



Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC)

Mar´ıa Soledad Castan˜o1,2*, Martial L. Ndeffo-Mbah3,4, Kat S. Rock5,6, Cody Palmer7, Edward Knock5,8, Erick Mwamba Miaka9, Joseph M. Ndung’u10, Steve Torr11, Paul Verl´e12, Simon E.F. Spencer5,8, Alison Galvani3, Caitlin Bever7, Matt J. Keeling5,6, Nakul Chitnis1,2

1 Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute,  Basel, Switzerland
2 University of Basel, Basel,  Switzerland
3 School of Public Health, Yale University, New Haven, Connecticut,    USA
4 College of Veterinary Medicine and Biosciences, Texas A&M University, College Station,  Texas, USA
5 Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry,  UK
6 Mathematics Institute, University of Warwick, Coventry, UK
7 Institute of Disease Modeling, Seattle, Washington,   USA
8 Department of Statistics, University of Warwick,  Coventry,    UK
9 Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of the   Congo
10 Foundation for Innovative  New Diagnostics, Geneva,  Switzerland
11 Department of Vector  Biology,  Liverpool School of Tropical  Medicine, Liverpool,     UK
12 Department of Public Health,  Institute  of Tropical  Medicine, Antwerp,   Belgium

*soledad.castano@swisstph.ch (MSC)

 (
1
/26
)
Abstract

Since the turn of the century,  the global community has made great progress towards    the elimination of gambiense human African trypanosomiasis (HAT). Elimination programs, primarily relying on screening and treatment campaigns, have also created a rich database of HAT  epidemiology.  Mathematical models calibrated with these data  can help to fill remaining gaps in our understanding of HAT transmission dynamics, including key operational research questions such as whether integrating vector control with current intervention strategies is needed to achieve HAT elimination. Here we explore, via an ensemble of models and simulation studies, how including or not disease stage data, or using more updated data sets affect model predictions of future control strategies.


Author  summary

Human African tryposonomiasis (HAT), also known as sleeping sickness, is a parasitic disease with over 65 million people estimated to be living at risk of infection. Sleeping sickness consists of two stages: the first one is relatively mild but the second stage is usually fatal if untreated. The World Health Organization has targeted HAT for elimination as a public health problem by 2020 and for elimination of transmission by 2030. Regular monitoring updates indicate that 2020 elimination goals are likely to be achieved. This monitoring relies mainly on case report data that is collected through medical-based control activities — the main strategy employed so far in HAT control. This epidemiological data are also used to calibrate mathematical models that can be used to analyse current interventions and provide projections of potential intensified strategies.
We investigated the role of the type and level of aggregation of this HAT case data (staging data and truncated data) on model calibrations and projections.  We  highlight  that the lack of detailed epidemiological information, such as missing stage of disease or truncated time series data, impacts model recommendations for strategy choice: it can misrepresent the underlying HAT  epidemiology (for example, the ratio of stage 1 to  stage 2 cases) and increase uncertainty in predictions. Consistently including new data

from control activities as well as enriching it through cross-sectional (e.g. demographic or behavioural data) and geo-located data is likely to improve modelling accuracy to support planning, monitoring and adapting HAT interventions.
Introduction	1
Human African trypanosomiasis (HAT) is a neglected tropical disease    that affects	2
people in resource-limited settings in sub-Saharan Africa,    with more than 65 million	3
people living at risk [1].  HAT  is caused by a protozoan parasite and    is transmitted	4
between humans by biting tsetse flies.  The gambiense form of the disease,    caused by	5
Trypanosoma brucei gambiense, is responsible for over 95% of human cases.   This chronic	6
disease progresses through two stages.     The first stage can last for several years with	7
relatively minor symptoms such as fever and headaches.  Second stage   patients show	8
neuropsychiatric disorders (including sleep disturbances that led to the common name,	9
sleeping sickness) and this stage is usually fatal without treatment.     Currently available	10
treatments are stage-dependent and so assessment of a patient’s stage - by    analysing the	11
cerebrospinal fluid for parasites and number of white blood cells - is a prerequisite for	12
appropriate treatment.	13
Since the start of the 21st  Century,  control activities against gambiense    HAT have	14
had a substantial impact on reducing disease transmission and burden in  the main	15
endemic regions [2]. These control efforts have raised expectations that elimination of	16
gambiense HAT  may be achievable [1, 3].  The World Health Organization  (WHO) has	17
therefore set indicators that target elimination of transmission (EOT)  by 2030.	18
Although there were only 953 cases reported globally in 2018 [4], persistent   foci of	19
disease transmission remain a potential challenge for achieving the EOT    goal. The	20
Democratic Republic of Congo (DRC) has suffered from   persistent infection,	21
contributing between 78–91% of all global cases since  2010 [4].	22
Efforts to control HAT  have    mainly relied on screening, testing and treating the	23
human population using active and/or passive surveillance.  This has been    the only	24
intervention applied at large scale, and it seems likely that this is largely responsible for	25
the precipitous decline in global incidence, including a 97% reduction in HAT cases in	26
the former Equateur province of DRC between 2000 and 2012 [5].  However,   the screen,	27

diagnose and treat strategy has been unable to effectively control transmission to this    28     level in all endemic foci (e.g.  some health zones of Kwilu province, DRC), probably due   29   to insufficient levels of coverage, imperfect diagnostics, or people at high   risk of	30
transmission not participating in  screening activities.	31
Where epidemiological and/or control campaign data of infectious   diseases are	32
available, data-driven models have proved to be a valuable tool for quantitatively	33
assessing epidemiological assumptions about disease transmission  dynamics or	34
evaluating the effectiveness of intervention measures [6–8]. For HAT, data arising from	35
several interventions implemented in recent years have enabled modelling and	36
quantitative analyses of the potential advantages of novel interventions in endemic	37
regions such as Kwilu and former Equateur province in DRC [9–11],   Mandoul in	38
Southern Chad [12], and Boffa in Guinea [13].  Nonetheless,  many epidemiological	39
aspects of HAT remain unclear, and additional data are needed to fill these knowledge	40
gaps.  For example, the role of certain subpopulation groups in   maintaining transmission	41
in endemic areas, such as those not covered by screening programmes or at unusually	42
high risk due to behavioral or geographical characteristics; or the potential existence of	43
reservoir animal hosts or asymptomatic human carriers is not fully understood [?].	44
With the 2030 EOT goal on the horizon, it is crucial to determine which efforts in	45
which locations could maximise the potential benefits of any intervention against HAT.  46
Modelling could provide the HAT community with a better understanding of the	47
important factors affecting observed changes in intensity of disease    reporting and	48
explain some of the variations in effectiveness of HAT control and  surveillance activities	49
across different settings.	50
In this study we analyse a longitudinal human epidemiological data set of HAT from	51
former Bandundu province in the DRC to outline how the type of data and its level of	52
aggregation may affect projections of HAT transmission models.  Four  independent HAT	53
models, fitted to three different data aggregation sets (unstaged disease data, staged	54
disease data, truncated staged disease data), are used to investigate how these levels of	55
data aggregation impact the projections of HAT  incidence and likelihood   of achieving	56
the EOT goal for current and intensified intervention strategies.  Although the  2030 goal	57
is defined as EOT for the continent, and therefore meeting EOT within Bandundu   is not	58
directly equivalent, failure to meet the goal in this high-endemicity region would imply	59

failure to meet the global EOT target. Implications of data resolution on the estimated 60 effectiveness of strategy is analysed in order to suggest potential improvements in data 61 collection and availability that could contribute to robust assessment    of control	62
programme effectiveness and reliable estimates of  HAT elimination.	63
Materials and methods	64
Data description and assumptions	65
Former Bandundu province in the DRC has the world’s highest HAT burden despite a	66
significant coordinated effort between national and international HAT control	67
programmes [5].  This province covers an area of 296,500 km2  (12.6% of  DRC) and	68
accounts for the largest number of cases reported since 2001 in the country	69
(approximately 47.6%).	70
In this study we used publicly available provincial level human case data from	71
Bandundu province [5] to calibrate models of HAT transmission.  The data    contains the	72
annual number of positive cases for each stage of the disease detected through active	73
screening and passive detection (the primary HAT control interventions   implemented in	74
this area); and the total screened population across the province for the years 2000-2012.       75
Although the geographical scale of this province-level data is large, this data was chosen	76
because - to the authors’ knowledge - this is the only (either publicly or under-request)	77
available data providing details on the stage of reported cases for many consecutive	78
years.	79
Estimates of the population of Bandundu were taken from publicly    available census	80
data [14] for 2000-2012 and a 3% annual growth rate was assumed for projections.	81
Although target populations are usually estimated prior to each active screening round,	82
this data was not publicly available and the target varies from year to year depending	83
on the health zones screened. To determine a consistent estimate over 13 years, each	84
model assumed a constant proportion of the population at risk over the  entire period,	85
either fixed or estimated during model calibration (see details in    S2 Text).	86

HAT models	87
Four independent deterministic models of HAT transmission were used (hereafter	88
named as Model I, Model S, Model W and Model Y) to evaluate the effects of different	89
levels of data aggregation on  forward projections.	90
All of them were based on models previously used in either simulation  or data-driven	91
studies [9, 10, 15–17] and include modifications, independently implemented by each	92
group, to improve calibration to the data analysed here. Differences  in structural	93
assumptions (e.g.  disease progression, heterogeneity in risk to  infection) and	94
parameterisation reflect the variety of complexities and biological   uncertainties typically	95
found in epidemiological models.       Furthermore, a range of different fitting methodologies	96
were employed which also have implications on results.  An overview of key  aspects of	97
model structure, interventions and fitting procedure is given in Table 1 and    more details	98
of each of the models can be found in   S2 Text.	99
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)Table 1. Models overview

Transmission


model structure

high/low risk







Interventions



PD: stage-specific detection rate



Y	Y (one fitted)	Y (both fitted)	Y  (both fitted)

PD: time-dependent detection rate

N	Y (fit to staged  and subset staged  data )

Y (fit to staged  data )	N

PD: underreporting	N	N	Y (stage 2 only)	Y (stage 2 only)

EPD: improvement in detection in both stages

Y	Y	Y	Y

Nb. of parameters fixed and fitted

fixed:10 fitted:7

fixed:24 fitted:6

fixed:19 (staged fit) & 17 (other fits) fitted:9 (staged fit) & 8 (other  fits)

fixed:17 fitted:8

Fitting procedure

Initial conditions	Fitted	Endemic equilibrium with ongoing PD

Endemic equilibrium with ongoing PD

Endemic equilibrium with ongoing PD
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)Likelihood-based	Y	N	Y	N
Likelihood for AS	Poisson	-	Beta-binomial	-
Likelihood for PD	Poisson	-	Beta-binomial	-

Description of key aspects of model structure, interventions and fitting procedure. Abbreviations: AS: active screening; EPD: enhanced passive detection; PD: passive detection.

Model fitting	100
The reported number of cases detected through active and passive screening and the	101
number of people tested were used to calibrate the models emulating the effects of a	102
typical medical control strategy.  The data do not contain information on the   timing and	103
duration of active screening, so each modelling group independently    managed these	104
aspects (see Table 1).	105
The models were calibrated to three different configurations of the data to   reflect the	106
diversity of data resolution usually available, allowing the analysis of the impact   of data	107
detail on both uncertainty and reliability of model projections.  The   three configurations	108
were labelled:  “unstaged data”, “staged data” and “subset staged data”. “Unstaged	109
data” informed the models using the number of HAT  cases detected   each year	110
(2000-2012), separated by active and passive detection.     This type of longitudinal data -	111
where the disease stage is not noted - is typical of data available at smaller	112
administrative levels, such as health zones or health areas in DRC. “Staged data”	113
additionally partitioned the number of cases from the “unstaged    data” by  disease stage	114
(first or second).  The “subset staged data” consisted of a temporal subset of   the “staged	115
data”, covering only years 2000-2006.  By cutting the data at this point, the	116
improvement observed after 2006 in the detection of stage 1 cases is not yet apparent,	117
and so we expected to see some effects of this in model estimations and projections.	118
Each group independently chose a calibration method adapted to their own model.	119
The list of fixed parameters used (either obtained from the literature or assumed) and	120
those estimated during the fitting are detailed in the description of each model in S2	121
Text.  Fitting procedures included Bayesian inference using Markov Chain   Monte Carlo	122
(MCMC) (Models I and W) and approximate Bayesian computation methods   (Models S	123
and Y). In all cases, one thousand samples (i.e. parameter sets) were generated during	124
the fitting step for further estimations and projections. In all cases plots display the	125
median and associated 95% credible interval (CI). For  further details   on models’	126
structure, assumptions and fitting procedure, see details in   S2 Text.	127

 (
10
/26
)
Simulated HAT interventions	128
Four interventions were considered for simulations. They consisted of three	129
medical-based interventions:  “active screening”, “passive detection”  and “enhanced	130
passive detection”; and “vector control”. A brief description of these interventions is	131
provided below.	132
· Active screening (AS). This is the screening of the population at   large in	133
at-risk locations by mobile teams. Once detected, patients travel  to medical	134
centres for treatment.  In this study, the reported annual number of people	135
screened was used to estimate the mean active screening coverage.    Models that	136
included population heterogeneity in exposure to tsetse (Models S and   W) assume	137
that only low-risk people are  screened actively.	138
· Passive detection (PD). This is the diagnosis and treatment of infected people	139
who self-present at medical facilities.  HAT models usually assume   that passive	140
surveillance detects mainly stage 2 cases, when symptoms are more    severe and	141
specific to HAT. The data used in the present work reports a non-negligible	142
proportion of stage 1 cases detected through passive surveillance.  For    this reason,	143
both stages were assumed to have the potential to be detected in  all models.	144
· Enhanced passive detection (EPD). This is passive screening where    the time	145
to detection of infected people is reduced (i.e.  improved detection rate per capita).      146
Such improvement could result from one or a combination of changes in current	147
control activities. For example, increasing the number of health facilities (thus	148
increasing the chances of picking cases), mobilising the population at risk or by	149
reducing the time to detection and treatment through improved HAT diagnostic	150
tools including rapid detection tests (RDTs). In DRC, RDTs have been  used in	151
many endemic settings between 2013 and 2016 [18, 19], although estimates   of the	152
improvement on the associated detection rate have not yet been quantified.	153
· Vector  control.  This intervention focuses on increasing the mortality and	154
reducing the density of tsetse flies by,  for example, deploying   insecticidal baits	155
(e.g., insecticidal targets, insecticide-treated cattle) to attract and kill  tsetse. In	156
particular, tiny targets [20] offer great promise for the large-scale and cost-effective	157

control of the riverine tsetse species which transmit gambiense HAT    [12, 20–22].		158 Tiny targets were first deployed in DRC in 2015, in Yasa Bonga health zone, and	159 they are currently being used in three health zones of former Bandundu province.        160
With these four interventions, three different strategies were investigated   that reflect	161
either the current control and surveillance programmes or strengthened strategies to	162
accelerate the elimination of HAT.   These are:	163
· Strategy 1:  also referred to as “baseline”, this strategy represents the standard	164
control method in Bandundu consisting of continuing active screening   and passive	165
detection at present rates.	166
· Strategy 2: consists of vector control in addition to the baseline strategy, as is	167
currently being implemented in Yasa-Bonga, Masi Manimba    and Kwamouth	168
health zones of Bandundu. In the models, vector control was assumed to reduce	169
tsetse populations by 60% after one year, which is a conservative estimate from	170
intervention trials conducted in other HAT foci  [12, 20, 21].	171
· Strategy 3: assumes enhanced passive detection, in addition to the annual active	172
screening campaign.  For  this strategy, Models I and S doubled   the passive	173
detection rate of both stages while models explicitly including underreporting	174
(Models W and Y) assumed both a doubled passive detection rate and halving of	175
underreporting.  We also assumed that the treatment rate of detected cases	176
remained the same so that increased detection led to a corresponding increase in	177
the treatment rate.	178
The calibrated models were used to simulate the “future” effects of these three	179
strategies (Table 2) in order to compare, for each model, the effects of the different	180
types of data aggregation used for calibration, on projections and   associated uncertainty	181
under different control strategies. In all cases the baseline strategy matched the period	182
corresponding to the data, and assumed a continuation of standard passive surveillance	183
and past mean active screening levels informed by the data for projections into the	184
future.	185
Model simulations estimated (i) annual stage-specific cases reported from both	186
active and passive screening; (ii) new transmissions by year; and (iii) year of EOT	187

[bookmark: _bookmark1]Table 2. Different types of future strategies considered in model projections.
	Strategy
	
Passive
	
	Interventions
Active
	
Vector  control

	1
	Standard
	Mean
	of
	historic
	data
	
	-

	2
	Standard
	Mean
	of
	historic
	data
	60%
	reduction

	3
	Enhanced
	Mean
	of
	historic
	data
	
	-



(considering two thresholds:  <1 new infection per 100,000 and <1 new   infection per	188
1,000,000 individuals).	189
Results	190
Model fits	191
Reported cases	192
Fig 1 shows the data from 2000 to 2012 of the total reported HAT cases in Bandundu	193
and the calibrated simulations of the four models to three different data configurations	194
(median with the 95% credible interval (CI)) under the “baseline” control strategy. All	195
fits of all models consistently reproduced the decreasing trend observed in data.	196
However for most model fits, the 95% CI did not cover all the data points in time series,	197
as is often the case for peaky stage-specific data dominated by a decreasing trend (Fig	198
S1.1 in S1 Text).  Models provided varying levels of uncertainty, mainly    explained by	199
differences in fitting methods as well as model structure and   parameterisations. Despite	200
all these differences, the fit to the longer, staged data set generated less uncertainty in	201
all four models, with worse and varying performance for the fits to the other data sets.	202
While for Model W the medians from the fit to staged data gave the lowest	203
estimation compared to the other two fits, for Model S this trend was the opposite for	204
most years.     For  Models I and Y such a clear trend was not observed among medians.	205
Proportion of stage 1 cases	206
The increasing trend in the proportion of stage 1 cases out of total reported cases across	207
years (Fig 2) indicates improved screening in Bandundu; this is observed in both active	208
and passive case data (S1 Fig and S2 Fig). Model fits not informed with staging ratios	209
produced the worst estimates of this proportion and the highest uncertainties (Fig 2),	210

[image: ]
[bookmark: _bookmark2]Fig 1. Former Bandundu province reported data and estimated reported cases. Estimated reported cases from model calibrations to three different  configurations of the data for a baseline strategy composed of annual, pulsed active screening and continuous passive detection. The median (as a point) and the corresponding 95% CI (shaded region of the same color) are shown in each case. Dashed lines indicate projections from the fit to the subset staged data.


reflecting a wide range of possible configurations of the proportion of stage   1 infections	211
compatible with such unstaged data either in active screening (S1 Fig), passive	212
detection (S2 Fig), or both.	213
The variety of assumptions in the models about intervention implementation,	214
including how annual active screening was applied (continuous vs.  pulsed,   one vs.	215
several per year) or which proportion of Bandundu province population was   assumed to	216
be at risk of infection (Table 1), explain in part the variety of results in  the proportion	217
of stage 1 cases for different fits. Model W fitted to the full staged data was the only	218
model that reproduced the increasing trend in active screening (S1 Fig); and only	219
Models S and W, which assumed an improvement in passive detection    rate, reproduced	220
the increasing trend in passive detection, with systematic overestimation in Model   S (S2	221
Fig). For these two models, it is clear how the fit to the subset staged data,   where the	222
improvement in the passive detection is not yet apparent (contrary to the fit to the full	223

[image: ]
[bookmark: _bookmark3]Fig 2. Proportion of stage 1 cases. The estimates for the four models fitted to three different configurations of the data under the baseline strategy are shown. The posterior median is shown as a point and 95% CIs shaded. Dashed lines indicate projections from the fit to the subset staged data.


staged data), conditions the models to project lower ratios of stage 1 to stage 2 cases	224
from 2007 onwards.	225
Projections for future case reporting and transmission	226
Model projections under all fits came to a consensus that continuing the baseline	227
medical strategy would lead to a sustained but slow reduction of the annual incidence;	228
however some simulations of Model S (86 out of 1000) fitted to unstaged   data suggested	229
transmission would increase under baseline strategy (Figs A-D in S3 Text).  The   latter is	230
an example of how some parameters sets, although overall can reproduce    unstaged data	231
trends, can have an underlying epidemiology promoting increasing   transmission despite	232
continued active screening and passive detection levels. Note that these scenarios are	233
not observed when Model S is fitted to the more informative staged data that impose	234
further constraints to the posterior  parameter distributions.	235
As expected, the models indicated that improved or complementary interventions	236

would accelerate this path towards reduced incidence (S3 Text).  Notably    the longer	237
staged data set produced the least uncertainty in all models for projections on annual	238
incidence (Figs A-D in S3 Text) and associated reported cases (Figs A-D in S4 Text).	239
Assuming that projections under the staged data are most robust, the   unstaged data	240
generated systematic overestimation in transmission and associated   report case	241
projections for any strategy considered in three models (Models S, W and Y);   for Model	242
I, a slight discrepancy in projections of new cases was observed, although    values from	243
both fits were close and overlapped in projections of reported cases.  Model   I generated	244
the most optimistic scenarios, with a relatively homogeneous range of    projections for	245
the different fits and small uncertainties compared to the other models, with and values	246
on the order of ∼100 new detected cases or fewer by 2030 for Bandundu province.	247
Table 3 presents the proportion of simulations (i.e.  realisations   of different	248
parameter sets) for different fits and models where the 2030 zero    transmission goal was	249
achieved, and provides an alternative view on how adding or removing relevant data	250
impacts the models’ projections under different control strategies   explored. Here	251
“elimination” is defined as <1 transmission case per million individuals per year as in	252
previous work using these deterministic  models [17].	253
[bookmark: _bookmark4]Table 3. Probability of different strategies achieving elimination by 2030.
	Fit
	
Baseline
	Strategy
Vector control
	
EPD
	Model

	Unstaged
	0.167
	1
	0.167
	

	Staged
	0
	0.656
	0
	I

	Subset staged
	0
	1
	0
	

	Unstaged
	0
	0.206
	0
	

	Staged
	0
	0.551
	0
	S

	Subset staged
	0
	0.836
	0
	

	Unstaged
	0
	1
	0
	

	Staged
	0
	1
	0.984
	W

	Subset staged
	0
	1
	0
	

	Unstaged
	0
	1
	0
	

	Staged
	0
	1
	0
	Y

	Subset staged
	0
	1
	0
	


EOT is defined in the models as <1 new transmission per 1,000,000 people. In each case simulations of 1000 parameter sets were   used.
In all but one case (Model I fitted to unstaged data), the models found that  it was	254
extremely unlikely that elimination would occur by 2030 using the baseline  strategy. All	255
fits for Models W and Y predicted elimination using vector control tools in addition to	256

the baseline strategy.  The least optimistic predictions were observed in Model    S, in	257
accordance with higher values and slower reduction in transmission    projections when	258
compared to other models’ predictions (Fig B in S3 Text).  For Model I, the fit   using the	259
staged data set showed less optimistic predictions, which is consistent    with the	260
transmission projections generated by each fit under this model (Fig B in S3 Text).	261
Only two models under different fits (Model I fitted to unstaged data and Model W	262
fitted to staged data) showed that elimination was possible for enhanced passive	263
detection (167 and 984 out of 1000  samples, respectively).	264
For a weaker definition (<1 transmission case per 100,000 individuals per  year), only	265
Model I suggested elimination could be achieved for the baseline strategy,    and all	266
model-fit combinations agreed on vector control achieving elimination   by 2030.	267
Substantial improvement in elimination probabilities under enhanced    passive detection	268
in Models I and W contrasted to results of Models S and Y where no  significant changes	269
were found (S1 Table).  The higher disparity among models in    predicting elimination	270
probabilities under enhanced passive detection reflects the influence   of structural	271
assumptions, in both HAT transmission dynamics but also in modeling   control activities	272
that can lead to such  different projections.	273
Discussion	274
A suite of independent mathematical models of HAT transmission were calibrated to	275
publicly available data from Bandundu province, DRC, to evaluate the    effects of	276
different levels of data aggregation (disease stage and time series length) on model	277
performance and projections under current and improved control strategies.	278
Informing staging data	279
Distinguishing cases by stage is inherent to HAT epidemiology due to the   way treatment	280
is currently administered.  The results here showcase the impact that    neglecting staging	281
information in data reporting has on subsequent model estimates and predictions.	282
Although similar patterns of annual incidence can be obtained from models calibrated	283
to unstaged and staged data, the underlying HAT dynamics for such similar incidence	284
patterns can differ strongly (as indicated by the proportion of stage 1 cases detected),	285

affecting any inference or projection on transmission risk.    Contrasting projections	286
between staged and unstaged fits demonstrate how this aspect of HAT   epidemiology can	287
impact our optimism about a particular strategy.  A key example is that model	288
calibrations using staged data for Bandundu province strongly suggest that passive	289
detection rates have improved over time, whilst this is unobservable in the unstaged	290
data.	291
The data that countries use to determine their elimination policies for HAT are	292
usually limited and come mainly from screening activities.  Our results    emphasize the	293
need for incorporating staging information in data sets. With  current screening	294
protocols, minimal additional effort in data recording is required    to systematically	295
include staging, which would help to reduce uncertainties in assessing progress towards	296
elimination goals.	297
In the future, staging information may no longer be collected if new   diagnostic tools	298
and treatments are stage-independent. For example, the new drug, fexinidazole [23], is	299
an all-in-one oral treatment for both stages recently approved by  the European	300
Medicines Agency.  However, until such tools become part of   regularly implemented	301
policy, we emphasise the utility of making routinely collected staging    data available.	302
Furthermore, if records of historically collected staging data exist,    making these	303
available would substantially improve the reliability and predictive capability of	304
mathematical models.	305
Time scales and informing on time surveys of active screening	306
Over half of the total number of stage 1 cases reported between 2000 and 2012 come	307
from active screening. In general, as in this study, data is annually aggregated and so	308
the timing and the duration of active campaigns is unknown. As with current staging	309
data, this information is recorded at lower administrative levels, but is often lost in	310
higher level data sets.  Systematically adding temporal data to current routine data	311
collection and collation would enable exploring a variety of case-specific   time related	312
epidemiological factors such as the optimal frequency of interventions   for achieving	313
specific local goals.	314

Data delays	315
There are routinely delays between case detection in the field and the availability of the	316
data for modeling purposes.     The extreme example of a six years delay between data	317
collection and availability considered in this study, though unlikely due  to improvements	318
in data availability, is chosen to demonstrate how the absence of  up-to-date data	319
impacts model predictions.  One or two missing years would still provide   less accurate	320
results than up-to-date data, especially due to the lack of information on recent active	321
screenings.  Nevertheless, we expect that model predictions generated with fewer missing	322
years would generate predictions more similar to predictions using the full data set than	323
those generated with six missing years as investigated in   this study.	324
As we approach elimination, including recent data sets is necessary to better assess	325
the actual trends, as our results have suggested. Use of most recent data sets can be	326
sufficient to reproduce current epidemiological trends and the absence of these data sets	327
could affect model projections, especially for short timelines.  Improvements in  the time	328
between data collection and availability could enable modelling to provide more	329
up-to-date guidance and monitor for early-warning signs of obstacles on the road to	330
elimination.	331
Province level data vs health zone  level data	332
Aggregated province-level data for endemic HAT regions lose information   on the	333
geospatial variation of HAT incidence and screening coverage at lower administration	334
levels that are more compatible with the epidemiological scale of HAT transmission and	335
control.  This may explain why although all model fits could capture    the decreasing	336
trend in the number of reported cases, they could not reproduce certain peaks observed	337
in stage 1 cases (in 2002 and 2009) from active screening.  The models assumed   a fixed,	338
spatially homogeneous risk of transmission in Bandundu province, even    though large	339
differences between central and southern health zones of Bandundu province had been	340
estimated for this period [5].     Model W uses overdispersion parameters to capture the	341
variation in data between different years, so fitting to finer resolution data would likely	342
explain the source of this variation, and reduce the very large credible intervals   from the	343
current results.	344

The peaks observed in the data could arise due to differences in HAT prevalence in	345
the geographical areas in which the active screening occurs between years, due to	346
differences in the quality or coverage of the screening campaigns between    years, or	347
reflect true inter-annual variation in HAT epidemiology. Only detailed case data at a	348
finer spatial scale could help models to explore alternative assumptions, capture spatial	349
heterogeneity to better identify geographic reservoirs and improve predictions    in global	350
HAT status. Model calibrations at a health zone or finer spatial scale are  needed to	351
directly guide practical strategy planning at a local level. The WHO HAT Atlas is one	352
such valuable source of geolocated data in DRC (available upon request from the	353
WHO); and although staging information is typically not available for cases  before 2015,	354
recent entries are staged.	355
Complementary interventions to meet elimination goals	356
Projections suggest that, at the province level, the continuation of traditional active and	357
passive screening is unlikely to be sufficient to attain EOT by 2030 across most models	358
and fits. The groups therefore simulated other complementary strategies which built	359
upon these baseline interventions to examine if any were sufficient to achieve this goal.	360
Vector control	361
Our results agree with previous modelling work indicating that potential strategies that	362
integrate vector control with medical interventions could accelerate progress towards	363
elimination, particularly in high endemicity or persistent hotspots  [10, 11, 13, 16, 17].	364
This is consistent with reductions in HAT transmission reported after   implementation of	365
cost-effective vector control methods in highly endemic locations in Guinea   [21] and	366
Chad [12].	367
Although integrating vector control with current medical interventions at large	368
spatial scales such as Bandundu province (around 296,000 km2) may not be	369
operationally feasible, extending tsetse control interventions to active foci of HAT	370
transmission is feasible and likely to be efficient, particularly as transmission decreases	371
and programmes reduce screening activities.  Vector  control is   currently being	372
implemented in hotspots in Bandundu (totalling approximately 3000 km2) and in the	373

West Nile region of Uganda (covering approximately 5000 km2).    Regularly updated	374
epidemiological and entomological data from areas that have added this intervention to	375
HAT  screening activities would facilitate the analysis of progress   towards elimination	376
objectives, and provide an indication of protection against infection due to vector	377
control.	378
Additionally, secular changes, such as socio-economic development, urbanisation and	379
changes in land use, would likely lead to sustainable reductions in tsetse population	380
densities and consequently in HAT transmission, similarly to what has been   reported for	381
other vector-borne diseases [24].  The impact of such secular changes was  not addressed	382
in this study but will become more important as transmission  reduces further.	383
Enhanced passive detection	384
This study found that, for passive detection, the increase in the ratio of stage 1 to stage	385
2 cases from 2006 onwards is an indicator of an already improving   passive screening	386
system in this part of DRC. Although this is to be expected considering the increased	387
disease control efforts in the region, it is the first time that the improvement  in the	388
passive detection rate has been quantified in a mechanistic   modelling framework.	389
Furthermore, this trend is not observed in other former provinces of DRC for data from	390
the same period [5].	391
An improvement in time to detection is likely to have been driven by a combination	392
of causes, including improvements in access to care from increased awareness   by the	393
population at risk and an increase in the number of health facilities; and improvements	394
in diagnostic tools including the use of digital technologies and    RDTs (FIND	395
2016, [19, 25]).  Moreover, new “test-and-treat” strategies combining  RDTs with	396
fexinidazole could lead to earlier and more  cases treated.	397
Although our results suggest that enhanced passive detection could not    be sufficient	398
to achieve short-term reduction goals, its associated sustained effect    on reducing	399
transmission, projected by  all models, indicates this strategy should be    considered for	400
areas in Bandundu where past activities did not reduce HAT transmission as expected.	401

Reactive screening	402
As the number of reported cases decreases, reactive case detection, i.e.,   deploying active	403
screening in a given area following detection of a case by passive screening, may be a	404
potential cost-effective strategy. Such a complementary strategy has already been	405
implemented in some regions of Uganda, Chad, Kongo Central and    Angola. The	406
inherent spatial aspect of reactive screening implies that modelling    elimination would	407
benefit greatly from geolocated and timed case data from different settings.    This would	408
allow for an improved assessment of spatially-related measures of HAT  transmission risk	409
to inform the appropriate targeting of interventions in space and time to achieve	410
elimination and prevent resurgence.	411
Cost implications	412
Naturally each of the different strategies mentioned above will affect the total cost of	413
HAT interventions not only in the Bandundu province but in any affected region, with	414
complementary strategies costing more than the baseline in the short-term due to the	415
extra resources used.  Strategies which cost more in the short-term could result   in earlier	416
EOT, and therefore may lead to earlier cessation of active screening interventions	417
compared to baseline. This could yield lower long-term costs, but it is non-trivial to	418
assess the costs of the complementary interventions explored in this study without	419
simulating cessation strategies and using a  cost model.	420
Cost-effectiveness analyses using dynamic modelling frameworks  require assessment	421
of health outcomes (such as years of life lost, and disability adjusted life years due to	422
disease) against a budget or willingness-to-pay threshold which can lead to strategies	423
which are not the least expensive being selected due to the relative gain in health	424
benefits [?].  This health-economic work is beyond the scope of the present  study, which	425
primarily seeks to address the impact of disease stage data aggregation and truncated	426
data on model fitting and projections.  Assessment of cost-effectiveness is   clearly an	427
interesting and important objective for future analyses which aim to provide specific,	428
regional recommendations for strategy selection.  Such work would ideally  provide more	429
local strategy guidance (smaller than the province scale considered here) so that only	430
regions that require complementary interventions include them rather than assuming	431

blanket coverage of additional strategies across large areas.	432
Extrapolations to other aspects  of data	433
Between 2011 and 2013, a study was performed to analyse the effects of coordinated	434
vector control (using tiny targets) and mass screening in an area of over 300 km2 in the	435
endemic focus of Boffa in Guinea [21].  This study recorded  highly detailed	436
pre-intervention geo-referenced data of households and inhabitants (familial clustering	437
via a unique code; name, sex and age of family members); annual screening data; and	438
vector and vector control data (15 targets/km2, estimates of initial tsetse fly densities,	439
trap location, survey duration); as well as subsequent updates including new families	440
and seasonal workers.     Although such a comprehensive and rich data set can provide a	441
much deeper understanding of HAT epidemiology and the quantitative impacts of	442
control interventions on transmission, scaling up such studies to cover larger areas is	443
likely to be too costly to be feasible. A potential alternative would be to enrich current	444
standard data collection/collation from screening activities with questionnaires	445
providing additional demographic information on infected individuals (e.g.    age, gender,	446
occupation, characteristics of house location) to better assess people at risk, their	447
participation in screening and their impact on transmission. Although this too may be	448
costly in higher transmission areas, it may be feasible close to elimination, where case	449
numbers are low and such enriched data would be particularly useful in identifying	450
potential new cases, as programmes move from untargeted active surveillance  to reactive	451
strategies.	452
Table 4 summarises different, but not exhaustive, data which, if available, could be	453
used in modelling studies to identify potential beneficial adjustments in   future activities	454
and to develop new frameworks for evaluating the path towards    elimination and	455
post-elimination scenarios.	456
Conclusions	457
We  investigated the role of the type and level of aggregation of epidemiological   data on	458
recommended control strategy by analysing publicly available HAT case data   using four	459
different mathematical models. Our results show that the lack  of detailed	460

[bookmark: _bookmark5]Table 4. Summary of relevant data and its potential use in HAT  modelling.


Data type

-First-final date of survey  (AS)
-Date of presentation at health care centre (PD)

Collected, open access

Collected, available upon request

x

Not routinely collected


Potential use in HAT  modelling

Inform time, number and duration of survey

Staging (province level)	x	x	Inform  staging ratios

Staging (village or health zone level)

x	Inform  staging ratios
Explore spatial-related

Geo-referenced	x


Age	x


Gender	x


Occupation	x

measures of HAT transmission risk
-Identify at-risk population
-Assess heterogeneity in screening  participation
-Identify at-risk population
-Assess heterogeneity in screening  participation
-Identify at-risk population
-Assess heterogeneity in screening  participation

Socio-economic indicators	x	Identify at-risk population Better  understand feeding

Presence of alternative sources of blood meals (e.g.  pigs)

x	behaviour of tsetse flies to investigate potential roles  of
animal reservoirs

Family clustering	x	Spatial  modeling to better identify foci
The list is not exhaustive.  Abbreviations:  AS: active screening; PD: passive    detection.


epidemiological information, particularly missing staging or truncated time series data,	461
impacts model recommendations for strategy choice:  it can increase   our prediction	462
intervals and either over or underestimate effectiveness of baseline and intensified	463
interventions.	464
Our study suggests that improved availability of epidemiological data, particularly	465
longer time series which include recent data and information on disease stage, would	466
reduce uncertainties in the prediction of future HAT dynamics. In  particular, staging	467
data allow a better estimate of the improvements made in passive  detection, and	468
subsequent reduction in HAT  transmission.  Given the highly focal nature of   HAT, we	469
expect that models fitted to recent staged data at smaller spatial scales  (e.g. health	470
zone level) will provide valuable information for local planning,   monitoring and	471
adapting HAT interventions to reduce transmission and achieve elimination.	472
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