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Abstract

Background: Malaria transmission is influenced by a complex interplay of factors
including climate, socio-economic, environmental factors and interventions.
Malaria control efforts across Africa have shown a mixed impact. Climate driven
factors may play an increasing role with climate change. Efforts to strengthen
routine facility-based monthly malaria data collection across Africa create an
increasingly valuable data source to interpret burden trends and monitor control
programme progress. A better understanding of the association with other
climatic and non-climatic drivers of malaria incidence over time and space may
help guide and interpret the impact of interventions.

Methods: Routine monthly paediatric outpatient clinical malaria case data were
compiled from 27 districts in Malawi between 2004 and 2017, and analysed in
combination with data on climatic, environmental, socio-economic and
interventional factors and district level population estimates. A spatio-temporal
generalized linear mixed model was fitted using Bayesian inference, in order to
quantify the strength of association of the various risk factors with district-level
variation in clinical malaria rates in Malawi, and visualized using maps.

Results: Between 2004 and 2017 reported childhood clinical malaria case rates
showed a slight increase, from 50 to 53 cases per 1000 population, with
considerable variation across the country between climatic zones. Climatic and
environmental factors, including average monthly air temperature and rainfall
anomalies, normalized difference vegetative index (NDVI) and RDT use for
diagnosis showed a significant relationship with malaria incidence. Temperature in
the current month and in each of the 3 months prior showed a significant
relationship with the disease incidence unlike rainfall anomaly which was
associated with malaria incidence at only three months prior. Estimated risk
maps show relatively high risk along the lake and Shire valley regions of Malawi.

Conclusion: The modelling approach can identify locations likely to have
unusually high or low risk of malaria incidence across Malawi, and distinguishes
between contributions to risk that can be explained by measured risk-factors and
unexplained residual spatial variation. Also, spatial statistical methods applied to
readily available routine data provides an alternative information source that can
supplement survey data in policy development and implementation to direct
surveillance and intervention efforts.
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Background
While malaria has declined across Africa, analyses exploring the impact of nation-

ally implemented control interventions have shown a mixed impact, with a recent

analysis of malaria prevalence data across Africa since 1900 showing a complex

range of driving factors including climate, socio-economic and environmental fac-

tors that may all depend on time and local context [1]. Climate affects many aspects

of the transmission dynamics of malaria by its effects on the vector biology [2–6],

and is expected to play an increasing role with progressive climate change. While

global malaria control progress is monitored through malaria prevalence estimates

from household surveys, national programmes in endemic countries often use facil-

ity based data to set impact targets and monitor progress, as this data is available

on an ongoing basis and relates to disease burden rather than transmission. With

efforts to strengthen the quality of routine facility-based monthly malaria data col-

lection across Africa and progress in analytical methods to analyse collated data

from multiple sources, this becomes an increasingly important data source.

Vector population larvae development depends on sufficient rainfall, yet excess

rainfall can reduce numbers due to excessive water flow [7]. Temperature also plays

a crucial role as the main vectors, such as tropical Anopheles mosquitoes, require

temperatures between 16◦C and 32◦C to complete their life cycles. At higher and

lower temperatures, there is high mosquito mortality [8]. Consequently, malaria

displays seasonal patterns in response to changing climatic conditions.

In addition to climate, socio-economic factors play a critical role in malaria trans-

mission [9, 10]. Therefore, addressing malaria through the design of optimal inter-

ventions can benefit from a clear understanding of the impact of both climate and

non-climate factors.

The relationship between climatic factors and malaria incidence in sub-Saharan

Africa has been extensively investigated. There is a general observation that as

temperature increases in most parts of Africa, malaria incidence is projected to

substantially increase [11]. Furthermore, the other non-climatic factors such as gross

domestic product (GDP), malaria interventions will alter the malaria risk landscape

[11]. In a study in Ethiopia, lagged effects of rainfall and temperature were found

to be associated with malaria epidemics [12]. Rainfall and temperature lag of two

months has also been found to be positively associated with malaria in South Africa

[13]. Climate was found to be the leading driver of inter-annual variation in malaria

incidence in Zimbabwe. In particular, rainfall, temperature and water vapour were

found to be important predictors of increased malaria incidence [14]. A similar study

in Mozambique found an association between malaria and relative humidity, rainfall

and temperature [15].

Use of climate data to improve understanding of the observed trends and patterns

in climate-sensitive diseases has not been widely undertaken in many African coun-

tries due to incomplete or unreliable climate and disease incidence data. The use

of climate data derived from remote sensing provides an opportunity to investigate

the impact of climate on malaria, even for areas where climate data from weather

stations are sparse or non-existent.

Statistical models for aggregate and point-level data have been used to improve

understanding of the interactions between vector-borne diseases (VBD) and envi-

ronmental conditions [16–18]. Furthermore, work has been carried out towards the



Chirombo et al. Page 3 of 16

development of early warning systems for VBD such as malaria and dengue [17, 19–

22]. In many settings, however, non-climatic conditions also play a key role in driving

VBD and these act as confounding factors [23–25]. A purely climate-based model

may thus not be sufficient to capture the complex relationships between VBD and

the total environmental in general [26].

The roles of climate, geographic and socio-economic factors on malaria in Malawi

were previously explored and disease incidence mapped covering the period 2004-

2011 [27]. Since then, national control efforts have scaled up substantially, including

the successful scale up of effective artemisinin-based combination therapy (ACT)

since 2009, of malaria rapid diagnostic tests (RDTs) since 2011, and use of regu-

lar national net distribution campaigns since 2012 to move towards universal net

coverage. Overall, malaria prevalence in children below 5 years of age has declined

from 43% in 2010 to 24% in 2017 [28, 29].

This study aims to add to the evidence on the linkages between climate and

malaria in Malawi and shows how the contribution of relevant non-climatic con-

founding factors can be visualized in a way that may help inform national malaria

control programmes on options to take those factors into account and mitigate the

impact of climate change. Using age-stratified malaria data from Malawi with cli-

matic and non-climatic covariates, a spatio-temporal statistical model implemented

in a Bayesian inferential framework was built and mapped explained and unex-

plained components of the spatio-temporal variation in malaria incidence.

Methods
Malawi context

Malaria is endemic to Malawi but with spatially varying levels of transmission

[30] across a varied geographical landscape, from lowlands to highlands. Lakeshore

districts generally have higher malaria prevalence than other districts. The country

is divided into 5 climatic zones by the government’s meteorology department across

28 districts. Districts along the lake are generally of low altitude and have high

average temperatures with average elevation ranges from 500m above sea level along

the lake and Shire valley to over 1500 in the central areas. Rainfall across Malawi

varies, with average annual precipitation around 2500mm in highland areas and

700mm in low-lying areas [31].

Data sources

Data were obtained from a variety of sources and collated at the district level,

as shown in Table 1. In this paper, Likoma district, an island in Lake Malawi

was excluded to give a contiguous study region. The analyses focused on known

determinants of malaria prevalence and clinical diseases.

Malaria data

The previous database in [27] was extended by adding routine malaria data for

the period 2012 to 2017. Reported district-level monthly counts of confirmed and

suspected malaria cases for 162 months collected between July 2004 and December

2017, checked and cleaned by the National Malaria Control Programme (NMCP)

for completeness and consistency were used. Case data are recorded on paper forms
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at a health facility within a district, then aggregated monthly at the facility level.

Facility data are subsequently aggregated to the district level and entered into an

electronic database, the District Health Information System (DHIS) [32]. Within the

Health Management Information System (HMIS) facilities self-report. Completeness

of reporting is defined as the percentage of facilities that submit reports within the

required deadline [33]. With time, the completeness of the data reported in the

HMIS has been steadily going up, now standing at over 90%.

Over this period, different malaria diagnosis approaches were used. Prior to 2011,

there was no widespread use of rapid diagnostic tests (RDT) as the policy had not

been adopted leading to a high proportion of unconfirmed malaria cases. Therefore,

the clinical diagnosis of malaria was widely used before 2011 [34]. The use of RDT

was adopted in 2011 leading to a marked improvement in the quality of the data as

an increasing percentage of cases were now being confirmed [35, 36].

Climate data

Climate data were obtained from satellite-derived archives from the library hosted

at the International Research Institute (IRI). Monthly rainfall anomaly values av-

eraged at the district level were obtained from the climate hazards group infrared

precipitation with station data (CHIRPS) [37]. Temperature anomalies were ob-

tained from the National Oceanic and Atmospheric Administration national centres

for environmental prediction (NOAA NCEP) [38]. This data is based on the CPC

monthly global surface air temperature data set at 0.5 degrees from 1948-present.

Temperature and rainfall anomalies are calculated as deviations from the long-term

mean values and are preferred measures by climatologists when looking at trends

over time [39]. For example, positive rainfall anomaly values indicate higher rain-

fall than the baseline value. A key advantage of using anomaly values is to reduce

the effect of characteristics such as location or elevation which affect the absolute

values. Normalized difference vegetative index (NDVI) data were collected from

the LandDAAC MODIS satellite at a resolution of 1km [40]. For the model-fitting,

all gridded data were averaged over spatial areas corresponding to the districts in

Malawi.

Non-climate data

To account for possible confounding between climatic variables and malaria, differ-

ent non-climate data sources which included ITN use, population density, literacy

levels and urban dwelling were used. In Malawi, mass ITN distribution started

around 2012. Instead, data on the proportions of households with at least one ITN

from the Demographic and Health Surveys (DHS) were used [41]. This was a proxy

for the proportion of children under 5 sleeping under mosquito nets. Population den-

sity values were obtained from census reports. Data on literacy levels were obtained

from the welfare monitoring surveys.

Statistical framework and model

To estimate the variation in disease risk, the standardised morbidity ratio (SMR)

was modelled. This is the ratio of observed to expected malaria cases within a

single spatial unit in a single time-period and provides an estimate of the disease
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risk. The expected cases in each district are calculated by multiplying the district

population with the annual observed risk. The annual observed risk is given by the

total number of cases across all districts over the entire time period divided by the

total population over the same period. SMR greater than 1 at a given time period

suggests an excess risk of malaria in a district. More details on calculation of the

expected cases are provided in section 1 of the supplementary file

To describe the spatial and spatio-temporal variations in disease incidence, a

Poisson-log-linear mixed effects model was applied. Let yst be the observed counts

in spatial unit s = 1, . . . , N and time t = 1, . . . , T , and est denote the expected

number of disease cases; the expected cases are calculated using standardization

methods to take account of demographic differences in the populations across the

different spatial units but without taking into account the effects of hypothesized

risk factors or residual spatio-temporal variation [42]. It was assumed that

Yst|est, Rst ∼ Poisson(estRst), (1)

where Rst is the relative risk of disease in spatial unit s at time t. In the log-linear

mixed model,

log(Rst) = x′stβ + Ust (2)

where xst is a vector of covariates (fixed effects) with associated regression pa-

rameter β and the random effects Ust follow a multivariate Normal distribution

with zero mean vector and covariance matrix V (θ) structured to include spatial

and temporal components of variation. The relative risk Rst is thereby decomposed

into the explained and unexplained risks, exp(x′stβ) and exp(Ust) respectively. The

unexplained risk component captures residual variation after accounting for all the

covariates in the model.

By incorporating random effects, the Poisson log-linear model is able to account

for overdispersion due to spatial autocorrelation, unstructured heterogeneity or a

mix of the two [43]. Therefore, the spatially structured, unstructured and interaction

random effects in the model are able to account for this overdispersion.

Model framework for the Malawi malaria data

The specific model formulation for the Malawi malaria data has been described in

an earlier paper [27]. In brief, the notation for the model defined by 1 and 2 was

extended to distinguish between cases under and over 5 years of age. Let Yjst be

the monthly malaria count for age group j = (1, 2) corresponding, respectively, to

ages 5 or more and 0 to 4, district s = 1, . . . ,m = 27 and time t = 1, . . . , n = 162

months. Similarly, let ejst be the corresponding expected malaria count.

With this extended notation, the relative risk is written as Rjst = x′stβ + Ust,

where

Ust = Ps +Dt +Gst (3)
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In equation 3, the terms Ps, Dt and Gst denote purely spatial, purely temporal and

residual spatio-temporal components of variation in risk, respectively. Following [44]

and [45] it is assumed that the Gst are mutually independent, Gst ∼ N(0, τ2I ), and

that the spatial random effect, P = (P1, . . . , Pm) and the temporal random effect,

D = D1, . . . , Dn form Gaussian Markov random fields [46]. Specifically, the model

defines spatial neighbourhood relationships through a symmetric m×m matrix W

with elements wij = 1 if the spatial units i and j are neighbours, and wij = 0

otherwise; i and j are specified to be neighbours if they share a common boundary.

Similarly, temporal neighbourhood relationships are defined by a symmetric n× n
matrix V; following [45], vij = 1 if |j − i| = 1 and vij = 0 otherwise. Now, writing

P−s for the (m− 1) element vector obtained by removing the sth element from P ,

and similarly D−t for the (n − 1)-element vector obtained by removing the t − th
element from D the model can be defined through its full conditional distributions,

Ps|P−s ∼ N

(
ρS
∑m

j=1 wsjPj

ρS
∑m

j=1 wsj + 1− ρS
,

τ2S
ρS
∑m

j=1 wsj + 1− ρS

)
(4)

Dt|D−t ∼ N

(
ρT
∑n

j=1 vtjDj

ρT
∑n

j=1 vtj + 1− ρT
,

τ2T
ρT
∑n

j=1 vtj + 1− ρT

)
(5)

(6)

Both the Ps and Dt are mean-centred such that
∑m

s=1 Ps =
∑n

t=1Dt = 0

The following diffuse prior specifications for the fixed effect parameters β and the

random effect parameters ϑ = (τ2S,τ
2
T , τ

2
I , ρS , ρT ) were used. Firstly, independent

Normal priors, βi ∼ N(0, 1000) : i = 1, . . . , p for the elements of β were specified.

Secondly, for the variance components τ2S,, τ
2
T , and τ2I , independent inverse-Gamma

priors, τ2 ∼ IG(1, 0.001) were specified. Finally, independent uniform priors, ρ ∼
U(0, 1) were specified for the autocorrelation parameters ρS and ρT .

Model fitting for malaria data in Malawi

To account for differences in malaria diagnostics over time, a binary variable (0

before adoption of RDTs, and 1 after adoption) was defined. Firstly, a non-spatial

Generalized Linear Model (GLM) was fitted to investigate the association between

the outcome and different covariates whether climatic or non-climatic and find sig-

nificant predictors to include in the Generalized Linear Mixed Model (GLMM). The

following covariates were included; rainfall and temperature anomalies and their 3

month lags, NDVI, population density, RDT use, literacy rates, ITN use. Significant

variables were then included in the Generalized Linear Mixed Model (GLMM).

To fit the GLMM, Markov Chain Monte Carlo (MCMC) techniques were used

to simulate from the posterior distribution using a combination of Gibbs and

Metropolis-Hastings algorithms to estimate model parameters. Three chains of

length 300,000 were generated with a burn-in of 50,000 iterations. Every fiftieth

iteration was retained to obtain a sample of 5000 approximately independent real-

isations from the joint posterior distribution of β,θ and U for post-processing. The

Geweke diagnostic test which is based on the Z test for equality of means was used

to check convergence [47]. The Markov chain is partitioned into 2 disjoint segments
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and it tests whether the means in the two segments are equal. If the Markov chain

has reached stationarity, the Geweke statistic asymptotically follows a standard nor-

mal distribution. More details on model fitting including convergence diagnostics

are described in sections 3 and 5 of supplementary file. All analyses were performed

in the R environment for statistical computing [48]. The models were fitted using

the R package CARBayesST [45]. The R code for the analysis can be found in the

supplementary materials.

Results
Clinical malaria patterns

The malaria case rates between 2004 and 2017 period are shown by climatic zone in

Fig. 1. During this period the annual malaria incidence over time showed a decrease

in incidence between 2009 and 2013 followed by a slight increase from 2014 to 2015.

Overall, there is a general reduction in malaria rates over the 2004-2017 period as

shown by the dotted smooth line.

Detailed seasonal patterns of malaria case rates, rainfall and temperature are

shown for each climate zone in Fig. 2. Across zones and geographical areas, there

are similar patterns of seasonality. Peak temperatures occur between October and

November, before the start of the rainy season. Rainfall peaks in January, with a

lag period of 0 to 3 months of peaking malaria incidence.

Fig. 3 shows the marginal spatial and temporal variations in malaria SMR across

Malawi. The temporal variation (Fig. 3a) indicates similar patterns of seasonality

and inter-annual variation in both age groups. The spatial variation in the SMR for

the age group 5 years and under (Fig. 3b) shows higher malaria incidence in some

of the districts along the lakeshore and Shire Valley regions. For the over-five age

group (Fig. 3c), a similar pattern is observed.

Model estimates

Association between climate and non-climate factors with clinical malaria

The following covariates were included in the GLMM: mean rainfall and tempera-

ture anomalies; rainfall anomalies lagged by 1 to 3 months, temperature anomalies

lagged by 1 to 3 months, NDVI, literacy (as a proportion of the district population)

and population density. An indicator variable to specify the time before and after

adoption of RDTs was also included in the model.

In the spatio-temporally structured model, clinical malaria incidence was associ-

ated with rainfall at 3 month lag, temperature including all lags and NDVI. Relative

risks and their 95% Bayesian credible intervals are shown in Table 2.

After allowing for residual spatio-temporal dependence, rainfall was no longer

statistically significant in the current month. However, there was a slight positive

relationship between malaria incidence and rainfall in the three months prior. A

unit increase in rainfall anomaly was associated with a 3% increase in malaria

burden (RR=1.03, CI:1.01,1.05). For temperature anomalies in the current month,

with every one-degree Celsius increase, estimated malaria incidence increased by 3%

(RR=1.03, CI:1.00-1.05). Malaria was also associated with temperature anomalies

at 1-3 month lags with increase in malaria of 3%, 5% and 4% respectively. NDVI

was also positively associated with malaria incidence, i.e. an increase in vegetative
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cover is associated with a 74% increase in malaria incidence (RR=1.74, CI: 1.45-

2.07). It was also observed that population density did not show an association

with malaria (RR=1.00, CI: 0.99-1.00). For literacy, no association with malaria

was not observed also (RR=1.00, CI:1.00-1.00). Lastly, a 27% (RR=1.27, CI: 0.95-

1.68) increase in incidence was observed in the post RDT adoption period compared

to before. The Geweke diagnostic scores for each covariate indicated convergence

with the test statistic falling between the cutoff points, (−1.96, 1.96).

Mapping explained and unexplained variation in SMR

Fig. 4 shows the decomposition of the overall risk into its explained and unexplained

components. Fig. 4a shows the overall malaria risk, Rst averaged over Malawi for

the entire period. The final model predicts a higher than average risk in the lake

shore and Shire Valley districts and climatic zones. In addition, 3 of the districts

in the central zone also show an elevated malaria risk compared to other districts

in the zone. Fig. 4b and Fig. 4c show the explained and unexplained component of

spatial variation in risk respectively, again averaged over time. In terms of model

performance, the unexplained variation exp(Ust) is relatively high in some parts of

the country indicating the presence of other district specific non-observed variables.

Fig. 5 shows the relative contribution of modelled climate and non-climate factors

at four time points over the 13 year period. It is observed that the risk explained by

modelled climate covariates (upper panel) does not show much variation between

districts over time across the country. Temperature and rainfall three months prior

were found to be significant. This shows that temperature and rainfall play a key

and constant role in malaria transmission across the country. However, there is an

observed increase in the observed risk towards the end of the period under study

in 2016/17. Lastly, there is a more varied explained risk by non-climate covariates

(lower panel). There is a generally higher explained risk in the northern areas and

Shire river valley region. The year 2014, in particular, indicates a high risk in this

region.

Discussion
Results show the added benefit of including climate and non-climate information in

modelling of malaria incidence data. Temperature and lagged rainfall were found

to be significant drivers of malaria. A spatio-temporal statistical model was fitted

to quantify the effect of different climate and non-climate covariates on malaria

incidence and to predict the incidence over the period July 2004 to December 2017.

The information on the relationships between the lagged effects of temperature

and rainfall will help in the timing of impactful interventions. The areas with ele-

vated risk revealed by the model will allow for a targeted application of interventions

while the relatively long period of time considered in this study provides a tempo-

ral aspect necessary to understand the changes in malaria burden over time. The

impact of climate and non-climate factors, therefore, provides an important infor-

mation source for the design of optimal interventions which can cover the most

affected districts while concurrently being time relevant.

While the quality and suitability of routine facility-based data is often questioned,

the reported malaria incidence trends in time and space, in terms of seasonality
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and climate zone, largely follow the expected patterns and align with previously

published malaria prevalence maps [18, 27]. The approach discussed in this paper

uses more recent data and covers a relatively longer time period hence similarities

with the earlier maps. The lakeshore and Shire valley areas are generally low-lying

areas with higher average temperatures and higher malaria incidence. Major urban

centres of Blantyre and Lilongwe show a lower risk through out this period.

When using routine incidence data to monitor control impact and long-term

trends, control programmes need to take into account intervention implementa-

tion, climate and non-climate covariates from different data sources to improve the

analysis and interpretation of disease incidence patterns.

In this study, incidence showed a steady decline in paediatric and adult data from

2009 following the introduction and gradual scale up of efficacious artemisinin-based

combination therapy (ACT) in 2008 and start of ITN distribution to mothers and

children, this decline was followed by a nadir and upsurge after 2013. While similar

reversals and increases have been reported by countries in the southern African re-

gion [49], their control programmes included different control implementation stages

during this period, suggesting other factors could be at play. Analysing climate and

non-climate factors, and visualizing the explained and unexplained components of

the observed variation in disease risk, can give additional insight. While the intro-

duction and scale up of malaria rapid diagnostic tests (mRDTs) and inclusion of

community-based malaria treatment from 2012 could have led to increased health-

care seeking behaviour and capture of cases that previously did not present to the

health care system, the period after 2013 also documented higher average temper-

atures. In the modelling framework, even when ITN intervention were included in

the spatial models, the recent rise in incidence could not be explained away. Thus

neither climate changes nor changes in intervention intensity could account for in-

cidence trends. More details are in section 6 of the supplementary material.

In terms of model performance, the unexplained variation is lower across the

country. This shows that most of the variation has been captured by the covariates

in the model. However, the substantial unexplained risk shows the importance of

including random effects in the model.

The non-significance of rainfall on malaria in the current month shows the com-

plexity of the relationship between malaria incidence and climate in general, but

rainfall in particular. Studies in different settings have shown mixed effects of rain-

fall on malaria; some have shown a positive association, whilst others have shown

a very weak or no association [50–52]. NDVI is also significantly associated with

malaria. Seasonal and year to year changes in NDVI are commonly associated with

rainfall. Green vegetative cover, which is prevalent in the rainy season, is positively

associated with malaria incidence. Several other studies have shown vegetative cover

to be a significant predictor [53, 54]. Temperature plays key role in the development

of malaria vectors and their activities that directly or indirectly lead to the spread

of malaria. It has been found to be a significant ecological factor in several studies

such as [55–57] but its impact on malaria transmission in tropical climates is usually

considered a highland phenomenon [58].

The findings, in general, follow a similar pattern of the impact of climatic fac-

tors on malaria. Though there may be differences between studies regarding which
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climatic factors (and their associated lags) are more importantly associated with

malaria, the underlying role of climatic factors as a key driver of malaria incidence

is shared between this study and many others. This knowledge is likely to be of

key importance in future control efforts in the face of continuing climate variability

across most of Africa.

Both components of the decomposed risk (overall and covariate-explained) could

be affected by other important factors that were not considered in these analyses.

This include the completeness and quality control of monthly reports from govern-

ment and faith-based health facilities that do report into the DHIS2 system, but

could also come from other health facilities, mainly private for-profit, that do not

report their data to the MoH via the DHIS2. While data on reporting completeness

or quality at district level was not accessed, it is likely that reporting rates influence

the estimation of the malaria burden in Malawi.

While analyses show how climate and non-climate data from multiple sources

can be used to improve the analysis and interpretation of routine malaria data

patterns, there are some limitations and strengths of the Malawi data over the

reporting period and potential steps moving forward.

Self-treatment at home will never be captured in the HMIS. Any substantial

changes in the proportion of home-treatment within the country over time could

affect routine facility-based disease trends. In Malawi, however, the availability of

antimalarials in rural areas is limited and treatment is provided for free by the gov-

ernment. The introduction and scale up of RDTs in 2011 and the programmes and

steps to link the reported diagnosis and treatment to consumables stock manage-

ment over the past year, provide reassurance on the reported cases moving forward.

Prior to 2011, when the MoH adopted the policy of testing all suspected cases by

RDT, [35], clinical diagnosis of malaria was widespread in Malawi. This may have

affected the accuracy of the reported cases in the period before 2011.

Selection bias in seeking health care due to differential access to health facilities

among different groups of people and variable distances between facilities and homes

is another common concern with routine facility-based data [59]. People living very

far away from health facilities from may not be adequately represented in routine

data. Actually, the inclusion of community-level diagnosis of malaria using mRDTs

by community health workers in hard-to-reach areas in Malawi has been included

in reporting to the DHIS2 since 2012 and may have contributed to the increase in

reported cases across the country, but as they are included within the health facility

level reports for the relevant catchment area, it was not possible to confirm this in

the current analyses.

Satellite-derived climate data were used in the models, rather than directly

measured climate data from weather stations. Ideally, a high-quality gridded cli-

mate database including rainfall and temperature (minimum and maximum) from

weather stations should be used to formulate models and produce malaria risk

predictions. Unfortunately, these data sources are not readily available in most de-

veloping countries due to a sparse network of weather stations. National climate

data sets which integrate global products and all relevant local observations man-

aged by the national meteorological agencies are increasingly available in African

countries [60].
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Intervention coverage status data was not available at district level for the period

of interest, as this data is not part of the routine data collection and is assessed at

regional level in the national household malaria indicator surveys. The presented

model relied on crude intervention implementation proxies.

In terms of the modelling framework, there is a risk of ecological fallacy due to

the differences in individual and aggregate associations in the outcome and predic-

tor variables. The aggregation also presents a loss of information. Supplementing

aggregate data with individual-level data is a solution to solving ecological fallacy.

In the absence of individual data, the ecological analyses still provide useful infor-

mation for understanding impacts at the aggregate level. Where the focus is on the

prediction of aggregate-level outcomes, ecological fallacy, though present, may not

be a big concern [61].

Despite these limitations, the presented work shows the potential added value of

the spatio-temporal statistical modelling approach. Furthermore, there are three

promising developments in Malawi that will soon offer opportunities to apply the

framework with more detailed data on key covariates. First, as part of a collabo-

ration with the LINK programme in Malawi [62] intervention coverage maps will

soon become available for key interventions including ACT, mRDTs and ITNs, al-

lowing integrating coverage scale-up. Secondly, as the LINK programme modelled

spatio-temporal prevalence data at district level, there will be opportunity for more

comparative analyses of modelled transmission and burden data. Lastly, electronic

facility level reporting of clinical cases into the DHIS2 began in 2018, which will

soon allow more granular mapping of disease risk at health facility catchment area,

providing the opportunity to analyse more detailed spatial patterns moving for-

ward. With these developments, the presented model framework can be expanded

towards more in-depth analyses of intervention impact.

Furthermore, while acknowledging the severe consequences of climate change and

climate variability on health outcomes and that the health sector has been slow to

act compared to other sectors such as agriculture, the Ministry of Health (MOH)

has been moving towards integrating climate change and health interventions into

its programming by setting up a permanent climate change and health office, forg-

ing closer links with the department of climate change and meteorological services,

and other agencies among other measures. The profile of climate change and hu-

man health programmatic area in Malawi has steadily been rising with funding

from projects such as the World Health Organization (WHO) supported Global

Framework for Climatic Services (GFCS) now being made available for specific in-

terventions. The model outputs provide a resource that offers insight to programme

managers on seasonality and disease burden that can help inform more targeted

interventions. The GFCS project aims to encourage the integration of climate in-

formation for decision making in climate-sensitive sectors such as health. Therefore,

this analysis fits well with the health sector’s strategic direction.

Conclusion
This work provides a modelling framework for integrating climatic and non-climatic

information into analyses of routine malaria case data at facility-level, in order to

improve understanding of climate effects on climate-sensitive VBD such as malaria,
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while simultaneously controlling for non-climatic risk factors. The findings show

the value of collaborations between control programmes, health researchers and

climate experts in the collation, analyses and interpretation of routine malaria data.

Visualizing the findings in maps produced provide easy to use tools for malaria

control programmes to support their interpretation of disease trends over time,

which, with the development of user friendly analysis tools could be incorporated

into Technical Working Groups (TWGs) and standard programme review processes.
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GLM Generalized Linear Model
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Figures

Figure 1 Annual under-five malaria burden from 2004-2017 by climatic zone and their location
in Malawi and their relative altitude (A) Temporal changes in under-five malaria by climatic
zone. (B) Relative location of climatic zones within Malawi (C) Underlying altitude of the climatic
zones.
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Figure 2 Relationship between monthly mean temperature, rainfall and malaria Monthly
average malaria incidence, rainfall and temperature at the climate zonal level. (A) Northern zone
(B) Central zone (C) Southern zone (D) Shire Valley (E) Lake Shore. The red dotted line is the
mean temperature while the blue dotted line is the mean rainfall. The disease incidence is shown
by the black solid line.

Figure 3 Malaria SMR averaged over time and space for the period July 2004 - December
2015 Standardised morbidity ratio (SMR) for Malawi: (A) averaged across the country for each
month, (B) averaged over time for each district for the age group 5 years and over, (C) averaged
over time for each district for the under 5 years age group.

Figure 4 Contribution of various model components to the risk Contributions to the overall
malaria risk (A) overall risk Rst due to combined effect of climatic, non-climatic covariates and
non-observed covariates, (B) explained risk, exp(x′stβ) due to observed climatic and non-climatic
covariates, (C) unexplained risk, exp(Ust) due to unobserved effects only

Figure 5 Contribution of model components to observed malaria risk over the study period
Contribution of climatic covariates (top panel) and non-climatic covariates (bottom panel) to
malaria risk at different time points during the period from 2004-17.

Tables

Table 1 Data sources. Climate and non-climate data variables, their description and source.

Data Description Spatial Temporal Source
resolution resolution

Malaria cases Total cases (confirmed and suspected) District Monthly HMIS
reported by health centres in each district

Rainfall Rainfall estimates (mm/month) 1km grid Monthly CHIRPS
Min. temp Temperature estimates (◦C) 1km grid Monthly NOAA NCEP
Max. temp Temperature estimates (◦C) 1km grid Monthly NOAA NCEP
NDVI NDVI estimates 1km grid Monthly LandDAAC MODIS
Population Population estimates District Yearly NSO population

projections
Literacy Proportion of population aged District Yearly WMS

five and above that can read
and write in any language

Urban Proportion of the population District Yearly WMS
that stay in urban centres

Area Total district area District Unpublished
reports

Altitude Height above seas level (m) NSO

Additional Files
Additional file 1 — Exploratory analysis, model fit and diagnostics
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Table 2 Parameter estimates for the mixed model. Estimates for relative risk for climatic and
non-climatic parameters respectively with associated 95% credible intervals

RR 95% credible interval
Rainfall 1.00 (1.00,100)
Rainfall lag 1 1.00 (1.00,1.00)
Rainfall lag 2 1.00 (1.00,1.00)
Rainfall lag 3 1.03 (1.01,1.05)
Temperature 1.03 (1.00,1.05)
Temperature lag 1 1.03 (1.00,1.06)
Temperature lag 2 1.05 (1.03,1.08)
Temperature lag 3 1.04 (1.01,1.07)
NDVI 1.74 (1.45,2.07)
Literacy 1.00 (1.00, 1.00)
Pop. density 1.00 (1.00, 1.00)
RDT 1.27 (0.96, 1.68)
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