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Highlights 

 Changes in Anopheles vector competence for Plasmodium parasites have been linked to 

insecticide resistance status  

 Insecticide exposure is detrimental for Plasmodium in the midgut lumen 

 Xenobiotic detoxification reactions in mosquito tissues can affect Plasmodium development  

 It is likely that other resistance mechanisms impact parasite development directly or 

indirectly. 

 The lack of research on this topic is surprising, given the critical impact that any interactions 

may have on the epidemiology or malaria in an era of widespread pyrethroid resistance.   

 

Abstract 

The spread of insecticide resistance in anopheline mosquitoes is a serious threat to the success of 

malaria control and prospects of elimination, but the potential impact(s) of insecticide resistance or 

sublethal insecticide exposure on Plasmodium-Anopheles interactions are poorly understood. Only a 

few studies have attempted to investigate such interactions, despite their clear epidemiological 

significance for malaria transmission. This short review provides an update on our understanding of 

the interactions between insecticide resistance and exposure and Plasmodium development, 

focusing on the mechanisms which might underpin any interactions, and identifying some key 

knowledge gaps. 
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Introduction 

Progress in reducing the malaria burden has recently stalled: globally the estimated number of 

malaria cases per 1000 population at risk stood at 59 for three consecutive years (2015-2017), and 

some high burden African countries even experienced an increase in cases [1]. Insecticide resistance 

(IR) to all the major insecticides in anopheline mosquitoes constitutes a serious threat to the 
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achievements of malaria control and the prospects of elimination. Between 2010-2017, 85% of 

countries with available data reported resistance to at least one insecticide class and particularly 

resistance to pyrethroids [1], which is now widespread in the major African vectors [2]. Pyrethroid 

resistance is particularly concerning since this insecticide class is used in all insecticide treated nets 

(ITNs) currently on the market and the scale up in ITN use is the mainstay of most African malaria 

control programmes. 

In mosquitoes IR is largely attributed to i) changes to the insecticide target site, ii) increased 

insecticide metabolic detoxification through increased action of proteins and iii) modifications in the 

thickness and chemical composition of the cuticle. Recently, other proteins have been implicated in 

IR expression and regulation in Anopheles gambiae, the major African malaria vector [3●●,4,5]. In the 

field, mosquitoes can be exposed to sublethal doses of insecticide through ITNs or indoor residual 

spraying (IRS), either due to insecticide decay, resulting in surface concentrations below target 

doses, or the presence of resistant mosquitoes that are not killed by the target dose. The potential 

impact(s) of IR and sublethal insecticide exposure on malaria vector competence, defined as the 

mosquito’s capacity to support the development of Plasmodium parasites up to the infective 

sporozoite stage, is still poorly understood. In the mosquito Plasmodium takes an average of two 

weeks to develop and during this development, is exposed to multiple mosquito tissues hence 

physiological changes elicited by IR or exposure could affect the likelihood of development of the 

final infectious stage, the sporozoite [6]. A potential link between IR and vector competence has 

been observed in other mosquito-borne pathogens. At 12 days post infection with the filarial 

parasite Wuchereria bancrofti, none of the laboratory-selected organophosphate resistant Culex 

quinquefasciatus harboured the parasite L3 infective stage whereas 76% of susceptible insects were 

infected [7]. Following infection with West Nile virus, resistant Cu. quinquefasciatus carrying the 

ester2 and ace-1 IR mutations showed a significantly higher viral dissemination rate compared to 

susceptible insects [8●●].  

In this review we evaluate the available evidence of the effect(s) of physiological IR and exposure on 

within-vector Plasmodium development, the potential mechanisms and future research directions. 

 

Insecticide resistance mechanisms in African malaria vectors 

All the major IR mechanisms have been reported in African malaria vectors (Table 1), often occurring 

in combination, causing cross-resistance to different insecticide classes and differing between 

populations across the geographical range of a given species [3●●]. 

 

What is the evidence that insecticide resistance status affects Plasmodium development? 

Only a few studies have explored the impact of IR on Plasmodium development (Table 2). Results 

show contrasting effects on either parasite prevalence (i.e the proportion of exposed mosquitoes 

infected) or intensity (i.e the number of parasite oocysts or sporozoites in infected mosquitoes). The 

presence of the target-site mutations kdr or ace-1 in homozygosis in isogenic lines were associated 

with an increased parasite prevalence but a reduced intensity in An. gambiae [26●●], whereas an 

increase in both was observed feeding Plasmodium to kdr-homozygous mosquitoes reared from 

larvae collected in nature [27]. On the contrary the L119F-GSTe2 mutation, associated with 

pyrethroid metabolic resistance via more efficient GST activity [18], was linked in homozygosity to a 

reduced oocyst prevalence but to a marginally (but non-significantly) higher intensity in lab-infected 

Jo
ur

na
l P

re
-p

ro
of



An. funestus [28]. Additionally, L119F-GSTe2 was associated with higher sporozoite prevalence in 

field-collected indoor-resting homozygous mosquitoes [29]. 

Whilst experiments on wild caught field mosquitoes could be argued to be most informative, it is 

important to note that under insecticide pressure, resistant mosquitoes in the field have a higher 

chance to survive the parasite extrinsic incubation period (EIP) (i.e. the time taken by Plasmodium to 

develop in the vector and become transmissible), and this, rather than any specific relationship 

between IR and parasite development, may explain the link between IR and presence of parasites in 

the field. Hence studies should first focus on the ability of IR and susceptible mosquito populations 

to develop salivary gland infections via feeding on infectious gametocytes (preferably obtained from 

sympatric human populations) [27]. It is also important to study naturally selected resistant 

populations that may contain multiple resistant mechanisms as this is the norm, rather than 

exception, in African malaria vectors. 

 

What is the evidence that sublethal insecticide exposure affects Plasmodium 

development? 

Studies on P. falciparum (Table 3) consistently showed a reduction in oocyst prevalence and 

intensity following sublethal exposure to pyrethroids and other insecticides, regardless of the 

resistance status of the insects. The effect was observed only when exposure occurred around the 

time of the infectious blood meal (N Hill, 2002) [31], suggesting that insecticides interfere with the 

early midgut stages of the parasite. Interestingly, it has also been shown that the early midgut 

development of P. falciparum is arrested by exposing An. gambiae to surfaces treated with the 

antimalarial drug atovaquone [32●●]. Whether this phenotype is caused by direct contact between 

the parasite and the xenobiotic (or its toxic by-products) reaching the midgut, or to the effects of the 

induced detoxification response is unclear. None of the studies on insecticide exposure took into 

consideration the sporozoite stage.  

Putative mechanisms 

In the mosquito Plasmodium parasites face many physical, chemical, immune and microbial barriers 

[34, 35, 36, 37●,38], in different tissues and at different times (Figure 1). Many of these barriers may 

be impacted by the IR status, and/or insecticide exposure, as discussed below.  

Overexpression of detoxification enzymes in resistant mosquitoes, or induction of the same enzymes 

after insecticidal exposure, may either inhibit or enhance parasite development via regulation of the 

amount of cytotoxic reactive oxygen and nitrogen species (ROS, RNS) [6]. For example while 

cytochrome P450s (CYPs) increase the levels of ROS during their activity, GSTs act in the opposite 

way reducing tissue oxidative stress [39]. Whether changes in the redox potential affect Plasmodium 

may depend on whether the expression of these enzymes is localized in specific tissues. Studies so 

far have shown that in An. gambiae the activity of CYPs is high in both oenocytes (fat body) and 

midgut [40], and overexpression of certain CYPs have been reported in the midgut of pyrethroid-

resistant An. gambiae [41]. Furthermore chemical synergists such as piperonyl butoxide (PBO) [42], 

which inhibits the activity of detoxification enzymes and that can be added to pyrethroid-treated 

surfaces to combat metabolic resistance, may affect how these mechanisms impact on Plasmodium. 

Changes in the midgut redox conditions may explain the reported detrimental effects of metabolic 

resistance or exposure to xenobiotics and insecticides on the midgut stages of filarial [7] and malaria 

[28,32,33] parasites.  
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Since ROS/RNS also act as both effectors and mediators in Anopheles anti-plasmodial immunity 

systemically and specifically in the midgut lumen and epithelium [35], changes in their amount may 

have pleiotropic effects on other immune responses. Potential links between IR, detoxification and 

immune responses in Anopheles mosquitoes have only been suggested indirectly. It has been shown 

in various insect species that sublethal exposure to pesticides can affect the humoral and cellular 

components of the immune system and their ability to fight infection [43●].  

Transcriptomic studies comparing genetically unrelated pyrethroid-resistant and susceptible 

mosquitoes reported a constitutive overexpression of immunity-related genes: antimicrobial 

peptides (AMPs) (defensin, cecropin) in resistant An. gambiae [44] and nitric oxide synthase (NOS) in 

resistant An. stephensi [45]. AMPs and nitric oxide have important cytotoxic anti-plasmodial activity 

[35]. In another study, isogenic Cu. pipiens mosquitoes carrying the ester4 gene duplication 

(responsible for metabolic resistance due to carboxylesterase overproduction), but not those with 

the ace-1 mutation, showed a higher constitutive expression of the AMPs gambicin and defensin, 

transferrin (a regulator of iron metabolism associated to innate immunity) and nitric oxide synthase 

genes compared to the wild type [46●●]. Resistant Cu. pipiens also exhibited a significantly higher 

activity of the enzyme phenoloxidase (a key enzyme in the mosquito melanisation cascade) [47]. 

However, in both studies none of the differences observed in lab-selected mosquitoes were found in 

field-caught resistant insects [46●●,47]. Changes in the expression levels of salivary glands-specific 

proteins have also been reported in insecticide-resistant An. gambiae [4,48], but whether such 

alterations affect Plasmodium competence and the sporozoites invasion process, viability or 

infectivity is unknown.  

The presence of a cross-talk between detoxification and infection responses is suggested by a study 

in which An. gambiae mosquitoes were infected with the rodent parasite Plasmodium berghei and 

the expression of detoxification enzymes was measured at different timepoints [49]. Various 

alterations were observed in concomitance of ookinete midgut invasion and sporozoite release in 

the hemocoel, and most notably the overexpression of CYP6M2 [50] (implicated in pyrethroid 

resistance) in both the mosquito midgut and fat body [49]. In this study the effect of infection on 

phenotypic IR was not evaluated using bioassays. However, when kdr-homozygous An. gambiae 

were infected with P. falciparum and then exposed to DDT at one, seven or 14 days post-infection, 

infected mosquitoes showed a significantly higher mortality than uninfected ones at the first two 

timepoints [51]. In another study, kdr and ace-1 homozygous An. gambiae infected with P. 

falciparum showed a reduced survival compared to infected susceptible mosquitoes [52], with the 

authors proposing resistance mutations exerting a cost on mounting an anti-plasmodial response by 

interfering directly or indirectly with immune system factors. 

Less clear is how pathogens can be affected by insecticide target-site mutations [8●●,26●●,27,28]. 

Isogenic lines in which IR alleles are introgressed into a susceptible background enable the impact of 

individual resistance mechanisms to be evaluated [8●●,26●●,46●●,53], but genes which are involved in 

immunity and vector competence and in linkage disequilibrium with IR alleles can also be 

introgressed in such crosses.  For example, the voltage-gated sodium channel (VGSC) gene on which 

the kdr mutation occurs is part of an haplotype including also a gene coding for a serine protease 

(ClipC9) potentially linked to anti-plasmodial immunity [53]: indeed the number of P. falciparum 

oocysts in An. coluzzii significantly increased after ClipC9 silencing by RNA interference, whereas 

silencing the VGSC gene did not alter infection susceptibility. This mechanism could partially explain 

the putative association between target-site resistance and increased P. falciparum susceptibility 

reported in both laboratory-generated [26] and wild mosquitoes [27].  
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Midgut microbiota also influence malaria competence via immune system stimulation, production of 

toxic metabolites or competition for energetic resources, and potentially via the synthesis of the 

peritrophic membrane [37●]. Microbiota-mediated effects on Plasmodium are likely not confined to 

the midgut lumen [54], and there is some suggestive evidence of a relationship between insecticide 

resistance and microbiome composition in mosquitoes [55]. Whether IR or exposure affect 

microbiome composition and function and the interactions with malaria parasites warrants further 

investigation.   

Plasmodium actively scavenges mosquito nutritional resources such as lipids, which play an essential 

role in the sporozoites maturation and infectivity [56,57●●]. Expression of IR has been associated 

with reduced energetic reserves in C. pipiens [58] and, if IR exerts a similar affect in Anopheles, this 

may act as a constraint for Plasmodium development. Mosquito reproduction is also intimately 

linked to Plasmodium development. Disruption of the signalling pathways of the steroid hormone 

20-hydroxyecdysone (20E), which regulates many of the processes of the mosquito gonotrophic 

cycle, significantly affects P. falciparum oocyst and sporozoite development in An. gambiae [57●●, 

59]. One of the currently proposed strategies for controlling resistant vector relies on using insect 

growth regulators (IGRs) in ITNs, like the juvenile hormone (JH) analog pyriproxyfen (PPF) [60]. It 

cannot be excluded that IR or exposure to insecticides or IGRs may impact Plasmodium by 

interfering with the vector hormonal signalling pathways.   

Potential effects of IR/exposure should be studied beyond their impact on individual Plasmodium 

developmental stages and their numbers. None of the studies so far have examined whether the 

length of the parasite extrinsic incubation period (EIP) was affected. The EIP is a crucial parameter 

for malaria transmission and it is influenced by a variety of biotic and abiotic factors [61●]. 

Although not the focus of this review, IR/exposure effects on mosquito longevity [6] and behaviour 

[62] must also be taken into account given their fundamental contribute to vectorial capacity and 

malaria transmission.   

Conclusions and perspectives 

Extensive further research is needed to understand in which ways IR/exposure affect within-vector 

Plasmodium development. Studies so far have largely relied on isogenic mosquito lines fed 

laboratory-grown parasites, which do not necessarily reflect the field situation where insecticide 

resistance is generally polygenic. Furthermore, the lack of sympatric field-colonized susceptible and 

resistant mosquito populations makes disentangling the infection phenotype contribution of IR 

alleles/mechanisms compared to immunity/vector competence genes difficult, while indirect 

approaches looking at correlations between parasite infection and IR alleles in the field are 

confounded by the effect of the latter on mosquito longevity in areas where insecticides are being 

used. Dissecting the molecular pathways of the potential cross-talk between detoxification 

mechanisms and mosquito immunity, energetics and reproduction and their cascade effects on all 

aspects of Plasmodium-Anopheles interactions should be considered a priority. This aspect is 

particularly relevant for malaria control and prospects of elimination when novel chemistries 

(including synergists or IGRs on ITNs) for vector control are introduced in field settings, rising the 

urgent need to test these chemistries to assess any unintended effects on malaria transmission.  In 

addition to delineating the mechanisms of interaction between pyrethroids and parasite 

development, it is critical that vector control tools containing novel chemistries (including synergists 

or IGRs on ITNs) are assessed for any unintended effects on malaria transmission that may be caused 

by interactions with parasite development.   
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Figure Legend 

 

 

Figure 1: Anti-plasmodial barriers in Anopheles and ways they may be affected by insecticide resistance (IR) or 

sublethal exposure to insecticides and novel chemistries for vector control. In the midgut lumen (1) 

Plasmodium sexual stages and ookinetes may be affected by i) direct contact with vector control compounds 

or their by-products after metabolization, i) changes in the redox potential (ROS/RNS amounts) due to 

overexpression of detoxification enzymes/nitric oxide synthase (NOS) (in IR) or as a result of their activity 

(exposure), ii) changes in the amounts and activity of antimicrobial peptides (AMPs) (in IR), or iii) changes in 

the microbiome composition and activity (IR/exposure). All these mechanisms could play a role in multiple 

tissues affecting the parasite even past the midgut barrier (3-5) and up to the sporozoite stage in salivary 

glands (6). Other more localized processes may be modified by IR/exposure. During the penetration of the 
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midgut epithelium (2) the anti-ookinete defences based on ROS/RNS production and associated pathways, 

leading to either parasite melanisation or lysis (3), may be altered by IR via overexpression of NOS or other 

enzymes (for example of the melanisation cascade). Oocyst development (4) may be affected by IR/exposure 

interfering with i) lipids trafficking and hormone signalling (for example involving 20-hydroxyecdysone) or ii) 

the differentiation, numbers and activity of the hemocytes, the latter being regulated through ROS signalling 

and playing a role in AMPs production and pathogen phagocytosis or melanisation which may affect the 

parasite sporozoite stage (5) after its release in the hemocoel. Ultimately, the capacity of sporozoites to invade 

the salivary glands (6) and their survival may be affected by overexpression of uncharacterized proteins 

associated with an IR genotype or phenotype. Perturbations in all the above mechanism, either overall or in a 

tissue-specific manner, may affect the average 14 days duration of Plasmodium extrinsic incubation period. 

PBM, post blood meal.  
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Table 1: Insecticide resistance mechanisms and their molecular determinants identified in African malaria 

vectors. The term An. gambiae is used to indicate both An. gambiae s.s and An. coluzzii. 

Type of 
resistance 

Major mechanism(s) involved Insecticide 
class(es) 

Molecular determinant(s) and 
Anopheles species   

Target-site Reduced insecticide toxicity 
through point mutations 
leading to structural 
modifications of target proteins 

PYR kdr - An. gambiae, An. arabiensis [9]  

OP, CA ace-1 - An. gambiae [9]; An. funestus 
[10] 

OC kdr - An. gambiae [11] 
Rdl - An. gambiae, An. arabiensis [12]; 
An funestus [13] 

Metabolic Increased insecticide 
detoxification through 
increased metabolism and 
clearance 

PYR CYPs - An. gambiae [14]; An. arabiensis 
[15]; An. funestus [16] 
GSTs - An. gambiae [17]; An. funestus 
[18] 
CCEs – An. gambiae [19] 
ABC-transporters - An. gambiae [20] 

OP CYPs - An. gambiae [14] 
CCEs - An. arabiensis [21] 

CA CYPs - An. funestus [10] 
CCEs - An. gambiae [22] 

OC CYPs - An. gambiae [14] 
GSTs – An. gambiae [23]; An. funestus 
[18] 

Cuticular Reduced insecticide 
penetration via cuticle 
thickening or altered 
composition 

PYR CYPs - An. gambiae [24]; An. funestus 
mechanism unknown [25] 

Sequestration/ 
direct binding 

Direct binding of insecticide, 
most likely leading to slow 
release for subsequent 
metabolic clearance 

PYR -crystallins and hexamerins with 
putative insecticide binding function - 

An. gambiae [3●●]  

OP, CA Salivary proteins D7(r2, r4) with 
putative insecticide binding function - 
An. gambiae [4] 

PYR= pyrethroids; OP= organophosphates; CA= carbamates; OC= organochlorines; kdr= knockdown resistance 

mutations in the voltage-gated sodium channel (VGSC); ace-1= mutation in the acetylcholinesterase enzyme; 

Rdl= mutation in the gamma-aminobutyric acid (GABA) receptor; CYP= cytochrome P450; GST= glutathione S-

transferase; CCE= carboxylesterase; ABC= ATP-binding-cassette  
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Table 2: Studies comparing Plasmodium development in insecticide resistant and susceptible mosquitoes. Only 

studies using natural vector-parasite combinations were included. 

Vector – parasite combination Insecticide 
resistance 
mechanism 

Effect(s) on Plasmodium in 
resistant mosquitoes 

Reference 

An. gambiae (Iso) – P. 
falciparum* 

ace-1, kdr ↑ooc/spo prevalence (ace-1, 
kdr), ↓ooc/spo intensity (kdr 
only) 

[26●●] 

An. gambiae, An. coluzzii (w) – 
P. falciparum* 

kdr~  ↑ooc/spo prevalence/intensity [27] 

An. gambiae (w) – P. 
falciparum** 

kdr~ ↑spo prevalence [30] 

An. funestus (w) – P. 
falciparum* 

L119F-GSTe2~ ↓ooc (homozygous only) (spo 
nd) 

[28] 

An. funestus (w) – P. 
falciparum** 

L119F-GSTe2~ ↑spo prevalence [29] 

Iso= isogenic laboratory line; w= reared from field-collected larvae; ester2,4= esterase A2/B2 and A4/B4 gene 

duplication (overproduction of esterases); ace-1= mutation in the acetylcholinesterase enzyme; kdr= 

knockdown resistance mutations in the voltage-gated sodium channel (VGSC); GST= glutathione-S-transferase; 

ooc= oocyst stage; spo= sporozoite stage; nd= not determined; *laboratory infection; **natural infection 

determined in field-collected adult mosquitoes; ~resistance status determined by post-dissection genotyping 

 

Table 3: Studies evaluating the effects of insecticide sublethal exposure on P. falciparum development. Only 

studies using natural vector-parasite combinations were included. 

Mosquito species 
and resistance 
status 

Insecticide exposure details Effect(s) on parasite 
development 

Reference 

An. stephensi (l – 
sus) 

0.25% permethrin for 30 min, 
immediately pi 

↓ooc prevalence  (N Hill, PhD thesis, 
London School of 
Hygiene and Tropical 
Medicine, 2002) 

An. gambiae 
(l – res ace-1 and 
kdr) 

0.1% bendiocarb (ace-1)/4% 
DDT (kdr) for 1h, 18 hr bi 

↓ooc prevalence (both 
strains)/ intensity (ace-1)  

[31] 

An. gambiae (w – 
res kdr) 

deltamethrin (2.5-5 mg/m2 vs 
10-16.7 mg/m2 doses) for 5 
min, ≤3 hr pi 

↓ooc prevalence/ 
intensity  

[33] 

l=laboratory line; w=reared from field-collected larvae; sus=insecticide susceptible; res= insecticide resistant; 

pi=post infectious bloodmeal; bi=before infectious bloodmeal; hr=hours; min=minutes; ooc= oocyst stage 
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