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Supplementary Figures 
 

 
 

Supplementary Figure 1 - Detail of imputation accuracy.   

a) Per-variant imputation accuracy (computed as the mean squared correlation between directly typed and 
reimputed genotypes, evaluated at Omni 2.5M SNPs included in the imputation) against minor allele 
frequency for all samples in our study.  Imputation was performed in sets of 500 samples; each line 
represents a single sample set.  Lines are coloured by population (if all samples in the set were from a single 
population) or grey if samples from a mixture of populations was included, according to the legend in panel 
c). b) The proportion of variants at or above a given imputation accuracy, for accuracies in the range 0.75-1, 
as computed by masking and re-imputing typed SNPs.  For example, in African sample sets over 90% of 
common variants were reimputed with at least 90% accuracy. c) Improvement in per-variant imputation 
accuracy between the combined panel and the 1000 Genomes reference panel.  Improvement is computed as 
the mean difference in accuracy for variants in the given minor allele frequency bin (x axis); each point 
represents a single imputation run of 500 samples. 
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Supplementary Figure 2 - Principal components (PCs) across all study 
samples. 

Selected PCs computed in each population using the phased genotype calls.  For each study population, a 
summary of the ethnic makeup of the study samples is given, followed by a plot of the first PC (x axis) 
versus the second PC (y axis).  For populations displaying more structure we also plot the 2nd versus 3rd PC, 
the 3rd versus 4th PC, etc.  Colours are chosen to distinguish ethnic groups, with the largest ethnic group being 
set to the population colour, as shown in Figure 1, and other ethnic groups given a spread of hues around the 
population colour.  In each population we plot samples in random order to avoid visual overrepresentation of 
specific ethnicities. 
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Supplementary Figure 3 - Manhattan plot for case-control and subphenotype 
tests. 

a) -log10 P-value for an additive model of association of the genotype on SM status, versus controls, for each 
SNP included in our analysis.  Effect size estimates and standard errors are computed in each study 
population using logistic regression (as implemented in SNPTEST) including 5 principal components of 
population structure.  Results are then meta-analysed across populations using fixed-effect meta-analysis. b) -
log10 P-value for an additive model of association of the genotype with CM, SMA, or OTHER phenotypes, 
relative to controls.  Results are computed using multinomial logistic regression in each study population 
including 5 principal components.  Results are then meta-analysed across populations using fixed-effect 
meta-analysis. 
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Supplementary Figure 4 - Analysis of the heritability of SM across African 
study populations 

Results are based on a joint analysis of 13,038 individuals, selected to have <5% pairwise relatedness within 
each African study site, using the phased dataset of 1,550,514 SNPs.  We included 20 PCs computed across 
these individuals, as well as an indicator of study site as fixed effects to control for population structure.  
Results are estimated using PCGC.  a) Estimated heritability attributed to each chromosome when including 
all chromosomes jointly in the model (black points, with grey bars indicating 95% confidence intervals; small 
text indicates chromosome number) and when estimating for each chromosome seperately (red horizontal 
lines).  Sloping lines indicate the overall estimated heritability for each model.  A small degree of inflation is 
seen when using separate estimates, indicating there may be some residual confounding by population 
structure. b) Estimates for heritability across previously identified regions of association and to the rest of the 
genome, when fit jointly (black points and line segments).  Red bars indicate estimates after including the 
dosage of the lead SNP in each of the four association regions as a covariate.  c) Residual estimates for 
heritability partitioned into genic and intergenic regions (left two points), and into minor allele frequency 
bins.  Estimates are made excluding the four association regions in b) and are conditional on the protective 
dosage at these variants.  Additional details can be found in Supplementary Table 3. 
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Supplementary Figure 5 - Discovery and replication effect sizes for variants in 
Figure 2c (part 1) 

Figure shows sample counts, effect size estimates and confidence intervals for association tests with the top 
six variants in Figure 2c.  For each variant, the top panel shows discovery analysis (using imputed 
genotypes) and the bottom panel shows replication analysis using directly-typed genotypes at the best 
Sequenom tag, as defined in Methods.  Within each panel, rows show the population label and counts of 
controls and of cases reported as CM, SMA, CM and SMA, or OTHER severe malaria phenotypes, with the 
bottom row indicating the total sample count available for meta-analysis.  For each variant, data is presented 
for the mode of inheritance and choice of case/control or subphenotype effects forming the best posterior 
model identified by our discovery analysis (as shown in Figure 2c), with these choices indicated at the top of 
the plot along with the reference and non-reference alleles. For each variant, the plot depicts the estimated 
effect size (OR, points) and 95% confidence interval (line segments) for the non-reference allele on severe 
malaria (black points) or on severe malaria subphenotypes (red points, CM; blue points, SMA; green points, 
OTHER SM).  Points corresponding to estimates based on fewer than 25 observations of the minor allele (or 
minor predictor for non-additive model estimates) are depicted in grey; these were not included in meta-
analysis computation (Methods).  Text under each plot indicates the odds ratio and confidence interval 
computed using fixed-effect meta-analysis across populations, and the total sample size contributing to the 
meta-analysis. To the right, the frequency of the non-reference allele estimated using control samples in each 
population is indicated.  Source data are provided as a Source Data file.   
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Supplementary Figure 6 - Discovery and replication effect sizes for variants in 
Figure 2c (part 2) 

Figure shows sample counts, effect size estimates and confidence intervals for association tests with the 
bottom six variants in Figure 2c.  See Supplementary Figure 5 legend for details.  A blank lower panel 
indicates a discovery variant for which no valid Sequenom tag was available (Methods and Supplementary 
Table 2). Source data are provided as a Source Data file. 
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Supplementary Figure 7 - Discovery and replication effect sizes for variants in 
HLA and AP2B1 

Figure shows discovery effect size estimates and confidence intervals for HLA-B*53 under additive and 
dominance model of association, and for rs56292300. See Supplementary Figure 5 legend for details. Source 
data are provided as a Source Data file. 
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Supplementary Figure 8 - joint derived allele frequency distribution of African 
and European populations 

Plot shows the empirical distribution of allele counts for derived (i.e. non-ancestral) alleles in African (x axis) 
and European (y axis) reference panel samples.  Counts are aggregated into 1% frequency bins for 
visualization; colours indicate the number of alleles in each bin according to the scale on the right.  Only 
variants not masked by the 1000 Genomes 'strict' mask, and having an ancestral allele assignment in the 1000 
Genomes ancestral allele sequence are included.  Black lines indicate the empirical median, 25%, and 5% 
quantiles of the distribution in Europe conditional on the African allele frequency (i.e. in  each vertical 'slice' 
through the plot).  Triangles indicate the position of the five replicating associations on the distribution, with 
'up' arrows indicating that the risk allele is derived, and 'down' arrows indicating that the protective allele is 
derived.  For each SNP, rankEUR can be computed as the tail of the vertical slice above (for protective derived 
alleles) or below (for risk derived alleles) the variant, in the direction of the triangle.  We include half of the 
count of the bin containing the SNP so that both tails sum to one. 
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Supplementary Figure 9 - Empirical model of allele frequencies across African 
populations 

Visualisation of an empirical model of allele frequencies estimated across the seven African study sites with 
at least 500 samples.  Left: covariance matrix of scaled allele frequencies estimated at 100,000 SNPs, 
randomly chosen from among those have mean frequency in the range 2-98%.  Covariance is computed form 
allele frequencies after subtracting the mean frequency (f0) and dividing by the expected standard deviation	
√f0(1-f0).	 b)	 the	 empirical	 joint	 distribution	 of	 allele	 frequencies	 in	 Kenya	 and	 The	 Gambia.	 	 c)	
illustration	of	 the	modelled	distribution	of	allele	 frequencies,	 for	1,000,000	SNPs	simulated	 from	the	
model	in	panel	a)	based	on	mean	frequency	sampled	from	the	empirical	mean	frequency	distribution	
in	 Kenya	 and	 The	 Gambia.  Given the root frequency f0, we simulated a scaled frequency vector v by 
sampling based on the estimated covariance matrix.  We then plot the frequencies computed as f0+v√f0(1-f0)	
in	Gambia	and	Kenya.	

  



 13 

 
 

Supplementary Figure 10 - Illustration of the empirical model of allele 
frequencies across African populations at different frequencies 

Bars show the empirical distribution of the XtX statistic for all SNPs in the frequency bins indicated by the 
text.  Red lines show the density of the χ2	distribution	used	to	compute	PXtX.		The	test	re)lects	a	6-degree-
of-freedom	 χ2	 distribution;	 we	 remove	 one	 population	 (Cameroon)	 from	 the	 test	 to	 account	 for	
subtracting	 the	mean	 frequency.	 	The	 theoretical	 distribution	matches	 the	 true	 distribution	 closely,	
except	for	rarer	variants	where	the	theoretical	distribution	appears	conservative.	
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Supplementary Figure 11 - Evidence for within-Africa differentiation at 
variants across the genome 

Plot shows the evidence for differentiation (-log10 PXtX, computed using controls from the 7 African study 
populations with at least 500 samples) at all variants with at least 2% mean allele frequency across the 
genome.  Variants include genome-wide imputed SNPs, imputed HLA alleles, and glycophorin CNVs.  Table 
on right shows a set of variants selected to have PXtX < 1E-8, and thinned such that no two variants lie within 
a distance of 0.5cM with a 25kb margin of each other (thinned separately for imputed HLA alleles and 
genome-wide variants).  For each variant we show the ID, chromosome and position and the -log10 PXtX. 
Circles show the allele frequencies, with the area of each circle reflecting the minor allele frequency in 
proportion to the maximum minor allele frequency across African populations (shown as grey circle). Genes 
shown are the closest protein-coding genes that appear within the corresponding thinning region; asterisk 
denotes that the variant lies in the gene, and ellipsis indicates that further genes (not shown) lie within the 
region. 
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Supplementary Figure 12 - Mendelian randomization analysis with 36 
haemotopoetic traits 

Results depict mendelian randomization analysis against each of 36 traits analysed in Astle et al, Cell (2017).  
Points show the Mendelian randomization analysis of SM and each trait, at 2130 'sentinel' SNPs from Astle 
et al and having association results in our study.  The estimated correlation and P-value are shown in blue.  
Traits are ordered by p-value from lowest to highest.  For further details see Methods and the legend for Fig. 
5h. 
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Supplementary Figure 13 - Comparison of reference panel and study 
frequencies at typed SNPs 

Figure shows the distribution of non-reference allele frequencies for SNPs on the Omni 2.5M platform after 
data alignment.  The X axis denotes the frequency in the closest reference panel group, which is AFR for 
African populations and EAS for non-African study populations.  Only SNPs with missing proportion < 10% 
in each study population, and that are also present in the combined reference panel (as identified by genomic 
position and alleles) are shown.  Numbers in text denote the total number of SNPs plotted, and colours denote 
the counts in each cell according to the legend at the bottom right. 
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Supplementary Figure 14 - Average X and Y channel intensity values per 
sample in each population, and intensity exclusions.   

Heatmaps show the proportion of samples in each site with the given average intensity values.  Excluded 
samples were computed using ABERRANT and are shown as black dots. 
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Supplementary Figure 15 - average missing call and heterozygosity rates per 
sample, and sample exclusions. 

Heatmaps show the proportion of samples in each population with the given average missing call rate (on a 
logit scale, x axis) and average heterozygosity (y axis).  Exclusions were computed using ABERRANT and 
are shown in black dots. 
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Supplementary Figure 16 - Average X+Y channel intensities across sex 
chromosomes, and gender assignment. 

Plot shows total (X channel + Y channel) intensity averaged across X chromosome variants (x axis) and Y 
chromosome variants (y axis) for each sample, computed using normalized intensities from the Omni 2.5M 
platform. Shapes denote the gender assignment of each sample, and are estimated using the cluster positions 
denoted with dashed ellipses.  Excluded samples are shown as smaller, transparent points. 
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Supplementary Figure 17 - cumulative distribution of per-sample missingness. 

Plot shows the proportion of samples in each study population (y axis) that has less than a given rate of 
missingness (indicated by the x axis), across all at SNPs on the Omni 2.5M platform after data alignment. 
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Supplementary Figure 18 - Detail of QC: manhattan plots. 

Rows show manhattan plots for association of severe malaria with directly-typed SNPs, under a general 
model of association.  Red points denote SNPs that were removed during our QC process.  Black crosses 
denote SNPs that were manually removed after inspection of cluster plots. 
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Supplementary Figure 19 - Array intensities and genotyping near the end of 
chromosome 19 

Top panel shows the percentage of variants on the Omni 2.5M microarray which had at least 10% missing 
calls in our data, for each study population (colours), computed in 100kb bins across the chromosome.  
Second panel shows the total (X channel+Y channel) intensity for the same SNPs, averaged over 100kb bins.  
The vertical dashed red line depicts the location of the BSG gene.  
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Supplementary tables 
 
Country	 Site	 Previous	publications	(candidate	

variant	typing)	
Previous	publications	
(microarray	data)	

Previous	publications	
(sequencing	data)	

Gambia	 MRC	Laboratories,	Banjul	 MalariaGEN1,2,	Shah	et	al3,	Clarke	
et	al 4	

Jallow	et	al5;	Band	et	al6;	
MalariaGEN1;	Lef&ler	et	al7	

Lef$ler	et	al7	

Mali	 University	of	Bamako,	Bamako	MalariaGEN1,2,	Toure	et	al8,	Clarke	
et	al 4	

-	 	

Burkina	Faso	Centre	National	de	Recherche	et	de	
Formation	sur	le	Paludisme,	
Ouagadougou	

MalariaGEN1,2,	Clarke	et	al 4	-	 Lef$ler	et	al7	

Ghana	 Kwame	Nkrumah	University	of	
Science	and	Technology	

MalariaGEN1,2,	Clarke	et	al 4	-	 -	

	 Navrongo	Memorial	Institute	for	
Medical	Research	with	Navrongo	
Health	Research	Centre	

MalariaGEN1,2,	Clarke	et	al 4	-	 -	

Nigeria	 University	of	Ibadan	 MalariaGEN1,2,	Olaniyan	et	al9,	
Clarke	et	al 4	

-	 -	

Cameroon	 University	of	Buea	 MalariaGEN1,2 Apinjoh et al10,11,	
Clarke	et	al 4	

-	 Lef$ler	et	al7	

Malawi	 Blantyre	Malaria	Project	with	
Malawi-Liverpool–Wellcome	
Programme	

MalariaGEN1,2,	Clarke	et	al 4	Band	et	al6	MalariaGEN1;	
Lef$ler	et	al7	

-	

Tanzania	 Joint	Malaria	Programme,	
Kilimanjaro	Christian	Medical	
Centre,	Moshi	

MalariaGEN1,2;	Manjurano	et	al12-
14,	Clarke	et	al 4	

Ravenhall	et	al15	 Lef$ler	et	al7;	Ravenhall	et	
al15	

Kenya	 KEMRI–Wellcome	Research	
Programme,	Kili-i	

MalariaGEN1,2;	Opi	et	al16;	Ndila	et	
al17,	Shah	et	al 18,	Ugoya	et	al 19,	
Clarke	et	al 4	

Band	et	al6	MalariaGEN1;	
Lef$ler	et	al7	

Lef$ler	et	al7	

Vietnam	 Oxford	University	Clinical	Research	
Unit,	Ho	Chi	Minh	City	

MalariaGEN1,2,	Dunstan	et	al 20,	
Clarke	et	al 4	

-	 -	

Papua	New	Guinea	Papua	New	Guinea	Institute	for	
Medical	Research,	Madang	

MalariaGEN1,2,	Manning	et	al 21,	
Clarke	et	al 4	

-	 -	

 

Supplementary Table 1 - study sites and previous publications 

The first two columns lists study site countries and the address of lead research institutions. The last three 
columns refer to papers published on data generated by this project, including publications using direct 
typing of candidate variants, publications on genome-wide microarray data, and publications using short-read 
sequencing data. 
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Supplementary Table 2 - The 97 regions with BFavg > 1,000 

This table can be found in the external file "Supplementary tables.xlsx".  The table reflects the 97 regions 
containing a variant with BFavg > 1000 in our data, identified chosen by using the inthinnerator thinning tool 
applied to variants ranked by BFavg, as described in Methods.  Columns represent: chromosome, position, 
rsid, reference and non-reference alleles of the lead variant; details of the association region including the 
region boundaries, nearest gene, distance to the nearest gene, and all genes in the association region; detail of 
our Bayesian meta-analysis, including Bayes factors (BFs) for case/control and subphenotype models of 
association (each BF is averaged over the the component models detailed in Methods and Supplementary 
Table 9) for four modes of inheritance, the BFavg and best posterior model, detail of population- or group-
specific BFs included in the case-control BF (each BF is averaged over four modes of inheritance); detail of 
fixed-effect meta-analysis including effect size estimates, standard errors, and Wald test p-values for each 
parameter under the case-control and multinomial models, for each mode of inheritance.  Columns ending 
'included' contain strings indicate which per-cohort effect size estimates are included in the meta-analysis, 
where 1 indicates included and 0 indicates excluded due to criteria outlined in Methods, populations in the 
order depicted in Figure 1a, and for subphenotype meta-analysis there are 3 characters per population 
indicating the three estimated parameters).  Subsequent columns provide details of replication analysis, 
where applicable, including the number of Sequenom tags, detail of the best Sequenom tag, correlation 
between imputed and directly-typed genotypes for the best tag measured across discovery samples, the total 
count of non-missing genotype calls for the best tag in replication samples, the overall and replication BF, 
two-sided replication P-value under the case-control and subphenotype models for each mode of inheritance, 
and details of other available Sequenom tags where applicable.   
 
Supplementary Table 3 - Heritability estimates 

This table can be found in the external file "Supplementary tables.xlsx".  The table shows heritability 
estimates made using PCGC 22 and GCTA 23 based on directly-typed genotypes in our QCd set of data.  
Estimates are made based on 13,030 samples from African study populations chosen to have relatedness < 
0.05 within populations.  We computed principal components across this set of samples and include an 
indicator of study site and 10, 20, or 50 PCs as covariates to allow for potential confounding by major axes of 
population structure.  We present results for estimates across the whole genome, joint estimates across all 
chromosomes, estimates of contributions from chromosomes estimated independently, estimates split into 
regions of replicable associations and the remainder of the genome, and split by variant frequency, as denoted 
by the first column.  Additional columns indicate the covariates included, the subset of SNPs for which the 
estimate applies (where 'combined' denotes a sum over all other components in the analysis), the number of 
SNPs included in the subset, the estimated liability scale heritability from PCGC and GCTA and the 
corresponding standard errors, and the estimated proportion of heritability per SNP.  A subset of these 
estimates is visualized in Supplementary Figure 4. 
 

Supplementary Table 4 - Functional annotation for variants in 95% credible 
set of top 97 association regions 

This table can be found in the external file "Supplementary tables.xlsx".  The table reflects identified 
functional annotations of variants in the 95% credible set of the regions in Supplementary Table 2, where 
the credible set is computed assuming a single causal variant is present (i.e. by reweighting BFavg across 
variants).  Only variants with BFavg >100 are included.  Columns reflect the id, rsid and BFavg of the lead 
variant in the region; the id, chromosome, position, rsid, BFavg, and best posterior model at the annotated 
variant; indicators of whether the variant lies in a protein coding gene and/or in an exon of a protein coding 
gene; the gene name where applicable; the output of Variant Effect Predictor; ENCODE transcription factor 
binding sites the variant lies in; an indicator of whether the variant lies in a GATA1 or TAL1 motif; inferred 
chromatin states at the variant in selected cell types, from Roadmap Epigenomics Project data; the mean 
allele frequency and P-value for the XtX test of population differentiation; the rank of the count of the 
estimated protective allele in European (rankEUR) and east Asian (rankEAS) reference panel populations, 
conditional on the observed count across African populations; genes for which the variant has been identified 
as an eQTL in peripheral blood 24, GTEx tissues 25, or erythrocyte precursors 26; RBC trait associations 27; 
and GWAS trait associations 28. 
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Supplementary Table 5 - Summary of HLA typing 

This table can be found in the external file "Supplementary tables.xlsx". Table presents a comparison of HLA 
classical allele genotypes determined by HLA typing and by imputation, in 31 Gambian children who are 
cases in our study. Columns represent the HLA locus and allele; counts of samples typed with each genotype 
for the allele (which we consider as 'true' genotypes); counts of samples imputed with each genotype for the 
allele (using a cutoff of 0.75 probability where imputation is uncertain); counts of samples of each true 
genotype wrongly imputed; counts of samples of each imputed genotype wrongly imputed; and the 
correlation, recall and precision of the imputed genotypes. 
 
Supplementary Table 6 - Variants showing heterogeneous patterns of 
association 

This table can be found in the external file "Supplementary tables.xlsx".  The table shows a list of variants 
having heterogenous patterns of estimated effects across populations, identified as having maximum BF  
(BFmax) > 25,000 and at least 100 times greater than the BF under a fixed-effect model.  Only an additive 
model test of association with case/control outcome is considered.  The maximum is computed across all 
models tested, which include those in Supplementary Table 9 and additional population and group-specific 
models, including individual population-specific effects.  We restrict to variants with an effective minor 
allele count of at least 1,706 (corresponding to a minor allele frequency of 5% across all study samples for 
well-imputed SNPs).  We removed variants in the HBB and glycophorin regions.  Columns represent the 
identifier, chromosome, position, rsid, and alleles of the variant, and an indicator of whether the variant was 
imputed from the combined panel ('gwas') or the 1000 Genomes panel ('1000GP'); an indicator of which 
populations contributed to the meta-analysis, the total meta-analysis sample size, and the effective minor 
allele count; the BFavg and best and 2nd best posterior model; the maximum BF across all models tested and 
the model showing the maximum BF; all component BFs (model names include a string of 0's and 1's 
indicating assumed zero or nonzero effects in each population as described in Methods); and between-
continent and within-Africa differentiation metrics. 
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Collection	 Pre-phasing	 Post-phasing 

Population	 Total	samples	analysed	
(repeats)	 Intensities	 Miss	/	het	 Gender	 Duplicates	/	repeats	TOTAL Relatedness (PCs, non-case-

control sample) TOTAL 

Gambia	 5594	 137	 182	 4	 99	 5171 192	(1)	 4979	
Mali	 900	 220	 191	 	 2	 484 52 (3, 10) 422 
Burkina	Faso	1446	 69	 28	 	 20	 1325 31 (4) 1294 
Ghana	 782	 7	 25	 	 14	 732 11 (3, 15) 706 
Nigeria	 419	 192	 84	 	 8	 133 0 (2) 133 
Cameroon	 1471	 64	 118	 3	 9	 1272 55 (5) 1217 
Malawi	 2791	(297)	 150	 250	 3	 186	 2495 24 (4) 2471 
Tanzania	 979	 22	 126	 1	 11	 814 16 (5) 798 
Kenya	 3769	(96)	 120	 116	 6	 156	 3462 355 (5, 39) 3068 
Vietnam	 1690	(38)	 263	 174	 1	 26	 1260 13 (4) 1247 
PNG	 815	 12	 21	 1	 5	 772 51 (4) 721 
TOTAL	 20,656	(431)	 1,257	 1,315	 19	 536		 17,960 800 (40, 64) 17,056 

 

Supplementary Table 7 - Detail of Sample QC 

'Collection' columns show: the population label; total samples analysed per study population (all samples, 
including repeat samples that were included in the QC process). 'Pre-phasing' columns show: samples 
removed due to outlying intensities, outlying missingness/heterozygosity, unassigned gender, or due to being 
identified as a duplicate/repeat of another sample, and the total number of samples included in phasing.  
'Post-phasing' columns show: the number of samples excluded from association testing due to being closely 
related to other samples (estimated relatedness > 0.2), identified as outlying on principal components, or 
lacking case/control status (e.g. for parent samples) where applicable; and the total included in association 
testing. 
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Popula-tion Total SNPs Missing-ness freq-uency HWE / MF plate Recall Cluster / platform TOTAL 
Autosomes        
Gambia 2,312,228 163,463 457,765 2,129 5,082 646   
Burkina Faso 2,312,228 156,296 464,801 75 3,242 34   
Ghana 2,312,228 156,576 446,825 14 2,720    
Cameroon 2,312,228 153,740 451,465 69 2,824 22   
Malawi 2,312,228 171,305 461,725 1,022 12,771 2361   
Tanzania 2,312,228 123,024 458,999 45 4,003 155   
Kenya 2,374,031 132,070 480,658 382 3,296 20   
Vietnam 2,312,228 187,266 927,210 30 1,953 17,126   
Papua New Guinea 2,312,228 246,303 1,017,977 19 1,929    
Combined 2,383,648 426,545 289,371 1,315 28,026 36,823 6/51,048 1,550,514 
        
X chromosome        
Gambia 55,510 5,138 8093 753 249    
Burkina Faso 55,510 4,154 8,313 441 234    
Ghana 55,510 4,301 8,120 221 439    
Cameroon 55,510 4,191 8,547 587 135    
Malawi 55,510 6,174 8,419 830 216    
Tanzania 55,510 3,746 8,186 185 354    
Kenya 57,044 6,351 8,563 569 179    
Vietnam 55,510 6,185 19,489 278 247    
Papua New Guinea 55,510 6,851 21,632 251 219    
Combined 57,104 13,740 4,719 224 2,331 - 2,695 33,395 

 
Supplementary Table 8 - Detail of SNP QC 

Columns show: the population label, total number of SNPs genotyped, SNPs removed due to missingness in 
each population, SNPs additionally identified as low frequency, out of Hardy-Weinberg equilibrium, or 
failing the plate or recall test in each population.  The 'Combined' row shows the total number of SNPs and 
the number failing each combined filter, including the criteria of at least two populations with frequency > 
1%.  For the X chromosome, missingness and plate test were computed separately in males and females, and 
a test of difference in frequency between males and females was used in place of HWE. 
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Category / model name  Short name Detail Prior weight in BFavg 
Mode of inheritance    
 Additive add Encoded as AB+2*BB 0.4 
 Dominant dom Encoded as AB+BB 0.2 
 Recessive rec Encoded as BB 0.2 
 Heterozygote het Encoded as AB 0.2 
 Total 1 
Population   
 Fixed effects fix All off-diagonal entries of Ρ  are set to 

0.99 
0.4 

 Correlated effects cor All off-diagonal entries of Ρ  are set to 0.9 0.2 
 Independent effects Ind All off-diagonal entries of Ρ  are set to 0 0.04 
 Structured effects str Uses Ρ estimated from the correlation in 

allele frequencies genome-wide 
0.04 

 Population group-specific 
effects 

 Effects assumed to be restricted to a subset 
of populations. 

0.04 per subset; 8 subsets in 
total as detailed in 
Methods. 

  Total 1 
Subphenotype effects    
 Case/control effects  (models as described above) 0.8 
 Correlated between 

subphenotypes 
cm-sma-other-cor Between-phenotype entries of Ρ set to 0.9 0.04 

 Independent across 
subphenotypes 

cm-sma-other-ind Between-phenotype entries of Ρ set to 0 0.04 

 Effects restricted to two 
subphenotypes 

 σ nonzero for two phenotypes 0.02 per pair of subtypes 

 Effects restricted to one 
phenotype 

 σ nonzero for one phenotype 0.02 per subtype 

   Total 1 
 

Supplementary Table 9 - Detail of models included in BFavg 

The table shows the component models included in the model-averaged Bayes factor.  Columns specify the 
model name and shortened mnemonic name, detail of the implementation, and the prior weight in the BFavg.  
Prior weights are given per category; to compute the full prior weight for a model, weights should be 
multiplied across categories.  For example, the model of dominant effects on cm and sma is weighted as 
0.2*0.02 = 0.004.  For subphenotype analysis, between-population correlation for each phenotype was set to 
0.99, and between-population between-phenotype correlation was set to 0.99 times the assumed between-
phenotype correlation. 

 
 	



 29 

Supplementary text 
 

Supplementary Text 1 - Investigation of the HBA1-HBA2 region 

Variation in the genes encoding alpha globin (HBA1, chr16:226679-227520; and HBA2, 
chr16:222846-223709) have been linked to malaria susceptibility as reviewed previously 
29,30.  In particular, the –α3·7 deletion, which deletes a 3.7kb sequence forming a hybrid 
HBA2-HBA1 gene, is a cause of alpha thalassaemia and is found at nontrivial frequency in 
African populations.  Alpha thalassaemia is thought to be protective against malaria, but 
direct evidence for this hypothesis is currently somewhat limited.  Available evidence comes 
both from observation of the distribution across populations (reviewed in 31) and from direct 
testing of this variant in case/control samples (e.g. OR=0.83 (0.76–0.90); P=2×10−6; 
observed using direct typing of N=6193 children in Kilifi, Kenya 17; these samples are also 
included in our study). 
 
We did not observe strong signal of association across the HBA1-HBA2 region in our GWAS 
study (e.g. maximum BFavg = 31 within the first megabase of chromosome 16, obtained at 
rs150383783 chr16:580412; maximum BFavg = 11 within 100kb of HBA1-HBA2).  The 1000 
Genomes reference panel contains a variant identified from sequence reads that corresponds 
to the –α3·7	deletion (appearing in the panel as EM_DL_DEL34404, chr16:223678±150-
227490±150, length = 3812; combined frequency = 5.5% across African ancestry samples 
in the 1000 Genomes project).  In our data, EM_DL_DEL34404 was imputed at high 
frequency in all African populations (allele frequency = 8.5%, 10.0%, 15.0%, 16.7%, 17.1%, 
19.1%, 30.7%, 27.4%, 31.5% in Gambia, Mali, BurkinaFaso, Ghana, Nigeria, Cameroon, 
Malawi, Tanzania and Kenya respectively; frequency = 1.5% in Vietnam and <1%  Papua 
New Guinea).  Imputation confidence was also nontrivial (IMPUTE info = 0.73-0.86 in 
African study populations).  However, we observed only modest evidence for association 
with EM_DL_DEL34404 (BFavg = 4.3; fixed-effect additive Padd = 0.002; OR = 0.90; 
95%CI = 0.84-0.96).  The strongest evidence for association in individual populations was 
observed in Malawi (OR=0.83; 95%CI = 0.72-0.95; Padd=0.007). 
 
These findings may be taken to confirm that -α3·7 confers a modest protective effect.  
However, we also noted reasons that suggest these results, based on imputation, should be 
treated with caution.  First, the HBA1-HBA2 region lies near the start of chromosome 16, 
and is susceptible to an observed end-of-chromosome effect on study genotype quality 
(described further in Supplementary Text 2 below).  This limits the amount of data 
informing on imputation, such that only 115 SNPs in our post-QC set lie in the region 
chr16:0-1,000,000.   
	
Second,	LD	between	EM_DL_DEL34404 and regional SNPs appears relatively weak and 
differs substantially between populations (max r2 = 0.53 between EM_DL_DEL34404 and 
all other reference panel variants in the first megabase of chromosome 16; this maximum is 
attained at rs76462751 in the ESN and YRI populations; r2 = 0.001 at the same SNP in GWD 
and < 0.25 in MSL and LWK; r2 < 0.4 for all other SNPs except in ESN; no SNPs with r2 > 
0.1 in all African populations).  This pattern of LD suggests that	the -α3·7	deletion	may	be	
carried	on	several	distinct	haplotypes	across	populations,	a	situation	which	is	naturally	
challenging	for	imputation-based	approaches.		(In	particular,	this	appears	incompatible	
with	a	hypothesis	of	a	single	recent	origin	and	subsequent	positive	selection	of	-α3·7,	
but	does	appear	consistent	with	the	high	observed	de	novo	mutation	rate	of	this	
deletion 32).	
	
Finally,	comparison	of	imputed	-α3·7	genotypes	to	previously	reported	direct-typing	in	
Kenya	17 reveals a relatively low accuracy that is overestimated by the IMPUTE info score 
(r2=0.42 between expected number of copies of -α3·7	inferred	from	imputation	and	copies	
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inferred	from	direct	typing,	in	N=2913	Kenyans;	IMPUTE	info	=	0.86).		These	results	do	
not	take	account	of	other,	globally	rarer	thalassaemia-causing	alleles.		Greater	accuracy	
of	inference	in	this	region	will	be	of	interest.	
	
Supplementary Text 2 - Investigation of the basigin region 

Basigin has been identified as a receptor for P.falciparum malaria during invasion of red 
blood cells, and the interaction between basigin and the Pf ligand PfRh5 is thought to be 
essential to the invasion process33.  It is therefore plausible that the gene encoding basigin 
(BSG, chr19:572454-583493) might harbour genetic mutations that affect invasion and 
hence malaria infection outcomes.  However, we found little signal of association across the 
region containing BSG (e.g. maximum BFavg = 48 within 100kb of BSG, occurring at 
rs141173385 which is approximately 88kb upstream of BSG; maximum BFavg=3.8 within 
1kb of BSG).  On closer inspection we noted that few typed SNPs in the region are 
contained in our set of QCd haplotypes (e.g. 67 typed SNPs after QC in the first megabase 
of chromosome 19, compared to approximately 420 per Mb across the whole of 
chromosome 19).  We plotted SNP QC metrics in the first 15Mb of chromosome 19 
(Supplementary Figure 19) and noted generally poor genotyping across the region.  
Specifically, we noticed lower-than average normalised array intensities and low rates of 
genotype calling across the first ~5Mb of chromosome 19.  Similar, but less extreme issues 
were seen on other chromosomes and we suggest that this likely reflects issues with 
preparation of samples via whole genome amplification.  The Kenyan study population, 
which was typed on the Omni 2.5M 'quad' platform, was affected by this issue but in a less 
extreme way than other populations.  
 

Supplementary Text 3 - Investigation of association in G6PD and CD40LG 

We have previously reported evidence of association within G6PD2,4 and upstream of 
CD40LG2, both of which lie on the X chromosome, using direct typing of variants which are 
common in African populations.  Here we compare these results to those based on our 
imputed data.  Both rs1050828 (G6PD c.202C>T, chrX:153,764,217) and rs3092945 
(chrX:135,729,609, upstream of CD40LG) were imputed with high confidence (info > 0.9) 
in all African populations.  However, under our bayesian model average, evidence for 
association at both variants was weak (BFavg < 1) and there was little evidence for 
association at variants across these regions (BFavg < 10 within 100kb of rs1050828 or 
rs3092945), except for BFavg = 40 at rs369388464, which lies in an intron of ARHGEF6). 
 
We note two explanations for these results.  First, the observed effects at rs1050828 in 
G6PD have been noted to be complex, with putative opposing effects in males and females 
(which would not be picked up by our analysis, which treats males like homozygous females 
for the purpose of association testing) and in severe malaria subtypes.  We did note weak 
evidence for an SMA-only effect of rs1050828 (BF = 6 for SMA-only model; ORSMA = 1.3, 
95% CI 1.07-1.71, P = 0.01; ORCM = 0.96).  These results are thus consistent with previous 
estimates based on direct typing in these samples 2,4, though we did not observe evidence for 
a protective effect on CM in this analysis. 
 
Second, we noted some evidence at both SNPs of discrepancies between direct typing and 
imputation in specific populations.  Specifically, at rs1050828, correlation between imputed 
and directly-typed genotypes was > 0.9 in all African study populations except The Gambia 
(r2 = 0.73).   At rs3092945 we also found discrepancies in The Gambia (r2 = 0.73) and 
Kenya (r2 = 0.8).  This is particularly notable because the reported signal of association is 
driven by strong and opposing observed effects in The Gambia and in Kenya, with little 
evidence in other populations.  Inspection of directly-typed data suggests that the directly-
typed rs3092945 is out of Hardy-Weinberg equilibrium in the Gambia and other populations.  
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Our tentative interpretation is that the imputation is likely accurate, and the observed 
association may be at least in part driven by typing artifacts. 
 
Supplementary Text 4 - Analysis of functional annotations 

We reasoned that functional annotations might provide clues to further true associations 
among our list of most associated regions, as well as to the likely causal variants within 
these regions.  To assess this, we examined functional annotations of all variants (described 
in Methods) with modest or strong evidence of association (defined as having BFavg >= 100 
and lying in the 95% credible set of a lead variant with BFavg >= 1000, under the assumption 
of a single variant within the association region34).  These results are listed in 
Supplementary Table 4. 
 
Outside the human leukocyte antigen region (HLA), six protein-altering mutations lie in this 
list: the HbS and O blood group mutations (Figure 2c), which are the sole members of their 
95% credible sets, and SNPs in the aminoacyl-tRNA synthetase IARS (rs2070053, 
BFavg=1.1x103), the olfactory receptor OR4N5 (rs149008519, BFavg = 623), the ankyrin 
repeat-containing ANKRD30B (rs9748611, BFavg=394), and in ECM2 (rs41278707, BFavg = 
175). The derived ('A') allele at rs2070053 is at only 1-2% frequency and is predicted to 
have a strong risk effect in our data (ORadd=1.64, 95% CI=1.32-2.04), but its effect on the 
protein is reported to be benign 35. rs149008519 and rs41278707 are also relatively rare (1-
2% in African, and < 0.2% in non-African populations in our data).  The derived 'A' allele at 
rs9748611 is more common, but has a complex observed pattern of effects across 
populations, such that it appears protective in Kenya and Gambia (ORhet =  0.79, 95% CI = 
0.66-0.95 in the Gambia; ORhet = 0.6, 95% CI = 0.49-0.74 in Kenya) but with opposing 
effects observed in other populations including Malawi (ORhet = 1.2, 95% CI = 0.96-1.50).  
None of these SNPs appear to have other trait associations at present.  (We note also that the 
copy number variant DUP4, which we have found to underlie the association in the 
glycophorin region, affects protein coding sequence through structural rearrangement of the 
underlying region.) 
 
A number of regions also contain SNPs with evidence of potentially regulatory effects.  We 
note here variants with multiple lines of evidence - namely those with evidence of eQTL 
effects, which also lie in an annotated transcription factor binding site, and which have 
previously been associated to other traits.  This list includes the associations in ATP2B4, and 
at rs2523650 in the HLA, which are described in main text. Also, an associated eQTL for 
VAC14 (rs8060947, BFavg= 550), which encodes a component of the PIKFYVE complex, 
has recently been associated with S.Typhi invasion in vitro 36, with susceptibility to typhoid 
37 and with some forms of bacteraemia 38, putatively through altering expression of VAC14 
with downstream effects on cholesterol. 
 
Within the HLA we also noted a number of further potentially functional mutations with 
some evidence of association - including missense mutations in HLA-C (e.g. the missense 
mutations rs41549413 and rs41548123, BFavg = 144) and reported eQTLs (rs9264638, BFavg 
= 636).  
 
The combined evidence of function and association with susceptibility to malaria at some of 
these loci may be considered of interest.  However, complicating the results above is that 
neither the main signal in the HLA region nor that at VAC14 appear to replicate in our 
additional replication samples (Supplementary Table 2). 

  



Supplementary Text 5 - Bayesian analysis of replication
Replication analysis for a single association model

Consider assessing the evidence for association under a single model of association (denoted M1,

parameterised by a vector of parameters ✓) versus the model of no association (denoted M0,

corresponding to ✓ ⌘ ✓0), and suppose we have two tranches of data - a discovery set D1 and a

replication set D2. We assume these are sampled independently i.e. are conditionally independent

given the true parameter value. The overall evidence in the data for M1, relative to M0, is expressed

in the Bayes factor

BF overall =
P (D1, D2|M1)

P (D1, D2|M0)
=

´
✓ P (D1|✓)P (D2|✓)P (✓|M1)

P (D1|M0) · P (D2|M0)
(1)

where ✓ represents the parameters of M1 (i.e. the genetic effect sizes). Since the Bayes factor

based only on discovery data is

BF discovery =

´
✓ P (D1|✓)P (✓|M1)

P (D1|M0)

multiplying and dividing by BF discovery
gives

BF overall = BF discovery ·
ˆ
✓

✓
P (D2|✓)
P (D2|M0)

· d1(✓)
◆

(2)

where d1(✓) is the posterior mass on parameter value ✓ given the discovery data,

d1(✓) = P (✓|D1,M1) =
P (D1|✓)P (✓|M1)´

✓0 P (D1|✓0)P (✓0|M1)

The second term in equation (2) can be interpreted as the evidence for M1 versus M0 in the

replication data, given the effect size distribution learnt from the discovery data. We denote this

quantity by BF replication
so that

BF overall = BF discovery ·BF replication
(3)

Formula(3) is a basic reflection of the consistency of bayesian reasoning, in the sense that

inference is unaffected by whether all data is treated together (as in the left hand side), or in

tranches (as in the right hand side). This is an intuitively obvious property but we note that no

similar property holds for commonly-used frequentist assessments of replication, since there is no

simple relationship between the P-value computed across all data and those computed in discovery

and replication samples seperately. (We note that BF replication
is not the same as the Bayes factor

that would be computed in replication data using the original prior effect size distribution, i.e.

ignoring the discovery data.)

Replication analysis using model averaging

Now suppose M1, · · · ,MK are K models of association with prior weights

wi = P (Mi|variant is associated)
X

i

wi = 1

Then the overall evidence for association can be assessed by summing over models,

BF overall
avg =

X

i

wi ·BF discovery
i ·BF replication

i

Again, multiplying and dividing by the discovery model-averaged Bayes factor BF discovery
avg gives

BF overall
avg = BF discovery

avg ·
X

i

 
wi ·BF discovery

iP
j wjBF discovery

j

!
·BF replication

i

The term in the bracket is the posterior weight on model Mi given the discovery data, condi-

tional on one of the models of association being true. We write w0
i for this posterior weight and

note it is simply computed by renormalising discovery data Bayes factors. With this convention,

the discovery and replication evidence can be summarised in three quantities:

1



1. A model-averaged discovery Bayes factor based on a chosen set of prior weights,

BF discovery
avg =

X

i

wiBF discovery
i

2. A model-averaged replication Bayes factor based on posterior weights and effect size distri-

butions learnt from discovery data,

BF replication
avg =

X

i

w0
iBF replication

i

3. An overall model-averaged Bayes factor, which decomposes as a product of the two terms

above

BF overall
avg = BF discovery

avg ·BF replication
avg (4)

Specifically, BF overall
avg may be interpreted as the overall evidence for association (conditional on

the prior assumptions), while BF replication
avg may be interpreted as the evidence that the effect, as

learnt in the discovery data, replicates in the independent replication samples.

In our implementation we use the approximate Bayes factor formulation to compute BF discovery
avg

and BF overall
avg , given the maximum likleihood estimate and standard error computed seperately in

discovery and replication samples in each population, as described in Methods. We then use (4) to

compute BF replication
avg as the ratio of the two. However, as described below, we additionally modify

this computation to be more lenient about observed differences in effect size between discovery and

replication data.

Allowing for deviation in effect size between discovery and replication

The method outlined above assumes that true replication effect sizes are identical to those learnt

in discovery, and may be too restrictive in practice for several reasons. Firstly, phenotyping may

differ between discovery and replication samples. This is the case in our data, where samples

with strict phenotype definitions (CM and SMA) were preferentially picked for discovery typing,

subject to sufficient DNA quantities. Second, in the context of GWAS, Winner’s curse will lead

to preferential choice of variants with large observed effect sizes, leading to over-estimation of

effect sizes in discovery. Third, the potential for differences in genotyping behaviour between

discovery and replication cohorts, e.g. due to technology differences or imputation, may also lead

to discrepancies.

To allow for this, we modify formula (2) by additionally allowing the true replication effects to

differ from those in discovery. Formally, we split the parameter ✓ into a parameter ✓1 (the true

effects in discovery) and ✓2 (the true effects in replication), and write

BF overall =
P (D1|M1)P (D2|D1,M1)

P (D1|M0)P (D2|M0)

= BF discovery ·
´
✓2
P (D2|✓2)P (✓2|D1)

P (D2|M0)

= BF discovery ·
ˆ
✓2

✓
P (D2|✓2)
P (D2|M0)

·
ˆ
✓1

P (✓2|✓1)d1(✓1)
◆

(5)

For replication analysis, we further assume that ✓1 and ✓2 have a prior joint multivariate normal

distribution with zero mean and variance of the form

✓
⌃ ⇢⌃
⇢⌃ ⌃

◆

where ⌃ reflects the association model for discovery phase, as described in Methods, and ⇢ is a

correlation coefficient. This implies that

P (✓2|✓1) = MVN
�
⇢✓1; (1� ⇢2)⌃

�

In our approximate framework the posterior distribution of effect sizes given discovery data,

d1(✓1), is also multivariate normal, with distribution

d1(✓1) = N (x⇤;A) where A =
�
⌃�1 + V �1

��1
and x = A

⇣
V �1✓̂1

⌘

2



Here as above ✓̂1 and V are the effect size and covariance estimated in discovery data.

To assess the implications of choosing different value of ⇢ for inference, we compute the joint

distribution of parameters given discovery data. This is

P (✓1, ✓2|D1) = MVN (y;B)

where B =

 ✓
⌃ ⇢⌃
⇢⌃ ⌃

◆�1

+

✓
V �1 0
0 0

◆!�1

and y = B ·
✓

V �1✓̂1
0

◆
. The matrix B can

be solved using block inversion, giving

B =

✓ 1
1�⇢2⌃�1 + V �1 � ⇢

1�⇢2⌃�1

� ⇢
1�⇢2⌃�1 1

1�⇢2⌃�1

◆�1

=

✓
A ⇢A
⇢A (1� ⇢2)⌃+ ⇢2A

◆

Thus, the marginal distribution on the replication parameters ✓2, given the discovery data D1,

is

✓2|D1 ⇠ MVN
⇣
⇢A · V �1✓̂1; (1� ⇢2)⌃+ ⇢2 ·A

⌘

Note that when ⇢ = 0 (no assumed correlation between discovery and replication effect sizes),

this says that ✓2|D1 is distributed according to the prior effect size distribution, while when ⇢ = 1,
✓2|D1 reduces to the expression for ✓1|D1, as expected if these parameters are perfectly corre-

lated. In the one-dimensional case, writing � and v for the corresponding variances, the expression

becomes

✓2|D1 ⇠ N
 

⇢�✓̂1
v + �

; (1� ⇢2)� +
⇢2v�

v + �

!

The figure below shows the distribution ✓2|D1 (y axis, solid and dashed lines) for a fixed

observed discovery effect size, a range of values of the discovery standard error
p
v, and four

choices of ⇢. In the main replication analysis presented here we use ⇢ = 0.9.

Figure : Distribution of replication effect size, given an estimated log odds ratio of ✓̂1 = 0.396 =
log(1.49) observed in discovery (solid horizontal grey line). The discovery standard error is indi-

cated by the x axis. Solid / dashed coloured lines indicate the mean and 95% credible interval of

the true effect ✓2 in replication. A marginal prior distribution with mean 0 and standard deviation

0.2 is assumed for discovery and replication effects, with correlation given by ⇢.
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Supplementary Text 6 - Genome-wide implementation of multi-
nomial logistic regression
Introduction

We consider the problem of fitting a regression model for each of a large number of SNPs against a
single categorical phenotype. The method described here is implemented in the software SNPTEST
(http://www.well.ox.ac.uk/~gav/snptest).

Multinomial logistic regression for association testing

Let Ȳ = (Yi)Ni=1 denote a set of measurements of a categorical outcome variable on N samples. Each
Yi is assumed to take on one of M+1 possible values labelled 0, 1, · · · ,M . Also, let X̄ = (Xi) denote a
set of measured covariates for each sample and Ḡ = (Gi) a predictor of interest. In the context of our
study, Yi is the severe malaria phenotype of sample i, with levels 0=Control, 1 = Cerebral malaria, 2
= Severe malarial anaemia, 3 = Other severe malaria, and Gi denotes the genotype of sample i at the
variant under consideration.

Multinomial logistic regression models the log-odds of outcome level i, relative to the baseline level
0, as a linear combination of predictor and covariates. For a single sample this can be written as

logodds (Y = i|G = g,X = x, ✓) = z(g, x) · ✓i

or in terms of outcome probabilities as

P (Y = i|G = g,X = x, ✓) =
ez(g,x)·✓i

1 +
PJ

j=1 e
z(g,x)·✓j

(1)

where

1. z(g, x) denotes the row vector
⇥
1 g x

⇤
, consisting of a single 1, the genotype g, and the row

vector X of measured covariates. More generally we will write z(g, x) =
⇥
1 F (g) x

⇤
where

F (g) is a function of the predictor used to model nonadditive effects, as described below.

2. ✓j denotes a column vector of parameters for outcome j > 0. (We always treat j = 0 as the
baseline outcome, which in the above corresponds assuming that ✓0 ⌘ 0 .)

The term F (g) in our study is used to encode different models of effect, as follows. We assume variants
are biallelic and let a(g) and b(g) be the counts of the first and second alleles carried by genotype g.
The table below specifies how different common models of association are encoded in this scheme.

Model Encoding
Additive F (g) = b(g)

Dominant F (g) =

(
1 if b(g) > 0

0 otherwise

Recessive F (g) =

(
1 if b(g) = 2

0 otherwise

Heterozygote F (g) =

(
1 if b(g) = 1

0 otherwise

General F (g) =

8
>>><

>>>:

h
0 0

i
if b(g) = 0

h
1 1

i
if b(g) = 1

h
2 0

i
if b(g) = 2

Null model F (g) empty, i.e. no genotype predictor

1



Multinomial regression for directly-typed genotypes

For N samples, the full likelihood can be written as

P (Ȳ |Ḡ, X̄, ✓) =
NY

n=1

P (Y = Yn|G = Gn, Xn, ✓)

=
Y

n

f(Yn;Gn, Xn, ✓)

up to a multiplicative constant, where

f(y; g, x, ✓) =
ez(g,x)·✓i

1 +
PJ

j=1 e
z(g,x)·✓j

(2)

The log-likelihood is then

`(✓) = logP (Ȳ |Ḡ, X̄, ✓) =
NX

n=1

log f(Yn;Gn, Xn, ✓) (3)

For each SNP, we first fit model (3) iteratively starting from ✓null ⌘ 0. We then fit the full model
starting from the parameters fit under the null model. We use Newton-Raphson iterations to fit both
models. This requires computing the first and second derivatives of (3), as described below.

A key assumption underlying the product in (3) is that the outcome for each sample, given its
covariates and genotype, is independent of all the other data, i.e.

P (Y = Yn|Ȳ�n, G, Ī, X̄, ✓) = f(Yn;Gn, Xn, ✓) (4)

For this to be reasonable in practice, this implies that the covariates X must capture relevant
confounding effects, such as environmental effects on the phenotype that are shared between samples.
In practice we use principal components computed from genome-wide genotypes as covariates, thus
capturing geographic and population structure.

Multinomial regression for imputed genotypes

We now consider the case where the predictors are not directly observed but are probabalistically
inferred from other, observed quantities. In the GWAS context this corresponds to the situation where
genotypes at a variant are imputed from surrounding SNPs, giving a probability distribution over
genotypes.

Write p for the function giving the distribution of genotypes at the untyped SNP across the N
samples, given the other quantities,

p(g1, · · · , gN ) = P (G = g1, · · · , gN |I,X, ✓, s)

Here I is used to denote the directly observed genotype data i.e. the genotypes at all directly
typed SNPs. The symbol s denotes the fact of having been sampled in the study; we omit this from
further notation but return to it below. The full likelihood can now be written by summing over the
unobserved genotypes,

P (Y = Ȳ |I,X = X̄, ✓) =
X

g1,··· ,gN

P (Ȳ |G = g1, · · · , gn, X̄, ✓)p(g1 · · · , gN ) (5)

We make additional assumptions that make (5) tractible.
First, we assume that the genotypes at the chosen SNP for each sample are independent of all the

genotypes and covariates of all other samples. Namely we write

pn(gn) = P (Gn = g|G�n = g1, · · · , gN , I,X, ✓) = P (Gn = g|In, Xn, ✓) (6)
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This assumption lets us split the likelihood over samples

P (Y = Ȳ |I,X = X̄, ✓) =
X

g1,··· ,gN

P (Ȳ |G = g1, · · · , gn, X̄, ✓)p(g1 · · · , gN )

=
X

g1,··· ,gN

Y

n

f(Yn;Gn, Xn, ✓) · pn(gn)

=
Y

n

X

g

f(Yn; g,Xn, ✓) · pn(g)

The last row holds because the nth term in the product does not involve gm for any m 6= n, allowing
us to reverse the order of the sum and product.

We make a further approximation by taking pn as the probabilty distribution estimated by genotype
imputation - i.e. using IMPUTE2 in our study. IMPUTE2 uses a reference panel of known haplotypes
to infer genotypes based on surrounding typed SNPs. We note two ways in which this approximation
may become inaccurate. First, if the reference panel populations and study populations are not
well matched, i.e. if haplotypes are at substantially different frequencies in the panel and study, then
imputation is likely to be inaccurate. (We address this in main text by incorporating population-specific
haplotypes into our reference panel.) Second, as described above, p(g) is conditional on covariates, on
the effect size parameter ✓, and on the fact of having been sampled. IMPUTE2 does not take into
account these factors. In particular, dropping covariates from the notation, and writing j for the
frequency of phenotype level j in the study and Kj for its frequency in the study population, we have

P (G = g|✓, s) =
MX

j=0

P (G = g|Y = j, ✓) · j

=
MX

j=0

P (Y = j|G = g, ✓)P (G = g|✓)
P (Y = j|✓) j (7)

=

0

@
MX

j=0

f(j; g, ✓) · j
Kj

1

A · freq(g) (8)

Where freq(g) is the frequency of genotype g in the study population. Thus if ✓ is substantially
nonzero, then differences between study and population phenotype frequencies, e.g. due to upsampling
of disease cases, lead to differences in genotype distributions that are not modelled by imputation. In
practice we focus attention on well-imputed genotypes, and we expect most GWAS effect sizes to be
small so that these inaccuracies are minor.

Derivatives of the complete data log-likelihood

To implement Newton-Raphson iterations for the model described above we need to compute the
loglikelihood and its first and second derivatives. We first do this for the case when all genotypes are
known (3) and then turn to the full model (5).

Write fy(✓) = f(y; g, x, ✓), for given outcome level y, considered as a function of ✓. We suppress
g and x from the notation for a moment. Also we write z = z(g, x) and Dj denotes the operation of
taking the derivative with respect to the column vector ✓j . With this notation

fi =
ez

t✓i

1 +
PJ

j=1 e
zt✓j

By the quotient rule,
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Djfi =
Djez

t✓i

1 +
PJ

j=1 e
zt✓l

� ez
t✓·i ·Djez

t✓j

⇣
1 +

PJ
l=1 e

zt✓l
⌘2

= zt ·
(
fi (1� fi) if i = j

�fifj if i 6= j

= ztfi( i,j � fj) where  i,j =

(
1 if j=i
0 otherwise

(9)

since Djez
t✓l = 0 if l 6= j. (Note that fi are scalar-valued functions, so the result of each of these

expressions is a row vector reflecting the derivative of fi with respect to the entries of ✓j .)
Next we take second partial derivatives by applying the product rule to the expressions in (9):

DkDjfi = z ⌦ zt · (Dkfi( ij � fj)� fi ·Dkfj)

= z ⌦ zt · fi (( i,j � fj)( i,k � fk)� fj( j,k � fk)) (10)

Here z ⌦ zt denotes the Kronecker product (i.e. the matrix of all pairwise multiples of elements of
z).

The above expressions show that, even though each individual has single assigned outcome, it is
useful to compute fl over all possible outcome levels, since these values can be reused when computing
the derivatives.

Remark: the log-likelihood and derivatives are now given by

` =
X

n

log f(Yn;Gn, Xn, ✓) =
X

n

log f (11)

D` =
X

n

Df

f
(12)

D2` =
X

n

✓
D2f

f
� Df⌦2

f2

◆
(13)

The derivative over all parameters can be computed blockwise for given outcome levels using (9)
and (10).

Derivatives of the full log-likelihood

Now consider the full likelihood (5), i.e. the likelihood allowing for imputed predictor variables. The
log-likelihood is

`full(✓) =
X

n

hn where hn = log
X

g

f(Yn; g,Xn, ✓) · pn(g)

Consider one term of the outer sum, say the n � th term h = hn. Similar to what we did before,
write fi,g(✓) = f(i; g,Xn, ✓) where i is an outcome level. Then

h = log
X

g

fYn,g · pn(g)

Djh =

P
g DjfYn,g · pn(g)P
g fYn,g · pn(g)

(14)

(Here we have used the simplifying assumption that pn(g), computed from imputation, does not
depend on ✓, and hence does not affect the derivative).
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The second derivative is

DkDjh = Dk

 P
g DjfYn,g · pn(g)P
g fYn,g · pn(g)

!

=

P
g DkDjYn · pn(g)P

g Yn · pn(g)
�

⇣P
g DjfYn,g · pn(g)

⌘
⌦
⇣P

g DkfYn,g · pn(g)
⌘

⇣P
g fYn,g · pn(g)

⌘2

=

 P
g DkDjfYn,g · pn(g)P

g fYn,g · pn(g)

!
� (Djh⌦Dkh) (15)

Implementation

In our implementation, we rely on a linear algebra library (Eigen) which deals with vectors and
matrices. To simplify this we first collect the parameters in a single column vector, as

✓ =
⇥
✓t1 ✓t2 . . . ✓tM

⇤t

With this convention, D` becomes a 1⇥dM row vector, and the second derivative D2` is represented
as a dM ⇥ dM matrix.

The expressions for the loglikelihood and its derivatives share common terms. We take advantage
of these to reduce computation. Define coefficients A,B,C as

An,g =
fYn,g · pn(g)P
h fYn,h · pn(h)

and
Bn,g,j = An,g · ( Yn,j � fj,g)

and
Cn,g,j,k = An,g · (( Yn,k � fk,g)( Yn,j � fj,g)� fj,g( j,k � fk,g))

Then by the above:

Dj` =
X

g

X

n

�
zn(g)

t ·Bn,g,j

�
=
X

g

diag(B·,g,j)⇥ Z(g) (16)

where diag(B·,g,j) denotes the diagonal matrix with nth diagonal entry equal to Bn,g,j . This can
be implemented by matrix multiplication. Similarly

DkDj` =
X

g

X

n

�
zn(g)⌦ zn(g)

t · Cn,g,j,k

�
�
X

n

⇣
(Dj`)

t ⌦ (Dk`)
⌘

(17)

We follow this implementation strategy, first computing fi,g for each sample and outcome level,
using this to compute the loglikelihood and An,g. We then compute Bn,g,j and Cn,g,j,k and use these
to compute the first and second derivative.
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Supplementary Text 7 - Multidimensional inverse variance-weighted
meta-analysis

Let �̂i be a parameter estimate from logistic regression in population i, and let Vi denote the estimated
variance-covariance matrix of �̂i. We compute the meta-analysis estimate �̂meta as

Vmeta =

 
X

i

V �1
i

!�1

and �̂meta = Vmeta ·
 
X

i

V �1
i �̂i

!
(1)

We note that �̂meta is also equal to the combined maximum likelihood estimate, under the assump-
tion that the likelihood function in each population is gaussian with the given mean �̂i and covariance
Vi and all studies are independent. In the one-dimensional case, writing lower-case letters for the scalar
quantities instead of matrices, (1) reduces to

vmeta =
1P
i

1
vi

and �̂meta = vmeta ·
X

i

1

vi
�̂i

A two-tailed p-value for � can thus be computed by performing a Wald test, comparing �̂meta to
the normal distribution with mean 0 and variance vmeta.

In the general case, suppose �̂ is d-dimensional (e.g. representing effects on d subphenotypes). A
p-value for each component of �̂meta can be obtained by a Wald test using the corresponding diagonal
entry of Vmeta. To obtain a global p-value against the null that all parameters are zero, let Vmeta = LLt

be the Cholesky decomposition of Vmeta and a = L�1�̂meta. Then

var(a) = Id

We can therefore compute a p-value by computing the sum of squared entries,

⇣ =
dX

k=1

a2k such that ⇣ ⇠ �2
d

and computing a p-value from quantiles of the �2 distribution.
In the interpretation of p-values as the probability of obtaining an estimate “as extreme, or more

extreme” than the observed estimate, under the null model, we note that this treats points as “more
extreme” when they have lower probability in the full likelihood N (0;Vmeta).

In practice the Cholesky decomposition does not need to be computed directly, because

⇣ = ata = �̂t
metaL

t�1L�1�̂meta

=

 
X

i

V �1
i �̂i

!t

Vmeta · V �1
meta · Vmeta

 
X

i

V �1
i �̂i

!t

=

 
X

i

V �1
i �̂i

!
· �̂meta

Thus, the terms of the sum can be computed from �̂meta and the left hand term, which is already
computed as part of the computation (1).
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Supplementary Text 8 - Analysis of population differentiation 

Main text presents an analysis of allele frequency differentiation between continents and 
between African populations for associated variants (Fig 7a).  We note here further details of 
this analysis.   
 
Our between-continent analysis highlights an essential difficulty in making between-
continent comparisons of this type for individual variants, namely that it is difficult for 
protective alleles below around 20-30% frequency to achieve extreme ranks.  This is true 
even for strong resistance alleles that are essentially only present in Africa (e.g. HbS, 
rankEUR|AFR = 0.18; DUP4, rankEUR|AFR = 0.44), and presumably reflects the fact that a large 
number of low-frequency alleles were lost during ancestral bottlenecks in the history of non-
African populations.  This suggests that, while the observation of elevated frequencies in 
Africa for particular mutations might imply the action of selection due to P.falciparum 
malaria, as is frequently suggested 16,39,40, it might be equally consistent with neutral 
evolution under the high levels of genetic drift experienced by historical populations. 
 
In main text we noted enrichment for high levels of within-Africa differentiation among 
variants with the highest evidence for association (Main text and figure 7b-c).  We note here 
specific alleles with evidence for differentiation.  Most prominent among these is the 
glycophorin variant DUP4 (PXtX = 1.8x10-5), which as reported previously7 is only present at 
high frequency in east African populations (maximum observed frequency = 0.2% in 
populations west of Cameroon; frequency = 3.8%, 4.5% and 9.0% in Malawi, Tanzania and 
Kenya respectively). Another associated variant, rs56292300 in AP2B1, is of interest since it 
appears differentiated both within Africa and between continents (BFavg  = 4,511; PXtX = 
4x10-3 rankEUR|AFR = 0.035).  This reflects the fact that the protective allele, which also 
appears to be ancestral, is at much lower frequency in European and Asian populations (84-
88%) than in Africa (~98%).  Notably, however, rs56292300 is one of a number of variants 
that show considerable heterogeneity both in frequency and in estimated effect size across 
populations (e.g. identified as those with maximum Bayes factor (BFmax) > 25,000 and 100 
times greater than the fixed-effect Bayes factor; Supplementary Table 6).  The possibility 
of geographically localized effects, or for locus-specific confounding driven by gradients in 
selection pressure, cannot be discounted. Fully unraveling such signals is likely to require 
amalgating data at finer geographic scales41,42. 
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