbers to begin to fall. This represents the time taken for gametocytes to circulate and 4471 
become detectable following their production. This figure could be as high as 7-15 days [197] . A longer 4472 
time here will increase the window with which meaningful gametocyte numbers can overlap with new 4473 
infections and make misclassifications due to gametocytes more likely.  4474 

The gametocyte half-life g1/2 was assumed to be 2.4 days, i.e. half of current gametocytes will perish 4475 
every 2.4 days. This is in-line with estimates of between 2-4 days for half-life [198] and estimates of 4476 
gametocyte carriage of between 5-10 days [199]. An increase in half-life will increase the window in 4477 
which gametocytes can have a meaningful impact on failure rate estimates; a decrease will do the 4478 
reverse. 4479 

Including the above criteria resulted in nearly no change to the failure rate estimates (when calculated 4480 
using survival analysis) described in chapter 3 over not modelling gametocytes (the largest change, in 4481 
simulations of PPQ followed up for 63 days with an FOI of 16 and analysed with length-polymorphic 4482 
markers as shown in Figure 3.1 , was less than 0.1% - for lower FOIs, other ACTs and shorter follow-4483 
up periods the differences were even smaller (and often zero)). This is because the rate at which 4484 
gametocytes decay mean they will only have any meaningful signal in the time period between the 4485 
initial sample and around 13 days. However, for gametocytes to cause a misclassification of a new 4486 
infection into a recrudescence, a reinfection must also occur and rise to a level at which it becomes 4487 
detectable in this time period. Due to the prophylactic effects of all three ACTs, this is extremely rare 4488 
(see Figure 3.5, Figure 3.7 , Figure 3.10 ). I  show some illustrative examples of the likely impact of 4489 
persisting gametocytes based around the fact that a patient can only diagnosed with malaria once the 4490 
number of asexual parasites exceeds 108 (the limit of detection via microscopy, fully discussed in 4491 
3.2.4). When minority signals less than around 30% are not detected (i.e., for length-polymorphic 4492 
markers or microsatellite markers), this means that gametocytes will only cause interference if their 4493 
number exceeds~3x107, assuming that gametocytes are present in numbers of 10% of the asexual 4494 
clone. Figure 7.3 shows the change in gametocyte number a variety of initial numbers present at time 4495 
of treatment, and different gametocyte half-lives. These results suggest they are only likely to 4496 
contribute a signal for the first 10-14 days post-treatment. A longer half-life may extend this period 4497 
up to 20 days. However, if the starting number of gametocytes is lowered to 108 (reflective of being 4498 
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1% of asexual parasitaemia of a single clone with a 1010 initial parasitaemia), they are never at a level 4499 
at which they can impact results.  4500 

It may be that gametocyte signals are more important with the highly sensitive AmpSeq markers 4501 
(chapter 5) where minority signals are detected at a frequency of ~1% of the majority signal. In chapter 4502 
5, gametocytes were not modelled, as I made the decision to keep the model simplified and consistent 4503 
with chapter 3 and chapter 4. A future extension of the AmpSeq work will include modelling of 4504 
gametocytes and a full sensitivity analysis on gametocyte related parameters.  4505 

 4506 

 4507 

 4508 

Figure 7.3 Potential impact of modelling gametocytes with different starting densities (1% or 10% of 4509 
asexual parasitaemia of 1010) and varying half-lives. Mathematically, gametocytes must be present in 4510 
numbers of 38 to have sufficient genetic signal to cause misclassification of  reinfection as 4511 
recrudescence – this only occurs extremely early in follow-up, when reinfection is unlikely to have 4512 
occurred.  4513 

 4514 
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7.1.7 Future development of modelling work. 4515 

The mPK/PD models presented here for the topic of genetic detection should be easily adaptable in 4516 
the future. They are easy to calibrate with new MOI distributions, FOI values or allelic frequency 4517 
distributions. Including alternate loci is simple: For each of the methodologies that exist, additional 4518 
genetic loci can be simply included providing their frequency distribution is known. Note that the 4519 
Bayesian analysis method for microsatellite markers may need further adaptation for additional loci 4520 
and the original authors of this analysis would have to be contacted in the first instance to facilitate 4521 
this [150]. Additionally, new drugs (i.e., future potential calibrations of AS-PYN or AS-AQ, or other, yet 4522 
to be discovered drugs) can be analysed provided the parameters required for their mechanistic PK 4523 
simulation and relevant PD parameters are available. The calibrations of other parameters such as the 4524 
threshold of the majority allele at which minority alleles were detected, the sampling limit 4525 
(parasitaemia of a clone required to enter the blood sample) and initial parasite numbers were based 4526 
on real laboratory processes but are easily variable within this methodology should new practices or 4527 
information come to light.  4528 

One expansion of this work would relate to considerations of patients being lost to follow up (drop-4529 
out), follow-up schedule and strategy. Patient drop-out during TES may be relatively high, particularly 4530 
for the longer periods of follow-up needed for drugs such as DHA-PPQ and AS-MQ with a long post-4531 
treatment prophylactic period [200]; a 2009 study comparing 15 TES from African countries and 14 4532 
TES from Thailand found that 4.7% and 14.3% of patients were lost to follow-up respectively [201]. 4533 
Broadly, it takes one of two forms: Firstly, “permanent” drop-out, where a patient is not seen again 4534 
after a given day of follow-up. Such a patient must be right-censored at that point for statistical 4535 
analysis. Secondly, “periodic drop-out”, where a patient fails to attend a given day of follow-up but is 4536 
seen later in the trial. For example, a patient may attend on day 3 and 7, not on day 14, but is seen 4537 
again on day 21 [43]. Patient drop-out can have consequences on the accuracy of failure rate 4538 
estimates: Permanent drop-out results in that patient being right-censored from the last day of follow-4539 
up on which they were seen – thus, any recrudescence they would later suffer would not be observed. 4540 
Periodic drop-out carries the consequence that a patient’s recurrence may not be observed promptly 4541 
as they skip a day of follow-up. This permits more time to pass until they are next seen by a clinician, 4542 
and reinfections in that patient can grow to detectable levels in this time, and the chance of a 4543 
recrudescence being misclassified as a reinfection increases. A wide variety of parameterization would 4544 
have to be explored to include patient drop-out. For example, the chance of both types of drop-out 4545 
may be correlated with total parasitaemia (if a patient’s parasitaemia drops, symptoms may reduce, 4546 
and they may feel they do not need to attend future follow-up), and periodic drop-out may be 4547 
correlated with previous instances of periodic drop-out (this could be mechanistically explained if, for 4548 
example, a road were to be closed and the patient was unable to travel). Additionally, a patient may 4549 
have decided not to attend follow-up (permanently) but then return to the clinic when they feel ill, 4550 
possibly with recurrent malaria.   4551 

An mPK/PD approach can be expanded to examine entirely new systems of follow-up. The WHO 4552 
follow-up schedule has a set routine; patients are followed up on day 3, 7, and every 7 days thereafter 4553 
for the length of the TES (which differs based on the ACT given). “Sparse sampling” is a potential 4554 
alternative method of trial design where patients are followed up over a longer period of time, but 4555 
with more infrequent appointments. Additionally, patients are likely to self-report for an additional, 4556 
unscheduled appointment if their symptoms worsen (in terms of an mPK/PD model this would be 4557 
represented by increases in parasitaemia). Such a schedule has theorized operational advantages: it 4558 
is simpler and more economical for both clinicians (fewer follow-up appointments) and patients (less 4559 
time spent travelling to and from clinics). However, the question is whether accuracy of failure rate 4560 
estimates would suffer with this approach; longer time between samples means that, for example, 4561 
reinfections may emerge and mask the genetic signal of recrudescence. Additionally, the work on 4562 
length-polymorphic markers in this thesis suggests that most recrudescence have occurred by 42 days 4563 
for DHA-PPQ and AS-MQ and 28 days for AR-LF (Figure 3.5, Figure 3.8  and Figure 3.10 ) - longer 4564 
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periods of follow-up may be un-necessary. However, sparse sampling with shorter periods of follow-4565 
up could be examined (i.e., modelling the current total duration of follow-up but with fewer individual 4566 
days). The methodology contained in this thesis would be a highly appropriate vessel to examine which 4567 
(if any) methodologies could produce high failure rate accuracy combined with operational advantage 4568 
of sparse sampling.   4569 

Finally, there has recently been discussion about the suitability of statistical methods used to calculate 4570 
failure rate estimates when numbers of recrudescence and reinfection have been determined in the 4571 
molecular correction process.  The WHO guidelines currently recommend the use of survival analysis 4572 
to calculate failure rate estimates [28]. In the process of calculating failure rate estimates, survival 4573 
analysis right-censors reinfections (3.2.7). Recent publications have suggested a competing risk 4574 
analysis may be more suitable [108, 131, 202] as a patient having a reinfection emerge may prevent 4575 
that patient from suffering a recrudescence that otherwise would have occurred. However, as the 4576 
field moves forward to more accurate methods, inclusion of these novel analyses to further improve 4577 
the accuracy of failure rate estimates would be prudent, and the mPK/PD work presented here 4578 
provides a useful platform to quantify the difference in failure rate estimates produced from different 4579 
statistical techniques (similar to the comparison of the per protocol method and survival analysis 4580 
presented for length-polymorphic markers in Chapter 3).  4581 

 4582 

7.2. Severe Malaria.  4583 

The modelling work in this thesis for uncomplicated malaria has focused on quantifying the accuracy 4584 
of failure rate estimates obtained through TES. I also sought to apply a modelling approach to 4585 
problems faced in clinical trials of severe malaria to demonstrate the role of computer models across 4586 
the entire spectrum of the disease. It would not have been suitable to investigate long-term clearance 4587 
of parasites for severe malaria – the key objective is patient survival (not parasite clearance) and so 4588 
long-term TES are not conducted for the artesunate monotherapy used to treat severe malaria.  4589 
Instead, I looked at a key issue in severe malaria (described in full in 6.1.1): Pathology of severe malaria 4590 
is caused by sequestered parasites, but severe malaria trials generally use metrics relating to 4591 
circulating parasites to quantify their clinical outcomes.  4592 

Chapter 6 presented a highly adaptable methodology for mPK/PD modelling of treatment of severe 4593 
malaria that was able to recover key clinical observations (based on circulating parasite numbers), 4594 
and, with novel metrics, used to investigate the pathology of severe malaria. The model showed that 4595 
while on a population level a simplified artesunate regimen is non-inferior to the standard WHO 4596 
regimen, outcomes in a sub-group of patients with infections grouped in late or early initial mean age-4597 
bins are notably worse with the simplified regimen. The emergence of artemisinin resistance in early 4598 
ring stages poses a significant threat to this same group of patients. Neither of these results are 4599 
particularly obvious from summary statistics of the population and so sub-group analysis is particularly 4600 
important in devising treatment strategies for severe malaria. 4601 

The metrics presented: Area under the pathological load curve (AUCPL) and Maximum pathological 4602 
load (MPL) are intended to be simple for the purpose of designing a novel model to quantify the 4603 
pathology of sequestered parasites. However, both metrics are highly plausible risk factors for poor 4604 
outcomes, and it was extremely encouraging that the results comparing two treatment regimens were 4605 
consistent across a wide range of model assumptions. An obvious expansion to this work is exploring 4606 
the impact of different, more complicated metrics as fully discussed in 6.2.4. 4607 

A key limitation of the model is that it is monoclonal, and commentators have noted that development 4608 
of a polyclonal model would be a prudent expansion of this work [203], given that polyclonal 4609 
sequestered parasites are observed in vivo  [203, 204].  Multiple clones are unlikely to be synchronized 4610 
with each other and so the importance of the initial mean age-bin parameter is likely to change, given 4611 
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that the chance of a patient’s entire infection being grouped in the high-risk early mean age-bins is 4612 
extremely low. Density-dependent effects should also be modelled, and the presence of multiple 4613 
desynchronized clones with varying PD parameters could alter the relative performance of drug 4614 
regimens.  4615 

Editorial commentary on the published version this work also noted that alternative measures of 4616 
validating the model should be considered – the model is validated by its ability to recover, given 4617 
appropriate PK parameterization, parasite reduction ratios (PRR) from the studies in which PK 4618 
parameters were drawn (6.3.1) [203]. As noted in 6. 1 and by Small and Seydel [203], circulating 4619 
parasites do not reflect pathology of severe malaria and so alternate metrics with which to validate 4620 
the model should be considered; Small and Seydel specifically suggested using levels of Plasmodium 4621 
histidine rich protein-2 (PfHRP-2) and Plasmodium lactate dehydrogenase (pLDH) as they are reflective 4622 
of total body parasite load. Further development of the model should seek to include a means of 4623 
mathematically relating the level of total modelled parasitaemia to proxies such as PfHRP-2 and pLDH 4624 
to allow for validation of the model with a wider range of studies.  4625 

In summary, while the model was designed with simplicity in mind given the importance of the central 4626 
premise (that current methods of using parasite clearance to quantify outcome in severe malaria 4627 
clinical trials are not fit for purpose), it must now be taken down a path of increasing complexity to 4628 
improve realism and become more robust. Such a model can then be used as the basis with which to 4629 
investigate a variety of research questions pertaining tosevere malaria, as has occurred for 4630 
uncomplicated malaria where mPK/PD models have been used widely and are extensively validated 4631 
(Table 1.2), with the ultimate goal of informing policy and reducing severe malaria mortality.  4632 

 4633 

7.3 Concluding remarks: Development of the interface of computer modelling and malaria clinical 4634 
trials.   4635 

The overarching goal of this thesis has been to identify research areas relating to anti-malarial clinical 4636 
trials where gaps in knowledge or methodology could not be answered using in vivo or in vitro 4637 
techniques, but which could be addressed using in silico mathematical models. This thesis is by no 4638 
means an exhaustive pursuit of this ideal; modelling approaches are extremely flexible (Table 1.2) and 4639 
a wealth of future contributions to the scientific evidence base surrounding malaria clearly remain 4640 
untapped.  4641 

However, this thesis has contributed to malaria research using a modelling approach on two topics 4642 
where the antecedent evidence base has been lacking: Firstly, the quantification of the accuracy of 4643 
failure rate estimates in uncomplicated malaria TES, with research driven by the ability of an mPK/PD 4644 
approach to know the true failure rate of a range of drugs, the development of models to calculate 4645 
which genetic signals (for a range of different markers) are observed, and subsequent analysis of a 4646 
range of algorithms with which to translate these observed signals into classifications of recurrent 4647 
infections as recrudescence or reinfection. Consequently, this modelling work will be able to 4648 
contribute to the ongoing discussion surrounding the best use of molecular correction in TES with 4649 
evidence grounded using the “gold standard” of the true failure rate obtained using a modelling 4650 
approach. Secondly, the development of a novel model to quantify the impact of sequestered 4651 
parasites in severe malaria and the experimental use of that model in the context of investigating 4652 
different drug regimens and the impact of artemisinin resistance. As described in 6. 1, sequestered 4653 
parasites cannot be measured in vivo and so current clinical outcomes of severe malaria trials are 4654 
methodologically undesirable. In all the work undertaken herein, models are used to quantify either 4655 
parasites or parameters that cannot be directly observed using currently available diagnostic methods.  4656 

These pieces of research have demonstrated the power of using a computer modelling approach to 4657 
improve malaria clinical trials and created a foundation on which future research can occur. Work on 4658 
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uncomplicated malaria trials (length-polymorphic markers) has already been published [93], work on 4659 
microsatellite markers has been submitted for publication, and work on AmpSeq is being prepared for 4660 
submission. The work on severe malaria presented in thesis has likewise been published [94], with 4661 
commentators noting that it makes “a significant contribution to the field by incorporating detailed 4662 
time-specific drug sensitivity as well as incorporating postdeath contribution to pathology into 4663 
parasite burden models” [203].  4664 

I conclude this thesis with pleasure, having contributed meaningful results from computer modelling 4665 
approaches to two important research areas in the ongoing quest to reduce the global burden of 4666 
malaria, and excited to continue the development of such approaches in the near future.  4667 
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