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VL incidence and how well it reflects the underlying true incidence. As control targets
are defined in terms of observed cases, there is an urgent need to understand how
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Using a mathematical model for transmission and control of VL, we predict the impact
of reduced detection delays and/or increased population coverage of the detection
programmes on observed and true VL incidence and mortality.Results

Improved case detection, either by higher coverage or reduced detection delay, causes
an initial rise in observed VL incidence before a reduction. Relaxation of improved
detection may lead to an apparent temporary (1-year) reduction in VL incidence, but
comes with a high risk of resurging infection levels. Duration of symptoms in detected
cases shows an unequivocal association with detection effort.Conclusion

VL incidence on its own is not a reliable indicator of the performance of case detection
programmes. Duration of symptoms in detected cases can be used as an additional
marker of the performance of case detection programmes.
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Response to reviewers 

Below we have copied all reviewers’ comments and suggestions and list our changes to the 

manuscript in response. 

Reviewer #1 

This paper by Coffeng and colleagues is focused on modeling the impact of improved case 

detection on achieving control targets for visceral leishmaniasis (VL).  The discussion is 

useful and the program relevant and I appreciated the discussion of the limitations of the 

models.   

 

Major Comments:  

 

I do think it would be helpful to add a paragraph to the discussion on practical 

recommendation for improving case detection in order to put the modeling results into 

context.   

Response 1. 

We have added the following paragraph to the discussion: 

 

“It has been recognised that VL diagnoses are clustered in time and space, and 

pursuing active case detection in communities in which further cases are expected 

exploits this epidemiological observation. For instance, in India the control 

programme focusses on finding febrile patients in the vicinity of index VL cases. 

Xeno-monitoring, i.e. surveillance of vectors for presence of infection and 

infectiousness, is another avenue being actively considered. Given that there 

appears to be little transmission from asymptomatic cases, the presence of infected 

sandflies might be good evidence of a case of infectious VL or PKDL in the 

community. However, this needs to be confirmed.” 

 

Similarly, when the authors suggest that: "An independent measure of case detection effort 

and success (i.e. if a case is there, will it be diagnosed and how long will it take) would 

underpin the current interventions", how do they propose that this be done? 

Response 2. 

We have rewritten the last sentence of that paragraph as: 

“Such a measure might be the numbers of cases “suspected” and tested per month, 

or monitoring the proportion of PKDL cases that were previously diagnosed as VL 

cases. Currently, there is no systematic data collection on measures of diagnostic 

effort, e.g. number of suspect cases tested, or number of cases of splenomegaly 
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tested. Requiring programmatic reporting of such data would keep VL in the clinic 

focus even when there are zero cases, and would also provide denominators to 

estimate the rate of VL detection. A small proportion of PKDL cases arise without 

previous treatment, so reporting these separately from PKDL cases with known VL 

history would provide a measure of the relative incidence of undiagnosed VL. Other 

approaches would require development of systems beyond the current programme 

(e.g. post-mortem measurements) which are unlikely to be initiated solely for the VL 

programme.” 

 

Minor Comment: 

 

1) Lines 108-110.  Please clarify the meaning of the number designations as used here: 

"baseline case detection rate to 365/243 and the annual mortality rate due to untreated VL to 

365/189". 

Response 3. 

We now explain (additions in bold): 

“…baseline case detection rate to 365/243 (i.e. an average detection delay of 243 days 

in absence of excess mortality) and the annual mortality rate due to untreated VL to 

365/189 (i.e. an average duration until death of 189 days in absence of any detection 

effort).” 

 

Response 4. 

We have further made a few minor textual revisions / corrections: 

 

Abstract 

“Relaxation of improved detection may lead to an apparent temporary (1-year) reduction in 

VL incidence, but at high risk of resurgence of comes with a high risk of resurging 

infection levels.” 

 

Introduction 

“Transmission is driven by cases of symptomatic infection and PKDL; asymptomatic cases 

most likely do not infect sandflies or to a much lower extent [3,4].  

The WHO 2020 target for control of VL on the ISC is defined as less than one detected VL 

case per 10,000 population per year at the (sub)district level (from 35,000 up to 200,000 

population minimum 35,000 population, and median size 200,000) [5].” 

 

Discussion 

“A successful detection programme involves many processes including community and 

clinical awareness, access to health-care and availability of diagnostics, and we have not 
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included any of these details, but we show that it is important that reductions in detection 

delay to have wide population coverage.” 

 

“Conclusions with regard to (relaxation) of detection effort do not depend on the above 

factors.” 
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Abstract 

Background: Control of visceral leishmaniasis (VL) on the Indian subcontinent relies 

on prompt detection and treatment of symptomatic cases. Detection effort influences 

the observed VL incidence and how well it reflects the underlying true incidence. As 

control targets are defined in terms of observed cases, there is an urgent need to 

understand how changes in detection delay and population coverage of improved 

detection affect VL control. 

Methods: Using a mathematical model for transmission and control of VL, we predict 

the impact of reduced detection delays and/or increased population coverage of the 

detection programmes on observed and true VL incidence and mortality. 

Results: Improved case detection, either by higher coverage or reduced detection 

delay, causes an initial rise in observed VL incidence before a reduction. Relaxation 

of improved detection may lead to an apparent temporary (1-year) reduction in VL 

incidence, but comes with a high risk of resurging infection levels. Duration of 

symptoms in detected cases shows an unequivocal association with detection effort. 

Conclusion: VL incidence on its own is not a reliable indicator of the performance of 

case detection programmes. Duration of symptoms in detected cases can be used as an 

additional marker of the performance of case detection programmes. 

Key words 

Visceral leishmaniasis; improved case detection; mortality; resurgence; transmission 

dynamics; mathematical modelling 

 



Introduction 

Visceral leishmaniasis (VL), also known as kala-azar, is a neglected tropical disease 

caused by single-celled Leishmania parasites that are transmitted by sandflies [1]. On 

the Indian subcontinent (ISC), VL is considered entirely anthroponotic. Once infected, 

a small percentage of individuals develop symptoms that are fatal when left untreated. 

After successful treatment, 5-20% of cases develop a skin condition known as post-

kala-azar dermal leishmaniasis (PKDL), which lasts several years if left untreated [2]. 

Transmission is driven by cases of symptomatic infection and PKDL; asymptomatic 

cases most likely do not infect sandflies or to a much lower extent [3,4].  

The WHO 2020 target for control of VL on the ISC is defined as less than one 

detected VL case per 10,000 population per year at the (sub)district level (minimum 

35,000 population, and median size 200,000) [5]. Control strategies rely on prompt 

detection and treatment of VL cases, and vector control in the form of indoor residual 

spraying (IRS) of insecticide [5], although several studies question the impact of IRS 

on VL incidence [6,7]. Strategies to improve the promptness of detection include 

provision of diagnostics, raising clinical and community awareness, and, more 

recently, active case detection given that cases tend to be clustered in time and space 

[8,9]. Detection success is generally measured through the average time between 

onset of symptoms and specific diagnosis, and this has reduced substantially although 

it still shows substantial variability [10]. Given this variability, it is surprising that, to 

our knowledge, no consideration has been given to the impact of population coverage 

of improved detection programmes and/or reductions in detection delay on 

achievement of control. It should also be noted that it is only possible to measure the 

diagnostic promptness in detected cases. 



Given the drop in the number of VL cases on the ISC due to large-scale control efforts 

since 2010, achievement of the control target seems within reach in many regions 

[11–13]. However, if control efforts relax following the achievement of this target, the 

sustainability of VL control could be at stake [14]. Here, we hypothesise that in some 

situations, relaxation of detection efforts will lead to an apparent (temporary) 

achievement of the control target, whereas the true, underlying epidemiological 

situation is worsening. Such a relaxation could occur through lack of clinical 

awareness, reduction in resources due to political complacency, or diversion of 

resources from detection to another form of control. 

Mathematical models of VL transmission are increasingly used for planning and 

assessing the efficacy of interventions and evaluating the intensity and timescale 

required to achieve set targets [13,15]. In this study, we use a mathematical model for 

transmission and improved detection of VL to predict the impact of reduced detection 

delays and/or increased population coverage of the detection programmes on VL 

incidence and mortality. 

Methods 

Model structure 

In this study, we employed a simplified version of earlier transmission models [16–

18], keeping only the processes in the model that are relevant to the impact of 

improved detection of VL cases. See Appendix A for a schematic representation of 

the model structure. In the model, susceptible individuals that are infected with the 

Leishmania parasite first enter a stage of latent infection which is asymptomatic and 

non-infectious. Three percent of latent infections progress to developing symptomatic 

VL, which is diagnosable and infectious, and the remainder recover without treatment 



[19]. Note that the current definition of VL implies that individuals have clinical 

symptoms (fever) for two weeks prior to being diagnosable. Here, the detection and 

subsequent treatment of symptomatic cases was assumed to occur at a constant rate, 

so that the resulting distribution of detection delays reflects the high variation in 

reported treatment delays in India [20]. The competing risk of dying from untreated 

VL was assumed to increase with duration of symptoms, which was captured using 

the “linear chain trick” [21] to model progression until death as an Erlang distribution 

with shape 3. Together, the competing risks of being detected versus dying determine 

the proportion of VL cases that die undetected, the average time till death, and the 

duration of symptoms in the detected cases. A baseline situation with “standard” 

detection effort was defined as a situation in which half of the VL cases die 

undetected, and those who die have symptoms for an average duration of 150 days. 

These figures are completely unobserved, but are consistent with reports of the case 

ascertainment [22,23], and were uniquely reproduced by setting the baseline case 

detection rate to 365/243 (i.e. an average detection delay of 243 days in absence of 

excess mortality) and the annual mortality rate due to untreated VL to 365/189 (i.e. an 

average duration until death of 189 days in absence of any detection effort). These 

rates translate to an average detection delay of about 8 months in absence of VL-

related mortality, an average duration of symptoms before death of about 6 months in 

absence of any detection effort or health care seeking behaviour, and an average 

detection delay in detected cases of 92 days. 

To simulate the potential impact of an improved detection programme, we stratify the 

population of symptomatic cases into two fractions: one covered by the improved 

detection programme (i.e. shorter treatment delay), and the other covered by the 

baseline detection rate. The two groups are subject to the same risk of dying from 



untreated VL. All detected VL cases are assumed to be successfully treated and reach 

the dormant stage, which lasts on average 21 months [24–26], after which most will 

recover completely. Five percent of individuals in the dormant stage will develop 

PKDL [2], which lasts five years on average [24]. Individuals that recover fully from 

the dormant stage or PKDL are assigned to the fully recovered state, which we 

assume cannot be infected and lasts five years on average [18], after which they 

become susceptible again. Only VL cases and PKDL cases are considered to be 

infectious and contribute to transmission [3]. The background mortality rate due to 

other causes was based on the average expected lifespan at birth in rural Bihar, as 

reported for 2010–2014 by the Indian Census Office [27]. We did not consider age 

and population growth in our model, as these were not deemed relevant for the 

diagnostic process or VL transmission dynamics when predicting short-term trends. 

The transmission rate was calibrated to represent a setting with observed (i.e. 

detected) VL incidence of 5/10,000 capita (at equilibrium) before the start of 

improved detection, which for the baseline scenario translates to a true VL incidence 

of just over 10 cases/10,000/year and a mortality rate due to untreated VL of just over 

5 cases/10,000/year. See Appendix B for a formal description of the model equations; 

see Appendix C for an overview of all biological parameter values and relevant 

references. 

We developed two model variants: a deterministic variant defined in terms of a 

system of ordinary differential equations representing an infinitely large population, 

and a stochastic variant describing a discrete, finite set of individuals for whom 

transitions between disease stages are chance events based on the same transition rates 

as in the deterministic model variant. Both variants assume a closed, fixed-size 



population and were implemented in pomp (version 2.2.2.0) [28] using R (version 

3.6.0) and RStudio (version 1.2.1335). The model code can be accessed through a 

public online repository at https://gitlab.com/erasmusmc-public-health/vl-detection-

effort-model. 

Simulation scenarios 

First, we performed simulations with the deterministic model variant for various 

scenarios of improved detection, using a grid of values for population coverage of the 

improved detection strategy (0-100%, 1% increments) and reduction in detection 

delay among cases covered by the improved detection strategy (0-98%, 1% 

increments, relative to the baseline detection delay of 92 days). For each improved 

detection scenario, we predicted the true and observed VL incidence, mortality due to 

untreated (i.e. undetected) VL, and the average duration of symptoms in detected 

cases after five years of improved case detection. 

Second, in order to predict the impact of a potential relaxation of detection effort, we 

performed 10,000 stochastic simulations for a population size of 35,000 people (i.e. 

the smallest block-level population size seen in the Indian subcontinent). Each 

stochastic simulation was initiated using a multinomial sample of 35,000 individuals 

with an expected state distribution as predicted for an equilibrium situation by the 

deterministic model variant before start of improved detection. Stochastic simulations 

were run with improved detection implemented at 80% population coverage with an 

achieved detection delay of 37 days (i.e. a 60% reduction). A relaxation in detection 

effort was defined as a lowering of population coverage from 80% to 20%, while 

maintaining the achieved 60% reduction in detection delay, assuming that relaxation 

of detection effort does not affect the quality of the remaining effort because tools are 



still available and the health care workers are still primed.  Relaxation of detection 

effort was assumed to occur in two situations: 1) after reaching the target of 

<1/10,000 observed VL cases for three consecutive years, or 2) after five years of 

improved control if programme impact was unsatisfactory. For the first situation, we 

used the simulations that achieved the target for 3 years consecutively within 10 years 

of improved detection; the remainder of simulations (i.e. not reaching the target 

within 10 years) were used for the second situation. After relaxation of detection 

effort, simulations were run for a further five years to monitor the changes in VL 

incidence (observed and true) and mortality. 

Results 

Figure 1 illustrates the impact of improved case detection on VL incidence and 

mortality over the course of 10 years, assuming 80% population coverage. The true 

VL incidence and mortality due to untreated VL were predicted to decline sharply 

within the first three years (panel A), reflecting the impact of improved case detection 

on transmission. Observed VL incidence sharply increased during the first year of 

improved detection, approaching the true VL incidence, and then rapidly declined in 

the second and third year, followed by a stage of slow further decline. The predicted 

average duration of symptoms in detected cases (panel B) declined immediately with 

the start of improved detection and stabilised after two years. 

Figure 2 summarises the epidemiological situation after five years of improved case 

detection for various levels of detection effectiveness, again starting from the same 

baseline situation. Settings with poorly performing detection programmes are 

represented by a reduction in detection delay (y-axis) of 0% (i.e. a 92 days detection 

delay as in the baseline scenario) and/or 0% population coverage of the improved 



detection programme (x-axis). In contrast, the top right corner of each panel 

represents a hypothetical ideal situation of maximum detection effectiveness in which 

the achieved treatment delays are shortest and the population coverage is highest. The 

solid circle in each panel represents the scenario depicted in Figure 1. Various 

combinations of programme coverage and reductions in detection delay result in 

similar observed VL incidence (panel A), with both parameters contributing 

approximately equally to the impact of improved case detection. Duration of 

symptoms in detected cases (panel B) was predicted to decrease markedly with 

increasing programme performance. A programme coverage and a reduction in 

detection delay of both ≥60% ensured an overall detection delay of ≤50 days (among 

cases originating from both parts of the population covered and non-covered by 

improved detection). The difference between true VL incidence (panel C) and the 

observed VL incidence (panel A) decreased with increasing programme performance 

(i.e. towards the top-right corner). Mortality due to untreated VL (panel D) decreased 

strongly with increasing programme performance. A programme coverage and a 

reduction in detection delay of both ≥65% ensured a mortality rate of less than 

1/10,000/year. When detection delays are short, then ensuring increased population 

coverage has relatively more impact on reduction in mortality as demonstrated by the 

nearly vertical contour lines. 

The stochastic version of the model highlights the important impact of chance effects 

related to the achievement of the target. In 13% of 10,000 stochastic simulations, the 

incidence of observed VL fell below 1/10,000 for 3 consecutive years during the first 

10 years of the improved detection programme (Appendix D, panel A). These 

simulations represent the left tail of the expected distribution of outcomes for which 

the mean is the incidence trend predicted by the deterministic model (Figure 1). In the 



remaining 87% of simulations (pink line), the decline of the average VL incidence 

slowed down after three years of improved detection (as in Figure 1).  

Figure 3 illustrates the potential impact of relaxing detection effort on VL incidence 

and mortality after an initial period of improved case detection. When detection was 

relaxed after meeting the target (i.e. in 13% of 10,000 simulations; blue line and 

shaded band), transmission was either interrupted (55% of 13% of simulations with 

zero PKDL and VL cases), continued at levels with observed VL incidence <1/10,000 

(18% of 13%), or resurged with observed VL incidence at or above 1/10,000 (27% of 

13%) within the next five years. The predicted outcomes are shown in more detail in 

Appendix D. In the subset of simulations with “unsatisfactory” impact of improved 

detection (i.e. 87% of 10,000 simulations; red line and shaded band), a relaxation of 

detection effort resulted in an increase in true VL incidence and mortality. In contrast, 

the observed VL incidence declined during the first year after relaxation, after which 

it increases again. In 13% of the 87% of simulations, the observed VL incidence 

dropped under <1/10,000/year in the first year after relaxation of the detection effort 

(i.e. the point where the lower bound of the red shaded band crosses the dashed 

horizontal line). 

Discussion 

Our results demonstrate five key principles of VL control programmes on the ISC. 

First, successful implementation of improved case detection is expected to 

temporarily increase the observed VL incidence. However, finding and treating cases 

results in reduction of transmission so that the true case incidence and mortality fall. 

Second, successful case detection requires that reduction in detection delays covers 

the whole population. Third, there is an important role of chance in determining the 



likelihood of reaching and maintaining the control target. Fourth, when the control 

target is met, there is a high risk of resurgence of transmission if the detection effort is 

relaxed. Fifth, when little or no impact of improved detection is observed, a relaxation 

of the detection effort may result in a temporary reduction of observed VL incidence, 

sometimes even below the control target of 1/10,000/year, whereas the true VL 

incidence is actually increasing. 

Clearly, observed VL incidence by itself is not a reliable indicator of programme 

performance, because it is closely related to the detection effort, such that relaxation 

may even incorrectly suggest programme improvement in the short run. Effective 

control has to be defined in terms of low case incidence combined with successful 

case detection and low average duration of symptoms. The presence of sub-

populations who have longer detection delays due to, for example, lower health-care 

access and/or lower disease awareness, are important barriers to effective control. Our 

results show that the duration of symptoms in observed VL cases could serve as an 

additional indicator as it is temporally more directly related to the performance of case 

detection programmes. The pattern in Figure 1B shows that the decrease quickly 

plateaus, which is not an indication that control is failing, but that detection effort is 

sustained. If the duration of symptoms in detected cases has not decreased 

significantly, then most likely the control target has only been seemingly (and 

temporarily) met because of poor case detection. Of course, the quality assurance 

accuracy of reported detection delays remains challenging, given the fact that 

individuals often attend multiple clinics before being diagnosed with VL.  

An independent measure of case detection effort and success (i.e. if a case is there, 

will it be diagnosed and how long will it take) would underpin the current 



interventions. It would also avoid potential perverse incentives (e.g. lowering 

detection effort or reporting fewer cases to reach the control target).  Currently, there 

is no systematic data collection on measures of diagnostic effort, e.g. number of 

suspect cases tested, or number of cases of splenomegaly tested. Requiring 

programmatic reporting of such data would keep VL in the clinic focus even when 

there are zero cases, and would also provide denominators to estimate the rate of VL 

detection. A small proportion of PKDL cases arise without previous treatment, so 

reporting these separately from PKDL cases with known VL history would provide a 

measure of the relative incidence of undiagnosed VL. Other approaches would require 

development of systems beyond the current programme (e.g. post-mortem 

measurements) which are unlikely to be initiated solely for the VL programme. 

A successful detection programme, in which most VL cases are diagnosed promptly, 

means that the observed VL incidence more accurately represents the true state of the 

population. In particular, if the VL incidence target is met due to reduction in 

transmission through diagnosis and treatment, then it is guaranteed that the true 

(unobserved) mortality due to VL is also low (Figure 2). A successful detection 

programme involves many processes including community and clinical awareness, 

access to health-care and availability of diagnostics, and we have not included any of 

these details, but we show that it is important that reductions in detection delay have 

wide population coverage. This is relevant when considering active case detection or 

other activities targeted to “hotspots”, and to ensure that they do not result in sections 

of the population with reduced detection that can continue to support transmission. 

It has been recognised that VL diagnoses are clustered in time and space, and 

pursuing active case detection in communities in which further cases are expected 



exploits this epidemiological observation. For instance, in India the control 

programme focusses on finding febrile patients in the vicinity of index VL cases. 

Xeno-monitoring, i.e. surveillance of vectors for presence of infection and 

infectiousness, is another avenue being actively considered. Given that there appears 

to be little transmission from asymptomatic cases, the presence of infected sandflies 

might be good evidence of a case of infectious VL or PKDL in the community. 

However, this needs to be confirmed. 

Our deterministic model suggests that the observed VL incidence cannot reach 

<1/10,000 within five years of improved control (Figure 2), but stochastic model 

predictions suggest that the control targets can be met in a proportion of situations 

with similar or lower VL incidence than considered here (pre-control annual VL 

incidence of 5 per 10,000 capita). The simulations also show that even when targets 

are achieved there is a chance of resurgence. This difference highlights the deficiency 

of deterministic models to adequately capture stochastic effects in populations of 

finite size. Some of the parameters in the model have had to be inferred, so we focus 

our attention on the qualitative, rather than quantitative, results. 

The achievement of the control target in various field settings with similar or even 

higher pre-control VL incidence than considered may be explained by concomitant 

changes in human exposure to sandfly bites, e.g. due to successful use of indoor 

residual spraying and/or other factors that affect sandfly biology, which were not 

considered in the model here. Conclusions with regard to (relaxation) of detection 

effort do not depend on the above factors. 

We have assumed that transmission within the population is homogeneous, i.e. that 

each individual is equally likely to transmit to each other individual. This is a 



simplification of reality, and given the role of relatively short-range vectors, the 

transmission dynamics of VL are likely better captured by considering meta-

populations, e.g. populations of people within separate villages, and we are actively 

pursuing this hypothesis. How the processes we have studied here interact with 

transmission at multiple scales is not immediately clear, but we are confident that our 

underlying results are robust.  

It is becoming clear that only VL and PKDL cases can transmit significantly to 

sandflies, but there remain many important parameter values, such as proportion 

developing different types of PKDL (nodular, popular, etc.), their infectiousness and 

their duration, for which good data are still accruing [3]. Similarly, the potential roles 

of longer-term immunity following VL and asymptomatic infection are largely 

unknown. However, these will largely influence longer-term dynamics and the 

shorter-term patterns that we explore here are dominated by one infection per host and 

do not include the recycling of hosts through the susceptible class. 

In conclusion, we show that VL incidence on its own is not a reliable indicator of the 

performance of case detection programmes. Unless transmission is truly interrupted, 

relaxation of detection effort will result in a temporary reduction of observed VL 

incidence while true VL incidence and mortality rise immediately. Therefore, 

continued case detection is pivotal for sustained control of VL. Our findings indicate 

that the average duration of symptoms in detected cases is a useful indicator of the 

performance of case detection programmes, although there is also a need for 

independent measures of case detection effort, such as number of suspects screened 

for VL, to avoid perverse incentives.  
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Figures legends 

Figure 1. Deterministic model predictions for impact of improved case detection on 

visceral leishmaniasis (VL) incidence and mortality over time. Predictions reflect a setting 

where, before the start of improved detection, the annual observed incidence of VL was 5 per 

10,000 capita, and half of all cases died before detection. Improved detection is assumed to 

result in a reduction of detection delay down to 37 days (60% reduction from 92 days) in 80% 

of the population covered by the improved detection programme. 

 
Figure 2. Contour plot of the model-predicted impact of five years of improved case 

detection at various levels of effectiveness on visceral leishmaniasis (VL). Model 

simulations represent a setting where, before the start of improved detection, the annual 

observed incidence of VL was 5 per 10,000 capita, and half of all cases died before detection. 

Improved detection is defined in terms of the proportion of the population covered by the 

programme (x-axis) and the reduction in detection delay in the part of the population covered 

by programme (y-axis), relative to a reference delay of 92 days without improved detection. 

Contour lines represent combinations of programme coverage and reductions in detection 

delay that result in the same outcome after five years of improved detection. Panels represent 

different outcome metrics that can be directly measured (panels A and B) or not (panels C and 

D). Outcome metrics are based on both the covered and non-covered parts of the population. 

The point at 80% population coverage and 60% reduction in detection delay represents the 

scenario depicted in Figure 1. 

 
Figure 3. Stochastic model predictions for the number of visceral leishmaniasis (VL) 

cases and deaths when detection effort is relaxed after an initial period of improved 

detection. Simulations represent a setting where, before the start of improved detection, the 

annual observed incidence of VL was 5 per 10,000 capita, and half of all cases died before 

detection. Improved detection was defined as an average detection delay that is reduced from 

92 to 37 days in 80% of the population covered by the improved detection programme (as in 

Figure 1 and the point in Figure 2). Next, the detection effort was relaxed, either after 

reaching the target of <1/10,000 observed VL cases for three consecutive years (blue line and 

shaded band), or after five years if programme impact was unsatisfactory (red line and shaded 

band). Relaxation of detection effort was defined as a decrease in programme coverage from 

80% to 20%. Lines and shaded bands represent the median and 80%-confidence intervals of 

annual numbers from multiple stochastic simulations. 
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Appendix A. Schematic representation of the mathematical model for transmission and 
improved detection of visceral leishmaniasis (VL). The model is a simplified version of 
earlier transmission models [16–18], keeping only the processes in the model that are relevant 
to the impact of improved detection of VL cases. Population coverage of improved detection 
is represented by fraction 𝑓". Each compartment for the symptomatic stage (𝐼$,$&' and 𝐼(,$&') 
is divided in three equal parts for progress towards death due to untreated VL, assuming that 
time till death due to untreated VL follows an Erlang distribution with shape 3. Symptomatic 
cases can be detected at any stage during progress towards death. The hazard of dying from 
untreated VL before detection is represented by rate 𝜇*+, which is the same for all individuals, 
regardless of whether they are covered by improved or baseline detection. However, because 
detection rate 𝜌-$ in the population covered by improved detection is higher than detection 
rate 𝜌-( in the population covered by baseline detection, the effective risk of dying from 
untreated VL is higher in the latter. 
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Appendix B. Model equations 
Below follows the set of equations that describe both the deterministic and stochastic model variants. 
For an overview and explanation of the symbols used in the equations, see the table on the next page. 
 
𝑑𝑆
𝑑𝑡 = 𝜇 ∙ 𝑁 + 3 ∙ 𝜇*+ ∙ ,𝐼.,0 + 𝐼1,02 + 𝜌4 ∙ 𝑅 − (𝜇 + 𝜆) ∙ 𝑆 

 
𝑑𝐿
𝑑𝑡 = 𝜆 ∙ 𝑆 − (𝜌+ + 𝜇) ∙ 𝐿 

 
𝑑𝐼.,.
𝑑𝑡 = 𝑓< ∙ 𝑓= ∙ 𝜌+ ∙ 𝐿 − (𝜌>. + 𝜇 + 3 ∙ 𝜇*+) ∙ 𝐼.,. 

𝑑𝐼.,1
𝑑𝑡 = 3 ∙ 𝜇*+ ∙ 𝐼.,. − (𝜌>. + 𝜇 + 3 ∙ 𝜇*+) ∙ 𝐼.,1 

𝑑𝐼.,0
𝑑𝑡 = 3 ∙ 𝜇*+ ∙ 𝐼.,1 − (𝜌>. + 𝜇 + 3 ∙ 𝜇*+) ∙ 𝐼.,0 

 
𝑑𝐼1,.
𝑑𝑡 = (1 − 𝑓<) ∙ 𝑓= ∙ 𝜌+ ∙ 𝐿 − (𝜌>1 + 𝜇 + 3 ∙ 𝜇*+) ∙ 𝐼1,. 

𝑑𝐼1,1
𝑑𝑡 = 3 ∙ 𝜇*+ ∙ 𝐼1,. − (𝜌>1 + 𝜇 + 3 ∙ 𝜇*+) ∙ 𝐼1,1 

𝑑𝐼1,0
𝑑𝑡 = 3 ∙ 𝜇*+ ∙ 𝐼1,1 − (𝜌>1 + 𝜇 + 3 ∙ 𝜇*+) ∙ 𝐼1,0 

 

𝑑𝐷
𝑑𝑡 = A A 𝜌>B ∙ 𝐼B,C

0

CD.

1

BD.

− (𝜌E + 𝜇) ∙ 𝐷 

 
𝑑𝑃
𝑑𝑡 = 𝑓G ∙ 𝜌E ∙ 𝐷 − (𝜌G + 𝜇) ∙ 𝑃 

 
𝑑𝑅
𝑑𝑡 =

(1 − 𝑓=) ∙ 𝜌+ ∙ 𝐿 + (1 − 𝑓G) ∙ 𝜌E ∙ 𝐷 + 𝜌G ∙ 𝑃 − (𝜌4 + 𝜇) ∙ 𝑅 

 

𝜆 = 𝛽I𝛽J𝑃 +A A 𝐼B,C

0

CD.

1

BD.

K 𝑁L  

𝑁 = 𝑆 + 𝐿 + 𝐷 + 𝑃 + 𝑅 +A A 𝐼B,C

0

CD.

1

BD.
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Symbol Description 
𝑆 Susceptible 
𝐿 Latent infection 

𝐼B,C Symptomatic infection (visceral leishmaniasis), with 𝑔 ∈ {1,2} indicating the group 
membership with regard to whether or not the individual is covered by the improved 
detection programme (1 = yes, 2 = no), and 𝑚 ∈ {1,2,3} indicating the 𝑚th 
compartment of the Erlang distribution for progress until death due to untreated 
disease. 

𝐷 Dormant 

𝑃 Post-kala-azar dermal leishmaniasis 
𝑅 Recovered 

𝑁 Total human population size 
𝜇 Background mortality rate 

𝜇*+ Excess mortality rate due to untreated visceral leishmaniasis, assuming that time 
until death follows an Erlang distribution with shape 3 (i.e. the 𝑚 ∈ {1,2,3} 
compartments in 𝐼B,C). 

𝜆 Force of infection 
𝛽 Overall transmission rate, incorporating sandfly density, sandfly biting rate, and 

transmission probability from fly to human 
𝛽G  Infectiousness of post-kala-azar dermal leishmaniasis relative to visceral 

leishmaniasis 
𝜌+ 1 / Average duration of latent infection 
𝜌>B 1 / Average duration until detection and treatment of visceral leishmaniasis in group 

𝑔 ∈ {1,2} 
𝜌E 1 / Average duration of the dormant stage, such that if a case develops post-kala-

azar dermal leishmaniasis 𝑓G ∙ 𝜌E  is 1 / the average duration between treatment of 
visceral leishmaniasis and onset of post-kala-azar dermal leishmaniasis, and if no 
post-kala-azar dermal leishmaniasis is developed (1 − 𝑓G) ∙ 𝜌E is 1 / the average 
duration until full recovery (immunity) after treatment of visceral leishmaniasis. 

𝜌G 1 / Average duration of post-kala-azar dermal leishmaniasis 

𝜌4 1 / Average duration of the recovered (immune) stage 
𝜇 Human background mortality rate 

𝜇*+ Excess mortality due to visceral leishmaniasis 
𝑓<  Proportion of humans in whom symptomatic infection is more easily detected 

𝑓= Proportion of infections that progress to visceral leishmaniasis 
𝑓G  Proportion of visceral leishmaniasis cases that develop post-kala-azar dermal 

leishmaniasis 
 
  



 

Appendix C. Parameter values used in simulations 

Parameter Symbol Value Source 

Average duration of latent 
infection (days) 

1 𝜌#⁄  150 [18] 

Average duration dormant 
stage (months) 

1 𝜌%⁄  21 [24–26] 

Average duration PKDL 
(years) 

1 𝜌&⁄  5 [24] 

Average duration recovered 
stage (years) 

1 𝜌'⁄  5 [18] 

Transmission rate 𝛽 92.2 Calibrated to produce an observed annual VL 
incidence of 5 per 10,000 capita in equilibrium 

Relative infectivity of VL - 1 (reference value) 

Relative infectivity of PKDL 𝛽&  0.9 [3] 

Percentage of latently infected 
that progress to VL (%) 

𝑓* 3 [19] 

Percentage of dormant 
infections that progress to 
PKDL (%) 

𝑓&  5 [2] 

Excess mortality rate in 
untreated VL cases (1/day) 

𝜇,# 1/189 Jointly calibrated with the baseline detection rate 
(such that the average time until death is 150 days and 
50% of VL cases die undetected, conditional on the 
assumption that time until death due to untreated VL 
follows an Erlang distribution (k=3).  

Baseline detection rate for VL 
with unimproved detection 
(1/day) 

𝜌-. 1/243 Jointly calibrated with the excess mortality rate such 
that the average time until death is 150 days and 50% 
of VL cases die undetected, conditional on the 
assumption that time until death due to untreated VL 
follows an Erlang distribution (k=3). 

Coverage of improved 
detection strategy (%) 

𝑓/  0-100 Assumption 

Reduction in detection delay 
in sub-population covered by 
improved detection strategy 
(%) 

Function of 
multiple 

parametersa 

0-98 Assumption 

Background mortality rate 
(1/year) 

𝜇 1/68 Based on average lifespan at birth in rural Bihar, 
2010–2014 [27]. 

a A function of detection rates 𝜌-0 and 𝜌-1, background mortality rate 𝜇, and excess mortality rate 𝜇,#: 

delay0 delay1⁄ , where delay. = 8 9:;
9:;<=<>∙=@A

B ∑ D8 >∙=@A
9:;<=<>∙=@A

B
EF0

8 E
9:;<=<>∙=@A

BG>
EH0 , with 𝑀 = 3 

(i.e. the number of chained compartments in 𝐼.,E for progression towards death due to untreated VL). 
The first term represents the probability of a case being detected while in any of the compartments 𝐼.,E. 
The second term represents the probability that VL cases remain undetected and survive up to the 𝑚th 
compartment of 𝐼.,E, times the average duration of symptoms of individuals that are detected while in 
that compartment. 
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Appendix D. Stochastic model predictions for observed annual incidence of visceral leishmaniasis (VL) when detection effort is relaxed after an 
initial period of improved detection. Simulations represent a setting where, before the start of improved detection, the annual observed incidence of VL was 
5 per 10,000 capita, and half of all cases died before detection. Improved detection was defined as an average detection delay that is reduced from 92 to 37 
days in 80% of the population covered by the improved detection programme (as in Figure 1 and the point in Figure 2). Panel A shows model predictions for 
a situation with continued improved detection, stratified by the year when the target of <1/10,000 observed VL cases was met for three consecutive years 
(coloured lines). Panel B show model predictions for a scenario where the detection effort was relaxed after reaching the target for three consecutive years or 
after five years if programme impact was unsatisfactory (i.e. the pink representing simulations that did not meet the target within ten years). Relaxation of 
detection effort was defined as lowering programme coverage from 80% to 20%. Lines represent the mean of repeated stochastic simulations. Percentages in 
panel A indicate the proportion of stochastic simulations in each stratum.  
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Abstract 

Background: Control of visceral leishmaniasis (VL) on the Indian subcontinent relies 

on prompt detection and treatment of symptomatic cases. Detection effort influences 

the observed VL incidence and how well it reflects the underlying true incidence. As 

control targets are defined in terms of observed cases, there is an urgent need to 

understand how changes in detection delay and population coverage of improved 

detection affect VL control. 

Methods: Using a mathematical model for transmission and control of VL, we predict 

the impact of reduced detection delays and/or increased population coverage of the 

detection programmes on observed and true VL incidence and mortality. 

Results: Improved case detection, either by higher coverage or reduced detection 

delay, causes an initial rise in observed VL incidence before a reduction. Relaxation 

of improved detection may lead to an apparent temporary (1- year) reduction in VL 

incidence, but at high risk of resurgence of comes with a high risk of resurging 

infection levels. Duration of symptoms in detected cases shows an unequivocal 

association with detection effort. 

Conclusion: VL incidence on its own is not a reliable indicator of the performance of 

case detection programmes. Duration of symptoms in detected cases can be used as an 

additional marker of the performance of case detection programmes. 

Key words 

Visceral leishmaniasis; improved case detection; mortality; resurgence; transmission 

dynamics; mathematical modelling 

 



Introduction 

Visceral leishmaniasis (VL), also known as kala-azar, is a neglected tropical disease 

caused by single-celled Leishmania parasites that are transmitted by sandflies [1]. On 

the Indian subcontinent (ISC), VL is considered entirely anthroponotic. Once infected, 

a small percentage of individuals develop symptoms that are fatal when left untreated. 

After successful treatment, 5-20% of cases develop a skin condition known as post-

kala-azar dermal leishmaniasis (PKDL), which lasts several years if left untreated [2]. 

Transmission is driven by cases of symptomatic infection and PKDL; asymptomatic 

cases most likely do not infect sandflies or to a much lower extent [3,4].  

The WHO 2020 target for control of VL on the ISC is defined as less than one 

detected VL case per 10,000 population per year at the (sub)district level (from 

35,000 up to 200,000 populationminimum 35,000 population, and median size 

200,000) [5]. Control strategies rely on prompt detection and treatment of VL cases, 

and vector control in the form of indoor residual spraying (IRS) of insecticide [5], 

although several studies question the impact of IRS on VL incidence [6,7]. Strategies 

to improve the promptness of detection include provision of diagnostics, raising 

clinical and community awareness, and, more recently, active case detection given 

that cases tend to be clustered in time and space [8,9]. Detection success is generally 

measured through the average time between onset of symptoms and specific 

diagnosis, and this has reduced substantially although it still shows substantial 

variability [10]. Given this variability, it is surprising that, to our knowledge, no 

consideration has been given to the impact of population coverage of improved 

detection programmes and/or reductions in detection delay on achievement of control. 

It should also be noted that it is only possible to measure the diagnostic promptness in 

detected cases. 



Given the drop in the number of VL cases on the ISC due to large-scale control efforts 

since 2010, achievement of the control target seems within reach in many regions 

[11–13]. However, if control efforts relax following the achievement of this target, the 

sustainability of VL control could be at stake [14]. Here, we hypothesise that in some 

situations, relaxation of detection efforts will lead to an apparent (temporary) 

achievement of the control target, whereas the true, underlying epidemiological 

situation is worsening. Such a relaxation could occur through lack of clinical 

awareness, reduction in resources due to political complacency, or diversion of 

resources from detection to another form of control. 

Mathematical models of VL transmission are increasingly used for planning and 

assessing the efficacy of interventions and evaluating the intensity and timescale 

required to achieve set targets [13,15]. In this study, we use a mathematical model for 

transmission and improved detection of VL to predict the impact of reduced detection 

delays and/or increased population coverage of the detection programmes on VL 

incidence and mortality. 

Methods 

Model structure 

In this study, we employed a simplified version of earlier transmission models [16–

18], keeping only the processes in the model that are relevant to the impact of 

improved detection of VL cases. See Error! Reference source not found. for a 

schematic representation of the model structure. In the model, susceptible individuals 

that are infected with the Leishmania parasite first enter a stage of latent infection 

which is asymptomatic and non-infectious. Three percent of latent infections progress 

to developing symptomatic VL, which is diagnosable and infectious, and the 



remainder recover without treatment [19]. Note that the current definition of VL 

implies that individuals have clinical symptoms (fever) for two weeks prior to being 

diagnosable. Here, the detection and subsequent treatment of symptomatic cases was 

assumed to occur at a constant rate, so that the resulting distribution of detection 

delays reflects the high variation in reported treatment delays in India [20]. The 

competing risk of dying from untreated VL was assumed to increase with duration of 

symptoms, which was captured using the “linear chain trick” [21] to model 

progression until death as an Erlang distribution with shape 3. Together, the 

competing risks of being detected versus dying determine the proportion of VL cases 

that die undetected, the average time till death, and the duration of symptoms in the 

detected cases. A baseline situation with “standard” detection effort was defined as a 

situation in which half of the VL cases die undetected, and those who die have 

symptoms for an average duration of 150 days. These figures are completely 

unobserved, but are consistent with reports of the case ascertainment [22,23], and 

were uniquely reproduced by setting the baseline case detection rate to 365/243 (i.e. 

an average detection delay of 243 days in absence of excess mortality) and the annual 

mortality rate due to untreated VL to 365/189 (i.e. an average duration until death of 

189 days in absence of any detection effort). These rates translate to an average 

detection delay of about 8 months in absence of VL-related mortality, an average 

duration of symptoms before death of about 6 months in absence of any detection 

effort or health care seeking behaviour, and an average detection delay in detected 

cases of 92 days. 

To simulate the potential impact of an improved detection programme, we stratify the 

population of symptomatic cases into two fractions: one covered by the improved 

detection programme (i.e. shorter treatment delay), and the other covered by the 



baseline detection rate. The two groups are subject to the same risk of dying from 

untreated VL. All detected VL cases are assumed to be successfully treated and reach 

the dormant stage, which lasts on average 21 months [24–26], after which most will 

recover completely. Five percent of individuals in the dormant stage will develop 

PKDL [2], which lasts five years on average [24]. Individuals that recover fully from 

the dormant stage or PKDL are assigned to the fully recovered state, which we 

assume cannot be infected and lasts five years on average [18], after which they 

become susceptible again. Only VL cases and PKDL cases are considered to be 

infectious and contribute to transmission [3]. The background mortality rate due to 

other causes was based on the average expected lifespan at birth in rural Bihar, as 

reported for 2010–2014 by the Indian Census Office [27]. We did not consider age 

and population growth in our model, as these were not deemed relevant for the 

diagnostic process or VL transmission dynamics when predicting short-term trends. 

The transmission rate was calibrated to represent a setting with observed (i.e. 

detected) VL incidence of 5/10,000 capita (at equilibrium) before the start of 

improved detection, which for the baseline scenario translates to a true VL incidence 

of just over 10 cases/10,000/year and a mortality rate due to untreated VL of just over 

5 cases/10,000/year. See Error! Reference source not found. for a formal 

description of the model equations; see Error! Reference source not found. for an 

overview of all biological parameter values and relevant references. 

We developed two model variants: a deterministic variant defined in terms of a 

system of ordinary differential equations representing an infinitely large population, 

and a stochastic variant describing a discrete, finite set of individuals for whom 

transitions between disease stages are chance events based on the same transition rates 



as in the deterministic model variant. Both variants assume a closed, fixed-size 

population and were implemented in pomp (version 2.2.2.0) [28] using R (version 

3.6.0) and RStudio (version 1.2.1335). The model code can be accessed through a 

public online repository at https://gitlab.com/erasmusmc-public-health/vl-detection-

effort-model. 

Simulation scenarios 

First, we performed simulations with the deterministic model variant for various 

scenarios of improved detection, using a grid of values for population coverage of the 

improved detection strategy (0-100%, 1% increments) and reduction in detection 

delay among cases covered by the improved detection strategy (0-98%, 1% 

increments, relative to the baseline detection delay of 92 days). For each improved 

detection scenario, we predicted the true and observed VL incidence, mortality due to 

untreated (i.e. undetected) VL, and the average duration of symptoms in detected 

cases after five years of improved case detection. 

Second, in order to predict the impact of a potential relaxation of detection effort, we 

performed 10,000 stochastic simulations for a population size of 35,000 people (i.e. 

the smallest block-level population size seen in the Indian subcontinent). Each 

stochastic simulation was initiated using a multinomial sample of 35,000 individuals 

with an expected state distribution as predicted for an equilibrium situation by the 

deterministic model variant before start of improved detection. Stochastic simulations 

were run with improved detection implemented at 80% population coverage with an 

achieved detection delay of 37 days (i.e. a 60% reduction). A relaxation in detection 

effort was defined as a lowering of population coverage from 80% to 20%, while 

maintaining the achieved 60% reduction in detection delay, assuming that relaxation 

https://gitlab.com/erasmusmc-public-health/vl-detection-effort-model
https://gitlab.com/erasmusmc-public-health/vl-detection-effort-model


of detection effort does not affect the quality of the remaining effort because tools are 

still available and the health care workers are still primed.  Relaxation of detection 

effort was assumed to occur in two situations: 1) after reaching the target of 

<1/10,000 observed VL cases for three consecutive years, or 2) after five years of 

improved control if programme impact was unsatisfactory. For the first situation, we 

used the simulations that achieved the target for 3 years consecutively within 10 years 

of improved detection; the remainder of simulations (i.e. not reaching the target 

within 10 years) were used for the second situation. After relaxation of detection 

effort, simulations were run for a further five years to monitor the changes in VL 

incidence (observed and true) and mortality. 

Results 

Figure 1 illustrates the impact of improved case detection on VL incidence and 

mortality over the course of 10 years, assuming 80% population coverage. The true 

VL incidence and mortality due to untreated VL were predicted to decline sharply 

within the first three years (panel A), reflecting the impact of improved case detection 

on transmission. Observed VL incidence sharply increased during the first year of 

improved detection, approaching the true VL incidence, and then rapidly declined in 

the second and third year, followed by a stage of slow further decline. The predicted 

average duration of symptoms in detected cases (panel B) declined immediately with 

the start of improved detection and stabilised after two years. 

Figure 2 summarises the epidemiological situation after five years of improved case 

detection for various levels of detection effectiveness, again starting from the same 

baseline situation. Settings with poorly performing detection programmes are 

represented by a reduction in detection delay (y-axis) of 0% (i.e. a 92 days detection 



delay as in the baseline scenario) and/or 0% population coverage of the improved 

detection programme (x-axis). In contrast, the top right corner of each panel 

represents a hypothetical ideal situation of maximum detection effectiveness in which 

the achieved treatment delays are shortest and the population coverage is highest. The 

solid circle in each panel represents the scenario depicted in Figure 1. Various 

combinations of programme coverage and reductions in detection delay result in 

similar observed VL incidence (panel A), with both parameters contributing 

approximately equally to the impact of improved case detection. Duration of 

symptoms in detected cases (panel B) was predicted to decrease markedly with 

increasing programme performance. A programme coverage and a reduction in 

detection delay of both ≥60% ensured an overall detection delay of ≤50 days (among 

cases originating from both parts of the population covered and non-covered by 

improved detection). The difference between true VL incidence (panel C) and the 

observed VL incidence (panel A) decreased with increasing programme performance 

(i.e. towards the top-right corner). Mortality due to untreated VL (panel D) decreased 

strongly with increasing programme performance. A programme coverage and a 

reduction in detection delay of both ≥65% ensured a mortality rate of less than 

1/10,000/year. When detection delays are short, then ensuring increased population 

coverage has relatively more impact on reduction in mortality as demonstrated by the 

nearly vertical contour lines. 

The stochastic version of the model highlights the important impact of chance effects 

related to the achievement of the target. In 13% of 10,000 stochastic simulations, the 

incidence of observed VL fell below 1/10,000 for 3 consecutive years during the first 

10 years of the improved detection programme (Error! Reference source not found., 

panel A). These simulations represent the left tail of the expected distribution of 



outcomes for which the mean is the incidence trend predicted by the deterministic 

model (Figure 1). In the remaining 87% of simulations (pink line), the decline of the 

average VL incidence slowed down after three years of improved detection (as in 

Figure 1).  

Figure 3 illustrates the potential impact of relaxing detection effort on VL incidence 

and mortality after an initial period of improved case detection. When detection was 

relaxed after meeting the target (i.e. in 13% of 10,000 simulations; blue line and 

shaded band), transmission was either interrupted (55% of 13% of simulations with 

zero PKDL and VL cases), continued at levels with observed VL incidence <1/10,000 

(18% of 13%), or resurged with observed VL incidence at or above 1/10,000 (27% of 

13%) within the next five years. The predicted outcomes are shown in more detail in 

Appendix D. In the subset of simulations with “unsatisfactory” impact of improved 

detection (i.e. 87% of 10,000 simulations; red line and shaded band), a relaxation of 

detection effort resulted in an increase in true VL incidence and mortality. In contrast, 

the observed VL incidence declined during the first year after relaxation, after which 

it increases again. In 13% of the 87% of simulations, the observed VL incidence 

dropped under <1/10,000/year in the first year after relaxation of the detection effort 

(i.e. the point where the lower bound of the red shaded band crosses the dashed 

horizontal line). 

Discussion 

Our results demonstrate five key principles of VL control programmes on the ISC. 

First, successful implementation of improved case detection is expected to 

temporarily increase the observed VL incidence. However, finding and treating cases 

results in reduction of transmission so that the true case incidence and mortality fall. 



Second, successful case detection requires that reduction in detection delays covers 

the whole population. Third, there is an important role of chance in determining the 

likelihood of reaching and maintaining the control target. Fourth, when the control 

target is met, there is a high risk of resurgence of transmission if the detection effort is 

relaxed. Fifth, when little or no impact of improved detection is observed, a relaxation 

of the detection effort may result in a temporary reduction of observed VL incidence, 

sometimes even below the control target of 1/10,000/year, whereas the true VL 

incidence is actually increasing. 

Clearly, observed VL incidence by itself is not a reliable indicator of programme 

performance, because it is closely related to the detection effort, such that relaxation 

may even incorrectly suggest programme improvement in the short run. Effective 

control has to be defined in terms of low case incidence combined with successful 

case detection and low average duration of symptoms. The presence of sub-

populations who have longer detection delays due to, for example, lower health-care 

access and/or lower disease awareness, are important barriers to effective control. Our 

results show that the duration of symptoms in observed VL cases could serve as an 

additional indicator as it is temporally more directly related to the performance of case 

detection programmes. The pattern in Figure 1B shows that the decrease quickly 

plateaus, which is not an indication that control is failing, but that detection effort is 

sustained. If the duration of symptoms in detected cases has not decreased 

significantly, then most likely the control target has only been seemingly (and 

temporarily) met because of poor case detection. Of course, the quality assurance 

accuracy of reported detection delays remains challenging, given the fact that 

individuals often attend multiple clinics before being diagnosed with VL.  



An independent measure of case detection effort and success (i.e. if a case is there, 

will it be diagnosed and how long will it take) would underpin the current 

interventions. It would also avoid potential perverse incentives (e.g. lowering 

detection effort or reporting fewer cases to reach the control target). Such a measure 

might be the numbers of cases “suspected” and tested per month, or monitoring the 

proportion of PKDL cases that were previously diagnosed as VL cases. Currently, 

there is no systematic data collection on measures of diagnostic effort, e.g. number of 

suspect cases tested, or number of cases of splenomegaly tested. Requiring 

programmatic reporting of such data would keep VL in the clinic focus even when 

there are zero cases, and would also provide denominators to estimate the rate of VL 

detection. A small proportion of PKDL cases arise without previous treatment, so 

reporting these separately from PKDL cases with known VL history would provide a 

measure of the relative incidence of undiagnosed VL. Other approaches would require 

development of systems beyond the current programme (e.g. post-mortem 

measurements) which are unlikely to be initiated solely for the VL programme. 

A successful detection programme, in which most VL cases are diagnosed promptly, 

means that the observed VL incidence more accurately represents the true state of the 

population. In particular, if the VL incidence target is met due to reduction in 

transmission through diagnosis and treatment, then it is guaranteed that the true 

(unobserved) mortality due to VL is also low (Figure 2). A successful detection 

programme involves many processes including community and clinical awareness, 

access to health-care and availability of diagnostics, and we have not included any of 

these details, but we show that it is important that reductions in detection delay to 

have wide population coverage. This is relevant when considering active case 

detection or other activities targeted to “hotspots”, and to ensure that they do not 



result in sections of the population with reduced detection that can continue to support 

transmission. 

It has been recognised that VL diagnoses are clustered in time and space, and 

pursuing active case detection in communities in which further cases are expected 

exploits this epidemiological observation. For instance, in India the control 

programme focusses on finding febrile patients in the vicinity of index VL cases. 

Xeno-monitoring, i.e. surveillance of vectors for presence of infection and 

infectiousness, is another avenue being actively considered. Given that there appears 

to be little transmission from asymptomatic cases, the presence of infected sandflies 

might be good evidence of a case of infectious VL or PKDL in the community. 

However, this needs to be confirmed. 

Our deterministic model suggests that the observed VL incidence cannot reach 

<1/10,000 within five years of improved control (Figure 2), but stochastic model 

predictions suggest that the control targets can be met in a proportion of situations 

with similar or lower VL incidence than considered here (pre-control annual VL 

incidence of 5 per 10,000 capita). The simulations also show that even when targets 

are achieved there is a chance of resurgence. This difference highlights the deficiency 

of deterministic models to adequately capture stochastic effects in populations of 

finite size. Some of the parameters in the model have had to be inferred, so we focus 

our attention on the qualitative, rather than quantitative, results. 

The achievement of the control target in various field settings with similar or even 

higher pre-control VL incidence than considered may be explained by concomitant 

changes in human exposure to sandfly bites, e.g. due to successful use of indoor 

residual spraying and/or other factors that affect sandfly biology, which were not 



considered in the model here. Conclusions with regard to (relaxation) of detection 

effort do not depend on the above factors. 

We have assumed that transmission within the population is homogeneous, i.e. that 

each individual is equally likely to transmit to each other individual. This is a 

simplification of reality, and given the role of relatively short-range vectors, the 

transmission dynamics of VL are likely better captured by considering meta-

populations, e.g. populations of people within separate villages, and we are actively 

pursuing this hypothesis. How the processes we have studied here interact with 

transmission at multiple scales is not immediately clear, but we are confident that our 

underlying results are robust.  

It is becoming clear that only VL and PKDL cases can transmit significantly to 

sandflies, but there remain many important parameter values, such as proportion 

developing different types of PKDL (nodular, popular, etc.), their infectiousness and 

their duration, for which good data are still accruing [3]. Similarly, the potential roles 

of longer-term immunity following VL and asymptomatic infection are largely 

unknown. However, these will largely influence longer-term dynamics and the 

shorter-term patterns that we explore here are dominated by one infection per host and 

do not include the recycling of hosts through the susceptible class. 

In conclusion, we show that VL incidence on its own is not a reliable indicator of the 

performance of case detection programmes. Unless transmission is truly interrupted, 

relaxation of detection effort will result in a temporary reduction of observed VL 

incidence while true VL incidence and mortality rise immediately. Therefore, 

continued case detection is pivotal for sustained control of VL. Our findings indicate 

that the average duration of symptoms in detected cases is a useful indicator of the 



performance of case detection programmes, although there is also a need for 

independent measures of case detection effort, such as number of suspects screened 

for VL, to avoid perverse incentives.  
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Figures legends 

Figure 1. Deterministic model predictions for impact of improved case detection on 

visceral leishmaniasis (VL) incidence and mortality over time. Predictions reflect a setting 

where, before the start of improved detection, the annual observed incidence of VL was 5 per 

10,000 capita, and half of all cases died before detection. Improved detection is assumed to 

result in a reduction of detection delay down to 37 days (60% reduction from 92 days) in 80% 

of the population covered by the improved detection programme. 

 
Figure 2. Contour plot of the model-predicted impact of five years of improved case 

detection at various levels of effectiveness on visceral leishmaniasis (VL). Model 

simulations represent a setting where, before the start of improved detection, the annual 

observed incidence of VL was 5 per 10,000 capita, and half of all cases died before detection. 

Improved detection is defined in terms of the proportion of the population covered by the 

programme (x-axis) and the reduction in detection delay in the part of the population covered 

by programme (y-axis), relative to a reference delay of 92 days without improved detection. 

Contour lines represent combinations of programme coverage and reductions in detection 

delay that result in the same outcome after five years of improved detection. Panels represent 

different outcome metrics that can be directly measured (panels A and B) or not (panels C and 

D). Outcome metrics are based on both the covered and non-covered parts of the population. 

The point at 80% population coverage and 60% reduction in detection delay represents the 

scenario depicted in Figure 1. 

 
Figure 3. Stochastic model predictions for the number of visceral leishmaniasis (VL) 

cases and deaths when detection effort is relaxed after an initial period of improved 

detection. Simulations represent a setting where, before the start of improved detection, the 

annual observed incidence of VL was 5 per 10,000 capita, and half of all cases died before 

detection. Improved detection was defined as an average detection delay that is reduced from 

92 to 37 days in 80% of the population covered by the improved detection programme (as in 

Figure 1 and the point in Figure 2). Next, the detection effort was relaxed, either after 

reaching the target of <1/10,000 observed VL cases for three consecutive years (blue line and 

shaded band), or after five years if programme impact was unsatisfactory (red line and shaded 

band). Relaxation of detection effort was defined as a decrease in programme coverage from 

80% to 20%. Lines and shaded bands represent the median and 80%-confidence intervals of 

annual numbers from multiple stochastic simulations. 


