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Abstract  26 

The peritrophic matrix (PM) of haematophagus insects is a chitinous structure that surrounds 27 

the bloodmeal, forming a protective barrier against oral pathogens and abrasive particles. To 28 

establish an infection in the tsetse midgut, Trypanosoma brucei must colonise the 29 

ectoperitrophic space (ES), located between the PM and gut epithelium. Although unproven, 30 

it is generally accepted that trypanosomes reach the ES by directly penetrating the PM in the 31 

anterior midgut. Here we revisited this event by employing novel fluorescence and electron 32 

microscopy methodologies and found that instead, trypanosomes reach the ES via the newly 33 

secreted PM in the tsetse proventriculus. Within this model, parasites colonising the 34 

proventriculus can either migrate to the ES or become trapped within PM layers forming cysts 35 

that move along the entire gut as the PM gets remodelled. Early proventricular colonisation 36 

appears to be promoted by unidentified factors in trypanosome-infected blood, resulting in 37 

higher salivary gland infections and potentially increasing parasite transmission.  38 

 39 

 40 

 41 
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Introduction 50 

Trypanosoma brucei sub-species, the causative agent of human sleeping sickness and also 51 

partially responsible for animal trypanosomiasis in sub-Saharan Africa, are transmitted 52 

exclusively by flies of the family Glossinidae, commonly known as tsetse. These parasites 53 

have a complex life cycle within the fly, but key to transmission is the ability to first establish 54 

an infection within the insect midgut. After a fly ingests blood from an infected mammal, the 55 

“stumpy” bloodstream trypanosome transforms into the procyclic stage within the midgut 56 

lumen [1]. During this process, the coat of variant surface glycoproteins (VSG) is replaced by 57 

a different one composed of procyclins [2, 3]. In the most accepted model of parasite migration 58 

within the tsetse, procyclic trypanosomes first establish an infection in the ectoperitrophic 59 

space (ES) (defined as the space between the gut epithelium and the peritrophic matrix (PM) 60 

Fig. 1a), followed by colonisation of the proventriculus (also known as cardia), and terminating 61 

in the salivary glands, where the parasites become mammalian infective again [4-6] .  62 

 63 

The tsetse PM functions to compartmentalise the bloodmeal and to prevent both abrasion and 64 

infection of the gut epithelium [7], thus acting as a protective barrier that trypanosomes must 65 

overcome in order to reach the ES. Glossina morsitans secretes a type II PM, which is 66 

continuously produced at a rate of approximately 1 mm/h [8, 9] as an unbroken, multi-layered 67 

concentric sleeve (becoming fully formed after ~80-90h of being secreted [10]) by specialised 68 

cells in the proventriculus. This immunologically important organ [11], marks the border 69 

between the ectodermal foregut (i.e. buccal cavity, pharynx, oesophagus and crop) and 70 

entodermal midgut, functioning as a valve due to its arrangement into a ring-shaped fold 71 

(valvular cardiaca) [12] (see also Supplementary Fig. 1). After secretion, the tsetse PM is 72 

assembled as a trilaminate sheath (PM1-3) [13] (Supplementary Fig. 2), with each layer 73 

differing in thickness and composition, but mainly comprised of chitin fibres that are cross-74 

linked to structural glycoproteins (peritrophins) [13-15].  75 

 76 
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Several suggestions have been made for how trypanosomes reach the tsetse ES, including 77 

circumnavigation of the PM in the posterior gut [16, 17], penetration of the 'freshly secreted' 78 

PM within the proventriculus [18-21], or direct penetration of the 'mature' PM within the anterior 79 

midgut [22-25]. The latter hypothesis, which involves 1) parasite recognition to, and 80 

penetration of, PM1 layer (which faces the gut lumen; Fig. 1a), 2) direct crossing of PM2 and 81 

PM3 layers, and 3) exit to the ES, has persisted for over 40 years and has been influenced 82 

mainly by the visualisation of 'penetrating' trypanosomes between PM layers [22]. However, 83 

neither an adhesion ligand on PM1 has been identified nor has experimental evidence for 84 

steps 2 and 3 been obtained. Moreover, unlike parasites such as Leishmania [26] and 85 

Plasmodium [27], trypanosomes do not secrete PM-degrading enzymes such as chitinases 86 

[28]. Overall, this suggests that the fast turnover of a structurally complex tsetse PM would 87 

make a difficult barrier for trypanosomes to degrade, although, very little is known about the 88 

physiological response of type II PMs to oral pathogens [29, 30].  89 

 90 

In this work, we have revisited how T. brucei reaches the tsetse ES by employing several 91 

microscopy techniques, including serial block-face scanning electron microscopy (SBF-SEM), 92 

and novel confocal laser scanning microscopy (CLSM) methodologies, which collectively 93 

allowed the 3D-reconstruction of trypanosome-infected tsetse tissues. We propose that ES 94 

invasion occurs via the proventriculus during PM assembly rather than by direct crossing of 95 

the mature PM in the midgut, as previously suggested [22, 24, 25]. Furthermore, we give 96 

evidence that an early proventricular invasion by trypanosomes is promoted by unknown 97 

factor(s) present in trypanosome-infected blood, thus leading to a higher prevalence of salivary 98 

gland infections and potentially increasing parasite transmission. 99 

  100 

Results and Discussion 101 

CLSM shows trypanosomes are trapped within the tsetse PM  102 
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In order to visualise how trypanosomes interact with the tsetse PM, we analysed by CLSM ex 103 

vivo PMs stained with rhodamine-conjugated wheat germ agglutinin (WGA) [31] from either 104 

naïve flies or flies infected with eGFP-expressing trypanosomes (n=35) (Fig. 1 and 105 

Supplementary Videos 1 and 2). WGA exclusively recognises the PM chitin fibres as shown 106 

by its inhibition with chitin hydrolysate or when tissues were stained with the succinylated lectin 107 

(not shown). Whilst individual trypanosomes appear to be partially penetrating the PM or stuck 108 

on either the ES or the luminal side (Fig. 1d), z-stacks orthogonal projections depicted many 109 

parasites inside PM cysts as the rhodamine signal could be seen above and below the cells 110 

(Fig. 1f). This is better visualised when the eGFP signal is switched off. Moreover, the integrity 111 

of all PM cysts analysed was never compromised (i.e. no evidence of parasites penetrating 112 

any of the PM layers) and their thinner part (i.e. PM1, see EM section) always faced the luminal 113 

side. 114 

 115 

 116 

Fig. 1 | CLSM reveals trypanosome cysts formed between PM layers.   117 
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a, Cartoon depicting a 2D view of naïve tsetse midguts. Rotating 90° on both the X and Y axis gives an 118 

indication of what can be seen under CLSM and provides a guide for understanding the orientation of 119 

the ex vivo PMs in the orthogonal view. b, Same as Fig. 1a but depicting a section of a trypanosome-120 

infected gut. Although the three PM layers cannot be seen under CLSM, this schematic shows the 121 

position of the trypanosome cysts between PM1 and PM2; these cysts always orientate towards the 122 

luminal side of the gut (see also Fig. 2). ES, ectoperitrophic space. EC, epithelial cell. c, Washed, ex 123 

vivo PM from a naïve fly (11 dpi) stained with WGA (top). In infected flies (11 dpi), eGFP-trypanosomes 124 

can be seen (green) in close proximity to the PM, with DAPI (magenta) showing parasite nuclei and 125 

kinetoplasts (middle). Scale bar 200µm. Inset corresponds to the higher magnification of the same area 126 

as seen in bottom panel. DIC, Differential Interference Contrast. Scale bar 20µm. d, (1) CLSM 3D 127 

reconstructions from multiple z-stacks of washed ex vivo PMs from a fly at 9 dpi. Ectoperitrophic space 128 

side (ES), luminal side (LS), trapped trypanosomes (T). Scale bar 20 µm. (2) Maximum Intensity 129 

Projection (MIP) (top) and 3D reconstruction (bottom) of a trapped trypanosome. e, A PM sample from 130 

a naïve fly depicting how this tissue looks under DIC and MIP after rendering from multiple z-sections, 131 

whilst the orthogonal view shows the XZ/YZ planes of the folded PM section. f, DIC and MIP of an 132 

infected PM sample containing trypanosome cysts, whilst the orthogonal XZ-YZ views show 133 

trypanosomes trapped within PM layers. A second, smaller cyst-like structure can be seen in the XZ 134 

orthogonal view at a North-West position to the bigger cyst. ES, ectoperitrophic space. L, lumen. Scale 135 

bar 20µm.  136 

 137 

Transmission electron microscopy (TEM) analyses of trypanosome-infected midguts 138 

TEM was then used to better understand, at the ultrastructural level, the nature of the PM 139 

cysts and the overall localisation of parasites in infected midguts. We initially focused on the 140 

anterior midgut as previous work suggested trypanosomes may cross the PM in this region 141 

[22-25]. Parasites were observed either in the lumen, trapped within PM layers or already in 142 

the ES at all time-points (5, 8 and 11 dpi). In most infected flies, PM damage was a common 143 

occurrence, which was typically characterised by a separation of PM1 and PM2 layers (Fig. 144 

2a-c, e, and f), as previously reported [22-24]. PM1 appears as a thin (electron-dense) layer 145 

that is equivalent to the luminal rhodamine signal observed by CLSM (Fig. 1f). Furthermore, 146 
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this damage was not observed in naïve or refractory flies (not shown), and usually one or more 147 

trypanosomes were found within this separation. Occasionally, parasites were seen 148 

embedded within PM2 rather than ‘unzipping’ PM1 from PM2 (Fig. 2d). Moreover, at 11 dpi, 149 

multiple parasites were commonly found between PM layers, forming bigger cysts (Fig. 2f). 150 

The presence of trypanosome-filled cysts, which were more commonly observed in older 151 

infected flies, agrees with the structures observed by CLSM (Fig. 1b and d) and previous 152 

observations [25, 32]. Interestingly, in all instances where PM1 separated from PM2, we found 153 

no evidence of breaks, degradation or thinning of PM1, even when cysts appear to contain 154 

high parasite numbers (Fig. 2f). Furthermore, we never observed parasites in the process of 155 

entering or leaving the PM1 or PM2 side, partially in or out of the PM, nor did we see a 156 

complete break through PM2 layer.  157 

 158 

 159 

Fig. 2 | TEM images of sections showing trypanosomes between tsetse PM layers. Typical 160 

damage found in infected flies is the separation of PM1 from PM2. Usually, the electron dense (PM1) 161 

layer appears unbroken, but can be seen peeling away from the second layer (arrowheads). Note that 162 
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PM1 remains unbroken even when cysts contain high parasite numbers (f). Images were taken from 163 

flies at 11 dpi (a-c, and f), 8 dpi (d) or 5 dpi (e). L, lumen. ES, ectoperitrophic space. Ep, epithelial cells. 164 

Numbers of technical and biological replicates used, average number of grids and average number of 165 

images per separate grid can be seen in Supplementary table 1.  166 

 167 

SBF-SEM analysis of a trypanosome cyst reveals conserved parasite orientation and 168 

absence of PM degradation  169 

To gain more insights into the organisation of trypanosomes within PM cysts located in the 170 

anterior midgut, we used SBF-SEM. We prepared >500 serial sections (each ~100nm thick) 171 

of a cyst sample (from a fly at 11 dpi) and then 3D-reconstructed this region (Fig. 3, 172 

Supplementary Video 3 and 4). It was observed that all parasites, which appeared to be 173 

aligned in the same direction as indicated by the orientation of the flagellar tips, were 174 

exclusively contained within PM1 and PM2 (Fig. 3c). However, no evidence of crossing or PM 175 

damaged induced by trypanosomes was seen corroborating the CLSM and TEM observations 176 

(Fig. 1 and Fig. 2).  177 

 178 

Why most trypanosomes trapped within the cyst (Fig. 3) appear to have the same orientation 179 

is unknown, particularly when there is no evidence of cell duplication (e.g. flagellar division) in 180 

this and other cysts that were analysed by TEM. Alternatively, we hypothesise that 181 

proventricular parasites may form cysts by collective motion (CoMo) [31] whereby several 182 

trypanosomes, swimming in the same direction, may simultaneously penetrate through an 183 

immature PM thus becoming trapped between its layers.  184 

 185 
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                  186 

Fig. 3 | SBF-SEM 3D reconstruction of a trypanosome cyst in the PM from the anterior midgut. 187 

Sample taken from a fly at 11 dpi. See also Supplementary Video 4. a, Multiple trypanosomes between 188 

PM1 and PM2. Arrows show the point of separation as trypanosomes reside inside and both layers 189 

remain unbroken. ES, Ectoperitrophic Space. L, Lumen. b-e, SBF-SEM slices merged with manual 190 

segmentation. b, Image illustrating breaks or damage to PM1 (grey) are absent during a trypanosome 191 

infection. c, Multiple parasites between PM1 and PM2; most parasites appeared oriented in the same 192 

direction as indicated by the position of the anterior end flagellar tips. d, A reverse view of the image 193 

depicted in 4c, showing parasites contained within PM1. e, Still depicting one parasite (blue) in the 194 

ectoperitrophic space side. f, A measurement of a partially reconstructed trypanosome within the cyst. 195 

Scale bars are representative of the SEM image (not the reconstruction).  196 

 197 

Trypanosomes reach the ES by early invasion of the proventriculus 198 

The fact that none of the trypanosomes inside the reconstructed cyst or the ones observed by 199 

either TEM or CLSM appear to penetrate the PM layers was puzzling. This raises the question 200 

of how these cysts are formed if no evidence of parasite crossing is seen in the anterior midgut. 201 
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One clue, however, came from the lengths of individual trypanosomes from inside the (3D-202 

reconstructed) cyst, which were longer than average midgut procyclics (~20µm; see example 203 

in Fig. 3f) and so similar in size to mesocyclic proventricular forms [31, 33] (see also Fig. 7). 204 

Therefore, we hypothesised that trypanosome-containing cysts could originate in the 205 

proventriculus during PM assembly and consequently, analysed the proventriculus from 206 

infected flies at 5 (early infection, Fig. 4) and 11 (late infection, Fig. 5) dpi. After 5 dpi, the 207 

proventriculus was heavily infected (63.6% prevalence) with trypanosomes (Fig. 4b-e). 208 

Parasites were observed to be adjacent to where the foregut cells become confluent with 209 

midgut cells. This suggests trypanosomes can overcome or bypass the PM at this point (Fig. 210 

4b), confirming previous observations [18-21]. Parasites were also observed in the lumen and 211 

ectoperitrophic side of the PM and, in some cases, in close proximity to (but not penetrating) 212 

the epithelial cells. Moreover, they could also be seen between PM1 and PM2 (Fig. 4d). A 213 

proventriculus from a fly at 5 dpi (Supplementary Fig. 3) was subsequently processed for SBF-214 

SEM at the regions of interest (ROI) shown (Supplementary Video 5 and 6), and a partial 215 

reconstruction of a small number of parasites that were in close proximity to the chitinous 216 

foregut was performed on ROI 2 (Supplementary Video 7).  217 
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 218 

Fig. 4 | TEM images of an early (5 dpi) proventricular invasion by trypanosomes  219 

a, Schematic depiction of the tsetse proventriculus as seen in the sagittal plane. The proventriculus is 220 

a transition area between the foregut (purple), comprised of the oesophagus (O) and crop (C) (lined 221 

with cuticular intima, CI), and midgut cells (yellow). The PM (orange) originates from a number of 222 

specialised epithelial cells, collectively termed annular pad, and is continuously secreted posteriorly. 223 

Dashed squares represent the approximate areas that the micrographs in figures 5b-e were taken from, 224 

with the letters inside corresponding to the lettered micrographs. L, lumen. b, Area of cell transition 225 

B 
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between the foregut (FG) and the proventricular/midgut epithelial cells (Ep). Trypanosomes (T) can 226 

already be seen near to the epithelial cells. CI, Cuticular Intima. MV, microvilli (8200 x). c, Only PM2 is 227 

visible and trypanosomes appear to be filling the cavity between the foregut and epithelial cells (8200 228 

x). d, Tightly packed parasites can be seen already trapped between PM1 and PM2, and a single 229 

trypanosome (T) can also be seen already in the ES (8200 x). e, The proventriculus is heavily infected, 230 

and parasites are located in the lumen, the ES and between PM layers (1700 x). All midguts from the 231 

same proventriculus samples shown in this figure had trypanosome infections (not shown).   232 

 233 

At 11 dpi, trypanosomes continued to be seen in the proventriculus (Fig. 5) (50% prevalence). 234 

However, whilst at 5 dpi parasites were located in the ES, the lumen and also between PM 235 

layers, by 11 dpi trypanosomes were neatly contained either within PM layers or inside the ES 236 

(Fig. 5c-d). In addition, cyst-like structures such as those in the anterior midgut could be 237 

observed (Fig. 5b) and with no evidence of a damaged PM1 layer. In summary, at 5 dpi, flies 238 

show two clear phenotypes: susceptible – those that have a high parasite load (including 239 

trypanosomes near to the cuticular intima of foregut cells) and refractory – those with no sign 240 

of parasite infection. In the former, trypanosomes widely distribute throughout the 241 

proventriculus, filling all available spaces. The high parasite numbers indicate trypanosomes 242 

are replicating during early infection. In contrast, by 11 dpi, parasites are absent from the 243 

proventriculus lumen and concentrated within PM layers. Overall, TEM analyses of infected 244 

proventriculi suggest trypanosomes are capable of penetrating the PM at its point of synthesis. 245 

Here PM2 is not fully formed and exists as a disorganised structure [21], so it is possible for 246 

trypanosomes to become passively engulfed by it rather than actively penetrating as 247 

previously suggested.  248 

 249 
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 250 

Fig. 5 | Proventricular trypanosomes contained within the PM and formation of trypanosome-251 

filled cysts at 11 dpi. Micrographs are taken from an equivalent area of the proventriculus as shown 252 

in Fig. 5. a, Area of cell transition between the foregut (FG) and the epithelial cells (Ep). Trypanosomes 253 

(T) can already be seen near to the epithelial cells. CI, Cuticular Intima. MV, microvilli (8200 x). b, Cysts 254 

of trypanosomes are formed in the proventriculus (8600 x). c, Trypanosomes neatly contained in the 255 

ES with no visible parasites in the lumen (L). Parasites can also be seen between PM1 and PM2 (1700 256 

x). d, High numbers of parasites (T) can be seen trapped between PM1 and PM2 layers, and within the 257 

ES (8600 x). 258 

 259 

CLSM confirms early proventricular colonisation 260 

To further demonstrate an early proventricular invasion by trypanosomes, we used CLSM to 261 

localise live parasites (eGFP-expressing J10 BSFs, one of the strains used for TEM analysis) 262 

within tsetse tissues over a 5-day time course (Fig. 6). This parasite strain expresses eGFP 263 
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only upon transformation into procyclics. Trypanosomes were detected within the 264 

proventriculus from 2 dpi (10% infection prevalence) onwards; however, at 3 dpi 265 

(Supplementary Fig. 4), heavy proventricular infections could be seen in 35% of the flies. 266 

Additionally, most of the flies at 3-5 dpi presented a high midgut infection particularly in the 267 

anterior midgut, either within the ES or the midgut lumen (Fig. 6a and 6d, and Supplementary 268 

Videos 8, 11 and 12).  269 
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  270 

  271 

Fig. 6 | CLSM analysis of the early proventicular infection by bloodstream trypanosomes. a, Time 272 

course of infection up to 5 dpi with eGFP BSFs J10 strain. Figure shows representative proventriculi 273 

and anterior midguts from each dpi. "Day 0", proventriculus from a fly dissected 1h after receiving an 274 

infected meal. White arrowhead at 2 dpi shows trypanosomes within the proventriculus (see also 275 

Supplementary video 8). Scale bar 200 µm under 10X. b, Example of an infected proventriculus and 276 
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anterior midgut (3 dpi) showing the location of trypanosomes (green) in relation to the PM (orange). Top 277 

panel, naïve flies (Supplementary videos 9 and 10). Both naïve and trypanosome-infected flies received 278 

serum meals containing rhodamine-WGA four hours prior to dissection, which shows PM originating 279 

from proventriculus. SiR-actin labels the filamentous-actin (white) of all tsetse proventricular cells and 280 

DAPI (magenta) their nuclei. Bottom panel, a heavy trypanosome infection inside the proventriculus 281 

and anterior midgut (Supplementary videos 11 and 12). Insets were analysed at a higher magnification 282 

(6c). Scale bars 100 µm under 10X. c, top, Representative stack from a 3D-reconstructed 283 

proventriculus and anterior midgut at the region of interest from a naïve fly. Scale bar 100 µm under 284 

10X. c, bottom, Representative stack from a 3D-reconstructed infected proventriculus and anterior 285 

midgut. Trypanosomes can be seen in the ES within either the proventriculus or the anterior midgut, 286 

whilst the orthogonal views show trypanosomes either within the lumen or the PM layers (white section), 287 

or within the ES (cyan section). Scale bar 100 µm under 10X. d, CLSM 3D reconstructions from multiple 288 

z-stacks of proventriculi and anterior midgut from a naïve (top) and infected fly at 5 dpi (middle and 289 

bottom). Scale bar 100 µm under 10X.        290 

 291 

The same early proventricular infection phenotype was also seen in flies infected with BSFs 292 

from another T. b. brucei strain (AnTat 1.1, clone 90:13) (Supplementary Fig. 5a). However, 293 

and completely unexpected, when infections were carried out using in vitro cultured AnTat 1.1 294 

BSFs (cBSF) proventricular trypanosomes could only be seen at 15 dpi or later 295 

(Supplementary Fig. 5a-b). Furthermore, the ability of cBSFs to colonise the proventriculus 296 

few days after infection was severely reduced as early as 9 days after adaption in culture when 297 

compared to BSFs (Supplementary Fig. 5a). Strikingly, whilst BSFs are able to establish 298 

normal salivary gland (SG) infections (21% infection prevalence), recently adapted cBSFs 299 

show lower prevalence (10%) and cBSFs completely fail (0%) to colonise the tsetse SGs 300 

(Supplementary Fig. 5a). Furthermore, when we retrospectively analysed infection data 301 

collected in our lab over a period of three years, it was confirmed that almost 30% of flies fed 302 

with AnTat BSFs developed SG infections (Supplementary Fig. 5c). In contrast, flies that 303 

received bloodmeals containing either procyclic or cBSFs produced ~10% and 0% SG 304 

infections, respectively, after 30 days. Thus, an early proventricular colonisation by 305 

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/513689doi: bioRxiv preprint 

https://doi.org/10.1101/513689


17 
 

bloodstream trypanosomes results in a higher infection prevalence of the tsetse salivary 306 

glands. 307 

 308 

To understand the dynamics of trypanosome development in early proventricular infections, 309 

we isolated parasites from infected proventriculi and midguts at 5 and 15 dpi, and analysed 310 

length (Fig. 7), morphology, and kinetoplast position relative to the nucleus [4, 31, 33] 311 

(Supplementary Fig. 6). Proventricular trypanosomes at 5 dpi, although on average ~3µm 312 

shorter in length than those observed at 15 dpi, were significantly longer (~35µm average 313 

length) and morphologically different than midgut procyclics, at either time point. This implies 314 

procyclic forms can differentiate into mesocyclics early on within the proventriculus. 315 

Epimastigote forms developed at a slower rate and were only detected from 15 dpi. 316 

 317 

 318 

Fig. 7 | Analysis of trypanosome life stages at different infection times and tsetse tissues. 319 

Mean cell length (µm) of trypanosomes isolated from fly midguts (MG) and proventriculi (PV) at either 320 

5 dpi (●) or 15 dpi (□) were DAPI stained and analysed by CLSM. Midgut trypanosomes include free 321 

swimming and encysted parasite forms. Error bars represent ± s.d. Vertical lines show statistical 322 
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significance (one-sided t-test, assuming normal distribution) among life stage groups and the two time 323 

points (p-values indicated next to vertical lines). 324 

 325 

We also compared the expression of procyclin, a surface glycosylphosphatidylinositol (GPI)-326 

anchored glycoprotein marker, in proventriculus and midgut trypanosome populations using 327 

antibodies specific for each form (EP or GPEET; Fig. 8) [34]. We observed a similar pattern of 328 

procyclin expression in parasites isolated from both organs at 3, 5 and 7 dpi. Whilst EP 329 

procyclin was detected in 100% of cells at all time points, both forms of GPEET 330 

(unphosphorylated and phosphorylated) were primarily detected in proventricular and midgut 331 

forms at 3 dpi. Altogether, these results suggest that although proventricular trypanosomes 332 

may be developing at a faster rate than those in the midgut, the programme of procyclin 333 

expression mirrors that of proliferating midgut procyclics; i.e. GPEET is only expressed early 334 

on during the infection (regardless of the trypanosome stage and tissue infected) and EP 335 

becomes the dominant form from 5 dpi onwards [2, 3]. Interestingly, at 3 dpi, midgut 336 

trypanosomes showed a fully posterior kDNA compared to proventricular forms at the same 337 

time-point (Fig. 8c), which is more reminiscent of transforming 'stumpies' than fully developed 338 

procyclic cells.  339 

 340 
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 341 

Fig. 8 | T. brucei procyclin expression during early infection in the tsetse. a, Profile of procyclin 342 

expression in trypanosomes during a time course infection experiment (n=1) as determined by 343 

immunostaining. Percentage of T. brucei cells from midgut (MG) and proventriculus (PV) at 3, 5 and 7 344 

dpi, either recognised by antibodies against GPEET (phosphorylated (dark blue) or unphosphorylated 345 

(light blue)) or EP procyclins (orange). Numbers on bars represent individual trypanosomes analysed. 346 

b, Representative immunostaining images of T. brucei procyclic cultured forms (PCF) (antibody 347 

controls) shown in differential increased contrast (left) and a merged image of DAPI DNA counterstain 348 

(white) with either anti-EP (orange) or anti-GPEET (phosphorylated; blue) (right). c, >100 cells per 349 

tissue and time point were analysed for each antibody with the exception of cells from the PV at 3 dpi 350 
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due to very few infections at this time (n=11, 9 and 7 for phosphorylated GPEET, unphosphorylated 351 

GPEET and EP, respectively). Imaged at 63X; Scale bars 10µm.  352 

       353 

Do serum factors influence early colonisation of the proventriculus? 354 

We also investigated whether factors in trypanosome-infected serum promoted an early 355 

proventricular colonisation (Fig. 9). Teneral flies that received bloodmeals consisting of 356 

established AnTat 1.1 90:13 cBSFs, spiked with either naïve serum or serum from mice 357 

originally infected with BSFs AnTat 1.1 90:13, showed no proventricular colonisation 358 

compared to BSFs at 5 dpi (i.e. >30% infection prevalence; Fig. 9a). Infectivity was only 359 

evident at 10 dpi (Fig. 9b). Surprisingly, flies that were fed with bloodmeals consisting of AnTat 360 

1.1 90:13 procyclic cultured forms (PCFs) spiked with infected serum showed a significant 361 

10.3-fold increase in proventriculus infection prevalence (>87% average) at 5 dpi compared 362 

with the control serum group. This suggests that serum factors from trypanosome-infected 363 

blood may facilitate early proventricular infections only once transformation from BSFs into 364 

PCFs has occurred within the fly gut. However, these results also indicate that intrinsic cell 365 

factors are important to establish an early proventricular infection as this phenotype was lost 366 

during long-term culture and could not be rescued in the presence of trypanosome-infected 367 

serum (Fig. 9a).   368 

 369 

Fig. 9 | T. brucei life stages display different infection phenotypes in the fly when in the presence 370 

of serum from trypanosome-infected animals. Mean trypanosome infection prevalence (percentage) 371 
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in midguts and proventriculi of tsetse infected with bloodmeals consisting of serum harvested from either 372 

trypanosome-infected blood or naïve and then equally combined with washed parasites (either cultured 373 

procyclics forms (PCFs), cultured bloodstream forms (cBSFs) or bloodstream forms from infected mice 374 

(BSFs)) and horse blood, were given to teneral flies and then infection prevalence was scored after 5 375 

(a) or 10 (b) dpi. Error bars show ± s.d. Horizontal lines represent statistical significance from two 376 

biological replicates (n=2) using a one-sided t-test assuming normal distribution (p-values indicated on 377 

the lines). 378 

 379 

One possible serum factor that could promote establishment of an early proventricular 380 

infection are released variable surface glycoproteins (VSGs) [35-39]. However, when flies 381 

were infected with Antat 1.1 PCFs in bloodmeals containing several concentrations of soluble 382 

(i.e. GPI-cleaved) VSG variant MITat1.4, we saw no significant difference in either 383 

proventricular or midgut infectivity (data not shown). It is worth mentioning that upon ingestion 384 

of a trypanosome-infected bloodmeal, released VSG molecules –presumably from 385 

transforming parasites– lead to a transcriptional down-regulation of PM associated genes 386 

expressed by proventricular epithelial cells, including several peritrophins [29]. The authors 387 

conclude that this interference facilitates the crossing of the PM by procyclic trypanosomes in 388 

the anterior midgut during early infection. However, based on the data herein presented, we 389 

suggest that the VSG-induced down-regulation of proventricular genes may instead facilitate 390 

parasite crossing of the PM in the proventriculus rather than in the anterior midgut in which 391 

the PM is present as a fully assembled, multi-layered tissue. Furthermore, whilst at a 392 

transcriptional level this may be true, a comparison of the PM width in the anterior midgut 393 

between naïve and infected flies (at either 5 or 11 dpi) showed no significant difference in 394 

architecture or thickness as evaluated using TEM. On average, the tsetse PM is ~300nm in 395 

all conditions (Supplementary Fig. 7).  396 

 397 

Our results support a new infection model where recently transformed T. brucei procyclics 398 

reach the ectoperitrophic space after crossing the peritrophic matrix located within the 399 

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/513689doi: bioRxiv preprint 

https://doi.org/10.1101/513689


22 
 

proventriculus [18, 19], and not in the anterior midgut as previously suggested [22, 24, 25]. In 400 

this scenario, procyclic trypanosomes can either first establish a proventricular infection and 401 

then gradually invade the ES after 3 dpi or, alternatively, directly establish an ES infection in 402 

the anterior midgut and then migrate to the proventriculus as the infection progresses (usually 403 

after one week depending on the parasite strain). The precise location of PM penetration by 404 

trypanosomes within the proventriculus remains unknown; however, we hypothesise that it 405 

may occur in the region where specialised epithelial cells (annular pad) secrete the different 406 

PM layers, as suggested by Fairbairn in 1958 [20] and later by Moloo in 1970 [21]. If so, this 407 

implies a race against time for trypanosomes as they must escape the confines of the PM to 408 

gain entry into the ES before it matures to a point where they become trapped in cysts that 409 

move along the midgut (due to continuous PM secretion) and then become potentially 410 

eliminated in the hindgut (posterior end; Fig. 10). Indeed, TEM analysis of the hindgut from 411 

infected flies showed parasites with abnormal morphology (i.e. containing many intracellular 412 

vesicles and multiple flagella) and a damaged PM (Supplementary Fig. 8), suggesting a 413 

possible degradation as parasite cysts transit towards this region. The remarkable PM 414 

expansion observed in some of the cysts at 11 dpi, where the PM layers remain intact despite 415 

containing several tightly packed trypanosomes, is indicative of a highly flexible PM rich in -416 

chitin fibres cross-linked to O-glycosylated peritrophins [14, 40]. Whether parasite 417 

encapsulation within the PM is a novel tsetse defence mechanism to control trypanosome 418 

infection intensity remains to be elucidated, but one should note this process does not lead to 419 

self-cure. In fact, in flies at least 40 dpi, similar cysts have been reported within the 420 

proventriculus in which the integrity of PM1 seems to be compromised, although the 421 

phenotypic differences could be accounted for by fly age and duration of infection [41]. In 422 

summary, the model of trypanosome PM crossing in the anterior midgut, which for several 423 

decades has been mainly supported by TEM visualisation of parasite cysts in the same region 424 

[22], can no longer be accepted as the sole route of ES invasion based on our collective 425 

microscopy evidence.  426 
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 427 

Fig. 10 | Schematic (artistic) representation depicting the entry trypanosomes into the 428 

ectoperitrophic space via the proventriculus. Specialised epithelial cells in the proventriculus 429 

annular pad are responsible for PM (orange) assembly and secretion. Ingested trypanosomes (green) 430 

either remain in the proventriculus lumen (1) successfully migrate to the ES through a more fluid PM in 431 

the proventriculus (2) before it maturates into a rigid structure as seen in the midgut, or become trapped 432 

between PM layers (cysts) (3). Those that have become trapped between PM layers are carried through 433 

to the midgut as the PM continues to be secreted (4). "O" and C" represents direction of the blood flow 434 

from either the oesophagus or crop, respectively.   435 

 436 

Why procyclic trypanosomes ‘hide’ within the proventriculus and/or midgut ES to establish an 437 

infection is unknown. As previously suggested, the most likely explanation is that the tsetse 438 

ES offers a safer environment to proliferative procyclic trypanosomes against the action of 439 

harmful blood factors, including reactive oxygen species [11, 42] and vertebrate complement 440 

[43]. In addition, considering that the tsetse PM is continually secreted, attachment to it from 441 

the midgut lumen would result in the eventual excretion of trypanosomes. This contrasts to 442 

mechanisms used by Leishmania and Plasmodium parasites within the gut of the sand flies 443 

and mosquitoes, respectively, as these parasites secrete chitinases to degrade the type I PM 444 

of these insects in order to migrate [26, 27, 44]. Trypanosomes do not secrete chitinases, 445 

however, exochitinase activity from the tsetse symbiont Sodalis glossinidus [45] or bloodmeal 446 
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chitinases [46] may facilitate trypanosomes penetration into the proventriculus. Thus, invasion 447 

of the ES by penetrating an immature PM in the proventriculus may be an adaptive strategy 448 

to compensate for the inability of all T. brucei sub-species (and possibly also for T. 449 

congolense) to attach to and degrade a mature tsetse PM. In fact, a type II PM is a more 450 

complex and organised structure compared to type I PMs, and blood feeding insects secreting 451 

type I PMs are usually more permissive disease vectors [7].  452 

 453 

It is not clear what the impact of an early proventricular colonisation has on trypanosome 454 

development or transmission. Our results indicate that establishment of an early proventricular 455 

infection may increase parasite transmissibility as the proportion of infected SGs is much 456 

higher compared to strains (or parasite stages) that first colonise the midgut. The tsetse 457 

proventriculus, besides regulating the blood flow coming from the oesophagus and crop, and 458 

also being the place of PM synthesis, is an immunoregulator organ that responds to a 459 

trypanosome infection by increasing the levels of nitric oxide and radical oxygen species, and 460 

parasite-specific antimicrobial peptides [11, 47]. Collectively, these molecules appear to be 461 

key in conferring to tsetse refractoriness to a trypanosome infection. Thus, it is possible that 462 

during an early colonisation of the proventriculus, procyclic trypanosomes in combination with 463 

serum factors present in infected blood down-regulate the release of immunoregulator 464 

molecules, which in turn will facilitate establishment of a parasite infection and a faster 465 

development (i.e. formation of epimastigotes) within this organ. This is in contrast to a later 466 

proventricular colonisation phenotype, which normally occurs after 10 dpi and correlates with 467 

a lower transmission index.  468 

 469 

There is increasing evidence that procyclic trypanosomes undergo social motility (SoMo) in 470 

vitro [48-50]. This phenomenon appears to occur only in early procyclic cells, which are 471 

characterised by expressing GPEET procyclin on the surface [51]. Furthermore, although 472 

SoMo is yet to be observed within the fly's midgut, it may play a role in the migration of midgut 473 
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procyclics to the proventriculus [52, 53]. We did not investigate whether trypanosome SoMo 474 

occurs in insecta, but our data suggest that this phenomenon could happen in developing 475 

(early) procyclics in the proventriculus, as supported by the expression of GPEET procyclins 476 

in proventricular-associated parasites (Fig. 8). Alternatively, there is strong evidence for 477 

trypanosome CoMo within infected tsetse tissues [31], although this may not be operative 478 

during an early proventricular infection. However, both phenomena (SoMo vs. CoMo) are not 479 

necessarily mutually exclusive as they could operate in parallel or at different stages of 480 

trypanosome development in tsetse.  481 

 482 

In conclusion, we have developed new microscopy methodologies that allowed us to revisit 483 

the route by which trypanosomes migrate through the tsetse gut. We provide evidence that T. 484 

brucei procyclics reach the tsetse ES when they encounter the immature PM secretions at its 485 

point of production in the proventriculus. Furthermore, trypanosomes observed within PM 486 

cysts in the anterior midgut are likely formed in the proventriculus during PM assembly and 487 

are not indicative of PM penetration in this region. Moreover, unknown factors present in 488 

infected blood (of mammalian and/or parasite origin) may promote early proventricular 489 

invasion, which in turn leads to higher salivary gland infection rates and potentially increasing 490 

parasite transmission.  491 

 492 

Materials and Methods  493 

Tsetse                   494 

Male flies were reared in an established colony (Glossina morsitans morsitans (Westwood)) 495 

at the Liverpool School of Tropical Medicine and maintained on sterile, defibrinated horse 496 

blood (TCS Biosciences) at an ambient temperature of 27°C ± 2°C and a relative humidity of 497 

65-75%. Experimental flies were collected at <24 hours post-eclosion (p.e.) and offered a 498 

bloodmeal every 2 days before being starved for 72 hours in preparation for dissection at 499 
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variable timepoints (5, 8 or 11 dpi) control blood meal. Flies used for CLSM were an exception 500 

to this feeding regime (see below).  501 

 502 

Trypanosome strains 503 

Three different strains of Trypanosoma (Trypanozoon) brucei brucei were used in this study. 504 

TSW-196 BSFs [54] (from murine stabilates) were used for TEM experiments. J10 505 

(MCRO/ZM/73/J10) green fluorescent protein (eGFP) expressing BSFs [55] were used for 506 

TEM, CLSM and both BSFs and procyclic forms (PCFs) used in the procyclin expression 507 

experiments. BSFs of AnTat 1.1 90:13 engineered with an mNeonGreen expressing construct 508 

was used for CLSM (see below), whilst cultured BSFs (cBSFs) and PCFs of the same strain 509 

was used for CLSM and infected serum experiments. For infections, flies <24 hours p.e. were 510 

fed either a blood or serum meal containing one of the strains described above; unfed flies 511 

were removed and conditions prior to sacrifice are the same as described for control flies.  512 

 513 

Trypanosome growth and transformation  514 

Cultured BSFs were grown in HMI-9 supplemented with 10% foetal bovine serum (FBS) at 515 

37°C with 5% CO2 whereas PCFs were grown in SDM-79 with 10% FBS at 27°C and 5% CO2. 516 

Cultured BSFs were transformed to PCFs using 6mM cis-aconitate in DTM (Differentiation 517 

medium [56]) supplemented with 20% FBS at 27°C and 5% CO2 for 24 hours. To generate 518 

the trypanosome mNeonGreen clone, 4x107 AnTat 1.1 90:13 cultured BSF cells in exponential 519 

growth phase were transfected with 10µg of a modified pALC14 plasmid ([57]) for ectopic 520 

expression of the tetracycline-inducible mNeonGreen protein under a GPEET procyclin 521 

promoter, using an Amaxa 4D nucleofector (program FI-115). Clonal cell lines were selected 522 

by limiting dilution in SMD-79 10% FBS, containing 1µg/mL puromycin.  523 

  524 

Transmission Electron Microscopy 525 

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/513689doi: bioRxiv preprint 

https://doi.org/10.1101/513689


27 
 

Tsetse midguts or proventriculi were dissected in ice-cold fixative (0.2M cacodylate, 4% 526 

paraformaldehyde (PFA), 2.5% glutaraldehyde (GA), 3% sucrose, pH 7.4), transferred to fresh 527 

fixative, and incubated on ice for an hour. Tissues were then washed twice in ice-cold 0.1M 528 

cacodylate buffer containing 3% sucrose (pH 7.4) for 2 minutes and left in 1% osmium 529 

tetroxide for an hour at room temperature. After washing with copious amounts of ice-cold 530 

0.1M cacodylate buffer, followed by washes with distilled water, tissues were placed in 0.5% 531 

uranyl acetate in 30% ethanol before going through a series of 10 minute ethanol washes in 532 

increasing concentration (30-80%) and left for 30 minutes in 100% ethanol. Graded hard 533 

embedding resin 182 (TAAB) was mixed in a 1:1 ratio with 100% ethanol and left on tissues 534 

overnight, then replaced with fresh 100% resin for 30 minutes and placed in an oven at 60°C 535 

for 48 hours to cure. Ultrathin orthogonal serial sections (70-74 nm) were cut through regions 536 

of interest and collected on freshly prepared Pioloform®-coated 200 (for midguts and 537 

proventriculi) or 100 (for proventriculi) mesh nickel grids, before post-staining in uranyl acetate 538 

(5% w/v in 30% ethanol) and 50% lead citrate. Sections were viewed at 100 KV in a FEI Tecnai 539 

G2 Spirit and all micrographs were taken using either an Olympus Megaview3 or a Gatan 540 

Orios camera with AnalySIS or Gatan GMS2 software respectively.  541 

 542 

SBF-SEM and 3D reconstructions 543 

Tissues were prepared and stained for SBF-SEM and 3D reconstruction using a modified 544 

method based on the protocol of Deerinck et al 2010 [58]. Briefly, tsetse midguts were 545 

dissected in ice-cold fixative (0.1M cacodylate, 2% paraformaldehyde (PFA), 2% 546 

glutaraldehyde, 3% sucrose, 2mM calcium chloride pH 7.4) or modified fixative (0.1M 547 

cacodylate, 2% PFA, 2% GA, 3% sucrose, 0.1% tannic acid pH 7.4) followed by washes in 548 

0.1M cacodylate buffer pH 7.4 with 2mM calcium chloride prior to staining with reduced 549 

osmium tetroxide (2%) containing 1.5% potassium ferrocyanide in 0.1M cacodylate buffer. 550 

Midguts were washed in distilled water and incubated in 1% thiocarbohydrazide (TCH) for 30 551 

minutes before further washes in distilled water. A second osmium (2%) staining was carried 552 
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out at room temperature for 40 minutes, followed by washing in distilled water before 553 

incubation in 1% aqueous uranyl acetate overnight at 4°C. A final wash in distilled water was 554 

carried out and samples were stained in warmed lead aspartate for 30 minutes before 555 

dehydration in graded ethanol 30-90% followed by 100% ethanol. For samples dissected in 556 

modified fixative an additional step was added and samples were placed in 100% propylene 557 

oxide following the series of ethanol washes. Samples were placed in hard resin 812 (TAAB) 558 

at a 1:1 ratio with 100% propylene oxide and left overnight before infiltration with increasing 559 

ratios of resin:propylene oxide until 100% resin and left to cure for 48 hours. Samples were 560 

prepared for SBF-SEM by mounting a small square of embedded sample onto a cryo pin with 561 

conductive epoxy. Excess resin was trimmed away with an ultra-microtome and the sample 562 

coated with 10nm AuPd using a Q150T sputter coater (Quorum Technologies). Samples were 563 

imaged with a FEI Quanta 250 FEG modified with a Gatan 3View running GMS2 software. All 564 

samples were imaged in Low vacuum mode with a chamber pressure of 50 Pa. For the midgut 565 

imaging conditions were 2.2 KV, dwell time of 12 μs per pixel, magnification 26 K, giving a 566 

resolution of 3.3 nm in X and Y 100nm in Z over 474 slices of which the first 200 were taken 567 

for reconstruction. For proventriculus imaging conditions were 2 KV, dwell time 12 μs per pixel, 568 

magnification 8.7 K and Z was reduced to 40nm and 3 regions of interest (ROI) were scanned, 569 

all of which were 458 with a resolution of 18.7 nm in X and Y. The reconstruction was carried 570 

out on the first 400 slices of ROI 2.  GMS2 was used for alignments and conversions to TIFFs 571 

and the reconstructions were carried out using Bitplane Imaris version 8.1.  572 

 573 

Confocal Laser Scanning Microscopy 574 

Whole tissues 575 

G. m. morsitans teneral flies (0-24 hours old) were infected with FBS containing 10% rat blood 576 

spiked with either cBSF or BSF AnTat or J10 eGFP BSF trypanosomes (final density of 2 x 577 

106 cells) and 10g/mL wheat germ agglutinin (WGA)-rhodamine. A naïve group (uninfected) 578 

was fed with serum meal only. Flies were fed every day with FBS 10g/mL WGA-rhodamine 579 
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and dissected in PBS to score trypanosome infection in midgut and proventriculus. The 580 

proventriculi were fixed in fresh 1% PFA on ice for 1 hour, stained with SiR-actin (1:1000 581 

dilution in PBS, Cytoskeleton Inc.) for 4 hours, incubated with 300ng/mL DAPI for 10 minutes 582 

and mounted in 1% low melting agarose with SlowFade Diamond antifade (ThermoFisher). 583 

Samples were imaged using a Zeiss LSM800 confocal laser scanning microscope.  584 

 585 

Isolated PM  586 

Flies infected with J10 eGFP BSF trypanosomes, were dissected at 5, 9 or 11 dpi and their 587 

peritrophic matrix was dissected out in ice-cold fresh 1% PFA and transferred to poly-lysine 588 

slides for 1 hour. Samples were incubated with 10g/mL WGA-rhodamine and 300ng/mL 589 

DAPI for 15 minutes, washed and mounted in SlowFade Diamond antifade (ThermoFisher). 590 

Samples were imaged using a Zeiss LSM800 confocal laser scanning microscope. 591 

   592 

Procyclin immunostaining  593 

Teneral flies were infected with BSFs J10 eGFP strain and after 3, 5 or 7 dpi both proventriculi 594 

and midguts were dissected on a glass slide in fresh PBS and each tissue manually ruptured. 595 

Released parasites were harvested and pooled for each tissue and timepoint. Cells were 596 

gently pelleted and fixed in 4% PFA for 30 minutes, before washing in PBS and added to poly-597 

lysine slides. Cells were left to adhere for 30 minutes at room temperature in a humid chamber 598 

before an hour block in 20% foetal bovine serum in PBS. The following anti-procyclin 599 

antibodies were then added for 1 hour in blocking solution; mAb 9G4 (mouse anti-GPEET 600 

unphosphorylated form, Biorad) 1:200 dilution, mAb 5H3 from hybridoma supernatant (mouse 601 

anti-GPEET phosphorylated form, Professor Terry Pearson) 1:10 dilution and mAb Clone 602 

TBRP1/247 (mouse anti-EP, Cedarlane) 1:800 dilution. The secondary antibody, anti-mouse 603 

IgG conjugated to Alexa Fluor 555 (ThermoFisher) was used at a 1:1000 dilution in blocking 604 

solution for an hour followed by 300 ng/mL of DAPI (ThermoFidsher) for 10 minutes. Samples 605 

were mounted in SlowFade Diamond antifade (ThermoFisher) and imaged using a Zeiss 606 
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LSM800 confocal laser scanning microscope. Cultured AnTat 1.1 90:13 PCFs were used as 607 

antibody positive controls.  608 

 609 

PM thickness measurements 610 

100 different images from different flies and separate experiments for each time point and 611 

group was used: 5 dpi, 5-day naïve, 11 dpi and 11-day naïve. Each image from each time 612 

point/group was overlaid by a 10x10 square grid and a random number generator (numbers 613 

between 1-10 only) used to determine X and Y squares in which to take measurements. 614 

Measurements were made using ImageJ [59].  615 
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