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Abstract 

 

Malaria control progress in Africa has stalled. Though the reasons for this will be 

multifaceted, increasing and intense resistance to pyrethroids in Anopheles gambiae s.l. is 

almost certainly a contributing factor. Standard methods to monitor insecticide resistance 

and evaluate vector control tools primarily focus on the immediate and lethal effects on 

the mosquito. These methods disregard other important delayed and sub-lethal effects, 

despite their implications for malaria transmission. In response to growing concerns over 

the sustained effectiveness of current control tools, next-generation products are being 

developed and evaluated. These aim to target insecticide-resistant mosquitoes or 

mosquitoes that contribute to residual malaria transmission. Adaptations to current 

standard efficacy tests are needed to evaluate the novel modes of action of such products. 

 

The effect of insecticide exposure on the longevity, reproductive output and blood-feeding 

behaviour of a wild highly pyrethroid-resistant Anopheles gambiae s.l. population was 

evaluated. Mosquitoes were exposed to a range of insecticides and insecticidal bednets 

using laboratory tests and semi-field experimental hut trials. Benchtop video tests were 

evaluated for their feasibly in measuring the effectiveness of standard and next-generation 

nets. Subsequently, these tests were used to investigate the behaviour of field-populations 

of An. gambiae s.l. at the bednet interface in response to a human host. 

 

Following exposure to both pyrethroid-only and next-generation nets, evidence of sub-

lethal impacts were limited or non-existent. The mosquitoes exposed to insecticidal nets 

did not suffer from reduced lifespan or altered reproductive output. Evidence of delayed 

mortality was only recorded when mosquitoes were exposed to extremely high levels of 

pyrethroids in WHO tube bioassays. Some mosquitoes were inhibited from blood-feeding 

in experimental hut trials, however, lab tests suggest this effect is absent by 8-hour post 

net-exposure. The efficacy of next-generation nets on the field population was dependant 

on the product. Brief contact with PermaNet 3.0 roof (pyrethroid + PBO) caused rapid 

knock-down and 100% mortality in all tests. Exposure to all other insecticidal nets, 

including Interceptor G2 (pyrethroid + chlorfenapyr), resulted in low 24-hour mortality in 

both lab and semi-field experiments. Following adaptations for the field, video tests were 

able to collect behavioural data on mosquito responses to insecticidal nets such as flying, 

resting, and probing behaviour. Responses were similar between untreated and pyrethroid-
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only netting. Extreme reductions in activity were observed following exposure to PermaNet 

3.0, and Interceptor G2 showed signs of repellence. 

 

The results suggest community protection offered by first-generation LLINs is extremely 

low in this setting, however, pyrethroid-PBO nets appear to be effective at controlling the 

highly pyrethroid-resistant population. This work highlights the need for additional studies 

of sub-lethal effects in other field populations, with lower insecticide resistance levels or 

differing mechanisms, to establish if such measurements should be incorporated into the 

evaluation of novel vector control tools. 
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 Introduction and literature review 
 

Malaria is rising in many high burden African countries, and worldwide progress is stalling 

(WHO, 2019b). As a result of increased funding, the scale-up of insecticidal net distribution 

and indoor residual spraying of insecticides (IRS) has led to reductions in malaria-associated 

morbidity and mortality since 2000 (Bhatt et al., 2015). Yet in 2018, the World Health 

Organisation (WHO) estimated 405,000 malaria attributed deaths and 228 million malaria 

cases globally (WHO, 2019b). Most malaria cases (93%) and deaths (94%) occur in Africa.  

 

The aim to reduce malaria cases and deaths by 40% by 2020, set out by ‘The Global 

Technical Strategy for Malaria’ (WHO, 2015a) is extremely unlikely to be met. The urgent 

need for an overhaul in the way malaria control was implemented led to the launch of the 

“high burden to high impact” (HBHI) initiative (WHO and RBM, 2018), which aims to reduce 

malaria in the highest-burden countries through targeted deployment of control tools using 

a country-led approach. This initiative is challenging as it relies on the availability of a vast 

amount of current high-quality data, and in many high burden countries limited 

infrastructure, political instability, and civil unrest, make the collection and compilation of 

such data difficult.  

 

Burkina Faso, the study site for this thesis, is one of the eleven high-burden countries (ten 

in sub-Saharan Africa) where malaria is greatest. Despite high coverage of vector control 

tools, cases in the country have steadily increased since 2015, and in 2018 it was estimated 

to have had 7.8 million cases and 12,725 malaria attributed deaths (population at risk 19.7 

million people) (WHO, 2019b). National long-lasting insecticidal net (LLIN) distribution 

campaigns, of mainly pyrethroid-only nets, were conducted in 2010, 2013, and 2016 

(Tesfazghi et al., 2016), and in 2019, Burkina Faso began to rollout and operationally 

monitor the use of next-generation insecticidal nets (pyrethroid nets additionally 

containing secondary insecticides or insecticide synergists) as part of the HBHI initiative 

(Unitaid, 2020).  

 

In 2016, a Wellcome Trust Collaborative project was established to study Malaria in an 

Insecticide Resistant Africa (MIRA) (Ranson, 2016). The project primarily aimed to 

understand why, in a high burden setting such as Burkina Faso, malaria is persistently high 

despite widespread deployment of insecticidal nets. The research reported in this thesis 
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form part of the MIRA project, and focused specifically on the impacts of existing vector 

control tools on the local mosquito population, as well as testing new methods to evaluate 

next-generation nets in the field. The reasons for stalled malaria control in this setting will 

be multidimensional, and so a transdisciplinary approach was used to investigate other 

explanatory variables. Project MIRA also investigated risk factors associated with malaria, 

bednet usage, and treatment and prevention seeking behaviours in the local human 

population. 

 

1.1 Malaria epidemiology 

 

Human malaria is caused by six Plasmodium species (Calderaro et al., 2013), with P. 

falciparum accounting for most severe disease in Africa (WHO, 2019b). The malaria 

parasite is acquired by female Anopheles mosquitoes when they ingest Plasmodium 

gametocytes and transmitted by them when they inject infective Plasmodium sporozoites 

into a host while obtaining a blood meal. It takes between 9-16 days for Plasmodium to 

develop within a mosquito into its infective form (termed: extrinsic incubation period) 

(Beier, 1998; Vaughan, 2007; Paaijmans et al., 2010), therefore any intervention that 

reduces mosquito lifespan, or prevents them from acquiring the initial infection, will reduce 

their vectorial capacity, and disease transmission. 

 

In humans, symptoms of the disease manifest between 7-10 days after the infectious 

mosquito bite (Phillips et al., 2017), as a result of the synchronised rupturing of red blood 

cells, when Plasmodium merozoites are released into the bloodstream, causing fever, chills 

and anaemia. The severity of the disease is dependent on the Plasmodium species and host 

factors such as immunity. It disproportionally affects vulnerable groups, such as pregnant 

women and young children, and in 2018, 67% of malaria deaths occurred in children <5-

years-old (WHO, 2019b).  

 

Human malaria is transmitted by ~40 Anopheles species (Sinka, Bangs, et al., 2010; Sinka, 

Rubio-Palis, et al., 2010; Sinka et al., 2011), which vary in their contribution to the disease 

burden depending on their vectorial capacity and behaviour. In Africa, members of the An. 

gambiae s.l. complex and An. funestus group are the most important vectors of malaria 

(Sinka, Bangs, et al., 2010). These species complexes or groups are composed of 

morphologically indistinguishable sibling species, many of which differ genetically and 
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behaviourally. The An. gambiae complex is composed of eight sibling species, with An. 

gambiae Giles (historically Mopti “M-form”), An. coluzzii Coetzee & Wilkerson (historically 

Savannah “S-form”, Coetzee et al., 2013), and An. arabiensis Patton being the dominant 

vectors in sub-Saharan Africa (Gillies, 1968; Gillies and Coetzee, 1987). The An. funestus 

group is composed of eleven sibling species, of which An. funestus Giles is the most 

competent vector (Coetzee and Fontenille, 2004). 

 

Anopheles females are anautogenous, i.e. they require a blood meal to develop their eggs 

and reproduce. In tropical climates, eggs are laid in water and hatch after 2-3 days, 

releasing first instar larvae (L1). Larvae are filter-feeders which moult several times (L1 

through to L4) before developing into non-feeding pupae after ~ 7 days. Adult mosquitoes 

emerge from the pupal stage after 2-3 days (Service, 2012). After hatching, mosquitoes 

cannot survive desiccation (Service, 2012), and so are generally confined to the water 

bodies in which they are laid. As adults, mosquito species exhibit distinct feeding and post-

feeding behaviours, such as a preference for feeding on humans (anthropophagic) or other 

non-human animals (zoophilic), feeding indoors/outdoors (endophagic/exophagic), and 

resting indoors or outdoors (endophilic/exophilic). The degree to which any population of a 

particular species exhibits these behaviours varies and determines their importance as a 

disease vector.  

 

1.2 Malaria control 

 

Vector control, prophylactic treatment of vulnerable groups, and chemotherapeutic 

treatment of infections with first-line drug therapies are key components of malaria 

control. Vector control interventions, particularly the distribution of LLINs and indoor 

residual spraying of insecticides (IRS) have dramatically reduced disease incidence over the 

past 20 years (Bhatt et al., 2015; Hemingway, 2015). Other insecticide-based interventions, 

such as larviciding, space-spraying, and insecticide-treated materials (ITMs) are sometimes 

deployed as secondary mosquito control tools. 

 

 Insecticidal bednets 

 

Insecticidal bednets have been extremely effective at reducing malaria morbidity and 

mortality (Gamble, Ekwaru and ter Kuile, 2006; Bhatt et al., 2015; Pryce, Richardson and 
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Lengeler, 2018). They protect against malaria in two key ways. Firstly, the physical barrier 

they present reduces mosquito biting, offering personal protection to the users. Secondly, 

the insecticidal component kills susceptible mosquitoes. This reduces the vector density 

and average age of the population, which affects their vectoral capacity, and offers 

community protection which extends to non-net users (Hawley et al., 2003). The 

insecticide, particularly on new nets, may additionally reduce mosquito biting though 

repellence or contact irritancy. 

 

Prior to 2017, only pyrethroids were recommended by WHO for use in bednets and all nets 

distributed in Africa contained a single insecticide. Since 2017, bednets containing two 

active ingredients or an insecticide plus a synergist have been approved (referred to as 

‘prequalification’ (PQ)) by WHO (Table 1.1 – 1.2, WHO, 2019a). However, all insecticidal 

nets currently in circulation contain pyrethroids. The pyrethroids target the mosquito’s 

peripheral and central nervous systems, specifically, their voltage-gated sodium channel 

(VGSC) which affects nerve impulses (Bloomquist, 1996; Zlotkin, 1999; Soderlund et al., 

2002). The insecticide modifies the properties of the channel, causing the repetitive firing 

of neurons resulting in reduced movement, paralysis, and death (Davies et al., 2007). The  

rapid metabolism of pyrethroids before they can reach the central nervous system in 

mammals means pyrethroids have low toxicity to mammals, including humans, but cause 

rapid ‘knockdown’ (characterised by impaired mosquito movement and paralysis) in 

susceptible mosquitoes (Zaim, Aitio and Nakashima, 2000; Davies et al., 2007). The use and 

distribution of pyrethroid-only LLINs has increased markedly in recent years (Hemingway et 

al., 2016). During the same period, a significant rise in pyrethroid resistance in malaria 

vectors has been documented (Ranson and Lissenden, 2016; WHO, 2018a). This has 

resulted in a push from the malaria control community to develop LLINs that are effective 

against pyrethroid-resistant mosquitoes.  

 

  



18 
 

Table 1.1. List of WHO prequalified insecticidal nets (WHO, 2019a) showing the 

manufacturer and level of active ingredient for each bednet.  

Product 

name 
Manufacturer Active Ingredient  

Olyset Net 
Sumitomo Chemical Co., 

Ltd 
Permethrin (1000 mg/m2) 

Olyset Plus 
Sumitomo Chemical Co., 

Ltd 

Permethrin (1000 mg/m2) 

Piperonyl Butoxide (1%) 

Interceptor BASF SE Alpha-cypermethrin (200 mg/m2) 

Interceptor 

G2 
BASF SE 

Alpha-cypermethrin (100 mg/m2) 

Chlorfenaypr (200 mg/m2) 

Royal 

Sentry 

Disease Control 

Technology, LLC 
Alpha-cypermethrin (261 mg/m2) 

Royal 

Sentry 2.0 

Disease Control 

Technology, LLC 
Alpha-cypermethrin (203 mg/m2) 

Royal 

Guard 

Disease Control 

Technology, LLC 

120 denier 
 

Alpha-cypermethrin (5.5 g/kg) 

Pyriproxyfen (5.5 g/kg) 

150 denier 
Alpha-cypermethrin (5.0 g/kg) 

Pyriproxyfen (5.0 g/kg)  

PermaNet 

2.0 
Vestergaard S.A. 

75 denier Deltamethrin (1.8 g/kg) 

100 denier Deltamethrin (1.4 g/kg) 

PermaNet 

3.0 
Vestergaard S.A. 

Roof 
Deltamethrin (4 g/kg) 

Piperonyl Butoxide (25 g/kg) 

Sides 

75 denier 
Deltamethrin (2.8 g/kg) 

Sides  

100 denier 
Deltamethrin (2.1 g/kg) 

Duranet 

LLIN 

Shobikaa Impex Private 

Limited 
Alpha-cypermethrin (261 mg/m2) 

MiraNet A to Z Textile Mills Ltd Alpha-cypermethrin (180 mg/m2) 

MAGNet V.K.A. Polymers Pvt Ltd Alpha-cypermethrin (261 mg/m2) 

VEERALIN V.K.A. Polymers Pvt Ltd 
Alpha-cypermethrin (216 mg/m2) 

Piperonyl Butoxide (79 mg/m2) 

Yahe LN 75 denier Deltamethrin (1.85 g/kg) 
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Fujian Yamei Industry & 

Trade Co Ltd 
100 denier Deltamethrin (1.4 g/kg) 

SafeNet Mainpol GmbH Alpha-cypermethrin (200 mg/m2) 

Yorkool LN 

Tianjin Yorkool 

International Trading 

Co., Ltd 

75 denier Deltamethrin (1.8 g/kg) 

100 denier Deltamethrin (1.4 g/kg) 

Panda Net 

2.0 

LIFE IDEAS Biological 

Technology Co., Ltd. 
Deltamethrin (76 mg/m2) 

Tsara Boost NRS Moon netting FZE 
Deltamethrin (440 mg/m2) 

Piperonyl Butoxide (120 mg/m2) 

Tsara Soft NRS Moon netting FZE Deltamethrin (80 mg/m2) 

Tsara Plus NRS Moon netting FZE 

Roof 
Deltamethrin (3 g/kg) 

Piperonyl Butoxide (11 g/kg) 

Sides Deltamethrin (2.5 g/kg) 

 

Table 1.2. Mode of action of active ingredients in WHO prequalified insecticidal nets. 

Class Active ingredient Mode of action 

Pyrethroid insecticide 

Alpha-cypermethrin 
Voltage-gated sodium 

channel 
Deltamethrin 

Permethrin 

Pyrrole insecticide Chlorfenapyr 
Oxidative phosphorylation 

in mitochondria 

Insecticide synergist Piperonyl Butoxide 
Metabolic enzymes 

(cytochrome P450s)  

Insect growth regulator Pyriproxyfen Juvenile hormone analogue 

 

1.2.1.1 Next-generation nets 

 

Next-generation (or 2nd-generation) nets are defined as pyrethroid nets which contain 

secondary compounds that are non-pyrethroid insecticides, insecticide synergists or insect 

growth regulators, and as such, they aim to be effective against pyrethroid-resistant 

mosquitoes. Currently, 20 LLINs have WHO PQ listing (WHO, 2019a), of which 7 can be 

defined as next-generation nets. Five of these are pyrethroid-piperonyl butoxide (PBO) 
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nets, one is a dual active ingredient (AI) net, and one contains an insect growth regulator. 

Additional concepts for other next-generation LLINs include barrier-bednets, a novel bed-

net designed with an additional roof barrier (Appendix 2, Murray et al., 2020), or nets 

containing antimalarial compounds found to affect Plasmodium development (Paton et al., 

2019). Chapter 5 of this thesis reports on studies evaluating two of these nets. 

 

Pyrethroid-PBO nets 

 

Pyrethroid-PBO nets are a dual AI net (sometimes referred to as ‘bi-treated nets’) 

containing an insecticide (pyrethroid) plus a synergist (PBO). Synergists themselves are 

generally non-insecticidal, and function by improving the efficacy of the insecticide they are 

paired with. PBO targets specific metabolic enzymes (cytochrome P450s) within the 

mosquitoes. These enzymes usually function to detoxify or sequester pyrethroids, so by 

inhibiting them the PBO can restore the lethality of the pyrethroid in mosquitoes with 

metabolic resistance mechanisms (insecticide resistance mechanisms are discussed below).  

 

Pyrethroid-PBO nets vary in design (e.g. some only contain PBO on the roof panel, while 

others have PBO throughout the net), AI concentrations, and pyrethroid insecticide used. 

There have been very few studies directly comparing the efficacy of different types of PBO 

nets (Gleave et al., 2018). Consequently, there has been uncertainty amongst national 

malaria control programmes and LLIN procurement agencies under what conditions, and 

when, to distribute pyrethroid-PBO nets, and which brand of pyrethroid-PBO net to use. In 

2017, the WHO released guidelines for their deployment which stated that pyrethroid-PBO 

net should be considered in areas where the major malaria vectors have pyrethroid-

resistance (WHO, 2017a). This resistance should be intermediate (mosquito mortality in 

standard tests between 10-80% following pyrethroid exposure), at least partly conferred by 

monooxygenase-based resistance mechanisms, and deployment of pyrethroid-PBO nets 

should not compromise coverage of other ongoing effective vector control interventions. 

The guidelines were based mainly on epidemiological data from an ongoing cluster 

randomised control trial (RCT) in Tanzania, supported by a meta-analysis of entomological 

data from existing experimental hut trials, which was used to parametrise a malaria 

transmission dynamics model (Churcher et al., 2016; Protopopoff et al., 2018). The RCT 

reported that pyrethroid-PBO nets reduced malaria prevalence compared to pyrethroid-

only LLINs 21 months after their deployment, with the meta-analysis and transmission 
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dynamics model also indicating that pyrethroid-PBO nets could avert clinical cases of 

malaria in some resistance settings. A subsequent Cochrane review of this data found that 

in areas of high pyrethroid resistance (mosquito mortality in standard tests < 30% following 

pyrethroid exposure) pyrethroid-PBO nets reduced mosquito mortality and blood-feeding 

rates, with limited evidence of any impact in low resistance settings (Gleave et al., 2018). In 

the Cochrane review, the definition of high resistance overlaps with the definition of 

intermediate resistance used by WHO, and so, the results of the review agree with the 

current guidelines. 

 

Knowledge gaps however still exist concerning the durability of pyrethroid-PBO nets 

(Katureebe et al., 2019). Preliminary data from the third year of the Tanzania trial, and a 

second cluster randomised control trial embedded in a mass distribution campaign in 

Uganda (Staedke et al., 2019), suggest that although pyrethroid-PBO nets perform better 

than pyrethroid-only nets in these settings, the improvements in efficacy may be 

diminished markedly within three years (Kleinschmidt, 2019).  

 

Interceptor G2 

 

Interceptor G2 (IG2) is a dual AI net coated with alpha-cypermethrin (a pyrethroid) and 

chlorfenapyr (a pyrrole). Chlorfenapyr targets the insect’s mitochondria, uncoupling 

oxidative phosphorylation and disrupting the production of energy (Black et al., 1994; 

Treacy et al., 1994). Subsequently, it provides a novel mode of action for insecticidal nets, 

which previously only targeted the mosquito’s nervous system. Positive results from initial 

laboratory assays (N’Guessan et al., 2007; Kamaraju Raghavendra et al., 2011) and hut 

trials (Mosha et al., 2008; N’Guessan et al., 2009) using chlorfenapyr to target insecticide-

resistant mosquitoes led to the testing of mixture nets treated with pyrethroid + 

chlorfenapyr (Oxborough et al., 2013; N’Guessan et al., 2014). This led to the development 

of the dual AL product, Interceptor G2, which was launched by BASF in 2017. 

 

Chlorfenapyr is a slow acting insecticide which has little repellent properties (N’Guessan et 

al., 2007, 2009). It was combined with alpha-cypermethrin (fast acting and repellent) to 

increase the personal protection provided by the net. Interceptor G2 has been reported to 

have improved efficacy compared to Interceptor LN (alphacypermethrin-only LLIN) against 

pyrethroid-resistant mosquitoes in several experimental hut trials (N’Guessan et al., 2016b; 
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Bayili et al., 2017; WHO, 2017d; Camara et al., 2018). However, replicating this level of 

efficacy under laboratory conditions in standard tests has proven to be a challenge 

(Oxborough et al., 2015).  

 

Attention has focused on establishing a laboratory assay which is predictive of the IG2-

induced mortality levels observed in hut trials. However, in previous laboratory studies, 

Interceptor G2 has failed to reach 100% mortality in a pyrethroid-susceptible An. gambiae 

strain (Kisumu), which should be fully susceptible to the alpha-cypermethrin component of 

the net (N’Guessan et al., 2016a; Camara et al., 2018). Factors which may affect the 

efficacy of chlorfenapyr, such as temperature and time of exposure (Oxborough et al., 

2015), should not affect the efficacy of alpha-cypermethrin. Pyrethroids are considered 

relatively thermostable and their mode of action is not sensitive to mosquito metabolism, 

which could additionally be affected by temperature. These previous studies reported 

susceptibility to Interceptor LN, an alpha-cypermethrin only net, which contains twice the 

alpha-cypermethrin concentration of Interceptor G2. In Camara et al. (2018) study, a 30-

minute cone exposure to Interceptor G2 increased mortality in susceptible Kisumu (from 42 

– 81%) and resistant M’Bé (from 26 – 65%) strains, however, 100% mortality in the Kisumu 

strain was only achieved when nets were washed (both prior to and after the hut trial). 

These results suggest that the efficacy of the pyrethroid is potentially compromised when 

coated as a mixture on the net initially. A clearer understanding of how washing and 

storage affect the bioavailability of the insecticides on the net is essential and refinement 

of the net’s formulation should be considered. In Camara et al. (2018) study no chemical 

analysis was conducted, so it is not possible to determine what concentrations of each 

insecticide were on the net when they were at their most effective.   

 

Although novel for public health, chlorfenapyr has been widely used over the last 25 years 

in agriculture and the private consumer market. Its mode of action makes cross-resistance 

with existing insecticide classes in mosquitoes less likely, when resistance is driven by 

target site mutations. Although new to the market, so far, no evidence of resistance in 

mosquitoes has been documented (Agumba et al., 2019; Dagg et al., 2019; Stica et al., 

2019). Chlorfenapyr is a pro-insecticide (Black et al., 1994), i.e. it is metabolised into its 

active lethal form only after entering the host. In insects, this is activated by mixed-function 

oxidases (metabolic enzymes), which are upregulated in some insecticide-resistant 

mosquitoes, raising the prospect of negative cross resistance in population that contain 
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these resistance mechanisms, as has seen observed in other insecticides (Corbel et al., 

2004). 

 

Importantly, in lab studies, PBO has been reported to have an antagonistic effect on 

chlorfenapyr toxicity, where it inhibits the metabolic enzymes needed to activate 

chlorfenapyr into its lethal form (K. Raghavendra et al., 2011; Kamaraju Raghavendra et al., 

2011; Yuan et al., 2015). This could have undesirable effects in the field, should next-

generation products such as Interceptor G2 and pyrethroid-PBO nets be distributed 

mosaically, as a method of insecticide resistance management (WHO, 2012), or in 

situations where the AIs are combined within sleeping spaces on bednets and in indoor 

residual spraying (IRS). Collecting further information on this interaction in the field will be 

vital. 

 

 Indoor residual spraying 

 

Indoor residual spraying (IRS) is the application of residual insecticide to the interior walls 

of houses and sleeping spaces (WHO, 2015b). It can reduce malaria incidence in areas with 

stable and unstable malaria transmission (Pluess et al., 2010), by targeting endophagic and 

endophilic mosquito behaviour, repelling mosquitoes from entering houses or killing 

susceptible individuals on contact. As such, it offers both personal and community 

protection depending on whether mosquitoes are exposed to, or influenced by, the 

insecticide before or after blood-feeding. By applying the insecticide to walls, rather than a 

bednet, the amount of human-insecticide contact is reduced, which allows a wider range of 

chemistries to be utilised, though far greater quantities are required to protect a 

household. 

 

Historically, IRS was instrumental in the control and elimination of malaria in many 

countries, with IRS of DDT being the primary strategy employed during the global malaria 

eradication campaign (1955 – 1969) which eliminated malaria from Europe, North America, 

and the Caribbean (Kouznetsov, 1977; Carter and Mendis, 2002; Mabaso, Sharp and 

Lengeler, 2004). IRS is logistically challenging and requires large teams of personnel, 

specialist training and equipment. It is most effective at providing community protection 

through mosquito killing, so high household coverage is required for it to be successful, and 

due to the short residual efficacy of most IRS-insecticides it must be re-applied multiple 
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times a year. It relies on substantial collaboration from individuals receiving the 

intervention as it involves significant intrusion into their households. Consequently, IRS is 

an expensive form of vector control, and in the case of the global malaria eradication 

campaign, these costs fell heavily on malaria-endemic countries in Africa, contributing to 

the demise of the unsustainable campaign.  

 

In recent years, documentation of successful IRS programmes led to strengthened support 

for this intervention, with the US Presidents Malaria Initiative (PMI) investing substantial  

funding to scale-up and monitor IRS programmes since 2005 (WHO, 2006; Kleinschmidt et 

al., 2009; Pluess et al., 2010). Until 2017, only two modes of action in mosquitoes (VGSC 

and acetylcholinesterase (AChE) inhibition) were targeted by IRS. Alongside this, the 

documentation of resistance to all approved insecticides classes at the time (Ranson and 

Lissenden, 2016), and the short residual efficacy of most products, made insecticide 

resistance management (WHO, 2012) of IRS products extremely challenging. 

Currently four insecticide classes (carbamates, neonicotinoids, organophosphates and 

pyrethroids) are prequalified by WHO for use in IRS. Although most prequalified products 

are pyrethroids (19 or 24 products), in response to increasing pyrethroid resistance, a shift 

in use to non-pyrethroid IRS has occurred (Oxborough, 2016). In some locations, the 

organochloride, dichloro‐diphenyl‐trichlorethane (DDT), is also used, although no DDT 

product are prequalified by WHO (WHO, 2011b). The development of products with new or 

repurposed AIs (SumiShield - Sumitomo Chemical, containing clothianidin a neonicotinoid, 

prequalified by WHO 2017), dual AIs (Fludora Fusion, Bayer S. A. S, containing clothianidin 

and deltamethrin, prequalified by WHO 2018) and long-lasting efficacy (Actellic 300CS - 

Syngenta Crop Protection, a new formulation of the organophosphate pirimiphos methyl, 

converted to PQ listing) could overcome many of the challenges and associated costs 

related with the intervention (Rowland et al., 2013; Agossa, Padonou, Fassinou, et al., 

2018; Agossa, Padonou, Koukpo, et al., 2018; Ngwej et al., 2019). Studies suggest that long-

lasting IRS (LLIRS) formulations could outperform standard IRS formations depending on 

local conditions (Protopopoff et al., 2018; Sherrard-Smith et al., 2018). As new IRS products 

are begin developed and deployed, ensuring sustained susceptibility to these new classes 

will be vital. Currently discriminating doses of new AIs (clothianidin) are being established 

by WHO and monitoring the susceptibility to this compound is essential. Although novel to 

public health, neonicotinoids have been widely used in agriculture over the last 30 years for 

broad spectrum pest control. 
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Currently, the benefit of combining IRS with LLINs is unclear; contradictory results observed 

from studies are likely to be as a result of variation in local epidemiology and vector 

populations (WHO, 2014a; Protopopoff et al., 2015; Choi, Pryce and Garner, 2019). 

Although the evidence is limited, adding pyrethroid-IRS to pyrethroid-LLINs has no 

apparent benefit (Choi, Pryce and Garner, 2019), and would conflict with the WHO 

recommendation to not deploy pyrethroid-IRS and LLINs together (WHO, 2012, 2014b). 

Currently, guidance on the deployment of next-generation nets  and IRS, singularly and in 

combination is needed.  

 

 Other vector control tools 

 

Most vector control interventions target the adult life-stage of the mosquito, however in 

some transmission settings control of the juvenile, larval and pupal, stage can be effective, 

depending on the type of larval control and local conditions (Tusting et al., 2013; Choi, 

Majambere and Wilson, 2019). Larviciding aims to reduce mosquito density by killing 

juvenile stages before they develop into the adult form. Larval control can be larval source 

management, whereby mosquito breeding sites are actively removed by draining source 

water or habitat manipulation, or the use of larvicides. Larvicides can be chemical (e.g. 

temephos), microbial (e.g. Bacillus thuringiensis israeliensis (Bti)) or biological (e.g. 

larvivorous fish) and vary in their mode of action (e.g. suffocation, central nervous system 

targets, insect growth regulators). Larviciding is recommended by the WHO as a 

supplementary control measure (WHO, 2013b), however it is not widely adopted in the 

malaria control community. It is one of few interventions which can impact on exophagic 

mosquitoes, and as such could affect residual malaria transmission (transmission which can 

occur despite full coverage with effective LLINs and/or IRS, Killeen, 2014). 

 

Volatile chemicals (repellents) interfere with mosquito host-seeking behaviour by 

interacting with mosquito olfactory receptors (Bohbot and Dickens, 2010; Bohbot et al., 

2011) and may have one or a number of different properties ranging from repellence to 

lethality. Repellents can be classified broadly into topical repellents (which are applied to 

skin), spatial repellents (e.g. passive emanators or coils) which disperse their active 

ingredient into the surrounding area though evaporation or heat, and insecticide treated 

clothing (ITC). Their primary objective is reducing host-vector contact through deterrence, 
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repellence, or contact-irritancy, though they can also cause temporary blood-feeding 

inhibition or death (Ogoma, Moore and Maia, 2012). Due to heterogeneity in study designs 

and lack of standardisation in evaluating repellent products there is currently insufficient 

evidence that repellents can prevent malaria (Maia et al., 2018).  

 

Space spraying is the outdoor application of insecticides as a fog, which aims to kill adult 

mosquitoes when they are at rest or during host-seeking, depending on the time of 

application. It is often used during disease outbreaks for other mosquito-borne disease 

such as dengue, or for controlling tsetse flies (Adam et al., 2013), and is recommended for 

use in areas where IRS may not be possible (e.g. camps for refugees, WHO, 2013b). 

However, the evidence of its effectiveness in controlling mosquito-borne diseases is limited 

(Esu et al., 2010; Bowman, Donegan and McCall, 2016; Pryce et al., 2018). 

 

1.2.3.1 Vector control tools in development 

 

Attractive targeted sugar baits (ATSBs) are solutions sprayed on vegetations or in bait-

stations, positioned inside or outside a house, which target the sugar-feeding behaviour of 

both female and male mosquitoes. They contain a lure (e.g. fruit juice) to attract 

mosquitoes and a toxin that kills them following contact or ingestion. Potentially, ATSBs 

could complement existing interventions and target residual malaria transmission. In field 

trials, ATSBs have been shown to reduce mosquito density and survival when deployed 

both as bait stations (Stewart et al., 2013; Qualls et al., 2015; Tenywa et al., 2017) and 

when the solution is sprayed onto plants (Müller et al., 2010; Beier et al., 2012). However, 

questions remain on how best to deploy these products (Zhu et al., 2015), and the impact 

they may have on non-target organisms. A recent hut trial has shown they can complement 

LLIN use, increasing mosquito mortality in an area with insecticide resistant An. gambiae 

(Furnival-Adams et al., 2020). 

 

Limited non-insecticidal approaches to mosquito control exist. Improved housing has long 

been associated with impact on malaria (Lindsay, Emerson and Charlwood, 2002), however 

this is challenging to evaluate due to the infinite possibilities of modification, and 

operationally it is difficult to “roll-out” as an intervention due to associated high-costs and 

logistics. In recent years there has been renewed vigour in evaluating housing 

improvements for controlling malaria. Housing condition is associated with mosquito 
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mortality, mosquito density, and malaria risk (Tusting et al., 2017; Jatta et al., 2018; Rek et 

al., 2018; Lindsay et al., 2019). Housing improvements such as screening windows and 

doors, improved roofing, and closing eaves can reduce indoor biting by inhibiting entry of 

host-seeking mosquitoes (Killeen et al., 2019), while generally better housing will improve 

health and well-being (Von Seidlein et al., 2019). This has led to the development of treated 

eaves tubes and ribbons, which aim to kill mosquitoes attempting to enter houses and 

reduce entry rates. These have been shown to be successful in controlling mosquito in 

semi-field trials (Sternberg et al., 2016; Oumbouke et al., 2018; Barreaux et al., 2019; 

Mwanga et al., 2019), and subsequently phase III studies are underway to evaluate the 

effects of screening and eaves tubes on malaria incidence in the field (Sternberg et al., 

2018). 

 

Endectocides used to treat cattle and in mass drug administration campaigns (Foy et al., 

2019) have been posited as a vector control strategy to target residual malaria transmission 

(Chaccour et al., 2013; Chaccour and Killeen, 2016). Studies have shown the drugs to 

reduce Anopheles survival (Chaccour, Lines and Whitty, 2010; Sylla et al., 2010; Poché et 

al., 2015), re-feeding (Kobylinski et al., 2010; Kobylinski, Escobedo-Vargas, et al., 2017), 

blood-meal digestion, fertility and fecundity (Fritz et al., 2009; Sampaio et al., 2016; Lyimo 

et al., 2017; Dreyer et al., 2019). They also have been documented to effect Plasmodium 

development (Kobylinski, Foy and Richardson, 2012; Kobylinski, Ubalee, et al., 2017) when 

the mosquito takes a blood meal from a treated human or animal host.  

 

Other methods for controlling vector’s include targeted spraying of male mating swarms 

(Sawadogo et al., 2017), lethal oviposition traps (Johnson, Ritchie and Fonseca, 2017), and 

altering mosquito populations using gene drive (Hammond et al., 2016). The release of 

sterile males to reduce mosquito breeding and population density (Alphey et al., 2010) 

have been tested in the field (Zheng et al., 2019). Males are sterilised using irradiation (SIT) 

or Wolbachia-induced cytoplasmic incompatibility (IIT). Studies have also suggested 

Wolbachia can be used to reduce Anopheles refractoriness to Plasmodium infection (Bian 

et al., 2013). 
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 Evaluating vector control tools 

 

The WHO evaluates vector control products for efficacy and suitability for malaria vector 

control. International agencies and country malaria control programmes generally rely on 

WHO recommendations when procuring products. In January 2017, the existing WHO 

Pesticide Evaluation Team (WHOPES) system transitioned to the WHO Prequalification 

Team Vector Control Group (PQT-VC) (WHO, 2017e). Manufacturers submit dossiers on the 

safety, quality, and efficacy of their product, which is reviewed by the PQT-VC. If the 

product falls within a new product class, and therefore requires epidemiological evidence 

of its efficacy, the Vector Control Advisory Group (VCAG), make recommendations on the 

public health value of the product class to the Malaria Policy Advisory Committee (MPAC) 

and the Strategic and Technical Advisory Group (STAG). Products that had previously 

received WHOPES recommendations were converted to Prequalification when specific 

criteria for each product were met.  

 

A range of test procedures and bioassays are used in evaluating control tools and different 

techniques are used when evaluating chemistries for IRS (e.g. topical and tarsal testing), 

volatile insecticides (e.g. Peet-Grady chamber), or insecticidal nets. As this thesis focuses 

specifically on the effectiveness of bednets, the evaluation of insecticidal nets is discussed 

in detail. 

 

The evaluation of insecticidal nets is a three-tiered system, from lab to large-scale field 

trials (Table 1.2, WHO, 2013a), with further guidance available for monitoring the durability 

of LLINs following field deployment (WHO, 2011a, 2013d). Products must pass pre-

determined efficacy criteria in order to transition to the next phase of evaluation. In phase I 

testing these conditions are specific (i.e. mortality following exposure to test net washed x 

20 in a cone bioassay ≥ 80%), whereas in phase II testing efficacy is dependent on 

equivalence or superiority to existing products (i.e. the net washed x 20 must perform as 

well as or better than the reference net in terms of mortality and blood-feeding). In phase 

III testing, a product is considered efficacious if after 3 years at least 80% of sampled nets 

are effective in WHO cone tests (same criteria as phase I testing). In phase I and II trials, 

both unwashed and washed nets are evaluated for efficacy, with x 20 washes used as a 

proxy for 3 year’s field use. Phase I tests focus on lethality within 24-hours and do not 

consider long-term fitness effects, such as longevity and reproductive output, which may 
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impact on a mosquitoes vectorial capacity. This may constrain the scope of phase I tests 

when evaluating next-generation control tools, where novel modes of actions may not be 

captured by such tests.  

 

Entomological data from experimental hut trials is often used in pre-qualification of vector 

control products (WHO, 2017a), and strong correlation between mortality from phase I 

bioassays and phase II experimental hut trials has been observed (Churcher et al., 2016). In 

several studies, the data collected from these trials has been used to parametrise malaria 

transmission models to provide estimates of malaria impact (Churcher et al., 2016; 

Sherrard-Smith et al., 2018; Murray et al., 2020). Experimental hut trials measure 

entomological efficacy using standardised structures built to represent local housing. In 

Africa, three hut designs (East-African, West-African, and Ifakara) are used to evaluate 

products (Okumu et al., 2012; WHO, 2013a).  
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Table 1.3. Main parameters assessed and assays used in phase I, II and III studies 

evaluating insecticidal mosquito nets (WHO, 2013a). 

Phase 
Type of 

study 
Parameters measured Assay 

Entomological 

outcomes 

measured 

I Laboratory 

Regeneration of insecticidal 

activity 

Efficacy and wash-resistance 

WHO cone 

bioassay 

Knock-down 

Mortality 

Tunnel test 

 

Knock-down 

Mortality 

Blood-feeding 

II 

Small-

scale field 

trial 

Wash-resistance 

Efficacy as measured by 

vector mortality and blood-

feeding inhibition 

Experimental 

hut trial 

 

Deterrence 

Exophily 

Mortality 

Blood-feeding 

III 

Large-

scale field 

trial 

Long-lasting insecticidal 

efficacy 

Rate of loss or attrition of 

nets 

Physical durability of netting 

material 

Community acceptance 

Safety 

Village trials 
Knock-down 

Mortality 

 

The efficacy of pyrethroid-only LLINs against malaria is well characterised, however 

bednets with novel AIs or modes of action (termed “first in class” products) additionally 

require evidence of public health impact from a minimum of two randomised-controlled 

trials conducted over two field seasons to receive full WHO support. “Second in class” 

products do not need to provide epidemiological evidence of impact, and are only required 

to show entomological evidence of non-inferiority compared to the first in class product 

(World Health Organization, 2018). This may create stagnation in the vector control 

market, due to the high costs and challenging logistics of epidemiological trials (Devine, 

Overgaard and Paul, 2019), with company’s waiting for others to establish the intervention 

class to reduce development costs. Innovation in the vector control market is hard to 

achieve due to low returns on product investment. Schemes such as the Innovative Vector 
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Control Consortium (IVCC) Vector Expedited Review Voucher (VERV) aim to increase 

innovation in the market by offering incentives to manufactures to develop novel public 

health insecticides (Ridley, Moe and Hamon, 2017). The VERV would reward the 

manufacturer with an expedited review of a second product, allowing them to bring more 

profitable investments to market at an earlier date. 

 

1.3 Insecticide resistance 

 

Insecticide resistance (IR) is defined as the ability of mosquitoes to survive exposure to a 

standard dose of insecticide, typically due to physiological and/or behavioural adaptations 

(WHO, 2016). With the exception of neonicotinoids, resistance to insecticide classes 

approved for use in public health, has been documented in all major African malaria 

vectors (Ranson and Lissenden, 2016; WHO, 2018a), with countries increasingly reporting 

resistance to multiple insecticide classes, and few describing full susceptibility. Between 

2010 – 2016 only 13% malaria endemic countries reporting to WHO showed susceptibility 

to four classes (pyrethroids, DDT, carbamates and organophosphates) of insecticide (WHO, 

2018a). Pyrethroid resistance was the most widespread, with 77% of reporting countries 

recording resistance in at least one major vector to at least one pyrethroid (WHO, 2018a). 

Pyrethroid resistance was initially documented in An. gambiae s.l. (Elissa et al., 1993) and 

An. funestus (Hargreaves et al., 2000) nearly 30 years ago, and in the last decade, a 

significant rise in pyrethroid resistance has been documented (Ranson and Lissenden, 

2016; WHO, 2018a).  

 

The mechanisms which underly insecticide resistance in Anopheles mosquitoes, historically 

have been classified into four main groups (target site, metabolic, penetration and 

behavioural). As major public health insecticides target just three neuronal proteins, cross-

resistance, where resistance to one insecticide class also confers resistance to another 

insecticide class due to shared modes of action, is frequently documented amongst 

insecticides used in malaria control (Chandre et al., 1999). Additional less well 

characterised mechanisms certainly contribute to the resistance phenotype, and novel 

gene families (hexamerins and α-crystallins) implicated in sequestration and regulation of 

down-stream effector genes have been shown to be associated with pyrethroid resistance 

(Ingham, Wagstaff and Ranson, 2018). Recently, a previously undescribed mechanism of 

insecticide resistance (expression of a sensory appendage protein, SAP2, which binds 
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pyrethroid insecticide) in Anopheles was identified, and is thought to act by sequestering 

the insecticide on contact (Ingham et al., 2019). Determining other as yet unknown 

mechanisms and monitoring the prevalence and spread of IR mechanisms will be vital in 

maintaining effective malaria control and susceptibility to novel insecticides. Quick and 

accurate methods to track IR mechanisms are essential, and the development of a 

genotypic panel to screen for multiple IR mechanisms offers one solution to this (Lucas et 

al., 2019). Genotypic measurements may allow us to document resistance in a population 

before it reaches the point where phenotypic expression occurs, as well as allow 

investigation into the origins of insecticide resistance. 

 

 Target-site resistance 

 

Target-site resistance occurs when a genetic mutation alters the site at which the 

insecticide binds. In Anopheles, target-site mutations have been reported in most 

insecticide target sites, including acetylcholinesterase (conferring organophosphates and 

carbamates resistance), gamma amino butyric acid receptor (conferring cyclodiene 

resistance), and the VGSC (resulting in resistance to pyrethroids and DDT resistance). In An. 

gambiae and An. coluzzii three mutations (L995F, L995S, N1570Y) in the VGSC are 

frequently documented to cause pyrethroid resistance (Martinez-Torres et al., 1998; 

Ranson et al., 2000; C. M. Jones et al., 2012; Silva, Santos and Martins, 2014), with a whole 

genome sequence study identifying 20 additional non-synonymous nucleotide substitutions 

in the VGSC gene (Clarkson et al., 2018) whose role in resistance remains to be defined. 

 

 Metabolic Resistance  

 

Metabolic resistance is complex and acts by increasing the rate at which an insecticide is 

catabolized or sequestered by an insect before reaching its target. Commonly this occurs 

due to qualitative or quantitative modifications to detoxification enzymes involved in its 

pathway. Three enzyme groups have been highly characterised in metabolic resistance; 

carboxylesterases (COEs), glutathione S-transferases (GSTs), and cytochrome P450s (CYPs). 

P450s are the most extensively studied enzyme class in An. gambiae s.l., with CYP6M2 and 

CYP6P3 being the best characterised (Müller et al., 2008; Stevenson et al., 2011), and 

recently functionally validated (Adolfi et al., 2019). However, other members of these 

enzyme families (e.g. CYP6Z2, CYP6Z3 and GSTD1) are also known to metabolise 
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pyrethroids (Ranson et al., 2001; Yunta et al., 2016) and many more (e.g. GSTD7, GSTD3, 

GSTE5, GSTMS3, COEAE8O, CYP4C28 and CYP12F2) are upregulated in resistant mosquito 

populations but their ability to metabolise insecticides have not yet been determined 

(Ingham, Wagstaff and Ranson, 2018). In An. funestus, CYP6P9a,  CYP6P9b and CYP6P4 

have been associated with pyrethroid resistance (Wondji et al., 2009, 2012; Riveron et al., 

2013; Mugenzi et al., 2019). 

 

 Penetration resistance 

 

Pyrethroids are typically deployed as contact insecticides for malaria control (in LLINs or 

IRS), and hence must pass through the mosquito’s cuticle to reach their target site. 

Penetration resistance occurs when insecticide diffusion into the mosquito is reduced due 

to changes in its cuticle, either by altering cuticular composition, or by increasing its 

thickness (Wood et al., 2010; Balabanidou et al., 2016). It is often measured using 

insecticide penetration assays or by comparing the cuticle thickness of susceptible vs 

resistant mosquitoes (Yahouédo et al., 2017). Few studies have investigated the role of 

penetration resistance in Anopheles (Balabanidou, Grigoraki and Vontas, 2018), although 

cuticle thickening has been reported in Culex mosquitoes (Stone and Brown, 1969; 

Apperson and Georghiou, 1975) and bed-bugs (Koganemaru, Miller and Adelman, 2013; 

Lilly et al., 2016). Elevation of cuticular pre-cursor genes have been documented in 

resistant Anopheles populations (Vontas et al., 2007; Djouaka et al., 2008), and one study 

shows resistant Anopheles to have thicker leg cuticles compared to susceptible mosquitoes 

due to cuticular hydrocarbon enrichment (Balabanidou et al., 2019). 

 

 Behavioural resistance  

 

Behavioural resistance can be characterised as any alteration to baseline mosquito 

behaviour that reduces the risk of physical contact with the insecticide targeting them. The 

most widely deployed vector controls tools, LLINs and IRS, target mosquito vectors which 

bite and rest inside houses, predominately at night. Changes to mosquito biting times (e.g. 

a switch to biting people before they enter a bednet, biting location (e.g. a switch to 

outdoor biting), or host-preference (e.g. a switch to biting non-human animals) are 

commonly hypothesised behavioural resistance mechanisms, but convincing evidence of 

these, or studies linking them to control interventions are limited (Takken, 2002; Gatton et 
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al., 2013). Behavioural changes as a result of selective pressure from an intervention acting 

on a genetic level or causing altered behavioural preferences is contested (Govella, Chaki 

and Killeen, 2013). Sibling-species can be impacted differently by an intervention, and the 

behavioural differences could be the result of behavioural plasticity in the species or the 

existence of multiple cryptic species in the population (Kitau et al., 2012). Behavioural 

resistance is challenging to define, and difficult to measure as it requires longitudinal 

studies which characterise behaviour prior to and after the distribution of the intervention. 

Additionally, studies are often confounded when they fail to report nuances, such as 

sibling-species composition changes (Russell et al., 2011) which would impact observed 

behaviour and interpretation of the results. 

 

Several studies have reported a shift in peak biting times to early-evening or early-morning 

following mass-distribution of LLINs (Bugoro et al., 2011; Moiroux et al., 2012; Sougoufara 

et al., 2014; Thomsen et al., 2017). Though the direction of the time-shift varied between 

these studies, it always resulted in peak biting occurring at times when human hosts were 

less likely to be protected by LLINs. Increases in outdoor biting have also been reported 

(Moiroux et al., 2012), as well as changes to host preference (Charlwood and Graves, 1987) 

as a response to LLINs, both of which would also decrease net effectiveness, and increase 

the vector population contributing to residual malaria transmission (Killeen, 2014). Often 

studies lack the historical pre-intervention data required to attribute changes in behaviours 

to an intervention (Ojuka et al., 2015), and in cases where no evidence for a behavioural 

effect is observed it is difficult to determine if this is because the phenomenon does not 

exist, or that sufficient data is lacking in these populations. Studies looking at how 

physiological insecticide resistance affects mosquito behaviour on an individual genetic 

level are limited (Porciani et al., 2017).  

 

 Insecticide resistance monitoring 

 

In 2012, WHO released the “Global Plan for Insecticide Resistance Management”, a 

strategy document which provides guidance for countries on their Insecticide Resistance 

Management (IRM) policies, such as rotation of insecticides or mosaic distribution of 

interventions (WHO, 2012). It highlights the necessity for timely entomological and 

resistance monitoring to ensure the suitability of deployed insecticides against local 

mosquito populations. Current methods for monitoring insecticide resistance are based on 
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classifying phenotypic resistance, which is typically measured using standardised tests, such 

as WHO susceptibility bioassays (WHO, 2016) and CDC bottle assays (Centers for Disease 

Control, 2012). These tests expose local mosquito populations (wild-collected or larval-

reared females) to pre-defined ‘discriminating doses’ of insecticide (defined by WHO (2016) 

as “ a concentration of an insecticide that, in a standard period of exposure, is used to 

discriminate the proportions of susceptible and resistant phenotypes in a sample of a 

mosquito population”), and record mosquito mortality at 1 and 24-hours post-exposure. In 

2016, following increasing evidence that these tests may not detect changes in insecticide 

resistance (Toe et al., 2014; Bagi et al., 2015), WHO updated their guidance on insecticide 

resistance monitoring to include additional testing of resistant populations at x5 and x10 

discriminating doses to provide further information on resistance intensity and “strength” 

of phenotypic resistance (WHO, 2016). 

 

Monitoring of IR has increased, and the establishment of online platforms such as IR-

Mapper and the WHO Malaria Threats Map make this data more easily accessible (Knox et 

al., 2014; WHO, 2017c). Between 2010 – 2016, 86% of malaria-endemic countries reported 

phenotypic IR monitoring data to WHO (WHO, 2018a). However, the reporting of IR 

mechanisms (35%) or resistance intensity data (10%) was extremely low. Collection of this 

data is essential if current malaria control gains are to be maintained. Resistance intensity 

has been observed to increases dramatically over a short period of time in field (Toe et al., 

2014), and understanding the mechanisms which drive resistance in a population are vital 

when targeting resistant vector with different intervention.  

 

 The impact of insecticide resistance on malaria control 

 

The implications of insecticide resistance for malaria control remain controversial (Ranson 

et al., 2011). In the last 20-years, alongside the scaling up of insecticide-based control tools 

(particularly LLINs), a significant rise in pyrethroid resistance has been documented 

(Hemingway et al., 2016; Ranson and Lissenden, 2016; Implications of Insecticide 

Resistance Consortium, 2018; WHO, 2018a). A direct link between operational control tool 

failure and vector insecticide resistance has yet to be rigorously confirmed, partly due to 

the complexity of malaria epidemiology, numerous confounding factors and the absence of 

historical data (Ranson et al., 2011; Alout et al., 2017). The most frequently cited example 

of pyrethroid resistance impacting on malaria control comes from reports in South Africa, 
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where malaria cases increased following a switch from DDT to pyrethroids for IRS. It was 

found that the major malaria vectors in the area were resistant to pyrethroid and 

susceptible to DDT, and a switch back to DDT-IRS resulted in a reduction in malaria cases 

(Hargreaves et al., 2000; Brooke et al., 2001; Maharaj, Mthembu and Sharp, 2005). Studies 

with pyrethroid-PBO nets have shown reductions in malaria compared to pyrethroid-only 

LLINs (Protopopoff et al., 2018; Kleinschmidt, 2019). As the action of PBO is only to reverse 

resistance to pyrethroids, this is compelling evidence that insecticide resistance is eroding 

the efficacy of standard nets. 

 

Recently, studies have shown that in areas of pyrethroid resistance first-generation LLINs 

(i.e. those containing pyrethroids-only) still provide malaria protection to net users 

(Lindblade et al., 2015; Bradley et al., 2017; Ochomo et al., 2017; Kleinschmidt et al., 2018). 

Kleinschmidt et al. (2018) found that the level of protection was not related to phenotypic 

resistance, but it was not possible to determine if the same nets offered more protection 

prior to the emergence of resistance. Malaria rates were higher in non-net users compared 

to users even when LLIN coverage was high, suggesting the community effect of LLINs may 

have fallen (Kleinschmidt et al., 2018). Given the personal protection offered by nets as a 

physical barrier, it is likely that resistance will erode gains in community protection 

(through reduced net lethality) before failure in personal protection is documented. This is 

supported by a malaria transmission model, parametrised using a meta-analysis of lab 

bioassays and experimental hut trials, which estimated that pyrethroid resistance impacted 

community protection at lower resistance levels than those required to impact on personal 

protection (Churcher et al., 2016). Despite the difficulty in confirming a link between 

resistance and operational failure, it is beyond doubt that the entomological efficacy of 

standard LLINs is decreasing (Hemingway et al., 2016; Protopopoff et al., 2018), and 

progress in reducing malaria transmission is stalling (WHO, 2019b). Continued innovation in 

the field is needed to diversify control tools in order to reverse this trend (Zaim and Guillet, 

2002; Hemingway et al., 2006). 

 

1.4 Sub-lethal effects of insecticide exposure  

 

In the pest control sector, the dual importance of lethal and sub-lethal effects has been 

recognised, and it is recommended that these effects on target and non-target organisms 

be measured routinely in insecticide impact assessments (Stark and Banks, 2003; Desneux, 
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Decourtye and Delpuech, 2007). Unfortunately, the practise has not yet been adopted in 

the public health sector. The efficacy of an insecticide on mosquitoes is generally measured 

using two indices: 1-hour knockdown and 24-hour mortality. Such outcomes form the basis 

of most phenotypic bioassays to measure insecticide resistance and also assays to evaluate 

the efficacy of vector control tools (WHO, 2013a, 2016). These assays were designed for 

pyrethroids, which act rapidly to cause knockdown and death. These assays to not detect 

sub-lethal (e.g. reduced fecundity, altered host-seeking preference and/or blood-feeding 

behaviours) or delayed (e.g. reductions in longevity) effects that could also result in 

significant impacts on mosquito vectorial capacity and subsequent disease transmission. 

This could have dramatic implications for both our understanding of insecticide resistance, 

and the evaluation of vector control products with differing, slower, or novel modes of 

action. 

 

In mathematical modelling, a mosquito’s ability to transmit disease (vectorial capacity) is 

defined in the classic Ross-Macdonald model by four parameters: The ratio of mosquitoes 

to humans, the human biting rate, the mosquito’s daily survival, and the parasite’s extrinsic 

incubation period,  (Smith et al., 2012; Brady et al., 2016). A mosquito’s vectorial capacity is 

inextricably linked to its disease transmission potential, therefore anything that affects 

these parameters could significantly affect malaria transmission. Additionally, effects on 

the malaria parasite which alter its extrinsic incubation period will also impact on disease 

transmission. Some studies have shown insecticidal net exposure to affect Plasmodium 

development in mosquitoes, although much further work is needed in this area (Alout et 

al., 2014, 2016; Kristan et al., 2016). 

 

 Delayed mortality and longevity 

 

To transmit malaria, a mosquito must acquire Plasmodium by biting an infected host, 

survive long enough to become infectious, and then take another blood meal to pass on 

the parasite. It takes between 9-16 days for Plasmodium to complete their extrinsic 

incubation period and for sporozoites to be present in the mosquitoes’ salivary glands 

(Beier, 1998; Vaughan, 2007; Paaijmans et al., 2010), meaning that only older mosquitoes 

can transmit malaria. Therefore, anything that reduces the mosquito’s lifespan, also 

decreases its lifetime disease transmission potential.  
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It is well documented that mosquitoes are more susceptible to insecticides as they age 

(Rowland and Hemingway, 1987; Lines and Nassor, 1991; Glunt, Thomas and Read, 2011; 

Rajatileka, Burhani and Ranson, 2011; Jones et al., 2012; Collins et al., 2019; Machani et al., 

2019). Village trials have shown a shift in age-structure of Anopheles spp. populations, from 

predominantly older to younger Anopheles, following use of insecticidal nets (Magesa et 

al., 1991; Vulule et al., 1996), suggesting the intervention was exerting a stronger selective 

pressure on older mosquitoes, which is likely to affect disease transmission, even if the tool 

is not killing younger mosquitoes.  

 

Prior to this thesis, only two studies have documented how insecticide exposure affects the 

longevity of insecticide resistant survivors, despite its importance for disease transmission 

(Viana et al., 2016; Tchakounte et al., 2019). Viana et al. (2016) observed reductions of up 

to 50% in mosquito lifespan in moderate and highly resistant strains of An. gambiae, and 

they estimated that this delayed mortality could reduce the malaria transmission potential 

of these populations by two thirds. As insecticide resistance intensity increased in the 

populations tested, the magnitude of this reduction in malaria transmission potential 

decreased, suggesting that the observed effects could be eroded by intensification of 

resistance. In the second study, in semi-field populations, PermaNet 2.0 exposure was 

observed to reduce longevity of An. gambiae (F7) and An. funestus (F1) compared to 

unexposed mosquitoes. Notably, it is unclear if this study distinguished between immediate 

(within 24-hours) and delayed (>24-hours) mortality, and so it is not possible to determine 

the impact of the insecticide is delayed or not (Tchakounte et al., 2019).  

 

As most insecticidal tools are designed to rapidly kill (due to their pyrethroid component), 

the majority of efficacy studies record mosquito’s mortality at 24-hours post-exposure, 

though for products with a known slower mode of action this has been extended for up to 

120-hours in some instances (WHO, 2013a; Agossa, Padonou, Koukpo, et al., 2018). 

Subsequently, possible sub-lethal effects of LLINs may continue to be undocumented, and 

their true impact on mosquitoes underrepresented.  

 

 Blood-feeding  

 

The malaria parasite is transmitted by female Anopheles during blood-feeding. 

Subsequently, anything which impacts on their willingness or ability to locate a human host 
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or blood-feed will affect malaria transmission. Insecticidal bednets inhibit blood-feeding 

initially because they are a physical barrier to mosquito biting. In experimental hut trials, 

lower blood-feeding risk has been observed in insecticide treated arms compared to 

untreated, suggesting that insecticidal bednets cause additional effects on mosquito’s 

ability or willingness to blood-feed beyond the physical barrier (Strode et al., 2014). These 

effects were observed to persist regardless of mosquito insecticide resistance level. 

Experimental hut trials separate the number of unfed and blood-fed mosquitoes by 

location (inside bednet, main hut, or veranda), and calculate blood-feeding inhibition (BFI) 

as the reduction in blood-fed mosquitoes in insecticide treated huts compared to untreated 

huts. Due to the design of experimental hut trials, they are unable to distinguish blood-

feeding inhibition due to spatial repellence (the mosquito is inhibited from contacting the 

bednet in the first instance) or contact-irritation (the mosquito contacts the bednet but is 

inhibited from feeding by sub-lethal insecticide toxicity). Therefore, it is difficult to assess 

using hut trials whether the blood-feeding inhibition occurs prior to or after insecticidal net 

contact. 

 

In lab tests, inhibition of blood-feeding following insecticide exposure has been reported in 

several strains using varied exposure methods and insecticides. Strode et al. (2014) 

reviewed blood-feeding inhibition in Anopheles following exposure to insecticidal netting in 

tunnel tests. Mosquito blood-feeding is recorded as an outcome for all WHO tunnel tests 

(WHO, 2013a). Reduction in blood-feeding has been observed in Aedes aegypti following 

topical exposure to pyrethroids (d-phenothrin, d-allethrin and tetramethrin) (Liu, Todd and 

Gerberg, 1986), and dieldrin (Duncan, 1963). And, blood-feeding inhibition has been 

observed in resistant An. gambiae and An. funestus strains following expose for 1 – 10 

minutes (depending on their resistance level) to PermaNet 2.0 compared to untreated 

netting in lined WHO tubes (Glunt et al., 2018). None of these studies, however, investigate 

how long blood-feeding inhibition persisted for in surviving mosquitoes (although Liu, Todd 

and Gerberg (1986)  did established the effect did not persist in the F2-generation). One 

field study, observed no blood-feeding inhibition following PermaNet 2.0 exposure 

compared to untreated, however blood-feeding ability was first tested 3-days post 

exposure (Tchakounte et al., 2019). 
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 Reproductive output 

 

If insecticide exposure alters mosquito reproductive output through negative effects on 

fertility and fecundity this could have a significant impact on mosquito density and 

subsequently the biting rate on humans. Anopheles mosquitoes are anautogenous, 

meaning they require a blood-meal to develop their eggs (Clements, 1993). Anopheles 

reproduction is therefore intimately linked to blood-feeding, and so it can be difficult to 

determine which stage in the gonotrophic cycle is affected by insecticide exposure. Duncan 

(1963) for example, observed topical exposure to dieldrin to reduce oviposition in Ae. 

aegypti, however, the study also recorded a reduction in blood-feeding. Tests were 

conducted on cages of females, so results were at a group level, and so it was not possible 

to control for the effect of blood-feeding. Topical treatment of d-phenothrin or d-allethrin 

has also been observed to reduce oviposition in Ae. aegypti, however, tetramethrin 

application had no effect, suggesting impact could be insecticide specific (Liu, Todd and 

Gerberg, 1986). 

 

Oral toxicants and spatial repellents have been observed to affect Anopheles blood-feeding 

and reproductive output. Ingestion of ivermectin has been observed to delay time to re-

blood-feeding (Kobylinski et al., 2010; Kobylinski, Ubalee, et al., 2017), inhibit egg 

development, laying and hatching (Fritz et al., 2009; Sampaio et al., 2016; Lyimo et al., 

2017; Dreyer et al., 2019; Mekuriaw et al., 2019). Similarly, volatile pyrethroids, such as 

transfluthrin and metofluthrin, have been shown to reduce egg laying, dispersal and 

hatching in Aedes mosquitoes (Bibbs et al., 2018, 2019). Knowledge, however, on how 

insecticides delivered mainly through cuticular penetration (such as in LLINs and IRS) 

impact on mosquito blood-feeding and reproductive output are limited. Reproductive 

output is not measured in standard efficacy assays and is often only assessed when 

evaluating vector control products whose primary mode of action effects mosquito 

reproduction (e.g. Pyrethroid-PPF nets containing mosquito juvenile hormone analogues) 

(Ngufor et al., 2014, 2016; Koffi et al., 2015; Toé et al., 2019). 

 

Recently, two studies have considered the impact of insecticidal net exposure on aspects of 

Anopheles reproductive output (Hauser, Thiévent and Koella, 2019; Mulatier et al., 2019). 

Mulatier et al. (2019) investigated the impact of permethrin exposure on several life history 

traits. Resistant An. gambiae were given the opportunity to blood-feed through 
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permethrin-treated material for 1-hour and the size of their blood-meal and post-exposure 

fertility and fecundity were recorded. The authors observed no effect on the blood-meal 

size, number of eggs laid, number of descendants produced, or emergence rate between 

those exposed to permethrin-treated nets or controls after either a single or double 

exposure. Using a susceptible An. gambiae strain (Kisumu) Hauser, Thiévent and Koella 

(2019) observed no difference in oviposition when mosquitoes were exposed to Olyset Plus 

(a pyrethroid-PBO net) compared to untreated, and no difference in egg number when 

controlling for both mosquito size and blood-meal volume. Egg number increased with 

blood-meal volume (measured as haematin as a proxy), however, the amount of blood 

ingested was not affected by net type, regardless of feeding duration. The authors 

observed a decrease in both biting attempts and time blood-feeding following Olyset Plus 

exposed mosquitoes compared to controls.   

 

1.5 Mosquito behaviour  

 

In mosquitoes, host-seeking behaviour has been defined as the orientation from a distance 

in search of a potential blood-meal (Bowen, 1991; Takken, 1991). Mosquitoes use a 

number of sensory modalities (e.g. olfactory, thermal and visual cues) to locate and select 

preferred host species and individuals (Bowen, 1991; Zwiebel and Takken, 2004; 

McMeniman et al., 2014). These senses work in combination, gating, augmenting and 

modifying responses to other cues, both antagonistically and synergistically, and 

differentiating the behavioural effect of single cues is challenging. The ability of these cues 

to mediate mosquito behaviour and their degree of influence, varies spatially. Over long-

distances visual and olfactory cues play a major role in activating a behavioural response, 

whereas at short-ranges thermal cues and moisture levels are more important (Sutcliffe, 

1994; Cardé, 2015).  

 

Mosquitoes are initially stimulated to orient towards a host by carbon dioxide (CO2), which 

activates take-off and sustains flight (Rudolfs, 1922). Studies have shown that mosquitoes 

respond to CO2 when it is delivered in intermittent pulses or when concentration is varied, 

rather than in response to steady flow or at a defined threshold (Omer and Gillies, 1971; 

Gillies, 1980). It is likely this is how CO2 is perceived by mosquitoes under natural 

circumstances as air currents affect odour plumes causing concentration changes. At short 

distances olfactory cues (e.g. CO2, lactic acid) and heat work in combination to stimulate 
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mosquito landing and probing behaviour (Howlett, 1910; Gillies, 1980; McMeniman et al., 

2014). CO2 alters attractiveness to odour (e.g. pulsed CO2 has been observed to significantly 

enhance Ae. aegypti attractiveness to lactic acid (Acree et al., 1968)), and heat (e.g. Ae. 

aegypti landed on a heated target when pulsed CO2 was present, but this effect was absent 

in homozygous Gr3 mutants which could not detect CO2 (McMeniman et al., 2014)), and 

heat enhances the effect of odour (Healy et al., 2002; Olanga et al., 2010; McMeniman et 

al., 2014). In nature, mosquitoes search for hosts in sensory-rich environments, where they 

are unlikely to encounter cues singularly.  

 

Body odour cues, from volatile organic compounds contained in sweat, have been 

observed to stimulate host-seeking at short and long-range, prompting flying, landing, and 

probing behaviour (De Jong and Knols, 1995; Gibson and Torr, 1999; Healy and Copland, 

2000). Body odour cues play an important role in host preference, enabling mosquitoes to 

discriminate between humans and other animals. Composition and production rate of 

volatile organic compounds vary between and within species, this results in differences in 

host attractiveness, which in turn affects disease transmission (Acree et al., 1968; Zwiebel 

and Takken, 2004; Smallegange, Verhulst and Takken, 2011).  

 

Mosquito eyes have a poor resolution but high sensitivity (Muir, Thorne and Kay, 1992), 

and visual cues are used when following odour plumes using optomotor anemotaxis 

(upwind flight using optical feedback from the ground to assess progress) even in 

extremely low light settings (Gillies, 1980; Gibson and Torr, 1999). Responses to visual cues 

vary depending on if the mosquito is active during the day (diurnal) or night (nocturnal). 

Diurnally-active species have been shown to respond better to colour and brightness (Allan, 

1987), whereas nocturnal species are believed to be limited to distinguishing only 

conspicuous objects, using visual contrast to mediate flight (Bidlingmayer, 1994). 

 

 The impact of insecticidal net exposure on mosquito behaviour  

 

The potential impacts of insecticidal net exposure on mosquito behaviour at a population 

level (e.g. changes to peak biting times or shifts in host-preference) are discussed above 

(Section 1.3.4 Behavioural resistance). At an individual level, host-seeking, host-choice and 

blood-feeding are key behaviours which influence a mosquito’s vectorial capacity and 

disease transmission potential. The most effective control methods exploit these 
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characteristic behaviours, e.g. in the case of Anopheles, human-occupied insecticidal nets 

act as a baited-trap, capitalising on the anthropophilic and endophilic behaviours of the 

vector. The nets effectiveness is based on its ability to kill the mosquito (conferring both 

personal and community protection) or alter its behaviour in a way that reduces infectious 

bites (personal protection). Such behavioural impacts could be through effects on host-

seeking or blood-feeding. However, nets might also be simply repellent. Repellence 

encompasses both non-contact or true repellence, where the mosquito is repelled by the 

LLIN after detecting volatile compounds in the air which emanate from the net, or contact 

irritancy, also termed excito-repellency, where the mosquito moves away from the net 

following physical contact (Grieco et al., 2007). 

 

Net repellence provides personal protection if it inhibits mosquitoes from biting. However, 

a modelling study found non-repellent lethal nets were the most effective at providing 

malaria protection, even when they offered no personal protection (the mosquito was 

killed only after feeding) (Killeen et al., 2011). Lethal but slightly repellent nets were 

superior to wholly repellent net, highlighting the importance of community protection to 

both net-users and non-users alike. Under semi-field conditions, LLINs are frequently 

documented to stimulate mosquito exit from experimental huts (Strode et al., 2014). In 

individual experimental hut studies, differences in deterrence (reduction in hut entry of 

mosquitoes) and exophily (proportion of mosquitoes captured in veranda/exit traps) 

between huts containing insecticidal or untreated nets points to impact of insecticide 

exposure. In some cases, this can be explained by variations in natural mosquito behaviour, 

(Okumu et al., 2013); for example, high exiting rates were observed for An. arabiensis, 

which is a more exophagic and exophilic vector (Sinka, Bangs, et al., 2010), for all study 

arms, with little difference between treated and control huts. 

 

Net repellence varies depending on insecticide (Siegert, Walker and Miller, 2009). For 

example, compared to untreated netting, non-lethal exposure to permethrin (Olyset Net) 

and deltamethrin (PermaNet 2.0) netting caused reduced landing and increased flight in 

An. gambiae. However, the response was stronger to permethrin netting compared to 

deltamethrin (Siegert, Walker and Miller, 2009). Net repellence has also been seen to vary 

between mosquito species (Kawada et al., 2014), and effects could possibly be alerted by 

insecticide exposure history (Mulatier et al., 2019). Following a secondary exposure to 

permethrin-treated nets, Mulatier et al. (2019) observed significantly higher blood-feeding 
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rates in resistant An. gambiae pre-exposed to permethrin-treated nets compared to 

mosquitoes pre-exposed to control nets, suggesting pre-exposure to the insecticide 

reduced its blood-feeding inhibition effect. In the secondary exposure, flight-activity was 

increased in permethrin-exposed mosquitoes compared to untreated, suggesting 

permethrin irritancy is still present, although this may not affect blood-feeding. Flight 

activity was not affected by permethrin pre-exposure and was not measured in the first 

exposure. 

 

Several lab studies have shown that insecticide exposure can reduce subsequent host-

seeking and biting behaviours, with this impact persisting for up to 48-hours following 

insecticide exposure (Glunt et al., 2018; Thiévent et al., 2019). Using the same exposure 

method discussed previously (LLIN lined WHO tubes), Glunt et al. (2018) observed 

reductions in “host-seeking” (defined as mosquitoes probing at cage sides where host cues 

were present) following LLIN exposure in resistant Anopheles strains and field-caught An. 

funestus. Reductions in host-seeking at 1-hour post-exposure were observed in both An. 

arabiensis (90% reduction) and An. funestus (80% reduction) lab-strains, and An. funestus 

(95% reduction) collected from the field. The field-caught An. funestus were of unknown 

age, insecticide exposure history, and resistance level, however, were collected from an 

area of known pyrethroid resistance. In the An. arabiensis strain inhibition was seen to 

persist until 24-hours post-exposure (30% reduction), when the experiment finished. In 

susceptible An. gambiae LLIN exposure has been shown to affect mosquito biting 

behaviour (Hauser, Thiévent and Koella, 2019). In this study, time to start of biting was 

increased while time to blood-feeding and proportion attempting to bite decreased 

following pyrethroid-PBO net (Olyset Plus) exposure compared to untreated.  

 

Under more naturalistic setting, room-scale video tracking systems have been used to 

visualise mosquito behaviour in response to a whole human-baited net, both using 

laboratory (Parker et al., 2015; Angarita-Jaimes et al., 2016) and wild-reared field (Parker et 

al., 2017; Murray et al., 2020) mosquito populations. In their original study, Parker et al. 

(2015) observed reductions in flight activity and net contact when susceptible An. gambiae 

were exposed to deltamethrin net (PermaNet 2.0) compared to controls, however, no 

repellent effects were seen prior to contact confirming the effect to be as a result of 

contact irritancy. The authors observed ~75% of mosquito flight activity to be concentrated 

on the roof of the net. This led to the development of a novel bed-net design (McCall, 
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2015), which was later shown to target and kill wild-pyrethroid-resistant An. gambiae s.l. in 

Burkina Faso with greater efficacy than standard net designs (Murray et al., 2020). These 

studies provide a key example of how understanding nuances in individual mosquito 

behaviour can lead to the development of improved vector control tools to target resistant 

population.  

 

1.6 Aims and objectives 

 

This project investigated the effects of sub-lethal pyrethroid exposure on, the life-history 

traits and behaviour of wild pyrethroid-resistant Anopheles gambiae s.l., and the efficacy of 

insecticidal bednets. The specific aims were: 

 

1. To determine the impact of insecticide exposure on the longevity of Anopheles by 

measuring daily survival in laboratory and semi-field hut trials (Chapter 3). 

2. To design and conduct assays to investigate the impact of insecticidal nets on the 

long-term fitness of Anopheles sp. by measuring reproductive output and ability to 

blood-feed after exposure (Chapter 4). 

3. To evaluate the feasibly of using novel video benchtop assays for describing and 

quantifying behaviours of Anopheles at the insecticidal net interface (Chapter 5). 

4. To use the assays developed in objective 3 to characterise the effects of exposure 

to standard and next-generation nets on the behaviour of Anopheles (Chapter 5).  
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 General methods and characterisation of mosquito 

population 

 

2.1 Study sites 

 

Burkina Faso is a landlocked country in west-Africa. It is one of the 11 high burden malaria 

countries highlighted by WHO with an estimated 12,725 malaria deaths and 7.8 million 

malaria cases in 2018 (WHO, 2019b). Administratively, it is divided into thirteen regions 

and 45 provinces. Comoé Province (within Cascades region), in the south-west of the 

country, is where the work reported in this thesis was conducted. Banfora, the province’s 

capital, is located ~450 km south-west of Ouagadougou, the country’s capital. Ecologically, 

the country is divided into three zones; the humid savannah in the south-west, the arid 

savannah across the centre, and the Sahel in the north. The western-savannah is 

characterised by a rainy reason from May to September. In the study area, cotton and 

cereals cultivation are the major agricultural practices, with pesticide use in the cotton 

industry accounting for >90% of the pesticides used in the country (Ouedraogo et al., 

2011).  

 

An. gambiae, An. coluzzii and An. arabiensis are the major mosquito vectors in the study 

area. Insecticide resistance in these populations is driven by multiple insecticide resistance 

mechanism (Ingham, Wagstaff and Ranson, 2018; Ingham et al., 2019; Namountougou et 

al., 2019; Williams et al., 2019), and insecticide resistance intensity has been observed to 

dramatically increase over a short time period in the study area (Toe et al., 2014). Standard 

pyrethroid-only LLINs do not kill the local mosquito population, however next-generation 

pyrethroid-PBO nets have shown efficacy in experimental hut trials (Toe et al., 2014; Toe et 

al., 2018)  

 

Field experiments were conducted in Burkina Faso over a three-year period (2016 – 2018). 

Laboratory bioassays were conducted at CNRFP’s insectary in Banfora (10°37' N, 04°46' W), 

and experimental hut studies at their field station in Tengrela (10°40' N, 04°50' W). The 

huts are located on the outskirts of Tengrela village adjacent to rice growing fields. 

Mosquito populations were collected from Tengrela, Yendere (10°12' N, 04°58' W), 
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Mangodara (9°54' N, 04°20' W), Sitiena (10°36′N, 4°48′W), Toumousenni (10°37' N, 04°55' 

W), and Toundoura (10°11' N, 04°40' W). 

 

2.2 Mosquito collection, rearing and identification 

 

Mosquitoes used for tests were defined as either ‘wild-entering’ or ‘larval-reared’ adults. 

Wild-entering adults were naturally host-seeking mosquitoes entering the experimental 

huts in Tengrela. Larval-reared mosquitoes were collected as larvae or pupae from field 

locations and transported to CNRFP’s insectaries in Banfora for rearing. Larvae were 

collected from June – October each year. Mosquitoes were reared at 25 ± 3°C and 75 ± 25% 

relative humidity. The daily light: dark cycle was dependant on natural light entering the 

room. Larvae were fed daily on a dried cat or fish food, and adults were provided with 10% 

glucose solution soaked onto cotton wool. Pupating mosquitoes were separated daily to 

ensure the date of emergence was known and only F0 adult females were used for 

experiments. Adults were morphologically identified as An. gambiae complex (Gillies, 1968; 

Gillies and Coetzee, 1987). A random sub-sample of all test mosquitoes from Tengrela 

(2016 – 2018) and Yendere  (2018) were identified to species level using SINE PCR 

(Santolamazza et al., 2008). Molecular ID confirmed An. coluzzii to be the dominant species 

of mosquitoes collected from Tengrela, while An. gambiae s.s. were more abundant in 

mosquitoes collected from Yendere (Table 2.1). Species composition of An. gambiae s.l. 

from Mangodara, Toumousenni, and Toundoura has been reported elsewhere (Sanou, 

2020).  

 

Table 2.1. SINE PCR (Santolamazza et al., 2008) species identification of a sub-sample of 

mosquitoes used in all tests from the study side in Burkina Faso from 2016 – 2018. 

Study 

site 
Year Total ID 

% An. 

coluzzii 

% An. 

gambiae 

% An. 

coluzzii/ 

gambiae 

hybrid 

% An. 

arabiensis 

% 

Unknown 

Tengrela 

2016 146 81.51 2.74 0.68 0.00 15.07 

2017 437 87.41 2.97 1.14 0.23 8.24 

2018 125 84.00 10.40 0.00 0.00 5.60 

Yendere 2018 203 2.46 90.15 0.49 0.49 6.40 
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2.3 Mosquito status 

 

For wild-entry mosquitoes age, mating status, feeding status, and previous insecticide 

exposure is unknown. For larval-reared mosquitoes age range is known, mosquitoes are 

held with males prior to testing but spermatheca were only dissected for some females 

during fertility assays (Chapter 4), so mating status is unknown. Mosquitoes were non-

blood-fed and not exposed to insecticide prior to testing.  

 

In experimental hut trials and WHO tube assays mosquitoes were not starved prior to 

testing. In video cone tests, video baited box tests and re-feeding assays, adult mosquitoes 

were sugar and water starved prior to testing. The duration of starving, and the times of 

tests are described in detail in each study’s methodology. 

   

2.4 Mosquito resistance testing  

 

WHO susceptibility and intensity bioassays (WHO, 2016) were used throughout the testing 

period, during the wet season (June – November), to determine the insecticide resistance 

level of the field populations to pyrethroids and organophosphates. 3 to 5-day-old non-

blood-fed female mosquitoes were exposed to deltamethrin (0.05, 0.25, 0.50, 0.75, 1.00%) 

or control papers for 1-hour, or fenitrothion (1.00%) for 2-hours.  Mosquitoes were held for 

24-hours with access to 10% glucose solution. Mosquito knockdown was counted after 1-

hour, and mortality after 24-hours. Mortality was not corrected using Abbott’s formula 

(Abbott, 1987) as control mortality was always <5%. 

 

The Tengrela population was susceptible to the organophosphate fenitrothion (2016; 

94.44% 24hr mortality, 90 mosquitoes tested; 2017, 100% 24hr mortality, 98 mosquitoes 

tested), and extremely resistant to deltamethrin, with less than 80% mortality in all three 

years when exposed to 5 x the discriminating dose (Figure 2.1). Previous testing in the 

same study area documented the An. coluzzii population to be extremely resistant to 

permethrin (2014; 14% 24hr mortality, n = 101 mosquitoes, Toe et al., 2018). 
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Figure 2.1. 24-hour mortality of An. gambiae s.l. from Tengrela following exposure to 

deltamethrin in WHO tube bioassays from 2016-2018.  

Error bars show 95% confidence intervals for the population proportion. Numbers above 

bars show the number of mosquitoes tested. 

 

WHO tube bioassays conducted in 2018 showed that the mosquito populations in all other 

study sites were also highly resistant to deltamethrin (Figure 2.2) with <20% 24-hour 

mortality after exposure to the standard discriminating dose.  

 

 

Figure 2.2. 24-hour mortality of An. gambiae s.l. from different study locations following 

exposure to deltamethrin 0.05% or untreated control papers in WHO tube assays in 2018.  

Error bars show 95% confidence intervals for the population proportion. Numbers above 

bars show the number of mosquitoes tested. 
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2.5 Net Types 

 

Mosquitoes were exposed to untreated nets, Olyset Net (Manufactured by Sumitomo 

Chemical Ltd and sourced by CNRFP), PermaNet® 2.0, PermaNet® 3.0 (manufactured and 

provided by Vestergaard Frandsen), and Interceptor® G2 (manufactured and provided by 

BASF). Untreated nets were tailored in Burkina Faso from locally sourced netting. 

Untreated nets were confirmed as non-insecticidal (2016, 0.00% mortality, 99 mosquitoes 

tested; 2017, 1.89% mortality, 106 mosquitoes tested; 2018 3.52% mortality, 142 

mosquitoes tested) with a WHO cone bioassay using Kisumu, a susceptible An. gambiae 

laboratory stain (Williams et al., 2019). The Kisumu strain was originally collected from 

Kisumu, Kenya, in 1975 and has been held in colony in both LSTMs and CNRFPs insectaries 

for several years.  

 

Olyset Net is a 150-denier polyethylene first-generation net impregnated with permethrin 

(20 g/kg ± 3g/kg). PermaNet 2.0 is a 100-denier polyester first-generation net impregnated 

with deltamethrin (1.4 g/kg ± 25%). PermaNet 3.0 is a next-generation pyrethroid + PBO 

combination net. The sides are made of 100 denier polyester impregnated with 2.1 g/kg ± 

25%). The roof is 100-denier polyethylene treated with deltamethrin (4 g/kg ± 25%) and 

piperonyl butoxide (25 g/kg ± 25%). Interceptor G2 is a next-generation combination net 

made of 100-denier polyester treated with alpha-cypermethrin (2.4 g/kg) and chlorfenapyr 

(4.8 g/kg). Nets were not aired before testing in the 2016 experimental hut trial due to time 

constraints. All other nets or net fragments/pieces were aired (indoors in a large ventilated 

room away from direct sunlight) for a minimum of 1 week before testing, and all testing 

took place within six months of nets being aired. Nets were acclimatised to the 

temperature of the testing room or experimental hut for at least 1-hour before 

experiments began.  

 

2.6 Hosts 

 

Humans acted as hosts to attract mosquitoes during the following experimental assays: 

experimental hut trials, video cone tests, baited box test, and re-feeding assays. Volunteers 

were requested to refrain from using scented substances before the experiments began. In 

experimental hut trials, volunteers were requested to remain inside the hut throughout the 
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night where possible, and if they should exit the huts, to ensure the doors were quickly 

closed behind them. A trial supervisor was present overnight to assist volunteers.  

 

2.7 Ethics 

 

Ethical approval for the for experimental hut trials was received from the Research Ethics 

Committees at the Liverpool School of Tropical Medicine (LSTM Research Protocol 16-38, 

Liverpool) and Centre National de Recherche et de Formation sur le Paludisme (CNRFP 

Deliberation no. 2016-9-097, Ouagadougou). Informed written consent was obtained from 

all volunteers, and no mosquito-borne infections, or adverse effects, were reported during 

the study. 
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 Longevity of adult female Anopheles gambiae 

following sub-lethal pyrethroid exposure1 

 

3.1 Introduction 

 

Insecticide resistance status in mosquito vectors is assessed based on standardised tests 

using pre-defined discriminating doses (WHO, 2016). Typically, these assays measure 

mosquito knockdown and immediate mortality (i.e. within 24-hours of exposure), and 

although this provides valuable data for resistance monitoring, its predictive use for 

malaria epidemiology is unclear, particularly as these discriminating doses are not 

representative of insecticide concentrations mosquitoes encounter in the field following 

contact with vector control tools. Additionally, these tests fail to measure any sub-lethal 

and delayed effects (e.g. impaired feeding, reduced longevity) which could impact on the 

mosquitoes’ vectorial capacity and subsequently affect their malaria transmission 

potential. Furthermore, by focusing solely on mortality at 24-hours post-exposure, these 

tests may not be fit-for-purpose for evaluating 2nd-generation LLINs containing slow-acting 

insecticides or insect growth regulators, or other novel vector control tools whose primary 

mode of action may not include rapid knockdown and mortality like the pyrethroids. It is 

vital that we improve our knowledge of the long-term impacts that all currently available 

classes of bednet have on mosquitoes, including importantly their impact on pyrethroid-

resistant field populations, in order to have a better understanding of how resistance is 

impacting on vector control currently, and in the future. 

 

Delayed mortality, defined as death occurring >24-hours post-insecticide exposure, has 

been documented in moderate and highly insecticide-resistant mosquito strains following 

LLIN exposure (Viana et al., 2016). Mathematical models predicted that, when the delayed 

 
1At the time of writing, some of the data reported in this chapter has been included in two 
independent publications: 
 
Murray, G.P.D., Lissenden, N., Jones, J. et al. (2020). Barrier bednets target malaria vectors and 
expand the range of usable insecticides. Nature Microbiology, 5, 40–4. doi:10.1038/s41564-019-
0607-2 (Appendix 2);  
 
Hughes, A., Lissenden, N., Viana, M., Toé, K. H., and Ranson, H. (2020). Anopheles gambiae 
populations from Burkina Faso show minimal delayed mortality after exposure to insecticide-treated 
nets. Malaria Journal, 13(11):17 (Appendix 3). 
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mortality is considered, exposure to LLINs reduced the mosquito’s malaria transmission 

potential by two thirds, with half of this being as a result of delayed effects, despite the 

presence of pyrethroid resistance. In wild populations, it is frequently documented that 

pyrethroid exposure fails to kill resistant mosquitoes within 24-hours (WHO, 2018a). 

However, data on mosquito lifespan following LLIN exposure in wild populations is 

restricted to limited evidence from one study (Tchakounte et al., 2019), in which the 

authors did not separate out the effects of immediate and delayed mortality.   

 

In this chapter, the effect of insecticide exposure on mosquito longevity was investigated in 

the pyrethroid-resistant mosquito populations from the study site in Burkina Faso. 

 

The objectives of these experiments were to: 

- Determine if mosquito longevity was reduced following single or multiple exposures to 

LLINs in WHO cone bioassays. 

- Determine if mosquito longevity was reduced following exposure to LLINs in a semi-

field environment in experimental hut studies. 

- Determine if the longevity of mosquitoes was affected by the concentration of 

pyrethroids in WHO tube tests.   

- Determine if mosquito age at the time of exposure affected mosquito longevity.  

 

3.2 Methods  

 

 Study sites, mosquitoes and net treatments 

 

Hut trials were performed at the experimental hut station in Tengrela, Burkina Faso, and all 

laboratory bioassays at the CNRFP insectaries in Banfora, Burkina Faso. Mosquitoes used 

for tests were defined as either ‘wild-entering’ or ‘reared-release’ adults, and were 

collected, reared and identified using the methods described in Chapter 2. Mosquitoes 

were exposed to untreated, PermaNet 2.0, or Olyset Net netting during tests (full nets 

specifications can be found in Chapter 2, Section 2.5).  
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 Longevity testing: WHO tube bioassays 

 

WHO tube bioassays (WHO, 2016) were used to compare mosquito longevity following 

exposure to insecticide papers. Mosquitoes from multiple populations were exposed to the 

discriminating doses of deltamethrin (0.05%), bendiocarb (0.1%), malathion (5%), propoxur 

(0.1%) or an untreated control for 1 hour. To establish if increasing the concentration of 

insecticide affected mosquito longevity, populations were also exposed to deltamethrin 

papers treated at 0.05, 0.25, 0.50, 0.75, or 1.00%. Mosquitoes were 3 to 5-days-old non-

blood-fed larval-reared females. After exposure mosquitoes were provided with 10% 

glucose solution soaked onto cotton wool. Mortality was recorded daily until no 

mosquitoes remained alive, and dead mosquitoes were stored in silica. All longevity tube 

exposures were conducted in 2018. 

 

 Longevity testing: WHO cone bioassays 

 

The effect of varied LLIN exposure on An. gambiae longevity 

 

This experiment aimed to establish if mosquito longevity was affected by different 

durations of exposure to insecticide-treated netting (PermaNet 2.0). Mosquitoes were 

exposed to untreated or PermaNet 2.0 netting singularly or multiple times depending on 

the experimental regime (Table 3.1) using a WHO cone bioassay (WHO, 2013a). Mosquitoes 

were reared from larvae, 3-to-8-days-old on first exposure (Table 3.2), female, and non-

blood-fed. Each exposure lasted for 3-minutes and after exposure mosquitoes were 

provided with 10% glucose solution soaked onto cotton wool. Mortality was recorded daily 

until no mosquitoes remained alive, and dead mosquitoes were stored in silica. Mosquitoes 

were held in an experimental hut in Tengrela or the insectary in Banfora. A preliminary 

study showed no difference in survival based on mosquito holding locations (P = 0.204, 25 

mosquitoes stored in an experimental hut, 25 mosquitoes stored in the Banfora insectary).  

 

The different exposure regimes approximate various types of exposure to LLINs that 

mosquitoes may experience in the wild (Viana et al., 2016). Regime A (single exposure) 

provided a baseline level of net contact to compare untreated and treated netting. Regime 

B (exposure every 4 days for 4 exposures) simulates the level of net contact a mosquito 

might encounter once every gonotrophic cycle whist host seeking. Regime C (daily 
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exposure for 5 days) simulates the net contact a mosquito might encounter if it is 

repeatedly prevented from obtaining a blood meal. 

  

Table 3.1. Exposure regime summarising number and day of exposures for each longevity 

experiment carried out in Burkina Faso using a WHO cone bioassay. 

Experiment 

ID 

Net 

exposure 

(times 

exposed) 

Day of exposure 

0 1 2 3 4 5 6 7 8 9 10 11 12 

A 
Single 

(x 1) 
             

B 
Multiple 

(x 4) 
             

C 
Multiple 

(x 5) 
             

 

Table 3.2. Summary of experimental factors for each longevity experiment carried out in 

Burkina Faso using a WHO cone bioassay. 

Different populations of mosquitoes were exposed to untreated or PermaNet 2.0 netting, 

single or multiple times and their post exposure longevity was recorded. 

Experiment ID 

Net exposure 

(times 

exposed) 

Mosquito 

population 

Age (days) at 

first exposure 

Date 

conducted 

A Single (x 1) Yendere 3 – 5 July 2018 

A Single (x 1) Tengrela 5 – 8 
September 

2017 

B Multiple (x 4) Tengrela 4 August 2018 

C Multiple (x 5) Tengrela 4 
September 

2018 

 

The effect of An. gambiae age at LLIN exposure on longevity 

 

A preliminary assay also looked at the effect of age at first exposure on mosquito 

immediate mortality, with a subset of mosquitoes additionally scored for longevity. In this 
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assay larval-reared mosquitoes were 1 or 7 days-old at first exposure. Mosquitoes were 

only exposed to PermaNet 2.0 in a standard 3-minute cone assay. 

 

 Experimental hut trials 

 

Experimental hut trials were used to expose mosquitoes to untreated or treated netting 

under semi-field conditions. Mosquitoes could contact the nets throughout the night, and 

as a result, the overall duration of net contact is unknown. Mosquito longevity data were 

collected from three different hut trials; a reared-release trial, a wild-entry trial, and a trial 

assessing the efficacy of a novel design of bed net (referred to as the barrier bed net trial, 

Murray et al., 2019). The methodological differences (Table 3.3.) and the aims of these 

trials are discussed below. All trials were replicated in 2016 and 2017. 

 

The six experimental huts in Tengrela are situated between the rice fields and the village 

(Figure 3.1). The huts were built in 2013 to the standard West-African design (WHO, 

2013a), and have been used previously for phase II net efficacy trials (Toe et al., 2018). The 

huts (3.5 x 2 x 2m high) are made of concrete with a corrugated iron roof, polythene ceiling 

and a veranda trap. They are housed on top of a concrete base with a water-filled moat to 

prevent the entry of ants and other scavengers. In their standard configuration, the hut 

windows are shuttered and made from angled metal containing a 1 cm entry slit. This 

design permits mosquito entry into the huts but impedes their exit.  

 

In all hut trials nets were unwashed with holes, based on standard WHO guidelines (WHO, 

2013). Six 4 cm2 holes were cut into the nets (two on each of the long sides and one on the 

short sides of the net). Nets were aired for a minimum of one week prior to experiments 

(except for the 2016 hut trials where nets were used on the same day, without airing). Nets 

were hung in the main sleeping area of the hut over a sleeping mat. Volunteers rotated 

between huts daily, and nets between huts weekly, to control for biases in the hut or 

volunteer attractiveness. Not all six huts were used in all trials. Trials ran on non-

consecutive days, and in some cases did not complete full rotations through huts due to 

logistical constraints. Because of this, some net treatments or volunteers spent unequal 

time in each hut (Appendix 1, Table A1.2 – A1.8). 

 



57 
 

 

Figure 3.1. Photograph of the six experimental huts in Tengrela, Burkina Faso. 

The huts are built to the standard West-African design (WHO, 2013) and are situated 

between Tengrela’s rice growing fields and the village, ~ 100 m from the rice fields and 

~200 m from human habitation.  

 

Volunteers entered the huts at ~20:00 and positioned themselves under the nets. Nets 

were tucked under the sleeping mat. Volunteers slept under the nets and exited the huts 

the following morning after mosquito collection at ~06:30. Mosquitoes were individually 

captured using glass universal tubes and placed into labelled bags to separate samples by 

collection location (i.e. in net, in the veranda, in the main hut). Huts were checked for 

uncaught mosquitoes using an electronic Prokopack aspirator. As it was not possible to 

identify their collection location, mosquitoes collected with a Prokopack aspirator were 

stored separately. Following collection, mosquitoes were morphologically identified (Gillies, 

1968; Gillies and Coetzee, 1987), sexed, recorded as dead or alive, and scored for 

abdominal status (unfed, partially-fed, blood-fed, semi-gravid/gravid). Dead female 

Anopheles mosquitoes were stored in silica, and male Anopheles and non-Anopheles were 

recorded and discarded.  

 

Surviving female Anopheles were transferred from universal tubes and pooled into paper 

cups (maximum 10 mosquitoes per cup). In 2016 trials, mosquitoes were pooled into 

unfed, and blood-fed (partially blood-fed, fully blood-fed, semi-gravid, and gravid) groups. 
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In 2017 trials, mosquitoes were pooled into unfed, blood-fed (partially blood-fed, fully 

blood-fed), and gravid (semi-gravid, gravid) groups. Cups were stored in racks in an 

experimental room in Tengrela and mosquitoes were provided with 10% glucose solution. 

Cups were identifiable by experimental day, hut number, collection location, and feeding 

status. Mortality was recorded daily until no mosquitoes remained alive, with dead 

mosquitoes stored in silica.  

 

The primary outcome of interest from these hut trials was the effect of LLIN exposure on 

mosquito longevity. However, the modes of action of LLINs stem beyond this effect, and so 

the standard outcomes of an experimental hut trial were also collected and defined as 

follows: 

 

- Deterrence: the reduction in hut entry of mosquitoes in treatment huts relative to 

untreated huts (note this data was not available for reared-release trials). 

- Exophily: mosquitoes found in veranda as a proportion of the total number collected in 

the hut. 

- Induced exophily: the increase in mosquitoes in the veranda in treatment huts 

compared to untreated huts.  

- Blood-feeding inhibition: the reduction in blood-feeding mosquitoes in treatment huts 

compared to untreated huts.  

- Dead when collected and 24-hour mortality: mosquitoes found dead on collection or 

dying within the first 24-hours as a proportion of those collected. The standard WHO 

definition defines mosquitoes dead when collected as immediate mortality and those 

dying by 24-hours as delayed mortality (WHO, 2013a). In the following trials, 24-hour 

mortality was instead described as immediate mortality to align with definitions used 

for tube and cone assays, and to differentiate it from delayed mortality which referred 

to post-exposure longevity.  

- Longevity: the day of mosquito death, where day 0 is the day of its collection from the 

experimental huts. 

- Personal protection (%) calculated as: 

100 ×
(𝐵𝑙𝑜𝑜𝑑 𝑓𝑒𝑑 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 𝑖𝑛 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ℎ𝑢𝑡 − 𝐵𝑙𝑜𝑜𝑑 𝑓𝑒𝑑 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ℎ𝑢𝑡)

𝐵𝑙𝑜𝑜𝑑 𝑓𝑒𝑑 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 𝑖𝑛 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ℎ𝑢𝑡
 

- Killing effect (%) calculated as: 

100 ×
(𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 𝑘𝑖𝑙𝑙𝑒𝑑 𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑛𝑒𝑡𝑠 − 𝑀𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 𝑘𝑖𝑙𝑙𝑒𝑑 𝑖𝑛 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑛𝑒𝑡𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑚𝑜𝑠𝑞𝑢𝑖𝑡𝑜𝑒𝑠 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ℎ𝑢𝑡
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Experimental hut trials of reared and release An. gambiae (‘reared-release’) 

 

To standardise the age range of the mosquitoes tested, reared-release trials used adult 

female mosquitoes reared from larvae collected locally. Mosquitoes were reared from 

larvae to adults, which at 5-to-8-days-post-emergance, were released into the huts on the 

evening of each experimental day and recaptured the following morning. Huts were sealed 

to inhibit the exit of released mosquitoes and the entry of wild mosquitoes. Window 

shutters were closed, the entries filled with untreated netting, and the interior side 

screened (Figure 3.2). The door frames were covered with overlapping untreated netting. 

In the evening, volunteers positioned themselves under the test nets. Mosquitoes were 

acclimatised to the test hut for > 10-minutes before ~25 Anopheles females were manually 

released into the hut and allowed to host-seek. 

 

 

Figure 3.2. Photographs of the adaptations to the experimental huts for the reared-

release experimental hut trials. 

Doors were covered with overlapping untreated netting (left). Windows entries were filled 

with untreated netting and the interior screened with untreated mesh (right). 

 

Experimental hut trials of wild-entering An. gambiae (‘wild-entry’) 

 

The primary objective of the wild-entry trial was to examine how LLIN exposure affected 

mosquito reproductive output (reported in Chapter 4). Subsequently, in this trial longevity 
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was only recorded for non-blood-fed mosquitoes, as blood-fed mosquitoes were used to 

assess reproductive output. Huts were unaltered from the standard WHO protocol (WHO, 

2013a) and mosquitoes were those freely entering huts while host-seeking. The age and 

previous insecticide exposure of this population is unknown. 

 

Experimental hut trial evaluating the efficacy of barrier bednets (‘barrier bednet’) 

 

The barrier bed net trials aimed to assess the efficacy of a novel design of bed net. Data on 

mosquito longevity was collected as a secondary outcome for all net treatment arms. The 

primary outcomes of these studies were to assess the effect of different net treatments, 

with and without different treated barriers, on immediate mosquito mortality, blood-

feeding inhibition, deterrence, and repellency. Huts were unaltered from the standard 

WHO protocol (WHO, 2013a) and mosquitoes were those naturally host-seeking and 

entering huts. The main results of the 2017 trial are published elsewhere (Murray et al., 

2019; Appendix 2), but here the effects of the different barrier treatments on mosquito 

longevity are reported. 
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Table 3.3. Summary of experimental factors in longevity hut trials. 

Mosquitoes were exposed to untreated or treated nets under semi-field conditions and their 

post-exposure longevity was recorded. 

Trial ID Date conducted 
Number of 

nights 
Net treatments 

Number of 

huts used 

Reared-

release 

26 September – 

3 October 2016 
6 

Untreated 

PermaNet 2.0 
2 

10 – 22 

September 

2017 

10 
Untreated 

PermaNet 2.0 
2 

Wild-

entry 

10 – 21 October 

2016 
10 

Untreated 

PermaNet 2.0 
2 

2 – 14 July 2017 12 

Untreated 

PermaNet 2.0 

Olyset Net 

6 

Barrier 

bednet 

26 September – 

20 October 

2016 

16 

Untreated 

PermaNet 2.0 

PermaNet 2.0 + PN2 

Barrier 

PermaNet 2.0 + OP 

Barrier 

4 

16th July – 25th 

August 2017 
36 

Untreated 

PermaNet 2.0 

PermaNet 2.0 + PN2 

Barrier 

PermaNet 2.0 + NPI 

Barrier 

PermaNet 2.0 + OP 

Barrier 

Untreated + OP Barrier 

6 

Abbreviations: PN2 (PermaNet 2.0); NPI (non-pyrethroid insecticide); OP (organophosphate 

fenitrothion). 
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 Data analysis  

 

In all experiments, to compare immediate mortality (within 24-hours following exposure) 

Pearson Chi-Square was used. When the assumptions of this test were violated due to low 

expected frequencies Fisher’s Exact Test was used. If a mosquito was censored (e.g. 

mosquito escaped) during the 24-hours following exposure, it was removed from the 

immediate mortality analysis. Cox proportional hazard regression (Cox, 1972) was used to 

examine the effect of all predictor variables (i.e. date, blood-feeding status, hut, net 

treatment, and collection locations (e.g. in net, in veranda)) on mosquito survival post-

exposure (longevity). When variables were non-significant, they were removed from the 

regression and it was re-run.. When experiments were stratified by blood-feeding status 

mosquitoes were pooled into blood-fed (partially-blood-fed, blood-fed, semi-gravid, and 

gravid) and unfed groups. 

 

Kaplan-Meier curves were produced to visualise daily survival probabilities, and box and 

whisker plots were used to visualise the spread of the data. When investigating the effects 

on longevity, immediate mortality (mortality 24-hours following any exposure) was 

excluded from all data sets. In experimental hut trials, immediate mortality additionally 

included mosquitoes that were dead on collection in the huts, as well as those that died 

within the first 24-hours. Results from each year were analysed separately. The analysis 

was conducted in IBM SPSS Statistics 24.  

 

In hut trials, the proportion of mosquitoes collected dead (mortality), blood-fed (blood-

feeding), and in the veranda (exophily) were compared between treated and untreated 

nets using generalised linear mixed effects models (GLMMs) with a binomial distribution 

and logit link function. The number of mosquitoes entering huts was compared using 

GLMMs with Poisson distribution and a log link function, or a negative binomial distribution 

to account for overdispersion. Sleeper, hut, and day were all included as random effects in 

the models, except in cases where they failed to converge and were re-ran as fixed effects. 

The analysis was conducted within R statistical software version 3.4.1 (2017-06-30) (R Core 

Team, 2017) using the lme4 (Bates et al., 2015), and glmmADMB (Fournier et al., 2012) 

packages. Model parameters are listed in Appendix 1, Table A1.9 
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3.3 Results 

 

 Mosquito longevity: WHO tube assays  

 

This experiment investigated if the immediate mortality and longevity of mosquitoes was 

affected by exposure to the discriminating doses of several insecticides in WHO tube tests. 

Additionally, it aimed to establish if increasing the dose of deltamethrin affected mortality 

or longevity.  

 

Following exposure to the discriminating dose of deltamethrin (0.05%), no difference in 

immediate mortality (Figure 3.3) or longevity (Table 3.4) were observed compared to 

untreated paper controls in all study populations. 

 

 

Figure 3.3. 24-hour mortality of An. gambiae s.l from WHO longevity tube assay.  

Mosquitoes from the different locations were exposed to deltamethrin 0.05% (red) or 

untreated control (grey) papers. Error bars show 95% confidence intervals for the 

population proportion. Numbers above bars show the number of mosquitoes tested. 

Mangodara P = 0.322, Tengrela P = 0.331, Toumousenni P = 0.210, Toundoura P = 0.113, 

Yendere P = 0.136. 
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Table 3.4. Summary of longevity analysis of An. gambiae s.l. from multiple study sites 

following exposure to the discriminating dose of deltamethrin, or control papers, in a 

WHO tube assay. 

Survival was compared between treatment and control using Cox regression. Immediate 

mortality (within 24-hours) was excluded from the analysis. 

Mosquito 

population 
Insecticide 

Total 

mosquitoes 

Median survival 

(days) 
P-value 

Mangodara 
Control 44 11.5 

0.308 
Deltamethrin 0.05% 101 11 

Tengrela 
Control 180 9 

0.172 
Deltamethrin 0.05% 146 10 

Toumousenni 
Control 70 10 

0.568 
Deltamethrin 0.05% 69 10 

Toundoura 
Control 25 10 

0.334 
Deltamethrin 0.05% 24 13 

Yendere 
Control 15 11 

0.345 
Deltamethrin 0.05% 18 10 

 

Mosquitoes from Tengrela were also exposed to increasing concentrations of deltamethrin. 

The discriminating dose had no effect on immediate mortality compared to untreated, but 

as the concentration was increased, a significant difference was observed following 

exposure to concentrations >0.05% (Figure 3.4). When immediate mortality was excluded, 

a significant difference in longevity was observed at doses >0.50% (Figure 3.5, Table 3.5). 

These results were additionally modelled using a Bayesian state-space survival model 

developed by Viana et al. (2016). This quantified the daily survival rate and the magnitude 

of any observed delayed mortality effect in each exposure and found evidence of delayed 

mortality at deltamethrin concentrations > 0.05% (Hughes et al., 2020, Appendix 3). 
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Figure 3.4. The 24-hour mortality of An. gambiae s.l. from Tengrela following exposure to 

deltamethrin (0.05, 0.25, 0.50, 0.75, 1.00%) or an untreated control WHO tubes. 

Error bars show 95% confidence intervals for the population proportion. Numbers above 

bars show the number of mosquitoes tested. Deltamethrin 0.05% P = 0.136, 0.25% P = 

0.000, 0.50% P = 0.000, 0.75% P = 0.000, 0.75% P = 0.000. 

 

 

Figure 3.5. The longevity of An. gambiae s.l. from Tengrela following exposure to 

increasing concentration of deltamethrin, or control papers, in a WHO tube assay.  

Following exposure mosquito mortality was counted daily until no mosquitoes remained 

alive. Kaplan Meier survival curves show day dead post-exposure. The dashed grey line 

shows the day of exposure.  
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Table 3.5. Summary of longevity analysis of An. gambiae s.l. from Tengrela following 

exposure to increasing concentration of deltamethrin, or control papers, in a WHO tube 

assay.  

Survival was compared between treatment and control using Cox regression. Immediate 

mortality (within 24-hours) was excluded from the analysis, * indicate statistical 

significance (P < 0.05). 

Insecticide Total mosquitoes Median survival (days) P-value 

Control 180 9 
0.172 

Deltamethrin 0.05% 146 10 

Control 159 8 
0.130 

Deltamethrin 0.25% 50 7.5 

Control 159 8 
0.098 

Deltamethrin 0.50% 28 8 

Control 159 8 
0.013* 

Deltamethrin 0.75% 35 7 

Control 109 8 
0.007* 

Deltamethrin 1.00% 60 6 

 

Mosquitoes were also exposed to organophosphates (i.e. malathion), and carbamates (i.e. 

propoxur, bendiocarb) and their post-exposure longevity recorded. Greater susceptibility to 

these insecticide classes resulted in increased immediate mortality compared to the 

pyrethroids, and therefore low numbers surviving for longevity analysis (Appendix 1, Table 

A1.1) 

 

 Mosquito longevity: WHO cone bioassays 

 

The effect of varied LLIN exposure on An. gambiae longevity 

 

Immediate Mortality: The Kisumu susceptible strain showed high immediate mortality with 

PermaNet 2.0 (98% mortality, n = 48 mosquitoes). Following a single exposure to PermaNet 

2.0, 1-hour knockdown and immediate mortality were extremely low in mosquitoes from 

Yendere (Figure 3.6; 1.94% KD, 1.94% mortality) and Tengrela (Figure 3.6; 10.64% KD, 

5.32% mortality). In both locations, there was no difference in mortality following exposure 

to PermaNet 2.0 compared to untreated net (Yendere P = 1.000; Tengrela P = 1.000). 
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Figure 3.6. 1-hour knockdown and 24-hour mortality of Yendere and Tengrela An. 

gambiae s.l. after WHO cone bioassay exposure. 

Mosquitoes were exposed to PermaNet 2.0 or untreated on Day 1 and their mortality 

recorded. Error bars show 95% confidence intervals for the population proportion. Numbers 

above bars show the number of mosquitoes tested. Abbreviations: PN2 = PermaNet 2.0, UN 

= Untreated net. 

 

When Tengrela mosquitoes were exposed to netting 4 times (every three days), immediate 

mortality rates increased with each subsequent exposure (Figure 3.7; PermaNet 2.0, 0.85 - 

62.50 %; Untreated, 0.00 – 65.52 %). However, a significant difference between net types 

was only observed after the third exposure (P = 0.011) when mortality was 31.46% for 

PermaNet 2.0 and 15.66% for the untreated net. As this experiment was observing 

cumulative mortality the sample size decreased with each round of exposure and by the 4th 

exposure, fewer than 30 mosquitoes were exposed to each net (PermaNet 2.0 = 24 

mosquitoes, untreated = 29 mosquitoes). 
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Figure 3.7. 1-hour knockdown and 24-hour mortality of Tengrela An. gambiae s.l. after 

WHO cone bioassay exposure. 

Mosquitoes were exposed to PermaNet 2.0 or untreated net on Days 1, 4, 8 and 12 and 

their mortality recorded. Error bars show 95% confidence intervals for the population 

proportion. Numbers above bars show the number of mosquitoes tested. Numbers below 

the graph show the number of exposures. Abbreviations: PN2 = PermaNet 2.0, UN = 

Untreated net. 

 

When mosquitoes were exposed daily for 5 exposures, a significant difference in 

immediate mortality between net treatments was seen for exposure 4 (Figure 3.8; 

PermaNet 2.0, 11.55% mortality; Untreated, 2.7% mortality; P = 0.032), and exposure 5 

(Figure 3.8; PermaNet 2.0, 15.36% mortality, Untreated, 4.44% mortality; P = 0.017). 

However, the mortality in the treatment arm was still low.  
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Figure 3.8. 1-hour knockdown and 24-hour mortality of Tengrela An. gambiae s.l. after 

WHO cone bioassay exposure. 

Mosquitoes were exposed to PermaNet 2.0 or untreated net on Days 1, 2, 3, 4 and 5 and 

their mortality recorded. Error bars show 95% confidence intervals for the population 

proportion. Numbers above bars show the number of mosquitoes tested. Numbers below 

the graph show the number of exposures. Abbreviations: PN2 = PermaNet 2.0, UN = 

Untreated net. 

 

Longevity: A single exposure to PermaNet 2.0 did not affect daily survival 24-hours post-

exposure in either population tested (Figure 3.9; Yendere P = 0.518; Tengrela P = 0.266). 
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Figure 3.9. The longevity of Yendere (A, C) and Tengrela (B, D) An. gambiae s.l. following a 

single 3-minute exposure to PermaNet 2.0 (blue) or untreated net (orange) in a WHO cone 

bioassay. 

(A – B) Kaplan Meier survival curves show day dead post-exposure. Dashed grey lines show 

day of exposure. Diamond points show censored data. (C-D) Box and whisker plots of days 

dead post exposure. Dashed red lines show day 14 to correspond with the average extrinsic 

incubation period of the malaria parasite, Plasmodium falciparum. In A-D immediate (within 

24-hours of exposure) mortality is excluded. 

 

In all multiple exposure assays, mosquitoes were 4 days-old at first exposure. When 

Tengrela mosquitoes were exposed to netting every 3 days for four exposures (Day 0, 4, 8, 

12), immediate mortality on days 1, 5, 9, and 13 were removed from subsequent longevity 

analysis. In this experiment net treatment had no effect on longevity (P = 0.718). A similar 

absence of effect was also seen when mosquitoes were exposed to netting daily for five 

days (P = 0.097). Mortality on days 1-5 was excluded (Figure 3.10).  
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Figure 3.10. The longevity of Tengrela mosquitoes following multiple exposures in a 3-

minute WHO cone bioassay. Mosquitoes were exposed every 3 days for 4 exposures (A, C) 

or daily for 5 exposures (B, D), to PermaNet 2.0 (blue) or untreated net (orange). 

(A – B) Kaplan Meier survival curves show day dead post-exposure. Dashed grey lines show 

the day of exposure. Diamond points show censored data. (C-D) Box and whisker plots of 

days dead post-exposure. Dashed red lines show day 14 to correspond with the average 

extrinsic incubation period of the malaria parasite, Plasmodium falciparum (Vaughan, 

2007). In A-D immediate (within 24-hours of exposure) mortality is excluded. 

 

The effect of An. gambiae age at LLIN exposure on longevity 

 

When mosquitoes of differing age were exposed to PermaNet 2.0 in cone tests, immediate 

mortality significantly increased from 2.00% in 1-day-olds (n = 100 mosquitoes) to 11.88% 

in 7-day-olds (n = 101 mosquitoes) (P = 0.006). Excluding immediate mortality, mosquitoes 
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exposed at 1-day-old (n = 27 mosquitoes) survived significantly longer than mosquitoes 

exposed at 7-days-old (n = 23 mosquitoes), with those exposed at 1-day-old having a 0.311-

fold (0.169 – 0.571) reduction in risk of death ( 

Figure 3.11, P = 0.000). However, when comparing age at death, mosquitoes that were 

exposed at 1-day-old were on average younger (11-days-old), than those exposed at 7-

days-old (15-day-olds), despite their post exposure longevity being greater. 

 

 

  

Figure 3.11. The longevity (A) and age at death (B) of Tengrela mosquitoes following a 

single 3-minute WHO cone bioassay. 

Mosquitoes were exposed to PermaNet 2.0 netting at 1 (green) or 7-days-old (red). 

Immediate (within 24-hours of exposure) mortality is excluded from both A & B. In A the 

dashed grey line shows the day of exposure.  

 

 Mosquito longevity: Experimental hut trials 

 

Experimental hut trials of reared and release An. gambiae (‘reared-release’) 

 

Over the two-year study, 782 female Anopheles were released into huts. In the 2016 trial, 

equal numbers of mosquitoes were released into huts daily except for day four (19 

released into untreated and 18 released into PermaNet 2.0). In the 2017 trial, mosquito 

numbers were limited, so unequal numbers of mosquitoes were released into huts daily to 

allow the maximum number of mosquitoes of the correct age to be used each day. A total 

of 493 female Anopheles were recaptured (63%) across all huts (Table 3.6). Recapture rates 
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were greater in untreated compared to PermaNet 2.0 huts over the two years. Non-target 

mosquitoes (including Culex spp. and Mansonia spp.) were collected in all huts in both 

years, indicating that the various methods used to seal the hut were not fully successful.  

 

Table 3.6. Summary of mosquitoes collected in 2016 and 2017 reared-release trials. 

 
2016 2017 

Untreated net PermaNet 2.0 Untreated net PermaNet 2.0 

Female Anopheles 

(recapture rate) 
113 (78.47%) 75 (52.45%) 185 (74.90%) 120 (48.39%) 

Male Anopheles 0 0 1 0 

Culex 12 46 1 0 

Mansonia 0 0 15 16 

 

Table 3.7. Summary of outcomes for Anopheles females collected in reared-release 

experimental hut trials conducted in 2016 and 2017. 

Outcomes were calculated based on recaptured mosquitoes only. Asterisks show when 

treatment was statistically significant compared to untreated control of the same year (P > 

0.05, GLMMs). 

 
2016 2017 

Untreated net PermaNet 2.0 Untreated net PermaNet 2.0 

Total collected 113 75 185 120 

% exophily 

(95% CI) 

27.43 

(19.21 – 35.66) 

46.67* 

(35.38 – 57.96) 

28.65 

(22.13 – 35.16) 

29.17 

(21.03 – 37.30) 

Induced 

exophily 
- 41.21 - 1.78 

% blood-fed 

(95% CI) 

80.53 

(73.23 – 87.83) 

22.67* 

(13.19 – 32.14) 

54.05 

(46.87 – 61.24) 

18.33* 

(11.41 – 25.26) 

Blood-feeding 

inhibition 
- 71.85 - 66.08 

% mortality 

(95% CI) 

11.01 

(5.13 – 16.89) 

50.00* 

(38.61 – 61.39) 

16.22 

(10.90 – 21.53) 

45.50* 

(33.66 – 51.34) 

% personal 

protection 
- 81.32 - 78 

% killing effect - 22.94 - 11.35 



74 
 

In the 2016 trial, experimental day, hut, net treatment, and collection location (e.g. in net, 

in veranda) had no effect on mosquito longevity. Only blood-feeding status significantly 

affected mosquito longevity when included with all variables (P = 0.001). When non-

significant variables were excluded from the regression, blood-fed mosquitoes had a 0.561-

fold (0.384 – 0.819) lower risk of death (Figure 3.12a, P = 0.003). The median survival time 

post-collection was 8 days for blood-fed and 7 days for unfed mosquitoes (Figure 3.12c). In 

2017, date (P = 0.005) and blood-feeding status (P = 0.000) both significantly affected 

mosquito longevity. When non-significant variables were removed from the model, and 

results were stratified by day to account for this variation, blood-fed mosquitoes had a 

0.450-fold (0.327 – 0.618) reduction in the risk of death compared to unfed mosquitoes 

(Figure 3.12b, P = 0.000). The median survival time was 10 days for blood-fed and 7 days 

for unfed mosquitoes (Figure 3.12d). 
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Figure 3.12. The longevity of blood-fed and non-blood-fed female Anopheles in reared-

release hut trials. 

Data for untreated and PermaNet 2.0 huts is combined. Kaplan Meier survival curves show 

the proportion alive each day in the 2016 (A) or 2017 (B) trials. Dashed grey lines represent 

day of insecticide exposure in the hut trial. Diamond points show censored data. Box and 

whisker plots of day dead post-exposure in the 2016 (C) or 2017 (D) trials. Dashed red lines 

show day 14 to correspond with the average extrinsic incubation period of the malaria 

parasite, Plasmodium falciparum (Vaughan, 2007). Immediate mortality (dead on collection 

or within 24-hours of exposure) is excluded. 2016 trial: blood-fed mosquitoes n = 92, unfed 

mosquitoes n = 42; 2017 trial: blood-fed mosquitoes n = 107, unfed mosquitoes n = 113. 

 

To evaluate the impact of net type on longevity, data were stratified into unfed and blood-

fed groups to account for the effects of obtaining a blood meal. In the reared-release trials, 

where mosquito age range was standardised, net treatment had no effect on mosquito 

longevity in either the 2016 (P = 0.137) or 2017 (P = 0.603) trial (Figure 3.13). 

A B 

C D 
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Figure 3.13. The longevity of female Anopheles after exposure in reared-release hut trials.  

Kaplan Meier survival curves show the proportion alive each day in the 2016 (A, B) or 2017 

(C, D) trials, separated by blood-fed (A, C) and unfed (B, D) groups. Dashed grey lines 

represent day of insecticide exposure in the hut trial. Diamond points show censored data. 

Immediate mortality (dead on collection or within 24-hours of exposure) is excluded. 2016 

trial, blood-fed: PermaNet 2.0 mosquitoes n = 11, untreated mosquitoes n = 88; unfed: 

PermaNet 2.0 mosquitoes n = 26, untreated mosquitoes n = 16. 2017 trial, blood-fed: 

PermaNet 2.0 mosquitoes n = 15, untreated mosquitoes n = 9; unfed: PermaNet 2.0 

mosquitoes n = 53, untreated mosquitoes n = 60. 

 

Experimental hut trials of wild-entering An. gambiae (‘wild-entry’) 

 

Across the two years Anopheles, Aedes, Culex, and Mansonia mosquitoes were collected in 

the wild-entry hut trials. In total, 908 female Anopheles were collected during 22 

experimental nights from huts (Table 3.8). Lower mosquito numbers in 2017 might have 



77 
 

been due to the trial being conducted early in the rainy season (July), whereas mosquito 

numbers in 2016 (October) were comparable to other hut trials conducted at this site (Toe 

et al., 2018). In 2016, 59.76% (n = 932) of mosquitoes collected were non-target (non-

Anopheles and male Anopheles), with male Anopheles, being the most abundant (40.99%, n 

= 382 mosquitoes). In 2017, 56.53% (n = 693) of mosquitoes collected were non-target 

mosquitoes, with Mansonia being the most abundant (44.37%, n = 544 mosquitoes). 

 

Table 3.8. Summary of mosquitoes collected in 2016 and 2017 wild-entry trials. 

 

2016 2017 

Untreated 

net 

PermaNet 

2.0 

Untreated 

net 

PermaNet 

2.0 
Olyset Net 

Female Anopheles  

(per night/ per 

hut) 

206  

(20.6) 

169  

(16.9) 

194  

(8.08) 

144 

 (6.00) 

195  

(8.13) 

Male Anopheles 213 169 33 59 19 

Culex 7 1 7 10 9 

Mansonia 89 78 237 161 146 

Aedes 0 0 7 5 0 
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Table 3.9. Summary of experimental hut trial results for Anopheles females collected in 

wild-entry trials conducted in Tengrela, Burkina Faso in 2016 and 2017. 

Asterisks show when treatment was statistically significant compared to untreated control 

of the same year (P > 0.05, GLMMs). 

 2016 2017 

 
Untreated 

net 

PermaNet 

2.0 

Untreated 

net 

PermaNet 

2.0 
Olyset Net 

Total 

collected 
206 169 194 144* 195 

Deterrence - 17.96 - 25.77 -0.52 

% exophily 

27.18 

(21.11 - 

33.36) 

28.40 

(21.60 - 

35.20) 

15.46 

(10.38 - 

20.55) 

16.67 

(10.58 - 

22.75) 

26.67 

(20.46 - 

32.87) 

Induced 

exophily 
- 4.29 - 7.22 42.01 

% blood-

fed 

54.85 

(48.06 - 

61.65) 

46.15 

(38.64 - 

53.67) 

69.07 

(62.57 - 

75.58) 

52.78 

(44.62 - 

60.93)* 

50.77 

(43.75 – 

57.79) 

% feeding 

inhibition 
- 
 

15.86 - 23.59 26.5 

% mortality 

4.93 

(1.95 - 

7.90) 

8.38 

(4.18 - 

12.59) 

5.29 

(2.10 - 8.48) 

13.57 

(7.90 - 

19.24)* 

18.85 

(13.30 – 

24.39)* 

% personal 

protection 
- 30.97 - 43.28 26.12 

% killing 

effect 
- 1.97 - 4.76 13.76 

 

In the wild-entry trials, only non-blood-fed mosquitoes without visible signs of a blood 

meal, were retained for post-collection longevity analysis. Net treatment had no significant 

effect on mosquito longevity in either 2016 (P = 0.405) or 2017 (P = 0.867). In 2016, the 

median survival time was 8 days for unfed mosquitoes collected from both untreated and 

PermaNet 2.0 huts. In 2017, median survival time was 12 days for untreated and Olyset Net 

and 13 days for PermaNet 2.0 (Figure 3.14). 
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Figure 3.14. The longevity of non-blood-fed female Anopheles after exposure in wild-

entry hut trials. 

Kaplan Meier survival curves show the proportion alive each day in the 2016 (A) or 2017 (B) 

trials. Dashed grey lines represent day of insecticide exposure in the hut trial. Diamond 

points show censored data. Immediate mortality (dead on collection or within 24-hours of 

exposure) is excluded. 2016 trial: PermaNet 2.0 mosquitoes n = 85, untreated mosquitoes n 

= 85; 2017 trial: Olyset Net mosquitoes n = 71, PermaNet 2.0 mosquitoes n = 53, untreated 

mosquitoes n = 55. 

 

Reared-release vs wild-entry   

 

Comparing the longevity of unfed mosquitoes from the reared-release and wild entry trial, 

wild mosquitoes (unknown age) from the wild-entry trial lived significantly longer post-

collection than reared (age range known) mosquitoes from the reared-release trial. This 

effect was seen regardless of treatment, in both years tested (Figure 3.15, 2016 P = 0.000, 

2017 P = 0.000). 
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Figure 3.15. Comparison of longevity of female Anopheles after exposure in the wild-

entry and reared-release trials. 

Kaplan Meier survival curves show the proportion alive each. The dashed grey line 

represents day of insecticide exposure in the hut trial. Diamond points show censored data. 

Immediate mortality (dead on collection or within 24-hours of exposure) is excluded.  

 

Experimental hut trial evaluating the efficacy of barrier bednets (‘barrier bednet’) 

 

In the 2016 trial, 848 female Anopheles females were collected across all treatment arms 

(Table 3.10). Net treatment, blood-feeding status, and collection locations had no impact 

on mosquito longevity. Only experimental day significantly affect mosquito longevity when 

included with all variables (P = 0.000). Stratifying the model by date, net treatment had no 

effect (P = 0.946) on mosquito longevity (Figure 3.16). 
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Table 3.10. Summary of experimental hut trial results for Anopheles females collected in 

barrier bed net trial conducted in Tengrela, Burkina Faso in 2016.  

Asterisks show when treatment was statistically significant compared to untreated control 

(P > 0.05, GLMMs). Abbreviations: PN2B = PermaNet 2.0 barrier, OPB = Organophosphate 

fenitrothion barrier. 

 Untreated PermaNet 2.0 
PermaNet 2.0 

+ PN2B 

PermaNet 2.0 + 

OPB 

Total collected 249 219 202 178 

Deterrence - 12.05 18.88 28.51 

% exophily 
16.87 

(12.22 – 21.52) 

31.51* 

(25.35 – 37.66) 

30.69* 

(24.33 – 37.05) 

24.72* 

(18.38 – 31.06) 

Induced 

exophily 
- 86.79 81.97 46.55 

% blood-fed 
58.63 

(52.52 – 64.75) 

45.66 

(39.06 – 52.26) 

43.56* 

(36.73 – 50.40) 

42.70* 

(35.43 – 49.96) 

% feeding 

inhibition 
- 22.12 25.70 27.18 

% mortality 
6.50 

(3.42 – 9.59) 

7.44 

(3.93 – 10.95) 

10.95 

(6.63 – 15.26) 

16.29* 

(10.87 – 21.72) 

% personal 

protection 
- 31.51 39.73 47.95 

% killing effect - 0 2.44 5.28 
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Figure 3.16. The longevity of female Anopheles after exposure in the 2016 barrier bed net 

trial. 

Kaplan Meier survival curves show the proportion alive each day. The dashed grey line 

represents day of insecticide exposure in the hut trial. Immediate mortality (dead on 

collection or within 24-hours of exposure) is excluded. Abbreviations: OPB = 

Organophosphate fenitrothion barrier, PN2B = PermaNet 2.0 barrier. PermaNet 2.0 

mosquitoes n = 199, PermaNet 2.0 + OPB mosquitoes n = 149, PermaNet 2.0 + PN2B 

mosquitoes n = 179, untreated net mosquitoes n = 230. 

 

In the 2017 trial, 2402 Anopheles females were collected across all treatment arms (Table 

3.11). Net treatment, and collection locations had no impact on mosquito longevity, 

whereas experimental day (P = 0.000) and blood-feeding status (P = 0.000) significantly 

affected longevity. Stratifying the model by date, blood-fed mosquitoes had a 0.811-fold 

(0.733 – 0.897) reduced risk of death compared to unfed mosquitoes (P = 0.000). Net 

treatment had no effect (Figure 3.17) on mosquito longevity when results were stratified 

by feeding status (P = 0.061), or date (P = 0.268). 
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Table 3.11. Summary of experimental hut trial results for Anopheles females collected in 

barrier bed net trial conducted in Tengrela, Burkina Faso in 2017. 

Asterisks show when treatment was statistically significant compared to untreated control 

(P > 0.05, GLMMs). Abbreviations: PN2B = PermaNet 2.0 barrier, OPB = Organophosphate 

fenitrothion barrier, NPIB = Non-pyrethroid insecticide barrier. 

 Untreated 
PermaNet 

2.0 

PermaNet 

2.0 + 

PN2B 

PermaNet 

2.0 + OPB 

PermaNet 

2.0 + NPIB 

Untreated 

+ OPB 

Total 

collected 
532 378* 388 350* 412 342* 

Deterrence - 28.95 27.02 34.21 22.56 35.71 

% exophily 

22.93 

(19.36 – 

26.50) 

35.19* 

(30.37 – 

40.00) 

35.31* 

(30.55 – 

40.06) 

26.29 

(21.67 – 

30.90) 

34.47* 

(29.88 – 

39.06) 

21.05 

(16.73 – 

25.37) 

Induced 

exophily 
- 9.02 12.30 -24.59 16.39 -40.98 

% blood-

fed 

63.53 

(59.44 – 

67.62) 

39.68* 

(34.75 – 

44.61) 

45.10* 

(40.15 – 

50.05) 

32.57* 

(27.66 – 

37.48) 

38.35* 

(33.65 – 

43.04) 

48.83* 

(43.53 – 

54.13) 

% feeding 

inhibition 
- 37.54 29.01 48.73 39.64 23.14 

% 

mortality 

8.40 

(6.02 – 

10.77) 

13.40* 

(9.95 – 

16.86) 

13.64* 

(10.16 – 

17.11) 

46.06* 

(40.79 – 

51.34) 

16.09 

(12.51 – 

19.67) 

50.74* 

(45.42 – 

56.06) 

% personal 

protection 
- 55.62 48.22 66.27 53.25 50.59 

% killing 

effect 
- 1.15 1.34 21.76 4.01 24.43 
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Figure 3.17. The longevity of female Anopheles after exposure in the 2017 barrier bed net 

trial. 

Kaplan Meier survival curves show the proportion alive each. The dashed grey line 

represents day of insecticide exposure in the hut trial. Diamond points show censored data. 

Immediate mortality (dead on collection or within 24-hours of exposure) is excluded. 

Abbreviations: NPIB = Non-pyrethroid insecticide barrier, OPB = Organophosphate 

fenitrothion barrier, PN2B = PermaNet 2.0 barrier. PermaNet 2.0 mosquitoes n = 323, 

PermaNet 2.0 + NPIB mosquitoes n = 339, PermaNet 2.0 + OPB mosquitoes n = 185, 

PermaNet 2.0 + PN2B mosquitoes n = 323, untreated net mosquitoes n = 480, untreated net 

+ OPB mosquitoes n = 167. 

 

3.4 Discussion 

 

The aim of this series of experiments was to investigate if insecticide exposure impacted 

the post-exposure life-span (referred to as longevity) of wild insecticide resistant An. 

gambiae s.l., that were not killed immediately following insecticide exposure. To explore 

this, mosquitoes were exposed to LLINs or insecticides using three different exposure 

methods (i.e. WHO tube bioassays, WHO cone bioassays and experimental hut trials). In 

experimental hut trials, mosquitoes of known age range and physiological status (‘reared-
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release’), or with unknown life histories (‘wild-entering’) were used. This allowed the effect 

of insecticide exposure to be assessed against both standardised, and more field 

representative, mosquito populations. 

 

No differences were observed in mosquito longevity post-exposure following contact with 

insecticide-treated netting compared to untreated netting in any of the cone bioassays. 

Single exposure tests represented the minimum level of net contact a mosquito might 

encounter in the field. Tests were carried out with two distinct mosquito populations 

collected from different study sites (Tengrela and Yendere). Molecular ID confirmed An. 

coluzzii to be the dominant vector species in Tengrela and An. gambiae s.s. to be the 

dominant vector species in Yendere. A single exposure to an LLIN had no effect on 

immediate or delayed mortality in either of the two major malaria vectors in this region. 

The two populations were studied in different field seasons (2017 and 2018), so inherent 

natural variation precluded investigating if longevity differences existed between the An. 

coluzzii and An. gambiae s.s. populations 

 

With the high rates of LLIN usage in Burkina Faso today, it is unlikely that a highly 

pyrethroid-resistant mosquito will contact a net just once in its lifetime, and therefore the 

impact of multiple exposures was investigated. The different exposure regimes used were 

chosen to replicate previous studies conducted against moderate and highly resistant 

colonised mosquitoes (Viana et al., 2016). Using laboratory colonies, Viana et al. (2016) 

demonstrated that LLIN contact resulted in substantial delayed mortality effects in 

mosquitoes that were not killed immediately following exposure. Using the same exposure 

methods (WHO cone bioassay) and regimes, the results of this current study showed no 

evidence of delayed or sub-lethal effects in wild highly pyrethroid-resistant populations. 

Applying the Bayesian state-space model (Viana et al., 2016) supports the absence of any 

delayed mortality from PermaNet 2.0 in these experiments (Hughes et al., 2020, Appendix 

3). 

 

Viana et al. (2016) reported high levels of immediate mortality following cone exposure. 

This ranged from 60-100% in moderately resistant mosquitoes, and 3-61% in highly 

resistant mosquitoes. The magnitude of delayed mortality was different between their test 

populations, both of which had different resistance mechanisms. This led them to 

hypothesise that ongoing selection for resistance could erode the mitigatory effects that 
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they observed. The populations tested in the current study are highly pyrethroid-resistant 

with multiple underpinning resistance mechanisms (Toe, C. M. Jones, et al., 2014; Ingham, 

Wagstaff and Ranson, 2018; Toe et al., 2018; Ingham et al., 2019; Williams et al., 2019). 

Immediate mortality was extremely low, ranging from 0 - 5.32% following a single 

exposure. Subsequently, the absence of evidence for any delayed effects in the current 

study, supports their hypothesis that delayed mortality effects could be lost as resistance 

intensifies.  

 

Evidence of reduced longevity following LLIN exposure has been reported from Cameroon, 

where unexposed mosquitoes lived significantly longer than mosquitoes exposed to 

PermaNet 2.0 netting (Tchakounte et al., 2019). A greater reduction in life span was 

observed in An. funestus and results of susceptibility assays conducted on the same 

population showed it to be less resistant to pyrethroids than An. gambiae from the same 

study area. These results also support the hypothesis that delayed effects could decrease 

as resistance intensifies. It should be noted, however, that it is unclear if in this study 

mosquitoes were compared to unexposed mosquitoes or an untreated control, so it is 

possible that experimental handling could affect the results. Moreover, results may not 

have been separated into immediate and delayed effects of the exposure. Following 

exposure to PermaNet 2.0, the authors report some immediate mortality (17.5% An. 

funestus mortality, 16.6% An. gambiae mortality), which could have impacted on the 

results reported if they were not separated. 

 

The results reported in this chapter show repeated insecticidal net exposure is having little 

impact on the immediate mortality, and no impact on the longevity, of highly pyrethroid-

resistant mosquito populations. In the multiple exposure assays, mosquito mortality 

remained well below the 90% threshold for insecticide susceptibility. In the five-exposures 

assay immediate mortality was extremely low for all exposures (< 10% mortality) and only 

significantly different between PermaNet 2.0 and untreated following the 4th and 5th 

exposure (Figure 3.8). In experiments in which mosquitoes were exposed to PermaNet 2.0 

every fourth day, immediate mortality increased with each subsequent exposure, but never 

exceeded 65% (Figure 3.7). Significantly higher mortality, to PermaNet compared to 

untreated, was only detected following the third exposure when mosquitoes were 12-days-

old. It is well documented that mosquito susceptibly to insecticides increases with age, with 

several studies in both laboratory and field populations showing differences in resistance 
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profiles when different age mosquitoes are tested (Lines and Nassor, 1991; Glunt, Thomas 

and Read, 2011; Christopher M. Jones et al., 2012; Collins et al., 2019; Machani et al., 

2019). The significant difference in immediate mortality observed was lost by the fourth 

exposure (16-days-old). However, as mortality reduced mosquito numbers at every 

exposure throughout the assay, fewer than 30 mosquitoes remained per treatment arm by 

the fourth exposure. This small sample size leads to low statistical power. Additionally, 

similar mortality levels were observed in the untreated arm so mortality at this age could 

simply be mosquito senescence, and not the result of LLIN exposure. 

 

Other studies have also documented repeated LLIN exposure to have little impact on 

mosquito mortality and longevity. Glunt et al. 2011 observed that previous exposure to low 

doses of permethrin had no effect on subsequent insecticide susceptibility in An. stephensi 

when mosquitoes were aged-matched, and Viana et al. (2016) did not document a 

relationship between the number of exposures and immediate mortality in their study. 

Mulatier et al. (2019) found no evidence that multiple exposures to permethrin-treated 

netting while blood-feeding affected survival rates of KdrKis mosquito, a resistant strain 

which carries pyrethroid-resistant alleles. 

 

In the current study, excluding immediate mortality, mosquitoes that were 1-day-old when 

exposed survived significantly longer post-exposure than mosquitoes exposed at 7-day-olds. 

However, the median age at death was lower in mosquitoes exposed at 1-day-old compared 

to mosquitoes exposed at 7-days-old. If the younger mosquito group were surviving longer 

post-exposure because of their age it would be expected that there would be no difference 

in their average age at death. These results should be interpreted with caution, as sample 

sizes for longevity estimates were small (fewer than 30 mosquitoes per study arm) and no 

untreated net was tested.  

 

Future studies should examine the effect of age on survival post-exposure, at ages when 

mosquitoes could be infectious (i.e. > 14-days-old). In order to transmit malaria, 

mosquitoes must survive long enough for the Plasmodium parasite to mature into its 

infective form. This can take a minimum of 9 days (Beier, 1998), although typically it occurs 

between 10-16 days and is Plasmodium species-dependent (Vaughan, 2007). Under natural 

conditions, few mosquitoes survive long enough to transmit malaria (Gillies and Wilkes, 

1965; Charlwood et al., 1997), but addressing knowledge gaps on how LLIN exposure 
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affects the longevity of this older group is critical, as they are the cohort capable of 

transmitting malaria.  

 

Cone assays have long provided a simple reproducible means of exposing mosquitoes to 

LLINs in a standardised way. However, the 3-minute exposure time is greater than the 

duration of net contact accumulated by the majority of mosquitoes during a typical 

response to a human baited bednet (Parker et al., 2017). Hence, experimental hut trials 

were used to expose mosquitoes to LLINs for a more realistic duration. Due to the design of 

huts, it is not possible to ascertain whether contact with the net occurred, or exact 

duration of exposure. Therefore, when the current experimental hut data was analysed 

mosquitoes were classified into the treatment arms based on the huts they were collected 

from.  

 

In the experimental hut trials, immediate mortality was increased, and blood-feeding was 

reduced in huts with LLINs compared to untreated nets, however significant differences 

were only observed in some trials. Excluding these immediate effects, no difference 

between the longevity of mosquitoes exposed to LLINs or control nets was observed, and 

after applying the Bayesian state-space model (Viana et al., 2016) to the results no 

evidence of delayed mortality was identified (Hughes et al., 2020). 

 

It is important to note the different effects observed in the cone and hut trials. In cone 

bioassay exposures, the performance of PermaNet 2.0 with these resistant populations was 

no different to an untreated net with no impact on the mosquitoes based on the outcomes 

measured (e.g. knockdown and mortality). In experimental hut trials however, some 

impacts on immediate mortality and blood-feeding inhibition were observed. The 

difference between the two methods shows the importance of applying a variety of 

evaluation methods when assessing vector controls tools. The results of the hut trial 

suggest PermaNet 2.0 still offers some protective value against resistant populations in this 

setting. In hut trials using wild-entry mosquitoes, mortality following exposure to 

pyrethroid-only netting ranged between 7 – 14% (Untreated 4 – 9%) and was comparable 

to other trials conducted in the area which tested pyrethroid-only netting (Toe et al., 2018). 

Blood-feeding inhibition levels were between 15 – 38%, suggesting some mosquitoes were 

still prevented from blood-feeding, even if they were not killed by the net. Unlike phase I 

trials, efficacy criteria for phase II trials are not based on set percentage thresholds, and a 
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test LLIN can proceed to phase III trials only if it performs as well as, or better than, the 

reference net (both washed 20 times as a proxy for 3-years field use), in terms of mortality 

and blood-feeding inhibition. Phase I trials offer a standardised method for evaluating 

products, but their suitability for evaluating all vector control tools, particularly those with 

novel modes of actions, has previously been called into question (Hughes, 2018). 

 

In the hut trials, blood-feeding status had a significant effect on mosquito longevity with 

blood-fed mosquitoes surviving significantly longer post-collection than non-blood-fed 

mosquitoes. This effect was seen, regardless of net treatment, or in cases where collection 

day affected results when it stratified by date. Using laboratory-reared resistant 

mosquitoes Spillings et al. (2008) observed that a single blood meal increased the 

resistance level of fed mosquitoes compared to unfed. During blood meal digestion 

mosquitoes upregulate enzymes to detoxify harmful products from the blood meal. 

Subsequently, the authors suggested that these enzymes were providing an additional 

benefit following exposure by assisting in insecticide detoxification. Other laboratory 

studies have observed that acquiring a blood meal improves survival (Glunt, Thomas and 

Read, 2011) and increases longevity (Oliver and Brooke, 2014) in mosquitoes. However, 

studies investigating if this effect occurs in field populations are limited. Recently, Machani 

et al. (2019) documented reduced mortality following exposure to deltamethrin in WHO 

tube bioassays when comparing blood-fed An. gambiae to unfed, regardless of the 

mosquito’s age. The result of the current study in the Tengrela population support this, 

showing a similar effect of obtaining a blood meal is observed when exposed to an LLIN.  

 

In the hut trials, wild entry mosquitoes survived longer post-exposure than reared-release 

mosquitoes. The huts are situated between the rice fields and the village, so, it is 

anticipated that a large proportion of wild entry mosquitoes may be newly eclosed females 

seeking their first blood meal (Service and Townson, 2002), whereas reared-release 

mosquitoes were 5-to-8-days-old. The presumed difference in age structure may explain 

the difference in survival. Additionally, by collecting and rearing mosquitoes in the 

insectary for release, reared mosquitoes may include those of lower fitness which in the 

wild may have died before reaching the huts. 

 

Single and repeated exposure to LLINs in cone bioassays and huts trials showed no impact 

on mosquito longevity. Subsequently, WHO tube bioassays were used to investigate if 
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increasing the amount of insecticide mosquitoes were exposed to induced delayed 

mortality. The results showed evidence of a delayed mortality at concentrations of > 5× the 

discriminating dose of deltamethrin (Hughes et al., 2020). These results suggest pyrethroids 

can induce sub-lethal effects, even in the highly pyrethroid-resistant populations, but under 

standard exposure conditions, these effects are rarely evident. In longevity tube bioassays 

a significant reduction in immediate mortality was documented between 0.75% (74.07% 

mortality) and 1.0% (56.83% mortality) deltamethrin (P = 0.003). This could be as a result of 

poor stability in papers impregnated with high concentrations of insecticide. Future tests 

could compare longevity effects between similar net types with increased insecticide 

concentrations (i.e. PermaNet 2.0 vs PermaNet 3.0 sides, to establish if similar effects are 

observed in response to treated netting. 

 

These results show limited impact of LLIN exposure on a highly-pyrethroid resistant 

mosquito population, and no evidence of delayed mortality following exposure to 

insecticide concentrations currently in field use. Future experimental hut trials should 

consider including longevity as a standard outcome to establish if the effects seen here 

occur in other populations with differing insecticide resistance levels or mechanisms. If in 

other populations, resistant mosquitoes do not survive long enough to become infectious, 

or if the infectious population is significantly reduced, this would impact on malaria 

transmission, as highlighted by Viana et al. (2016). The absence of delayed mortality in the 

Tengrela population might partly explain why a reduction in malaria cases has not been 

observed in this area  (WHO, 2018b), and the efficacy of LLINs in this setting is called into 

question.  

 

3.5 Conclusion 

 

Previous studies have shown a delayed mortality effect in insecticide-resistant mosquito 

populations that survive the initial exposure to pyrethroids, but subsequently show 

reduced longevity compared to non-exposed mosquitoes. The objective of the studies 

reported in this chapter were to determine whether pyrethroid exposure, mainly in LLINs, 

exerted a delayed mortality effect on pyrethroid-resistant mosquitoes from the study site 

in Burkina Faso, using both laboratory bioassays and more realistic exposure methods in 

experimental huts. In all assays, the level of immediate mortality induced by LLIN exposure 

was low. The results of both cone and field trials showed no significant impact of LLIN 
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exposure on post-exposure survival, and delayed mortality was only observed when 

mosquitoes were exposed to very high concentrations of pyrethroids in WHO tube 

bioassays. 
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 The effect of insecticidal net exposure on Anopheles 

gambiae blood-feeding and reproductive output  

 

4.1 Introduction  

 

Mosquito vectorial capacity is influenced by blood-feeding in several ways. Directly, malaria 

transmission is inextricably linked with blood-feeding as this is when Plasmodium 

transmission occurs. Indirectly, Anopheles mosquitoes are anautogenous, they require a 

blood meal in order to develop their eggs and reproduce. Therefore, impacts on blood-

feeding impact reproductive output which impacts population growth and vector density. 

Blood-feeding may also impact parasite transmission, and a recent study has reported 

blood-feeding to reduce the extrinsic incubation period and increases competence of 

several viruses in Aedes mosquitoes (Armstrong et al., 2020). Consequently, anything that 

affects a mosquito’s willingness or ability to blood-feed will dramatically affect their disease 

transmission potential both on an individual and population level. 

 

Blood-feeding is measured as a standard outcome in WHO tunnel tests and experimental 

hut trials (WHO, 2013a). These assays are run overnight, and the number of mosquitoes 

(dead and alive) which obtain a blood meal are recorded the following morning. Blood-

feeding inhibition following LLIN exposure has been documented in several lab studies 

using tunnel tests, lined-WHO tubes, and net-covered cups to expose mosquitoes (Strode 

et al., 2014; Glunt et al., 2018; Hauser, Thiévent and Koella, 2019; Mulatier et al., 2019). 

Time to initiate blood-feeding was increased and time spent blood-feeding decreased by 

insecticidal net exposure in one study (Hauser, Thiévent and Koella, 2019). Evidence from 

another trial suggests prior insecticide exposure may impede the blood-feeding inhibition 

effect at subsequent exposures (Mulatier et al., 2019). 

 

In experimental hut trials, blood-feeding inhibition is often observed in huts containing 

insecticide treated nets compared to untreated nets. As data on blood-feeding typically 

combines total numbers of blood-fed mosquitoes, regardless of whether they are dead or 

alive, a reduction in blood feeding in huts with insecticidal nets suggests that the 

insecticide itself affects a mosquito’s ability or willingness to blood-feed (Strode et al., 

2014). However, due to the experimental design of hut trials, it is not possible to determine 
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if, or when, contact with the net occurred. Additionally, if the mosquito was blood-fed, we 

do not know whether the mosquito entered the hut blood-fed, or, if not whether blood-

feeding was synchronous with exposure (the mosquito feeds through the net) or the 

mosquito passed through the net and fed directly on the host. If feeding occurs after 

exposure, we do not know how long after, and blood-feeding is only characterised at one 

time point (mosquitoes are scored as unfed or blood-fed the following morning). Hence 

standard experimental hut studies cannot determine whether blood-feeding inhibition is 

immediate or delayed, nor if it is a temporary or persistent affect. In the field, if feeding 

inhibition only lasts for a few hours, it may be possible for a mosquito to obtain a blood 

meal the same night. However, if the effects persist for longer a mosquito may delay 

feeding until the following night, or later, which would increase the length of their 

gonotrophic cycle and decrease their chances of survival long enough to take two blood 

meals, thus reducing their disease transmission potential.  

 

Insecticide exposure could also affect mosquito population density via its effect on 

reproductive output, without affecting blood-feeding. If insecticide exposure alters a 

mosquito’s fecundity (ability to lay eggs or amount of eggs laid) or fertility (surviving 

progeny) it will affect population growth and vector density. The results of this could be 

two-fold. A reduction in fecundity could simply result in a reduction of the ratio of 

mosquitoes to humans. Conversely, in areas with limited breeding sites (due to the local 

ecology or time in the rainy season) and high mosquito numbers, a reduction in fecundity 

could plausibly lead to an increase in the mosquito population or improved mosquito 

fitness, due to density dependant survival in constrained breeding pools (Gimnig et al., 

2002; Muriu et al., 2013). A number of studies have considered how oral toxicants (e.g. 

endectocides) or spatial repellents affect mosquito reproductive output (Bibbs et al., 2019; 

Mekuriaw et al., 2019), but studies investigating the impact of pyrethroid-only nets on 

mosquito reproduction are limited (Mulatier et al., 2019).  

 

Reproductive output is not typically measured in standard insecticidal net efficacy tests, 

unless the control tool being evaluated specifically targets this outcome (e.g. Pyrethroid-

PPF nets) (Ngufor et al., 2014, 2016; Koffi et al., 2015; Toé et al., 2019). Some studies 

evaluating pyrethroid-PPF nets used a standard pyrethroid-only net as a comparator and 

found minor or no differences in reproductive output when comparing mosquitoes 

exposed to Olyset Net (permethrin) to untreated nets. In experimental hut trials in Benin 



94 
 

(Ngufor et al., 2014, 2016), both reductions and increases in reproductive output were 

observed depending on the trial type, however, samples sizes were extremely small (< 10 

mosquitoes) or not reported for egg/larvae calculations, making it difficult to draw 

conclusions from the results. No differences in reproductive output were observed 

between  pyrethroid-only nets and controls in experimental hut trials in Côte d'Ivoire (Koffi 

et al., 2015) or cone assay exposures using resistant-mosquito strains (Toé et al., 2019). 

Recently, studies using susceptible and resistant An. gambiae strains have found no 

evidence that pyrethroid-only or pyrethroid-PBO net exposure impacts on reproductive 

output (Hauser, Thiévent and Koella, 2019; Mulatier et al., 2019). 

 

The aim of this chapter was to determine if insecticidal net exposure either effects wild 

pyrethroid-resistant mosquitoes’ ability to blood-feed, or their reproductive output. The 

specific objectives of these experiments were to: 

- Determine if mosquito ability to take a blood-meal was reduced following single 

exposure to LLINs in WHO cone bioassays, and if so, if this effect persisted over a 24-

hour period. 

- Determine if mosquito egg production, oviposition, and egg viability were reduced 

following exposure to LLINs in a semi-field environment using experimental hut studies. 

 

4.2 Methods  

 

 Study sites, mosquitoes and net treatments 

 

Hut trials were performed at the experimental hut station in Tengrela, Burkina Faso, and 

laboratory bioassays at the CNRFP insectaries in Banfora, Burkina Faso. Mosquitoes used 

for tests were either wild-entry or larval-reared adults, collected, reared and identified 

using the methods described in Chapter 2, section 2.2. Mosquitoes were exposed to 

untreated, PermaNet 2.0, Olyset Net, PermaNet 3.0 sides, PermaNet 3.0 roof, and 

Interceptor G2 depending on the trial. Full nets specifications are listed in Chapter 2, 

section 2.5. 
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 Blood-feeding assay 

 

Mosquitoes were exposed to test netting in a standard 3-minute WHO cone bioassay 

(WHO, 2013a), and their subsequent ability to take a blood meal from a human host 

following exposure was assessed. Tests were performed on untreated net, Olyset Net, 

PermaNet 3.0 sides, PermaNet 3.0 roof, and Interceptor G2.  

 

Blood-feeding tests were conducted over 12 non-consecutive days between August – 

October 2018. Mosquitoes were 5 to 7-days-old, non-blood-fed larval-reared females, 

which had been starved of sugar and water for a minimum of 24 hours prior to exposure. 

On each experimental day at least 1 untreated netting replicate was conducted alongside 

test nets. Test nets and mosquitoes were acclimatised to the testing room for >1 hour 

before experiments began. Testing began after ~22:00 to coincide with peak Anopheles 

biting times in Burkina Faso (Dambach et al., 2016; Epopa et al., 2019). The recorded 

temperature in the testing room ranged from 27.8 – 28.6°C, and humidity between 59.3 – 

99.9%.  

 

Two experiments were run: 

- Experiment A: No host present, mosquitoes were exposed in batches of 5 to test 

netting using a standard 3-minute WHO cone bioassay unaltered from the WHO 

protocol. 

- Experiment B: Host present, mosquitoes were exposed in batches of 5 to test netting 

using the standard 3-minute WHO cone bioassay, which was additionally baited with a 

human host and recorded using a smartphone. The exposure was recorded to 

investigate mosquito behaviour at the LLIN interface (discussed in Chapter 5).  

 

Following net exposure, mosquitoes were transferred into paper cups or paper buckets. At 

1, 8 and 24-hours following net exposure (~23:00, 06:00, 22:00, respectively) mosquitoes 

were offered a human blood-meal. At each time point, the operator placed their forearm 

over the paper cup/bucket for 20 minutes. After the 20 minutes, mosquitoes were scored 

as knockdown (1-hour), dead (24-hour), able to feed, or unable to feed (Table 4.1). No 

knockdown or dead mosquitoes were removed from cups/buckets until 24-hours post-

exposure, but blood-fed mosquitoes were counted and separated from unfed mosquitoes 

at each time point. Blood-fed mosquitoes were not offered the opportunity to blood-feed 
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again and were provided with 10% glucose solution soaked onto cotton wool. Unfed 

mosquitoes were starved of sugar and water until they blood-fed or until 24-hours post-

exposure. All mosquitoes were stored in paper cups for follow up after 24-hours (max 15 

mosquitoes per cup).  Three day’s following exposure blood-fed mosquitoes were provided 

the opportunity to oviposit. Cotton wool soaked with water was placed in the base on the 

cup and kept moist for 3 days. Any eggs laid were discarded. Mortality was recorded daily 

until no mosquitoes remained alive, and dead mosquitoes were stored in silica. 

 

Table 4.1. Definitions used for classifying mosquito status in the blood-feeding assay.  

Mosquito status Definition 

Knockdown 
The mosquito is immobile or unable to stand or take off, at 1-

hour following net exposure 

Dead 
The mosquito is immobile or unable to stand or take off, at 24-

hours following net exposure 

Unable to feed 

The mosquito does not imbibe blood within the 20-minute 

offered. The mosquito may not attempt to take a bloodmeal or 

the mosquito may attempt to probe, but a blood meal is not 

visible by eye. 

Able to feed 
The mosquito does imbibe blood within the 20-minute offered. 

The mosquito probes and a blood-meal is visible by eye 

 

Blood-feeding assay: Data analysis  

 

Outcomes from the blood-feeding assay were defined as follows: 

- Knockdown: the number of mosquitoes defined as knockdown at 1-hour as a 

proportion of the number of mosquitoes exposed, excluded those lost-to-follow up 

in the first 24-hours. 

- Mortality: the number of mosquitoes defined as dead at 24-hour as a proportion of 

the number of mosquitoes exposed, excluding those lost-to-follow up in the first 

24-hours. 

- Blood-feeding: the number of mosquitoes which successfully obtained a blood 

meal within the specified time period as a proportion of the number of mosquitoes 

offered a blood meal during that time period, including mosquitoes knocked down 

or dead. 
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- Longevity: the day of mosquito death, where day 0 is the day of its net exposure. 

 

Binary logistic regression was used to examine the effect of independent variables (date, 

host present, net type, temperature, and humidity) on blood-feeding at 1-hour post-

exposure. No effect of host-presence was observed, therefore experiment A and B were 

combined, and analysis was conducted on the pooled data set. Immediate mosquito 

mortality (within 24-hours of exposure) and blood-feeding were compared between 

untreated and treated nets using Pearson Chi-Squared. When the assumptions of this test 

were violated due to low expected frequencies Fisher’s Exact Test was used. For blood-

feeding, results are cumulative (e.g. blood-feeding at 8-hours is the proportion that fed 

within 8 hours and so includes those which already fed at 1-hour). Cox proportional hazard 

regression (Cox, 1972) was used to examine the effect of the net type on post-exposure 

longevity. Unfed mosquitoes and immediate mortality were excluded from longevity 

analysis. Obtaining a blood-meal significantly impacts on mosquito longevity (Chapter 2), 

and due to the nature of the blood-feeding assay very few unfed mosquitoes remained per 

treatment precluding analysis of this sub-group. Additionally, due to the design of the assay 

unfed mosquitoes had been starved for 48 hours before being provided with access to 

sugar (24 hours prior to exposure and 24 hours after exposure when offered blood-meals), 

which could significantly impact their longevity. The analysis was conducted in IBM SPSS 

Statistics 24. 

 

 Reproductive output hut trial 

 

The aim of this experiment was to assess the effect of insecticidal net exposure on 

mosquito reproductive output. To achieve this, wild mosquitoes were exposed to LLINs 

using an experimental hut trial. The methodology for the hut trial is described in full in 

Chapter 3, Section 3.2.4. Hut trials were performed at the experimental hut station in 

Tengrela, Burkina Faso in 2016 and 2017. Mosquitoes were exposed to untreated, 

PermaNet 2.0, (2016 and 2017) or Olyset Net (2017 only). Full nets specifications are 

provided in Chapter 2, section 2.5. Following net exposure, only blood-fed mosquitoes 

were retained for reproductive output assessments, which were conducted at the CNRFP 

insectaries in Banfora, Burkina Faso. Methodologies for assessing reproductive output were 

altered between the 2016 and 2017 trials and are clarified below. 
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Reproductive output hut trial: 2016 

 

In the 2016 trial, blood-fed mosquitoes were transferred from the experimental huts in 

Tengrela to the insectaries in Banfora. Mosquitoes were kept in cups for 3 days to allow 

them to become gravid, and their mortality was recorded daily. On day 3, surviving 

mosquitoes were transferred into individual 50 ml universal tubes for forced oviposition, 

using a technique adapted from Morgan et al. (2010). Oviposition tubes contained cotton 

wool soaked with water and covered with damp filter paper. They were covered with 

untreated netting and placed in constant darkness for 3 days. During this time, mosquitoes 

were fully sugar-starved. Each day they were recorded as having died or laid eggs. Laid eggs 

were counted using a dissection microscope and egg papers were floated into individual 

plastic pots containing water. Hatched larvae were fed daily on dried fish food and 

emerging larvae were counted a week after eggs were floated. On day 6 post-collection any 

remaining mosquitoes which had not died, or laid eggs were dissected. Dissected 

mosquitoes were scored as having no visible eggs, normal, abnormal, or underdeveloped 

eggs (Table 4.2, Figure 4.1) based on definitions modified from Koama et al. (2015). When 

dissected ovaries were normal, retained eggs were counted. When no visible eggs were 

seen ovaries were dried and observed for parity (Detinova, 1945; Beklemishev, Detinova 

and Polovodova, 1959), and spermatheca dissections were carried out to check for the 

presence of sperm to indicate if the female had mated (Table 4.2). All mosquitoes were 

stored in silica.  
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Table 4.2. Definition of ovary status, parity and mating used in reproductive output tests. 

Mosquito ovaries were dissected and classified using definitions adapted from Koama et al. 

(2015). When no visible eggs were seen mosquito’s parity and mating status were 

confirmed.  

Mosquito status Description 

No visible eggs No follicular development is seen 

Undeveloped ovaries 

Some follicular development is observed, but eggs are 

small, translucent, or have not formed into their 

distinctive oval shape 

Abnormal ovaries Eggs are rounded in shape and/or discoloured 

Normal ovaries Eggs are oval-shaped and a solid white colour 

Nulliparous  
Ovary skein tracheoles are tight suggesting mosquitoes 

have not laid an egg batch 

Parous 
Ovary skein tracheoles are unravelled suggesting 

mosquitoes have laid at least one egg batch  

Mated 
Mosquito was inseminated. Sperm was present in the 

spermatheca 

Unmated 
Mosquito was not inseminated. Sperm was absent from 

the spermatheca 
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Figure 4.1. Photograph of mosquito ovaries observed through a dissection microscope.  

(Scale: x 200 magnification). Example of ovaries with no visible eggs (A), underdeveloped 

(B), normal (C), and abnormal (D) ovaries, as defined by Table 4.2 

 

Reproductive output hut trial: 2017 

 

The trial was repeated in 2017. The methodology for the hut trial exposure remained the 

same, however, the reproductive output methodology was altered to improve mosquito 

oviposition rates. Blood-fed mosquitoes were still transferred from the experimental huts 

in Tengrela to the insectaries in Banfora. Mosquitoes were kept in cups for 3 days to allow 

them to become gravid, and their mortality was recorded daily. However, on day 3 post-

collection mosquitoes either underwent forced oviposition procedures (Experiment A: 

Oviposition) or were dissected immediately (Experiment B: Dissections). In experiment A, 

mosquitoes remained in 50 ml universal tubes without a time limit, until they laid eggs or 

died. Forced oviposition, egg and larval counting, and dissection procedures were the same 

as described in the 2016 trial. The same definitions were used for classifying mosquito 

ovaries (Table 4.2, Figure 4.1). All mosquitoes were stored in silica. 
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Reproductive output hut trial: Data analysis  

 

Outcomes from the reproductive output trial were defined as follows: 

- Mortality: Pre-oviposition, the number of mosquitoes which died as a proportion of 

the total number of mosquitoes collected from the experimental huts. Post-

oviposition, the number of mosquitoes which died as a proportion of the total 

number of mosquitoes placed into forced oviposition tubes. 

- Oviposition: The number of mosquitoes which laid eggs as a proportion of the total 

number of mosquitoes placed into forced oviposition tubes. 

- Egg number: The number of eggs laid per ovipositing female, or per dissected 

female for retained eggs. 

- Hatching rate: The number of larvae hatched as a proportion of eggs laid. 

- Larvae number: The number of larvae per ovipositing female. 

- Ovary status: no visible eggs, normal, abnormal, or underdeveloped eggs (Table 

4.2) 

 

Mosquito mortality, oviposition, and ovary status were compared between net groups 

using Pearson Chi-Squared. To examine insecticide exposures effect on the number of eggs 

(laid and retained) number of larvae, and hatch rate, a Shapiro-Wilk test was used to assess 

if data were normally distributed. In tests with only two predictor groups, when data were 

normally distributed, a T-test was conducted to see if means were significantly different. 

When data were non-normally distributed a Mann-Whitney test was used. In tests with 

more than two predictor groups, when data were normally distributed a one-way ANOVA 

test was conducted with post-hoc Tukey’s test if results were significant. For unequal 

groups, a Kruskal-Wallis test was used. All analysis was conducted in IBM SPSS Statistics 24. 

 

4.3 Results 

 

 Blood-feeding assay 

 

The effect of permitted sugar feeding on blood-feeding  

 

Preliminary tests were conducted to determine the most suitable physiological state to test 

mosquitoes. Non-starved mosquitoes were exposed to untreated netting for 3-minutes in a 
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WHO cone test and then offered a blood meal as described above. Blood-feeding rates 

were lower than anticipated given nets were untreated and the mosquitoes were able to 

contact the host though the netting; 34.62% blood-fed after 1-hour, 50% within 8-hours, 

and 57.69% within 24-hours (42.31% unfed, 11.54% 24-hour mortality, N = 26 mosquitoes). 

Therefore, in subsequent tests, mosquitoes were fully water and sugar starved for ~24 

hours prior to exposure and only provided with a sugar meal once they had blood-fed or at 

24-hours post-exposure when the assay ended. On each experimental day at least 1 

untreated netting replicate was conducted alongside test nets except for one-day when 

untreated controls were discarded due to potential contamination. 

 

Knockdown, mortality and longevity 

 

Following exposure to netting in 3-minute cone tests, combining unfed and blood-fed 

mosquitoes, knockdown and immediate mortality were low in all treatments, except for 

PermaNet 3.0 roof where mosquitoes showed rapid knockdown and 100% susceptibility to 

the netting (Figure 4.2). Immediate mortality was significantly different from untreated 

nets following exposure to Olyset Net (P = 0.014) and PermaNet 3.0 roof (P = 0.000), but 

not for PermaNet 3.0 sides (P = 0.502) or Interceptor G2 (P = 0.79). 
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Figure 4.2. 1-hour knockdown and 24 hr mortality of Tengrela An. gambiae s.l. following 

a single exposure to test netting in a 3-minute WHO cone bioassay. 

Error bars show 95% confidence intervals for the population proportion. Numbers above 

bars show the number of mosquitoes tested. Asterisks show when immediate (within 24-

hours) mortality was statistically different (P < 0.05) from untreated control. 

 

When just comparing blood-fed mosquitoes, no significant difference in mosquito longevity 

was seen following exposure to PermaNet 3.0 sides (P = 0.082), Olyset net (P = 0.514), or 

Interceptor G2 (P =792) compared to untreated net. No mosquitoes survived beyond 24-

hours for PermaNet 3.0 roof, so longevity could not be assessed. Unfed mosquitoes were 

not analysed for longevity, as due to the nature of the blood-feeding assay very few 

mosquitoes were unfed. 

 

Ability to blood-feed 

 

When analysing blood-feeding, due to the way data was recorded, it was not possible to 

separate mosquitoes unable to feed due to being knocked down at the time a blood-meal 

was offered. Therefore, if a mosquito was unfed and knock downed it was classified as 

unfed in the analysis. Due to this classification, PermaNet 3.0 roof was found to have a 

significant effect on mosquito blood-feeding at all time points (Figure 4.2, P < 0.001), as 

mosquitoes were rapidly knocked down and unable to feed, but subsequently classified as 

unfed. In the regression model, PermaNet 3.0 roof was excluded from the model, due to 
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the fact all mosquitoes were all known to be knocked down prior being offered a blood 

meal. However, as it was not possible to remove knocked down mosquitoes from the other 

net types with the same certainty, these were included. In the other nets tested mosquito 

knockdown (< 19 %) and mortality (< 13%) were low, so this is unlikely to be a major 

confounder. 

 

In initial analysis, at 1-hour post-exposure significantly fewer mosquitoes blood-fed 

following exposure to treated netting compared to untreated (Figure 4.3A, PermaNet 3.0 

side P = 0.043, Olyset Net P = 0.050, Interceptor G2 P = 0.002). However, this effect was 

lost within 8-hours (Figure 4.3B; PermaNet 3.0 side P = 0.805, Olyset Net P = 0.726, 

Interceptor G2 P = 0.643) or 24-hours (Figure 4.3C PermaNet 3.0 side P = 0.929, Olyset Net 

P = 0.114, Interceptor G2 P = 0.482). Next, a binary logistic regression was conducted to 

investigate if this effect persisted when the effects of date, host presence, net type, 

temperature, and humidity on mosquito blood-feeding were also included. Host presence, 

temperature, and humidity did not significantly affect 1-hour blood-feeding and so were 

excluded from the final model. In the final model, the Nagelkerke R2 indicated that the 

model accounted for 13.8% of the total variance in blood-feeding at 1-hours, with a correct 

prediction rate of 62.7%. Date (P = 0.000) and Net type (P = 0.004) both significantly 

affected blood-feeding at 1-hour. Only some days were significant. For net type, when 

controlling for the date, untreated net and Olyset net significantly affected 1-hour blood-

feeding, with mosquitoes exposed to Olyset Net being 0.221 less likely to blood-feed 

compared to untreated net (95% CI 0.092 – 0.531, P = 0.001), or in other words, 

mosquitoes were 4.5 times more likely to feed at 1-hour after exposure to an untreated net 

compared to an Olyset Net. These results show that when controlling for effect of date the 

significant effect observed for other net types at 1-hour was lost. 
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Figure 4.3. Cumulative percentage of mosquitoes unfed and blood-fed at 1-hour (A), 

within 8-hours (B), and within 24-hours (C) following exposure to netting in a 3-minute 

WHO cone assay. 

Numbers in bars show the total number of mosquitoes. Asterisks show when blood-feeding 

was statistically different (P < 0.05) from untreated control. Abbreviations: UN = Unfed, BF = 

Blood-fed, P3 = PermaNet 2.0, IG2 = Interceptor G2. 
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 Reproductive output hut trial: 2016 

 

In the 2016 trial, 111 alive blood-fed females were collected in untreated huts, and 76 in 

PermaNet 2.0 huts. On day 1-3 days post collection, prior to forced oviposition, mortality 

was not significantly different between the two treatments (untreated: 20.72% mortality, 

PermaNet 2.0: 21.05% mortality, P = 0.956). Of the mosquitoes which underwent forced 

oviposition (untreated: n = 88 mosquitoes in tubes; PermaNet 2.0: n = 60 mosquitoes in 

tubes), no significant difference in mortality (untreated: 15.91%, PermaNet 2.0: 18.33%, P = 

0.699), or oviposition (untreated: 44.32%, PermaNet: 2.0 36.67%, P = 0.353) was observed 

over the three days. Untreated huts mosquitoes laid 4077 eggs (from 38 females), which 

developed into 786 larvae (from 35 females, 3 missing data points). PermaNet 2.0 huts 

mosquitoes laid 1835 (from 22 females), which developed into 169 larvae (from 21 

females, 1 missing data point). No difference was observed in the average number of eggs 

(Figure 4.4A. Untreated: 107 eggs/laying female, 95% CI 91 – 123; PermaNet 2.0: 83 

eggs/laying female, 95% CI 64 – 103; P = 0.077) or larvae (Figure 4.4B: untreated 22 

larvae/laying female, 95% CI 12 – 33; PermaNet 2.0 8 larvae/laying female, 95% CI 1 - 15; P 

= 0.138). There was no significant difference in hatching rates between the two groups 

(untreated 18.74% 95% CI 9.80 – 27.68, PermaNet 2.0 8.77% 95% CI 1.68 – 15.87, P = 

0.184). 
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Figure 4.4. The reproductive output (egg number, larvae number and hatching rate) of 

mosquitoes collected from experimental huts containing untreated or PermaNet 2.0 nets 

in 2016. 

Box and whisker plots of the number of eggs per laying female (A, untreated n = 38 

mosquitoes, PermaNet 2.0 = 22 mosquitoes), the number of larvae per laying female (B, 

untreated n = 35 mosquitoes, PermaNet 2.0 = 21 mosquitoes), and the hatching rate per 

laying female (C, untreated n = 34 mosquitoes, PermaNet 2.0 = 21 mosquitoes) are shown. 

Missing data points were removed from the analysis.  

 

Mosquitoes which had not died or laid eggs by day 6 had their ovaries dissected and eggs 

scored for normality (Figure 4.5). In the untreated group 35 mosquitoes were dissected and 

in the PermaNet 2.0 group 27 mosquitoes were dissected. In all mosquitoes which had no 

visible eggs, spermatheca and ovary dissections confirmed they were unmated and 

nulliparous, and these were removed from further analysis. Combining mosquitoes with 

abnormal or underdeveloped eggs there was no difference in ovary development between 

the untreated and PermaNet 2.0 groups (P = 0.311). In the mosquitoes with normal ovaries, 

no difference was observed in the average number of egg’s retained (untreated: 100 eggs 
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retained/female with normal ovaries, 95% CI 83 – 117, PermaNet 2.0: 114 eggs 

retained/female with normal ovaries, 95% CI 97 – 131; P = 0.265). 

 

 

Figure 4.5. Pie charts of ovary status of dissected mosquitoes collected from untreated or 

PermaNet 2.0 huts in 2016. 

 

 Reproductive output hut trial: 2017 

 

In the 2017 trial, 133 alive blood-fed females were collected in untreated huts, 74 in 

PermaNet 2.0 huts, and 89 in the Olyset Net huts. In Assay A mosquitoes were held in 

forced-oviposition tubes until they laid eggs or died. There was no difference in oviposition 

rate when comparing untreated huts (54.24% oviposition, n = 59 mosquitoes in tubes) to 

either PermaNet 2.0 (50.00% oviposition, n = 26 mosquitoes in tubes, P = 0.718) or Olyset 

Net (58.33% oviposition, n = 36 mosquitoes in tubes, P =0.697). Untreated huts mosquitoes 

laid 4119 eggs (from 32 females), which developed into 1454 larvae. PermaNet 2.0 huts 

mosquitoes laid 1140 (from 13 females), which developed into 246 larvae (from 12 

females, 1 missing data point). Olyset Net huts mosquitoes laid 2303 (from 21 females)), 

which developed into 395 larvae. No difference was observed in the average number of 

eggs (Figure 4.6A: untreated 129 eggs/laying female, 95% CI 105 – 153; PermaNet 2.0: 88 

eggs/laying female, 95% CI 50 – 126; Olyset Net: 110 eggs/laying female, 95% CI 83 – 136; P 

= 0.143) or larvae (Figure 4.6B: untreated 45 larvae/laying female, 95% CI 28 – 63; 

PermaNet 2.0: 21 larvae/laying female 95% CI 2 – 39; Olyset Net: 19 larvae/laying female, 

95% CI 5 – 33; P = 0.087) between any of the groups. There was no significant difference in 
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hatching rates between the three groups (untreated 33.23% 95% CI 20.56 – 45.91, 

PermaNet 2.0 22.71% 95% CI 4.46 – 40.66, Olyset Net 15.21% 95% CI 4.49 – 25.93, P = 

0.112). 

 

 

Figure 4.6. The reproductive output (egg number, larvae number and hatching rate) of 

mosquitoes collected from experimental huts containing untreated, PermaNet 2.0 or 

Olyset Nets in 2017. 

Box and whisker plots of the number of eggs per laying female (A, untreated n = 32 

mosquitoes, PermaNet 2.0 = 13 mosquitoes, Olyset Net = 21 mosquitoes), the number of 

larvae per laying female (B, untreated n = 32 mosquitoes, PermaNet 2.0 = 12 mosquitoes, 

Olyset Net = 21 mosquitoes), and the hatching rate per laying female (C, untreated n = 32 

mosquitoes, PermaNet 2.0 = 12 mosquitoes, Olyset Net = 21 mosquitoes) are shown. 

Missing data points were removed from the analysis. 

 

In Assay B, mosquitoes were dissected 3-days post-collection. In the untreated group 51 

mosquitoes were dissected, in the PermaNet 2.0 group 37 mosquitoes were dissected, and 
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Olyset Net group 41 mosquitoes were dissected (Figure 4.7). In all mosquitoes which had 

no visible eggs, spermatheca and ovary dissections confirmed they were unmated and 

nulliparous, and these mosquitoes were not included in subsequent comparisons. 

Combining mosquitoes with abnormal or underdeveloped eggs there was no difference in 

ovary development between the untreated and PermaNet 2.0 groups (P = 0.462). However, 

significantly more mosquitoes in the Olyset Net group were found to have abnormal or 

underdeveloped eggs (P = 0.019) compared to untreated. In mosquitoes with normal 

ovaries, no difference in retained eggs was observed between untreated (untreated: 104 

eggs retained/female with normal ovaries, 95% CI 104 – 127) and treated (PermaNet 2.0: 

105 eggs retained/female with normal ovaries, 95% CI 93 – 117, Olyset Net: 127 eggs 

retained/female with normal ovaries, 95% CI 115 – 139) nets. However, post-hoc analysis 

showed an increased number of eggs retained in mosquitoes collected from Olyset Net 

huts compared to PermaNet 2.0 (P = 0.039).  

 

 

Figure 4.7. Pie charts of ovary status of dissected mosquitoes collected from untreated, 

PermaNet 2.0, or Olyset Net huts in 2017.  
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4.4 Discussion 

 

The experiments reported in this chapter investigated if exposure to insecticidal nets 

affected mosquitoes’ life-history traits: experiments were conducted to look at the effect of 

net exposure on mosquito ability to blood-feed, and mosquito reproductive output. 

 

 Effect of insecticidal net exposure on An. gambiae s.l. ability to blood-feed 

 

Following exposure to first- and second-generation bednets, the preliminary analysis 

suggested a mosquito’s ability to blood-feed was impacted by insecticidal nets at 1-hour 

post-exposure compared to the untreated net, and this effect was lost within 8 hours. 

However, further analysis of the 1-hour dataset revealed these results to be compounded 

by variations in the experimental day. Except for PermaNet 3.0 roof netting, which caused 

100% knockdown and immediate mortality, only Olyset Net had a significant impact on 

mosquito blood-feeding at 1-hour compared to the untreated net when accounting for the 

day. Mosquito knockdown and immediate mortality were also significantly higher following 

Olyset Net exposure compared to untreated. Unfed mosquitoes were not separated by 

knockdown status (except for PermaNet 3.0 roof where it was clear all unfed mosquitoes 

were knocked-down). Therefore, it is not possible to distinguish if lower blood-feeding in 

Olyset Net’s is as a result of the mosquito being knocked down at the time the blood-meal 

was offered, or unable to take a blood-meal due to other effects. Although the relative 

impact of being knocked down or feeding inhibition cannot be clarified here, cumulatively, 

this does illustrate the action being exerted by the net, in its ability to both knockdown and 

kill, or inhibit blood-feeding of the mosquito, thus impacting on their disease transmission 

potential. However, in the highly resistant population tested mortality was extremely low 

(<20%) following exposure to all insecticidal nets, except for PermaNet 3.0 roof. 

 

The lack of blood-feeding inhibition at 1-hour in the other net treatments is surprising. 

Previous studies have observed blood-feeding inhibition shortly after LLIN exposure (Glunt 

et al., 2018). In Glunt et al. (2018), Anopheles were exposed to PermaNet 2.0 or untreated 

netting in lined WHO tubes for 1 – 10 minutes (depending on their resistance level). 

Immediately following exposure mosquitoes were offered a human blood meal, and blood-

feeding was observed to be significantly reduced in mosquitoes exposed to treated nets 

compared to untreated. Their study only observed blood-feeding at 1-hour post exposure, 
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but measured host-seeking (defined as a mosquito probing a mesh cage on the sides 

exhibiting host cues) in the same populations for up to 24-hours. At 1-hour, host-seeking 

was observed to be significantly reduced following PermaNet 2.0 exposure compared to 

untreated in all Anopheles strains, with this effect persisting for up to 24-hours in An. 

arabiensis (no significant difference was observed after this time point in a resistant An. 

funestus strain, or the wild Anopheles spp. from Mozambique). In their study, blood-

feeding Inhibition was higher in those exposed for 5- and 10-minutes compared to 1 

minute, suggesting duration of exposure could have influenced the results. As exposure 

time varied between the strains, it is not possible to ascertain if the mosquito’s resistance 

level also affected blood-feeding inhibition. In the experiment reported in this chapter, 

mosquito responses were first tested at 1-hour post-exposure, not immediately. It is 

plausible that any feeding inhibition effects in this population are short-lived, or potentially 

non-existent at a “sub-lethal” i.e. unless the mosquito is incapacitated to the point of knock 

down, as is suggested by the PermaNet 3.0 roof result here, it is not deterred from feeding. 

Tchakounte et al. (2019) observed that LLIN-exposure in a 3-minute cone bioassay 

(PermaNet 2.0) did not affect the blood-feeding ability of F1 An. funestus and F7 An. 

gambiae s.l.  in Cameroon. However, in this study blood-feeding ability was initially tested 

3-days post-exposure, which does not approximate how insecticide contact and blood-

feeding would likely occur under natural conditions. In nature, it is more likely that 

mosquitoes would encounter insecticides shortly prior to (LLINs) or after (IRS) obtaining a 

blood-meal. Additionally, the exposed mosquitoes seem to have been compared to a non-

exposure control, and so it is not possible to determine how mosquitoes may have been 

affected by the handling procedure. The study design of the current trial meant only 

mosquito ability to feed was evaluated. It is not possible to establish if unfed mosquitoes 

were unwilling to feed (i.e. did not attempt to host seek) or were willing to feed but unable 

(i.e. attempted to probe but could not imbibe blood). 

 

As the study design of most lab and field trials preclude the investigation of the duration of 

blood-feeding inhibition, the experiment discussed in this chapter aimed to establish if 

blood-feeding inhibition persisted over a 24-hour period. In this instance, the current 

experiment was limited by the post-exposure timepoints chosen. These were selected to 

provide a proxy for a mosquito obtaining a blood meal immediately after exposure (1 

hour), within the same night (8 hours) or the following day (24 hours). These were not 

evenly distributed in time, which made the analysis of this data a challenge. An improved 



113 
 

method would be to allow immediate continuous access to a blood-meal following 

exposure, and “time to feeding” measured for each mosquito. This would also capture if 

blood-feeding inhibition does occur in this population prior to 1-hour post-exposure, to 

establish if any inhibition effects are seen. For such an assay a stopping point would need 

to be predetermined to allow a realistic cut-off for the experiment.  

 

Mosquito numbers available for testing fluctuated during the field season due to 

productivity of identified breeding sites. To ensure ~100 mosquitoes were exposed to each 

net treatment, nets were not all tested on the same experimental days, and on these days 

different number of mosquitoes may have been exposed to each treatment (e.g. 

experimental day 2, 15 mosquitoes exposed to untreated net 21 to PermaNet 3.0 sides, 20 

to PermaNet 3.0 roof). The logistical regression conducted on the 1-hour blood-feeding 

data showed date affected the mosquito’s ability to take a blood-meal on some days when 

accounting for the effect of net type. As temperature and humidity were not significant 

predictor variables in the model, it is possible that this date-effect is related to the different 

cohorts of mosquitoes used for testing. Testing was conducted over a 2-month period. 

Mosquitoes were collected and reared using the same methods, however, it is difficult to 

rigorously standardised mosquito rearing in this field setting, and so micro-differences in 

mosquito growth and fitness may exist. Given the potential difference of the larval-reared 

population, future testing should consider equally splitting the mosquitoes available for 

testing across all treatment types each day in order to control for this variation. 

 

Host-presence during exposure did not affect the probability of a mosquito blood-feeding 

at 1-hour post exposure. Previous studies have observed host presence significantly 

increases mosquito landings on a net compared to no host (Siegert, Walker and Miller, 

2009). Therefore, host presence increases the duration of net contact. The Tengrela 

population used here are highly resistant (see Chapter 2. Section 2.4) so it is plausible that 

small differences in net contact within the 3-minute exposure time have a minor 

toxicological impact on this population. Host-presence is likely to be of greater importance 

in less-resistant populations where the duration of net contact may have a greater affect. 

Duration of insecticidal net exposure has been observed to effect Anopheles ability to 

blood-feed (although different mosquito strains with different resistant levels were tested) 

(Glunt et al., 2018), and bed bugs willingness and ability to blood-feed (Jones, Bryant and 

Sivakoff, 2015). Any future tests should standardise this, preferably with a host present as 
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cue emanating from them will result in more natural host-seeking behaviour at the LLIN 

interface even when exposure conditions are artificial.  

 

 Effect of insecticidal net exposure on An. gambiae s.l. reproductive output 

 

Exposure to insecticidal nets in WHO hut trials showed mostly no effects on delayed 

mortality, ovary development, oviposition, or larval development. The only significant 

result was in the 2017 trial when more mosquitoes were observed to have underdeveloped 

and abnormal ovaries following collection from Olyset Net huts, compared to untreated. 

Although, a significantly greater amount of abnormal/underdeveloped eggs were observed 

in the Olyset Net arm the majority (4/5) of abnormal eggs had a round morphology and 

were brown in colour, suggesting this irregularity may have been the result of bacterial 

infection and not insecticide exposure. Many eggs were found to be underdeveloped, 

which could be a result of blood-meal volume. Unfortunately, blood-meal volume was not 

measured in this experiment, due to the limited capacity of the field insectary. 

 

These results support other trials which found no or minor effects of Olyset Net exposure 

compared to untreated nets on An. gambiae reproductive output (Ngufor et al., 2014, 

2016; Koffi et al., 2015). A recent laboratory study also observed no effect on blood meal 

size, the number of eggs laid, the number of descendants produced, or emergence rate 

between resistant An. gambiae (KdrKis) exposed to permethrin-treated nets or controls 

after either a single or double net exposure (Mulatier et al., 2019). 

 

The mosquitoes examined in this trial are the natural host-seeking population, therefore 

their age and previous insecticide exposure history is unknown. Prior to the trial, 

dissections of the larval-collected mosquitoes reared to adults in the insectary showed low 

female insemination rates, so using a reared-released mosquito population for this 

experiment would have been unsuitable. Although this introduces unknown interactions 

into the experiment, it allows the effects of insecticidal net exposure to be examined with 

the natural malaria transmitting population. Anopheles mosquitoes are anautogenous so 

require a blood meal to produce eggs. Therefore, for this experiment, only blood-fed 

mosquitoes were suitable for measuring reproductive output. In order to take a blood-meal 

from the host inside the hut, the mosquitoes must either enter the net though a small (4 x 

4 cm) holes cut in the fabric, or feed though the net while the host skin was in contact with 
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it. In both cases, it is likely that net contact would occur. As the huts are designed to target 

host-seeking mosquitoes attempting to obtain a blood-meal, it was assumed that blood-fed 

mosquitoes captured inside the hut had fed on the host under the net (thus contacting the 

net), and had not entered the hut already blood-fed.  

 

Fecundity is closely linked to mosquito body size (Lyimo and Takken, 1993; Takken, 

Klowden and Chambers, 1998) and wing measurements are used as a proxy for body-size. 

However, this was not measured in the current trials. Although variations in mosquito size 

could be influencing the results, there is no reason to suspect mosquitoes of a certain size 

would be collected in huts containing one net type compared to the other. In a recent lab 

trial, when controlling for the effects of body size and blood-meal volume, no effect of 

Olyset Net exposure on the number of eggs laid was seen in an An. gambiae strain (Hauser, 

Thiévent and Koella, 2019). The authors observed haematin level (a proxy for blood-meal 

volume) to be positively correlated with egg number, but no interaction between net type 

and haematin was seen. The current study did not measure the effect of net exposure on 

blood meal volume, and it would be interesting to evaluate this on the field population. 

 

The methodology for the reproductive output trial was altered between 2016 and 2017 in 

an attempted to improve oviposition rates. In the 2016 trial, oviposition was low in all 

groups (<45%) although dissections showed a large proportion of non-laying mosquitoes to 

have fully developed ovaries (i.e. Untreated net 54% of mosquitoes dissected had normal 

ovaries, n = 35). Subsequently, in the 2017 trial, the time permitted for oviposition was 

altered from 3-days to until the mosquito either laid eggs or died. Although oviposition 

increased in 2017, this was still low. It is documented that egg laying rates among wild 

mosquitoes are low under artificial conditions, and the rates observed in the current trial 

are comparable (or higher) than those seen in other hut trials (Ngufor et al., 2014, 2016; 

Koffi et al., 2015). Although Anopheles mosquitoes are largely considered to be 

anautogenous, several studies have documented gonotrophic discordance, where more 

than one blood-meal is needed to produce an egg batch, although research suggests this 

may be linked to body size (Lyimo and Takken, 1993; Takken, Klowden and Chambers, 

1998). In this experiment mosquitoes were only able to blood-feed during exposure in 

experimental huts, therefore, this could provide a possible explanation for the low 

oviposition rates observed in all treatment arms. However, oviposition rates of <50% were 



116 
 

still observed in Ngufor et al. (2014) trials, despite mosquitoes acquiring a secondary blood 

meal. 

 

Overall, the results suggest insecticide exposure from standard-LLINs has no physiological 

impact on the mosquito reproductive output. Exposure does not damage the structure of 

the ovaries, inhibit egg development or laying, or egg hatching. In this assay, hatched larvae 

were counted one week after eggs were floated (when larvae were in L2/3). Therefore, if 

insecticide exposure effects larval metamorphosis or developments into adults, this would 

not be captured by this test.  

 

Determining how insecticide exposure effects mosquito fertility and fecundity is 

challenging, and no standardised methods of how to measure and analyse this information 

exists. Reproductive output is a chain of events from oogenesis, oviposition, egg hatching 

and larval development, which is additionally complicated by egg development being 

inextricably linked to blood-feeding in Anopheles mosquitoes. Small non-significant 

differences may exist at each stage, which independently may suggest no effect. In the 

results discussed above, no differences in many of these steps were observed between 

untreated and treated arms. Cumulatively, these steps may significantly affect reproductive 

output, however, the chain of events and external factors relating to this, make it difficult 

to assign any effect entirely to the physiological impact of insecticide exposure.  To 

rigorously measure reproductive output, lab trials where net contact and blood-feeding are 

controlled would be beneficial. Large samples would be needed to overcome variation in 

blood meal volume and low oviposition rates encountered from forced egg-laying. Rearing 

environments (e.g. container size, number of larvae per container, amount of food 

provided) would need to be standardised, as larval development is density dependant and 

will be affected by over- or under-crowding. Such assays are challenging to conduct under 

semi-field conditions.  

 

4.5 Conclusion 

 

Combined with the lack of knockdown and mortality observed in this population, the 

absence of blood-feeding inhibition observed here is concerning. Although results from the 

experimental hut trial suggest insecticidal nets are still providing personal protection 

through blood-feeding inhibition in some instances (Chapter 3), this inhibition effect is not 
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observed when mosquitoes are subsequently offered a bloodmeal through untreated net. 

In reality, this could lead to mosquitoes being able to readily bite individuals not protected 

by a bednet, even if they have contacted an insecticidal net while host seeking the same 

night. The lack of effects on reproductive output are perhaps less surprising given the 

neuronal target site of pyrethroids, but still highlight that sub-lethal effects of insecticidal 

net exposure in this population appear to be non-existent. Encouragingly, however, is the 

ability of PermaNet 3.0 roof netting to rapidly incapacitate the highly resistant An. gambiae 

population. 
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 Exploring the feasibility of video benchtop tests to 

evaluate the effects of insecticidal net exposure on wild 

Anopheles gambiae behaviour 

 

5.1 Introduction 

 

Most international agencies and country control programmes will only purchase vector 

control products that have been ‘pre-qualified’ (evaluated for quality, safety and efficacy 

using pre-determined guidelines) by WHO. Currently, 20 LLINs have WHO PQ listing, of 

which 7 can be defined as next-generation nets, as they contain secondary compounds that 

are non-pyrethroid insecticides, synergists, or insect growth regulators (WHO, 2019a). 

Although the WHO process for evaluating vector control products has changed in the last 

few years (from WHOPES to PQ listing), the dossier requirements for entomological efficacy 

remain the same and are based on the assessment of phase I-III WHOPES trials (Table 1.2, 

page 30, WHO, 2013a). Except for “first in class” products, i.e. those with a novel mode of 

action that fall outside an established intervention class, which additionally require 

epidemiological evidence of public health impact. Currently, phase I trials comprise the 

WHO cone bioassay and tunnel test. These assess LLIN efficacy against standardised 

endpoints including 60-minute knockdown, 24-hour mortality, and blood-feeding success 

within 24-hours (tunnel test only). To proceed to phase II field testing, nets washed at least 

20 times (a proxy for 3 years field use) must meet the efficacy criteria for cone bioassays (≥ 

80% mortality or ≥ 95% knock-down) or tunnel tests (≥ 80% mortality or ≥ 90% blood-

feeding inhibition). Tunnel tests are used when the efficacy thresholds in cone assays are 

not met. This is based on the premise that the cone assay may underestimate the true 

efficacy of a net if it has a high contact irritancy effect. 

 

The existing WHO tests and efficacy thresholds were developed for pyrethroid-treated 

nets, the only insecticide class used on nets at that time. Pyrethroids were suitable for use 

in nets in part because of their fast-knockdown and lethality by tarsal contact (in 

susceptible mosquitoes), and their low toxicity to humans (Zaim, Aitio and Nakashima, 

2000). Therefore, these test protocols, in general, do not measure any slow-acting or 

delayed impacts, or sub-lethal effects, and there is little guidance on how to assess these 

non-standard outcomes. Nor do the tests consider mosquito behaviour at the bednet 
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interface, or how this might be altered by insecticide presence. As a result, these assays 

may not be suitable for evaluating next-generation nets, some of which contain relatively 

slow-acting insecticides (e.g. Interceptor G2) or have modes of action other than killing 

(e.g. adult sterilisation). It has been suggested that current WHO guidelines may not be 

appropriate for screening certain non-neurotoxic insecticides (Oxborough et al., 2015).  

 

In Burkina Faso, where the fieldwork reported here was conducted, malaria is increasing 

despite widespread deployment of vector control tools. Since pyrethroid-resistance in 

vectors offers one possible explanation for this increase, next-generation nets were 

distributed during Burkina Faso’s 2019 national net distribution campaign in the Western 

part of the country. In this region, insecticide-resistant mosquito populations are most 

prevalent. Given the concerns that the mode of action of some novel net treatments may 

not be captured using existing tests, identifying appropriate methods to replace or 

augment them is an immediate challenge. 

 

Consequently, the primary aim of the work reported in this chapter was to explore the 

feasibility of using video benchtop tests for describing and quantifying behaviours of wild 

Anopheles gambiae at the bednet interface. The secondary aim was to use the same tests 

to evaluate the effects of exposure to standard and next-generation nets on the behaviour 

of wild Anopheles gambiae. 

 

5.2 Methods 

 

 Study site, mosquito populations & net treatments 

 

All laboratory tests were performed at the CNRFP insectaries in Banfora, Burkina Faso, 

using adult female F0, reared from immature stages collected from Tengrela, Burkina Faso. 

Mosquitoes were collected, reared, and identified to species level using the methods 

described in Chapter 2 (Section 2.2). In both tests (video cone tests and baited box test) 

mosquitoes were exposed to untreated nets, PermaNet 3.0 sides, PermaNet 3.0 roof, and 

Interceptor G2. Olyset Net was tested in video cone tests, but not in baited box tests. 

Specifications of the nets tested are described in full in Chapter 2 (Section 2.5). All testing 

was conducted between August – October 2018. 
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 Video cone test: experimental methods 

 

The video cone test is a standard WHO cone test (WHO, 2013a) modified with the addition 

of a human host, and recorded using a smartphone, for subsequent behavioural analysis 

(Figure 5.1). It yields considerable additional information on mosquito interactions with the 

net, mimicking exposure to the insecticidal net during the response to a human host in a 

more realistic way. 

 

Video cone test: Net exposure protocol 

 

Mosquitoes were exposed to test netting using a WHO cone bioassay baited with a human 

host (Figure 5.1). Mosquitoes were 5-to-7-days-old, non-blood-fed females, which had 

been starved of sugar and water for a minimum of 24-hours prior to exposure. Test nets 

and mosquitoes were acclimatised to the testing room for >1 hour before experiments 

began. Testing began after 22:00 to coincide with peak Anopheles biting times in Burkina 

Faso (Dambach et al., 2016; Epopa et al., 2019).  

 

Mosquitoes were aspirated in batches of 3-to-5 from a holding cup into a plastic cone. The 

operator then placed an uncovered forearm behind the test netting and exhaled naturally 

towards the cone board, emitting host cues during the exposure. The operator refrained 

from washing with scented substances for 8-hours before the test. After 3-minutes, 

mosquitoes were transferred back to holding cups. Tests were recorded individually under 

normal lighting using a smartphone (Apple iPhone SE, USA) at 30-60 frames per seconds, 

and videos were saved as MOV files. The recorded temperature in the testing room ranged 

from 27.8 – 28.3°C, and humidity between 59.3 – 99.6%. 
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Figure 5.1. The video cone test apparatus used in the laboratory in Banfora, Burkina Faso.  

The smartphone (Apple iPhone SE, USA) was held in place using a clamp stand. The phone 

was angled so that the recording arena captured the test net surface and cone (here the 

cone being recorded is marked with a blue arrow). The cone board was set up with test 

netting following the standard WHO guidelines (WHO, 2013a). 

 

The mosquitoes recorded in the video cone test were additionally used in another 

experiment which examined the effect of insecticidal net contact on mosquito blood-

feeding ability (Chapter 4). Consequently, as dictated by the design of that experiment, 

post-exposure mosquitoes were not provided with sugar solution immediately; instead 

they were offered a human blood-meal from the test operator for 20-minutes at 1, 8 and 

24-hours post-exposure. After they blood-fed or at 24-hours post-exposure mosquitoes 

were provided with 10% glucose solution soaked onto cotton wool. Mosquito mortality was 

recorded daily until all mosquitoes were dead, and dead mosquitoes were stored in silica. 

Blood-feeding and longevity data are reported in Chapter 4. 

 

Video cone test: Data analysis 

 

Videos were visually scanned by eye at 5-second intervals (scan sampling) and the number 

of mosquitoes resting on the net, resting on the cone, in flight, or obscured from view was 

recorded. Behaviours were classified using predetermined criteria (adapted from Hughes 

2018, Table 5.1). The start time of the exposure was defined as when all mosquitoes had 
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exited the mouth aspirator into the cone arena. Videos were analysed in BORIS behavioural 

software version v. 7.4.4. (Friard and Gamba, 2016). Mosquito numbers varied between 

replicates (3-5 mosquitoes), and in some instances, mosquitoes escaped through test 

netting during the 3-minute test. To account for this variation, the proportion of 

mosquitoes displaying each behaviour at each time point was calculated (Figure 5.2). The 

mean proportion of mosquitoes exhibiting each behaviour at each time point was plotted 

onto scatter graphs, and 95% confidence intervals were calculated to show the variability 

between test replicates. Single composite images of each video cone recording replicate 

were created by overlaying the image frames every 0.1 seconds. This allowed visualisation 

of the mosquitoes location during the video cone exposure. Images were created using a 

bespoke behavioural video analysis software, VicTA (Video Cone Test Analyser), by Dr Jeff 

Jones (Jones et al., Unpublished). 

 

Table 5.1. Classifications used to define mosquito behaviours in video cone tests adapted 

from definitions used by Hughes (2018).  

Behaviour  Description 

Net Mosquito is resting on the net or has landed on the net 

Cone Mosquito is resting on the cone or has landed on cone 

Flight 
Mosquito is in flight or has touched the net or cone at the sampling time point but 

during a bouncing flight where it does not rest on the net or cone 

Obscured 
Mosquito is not visible due to the recording angle or obscured by the cotton wool 

plug and its behaviour cannot be determined 
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Figure 5.2. An example of the behavioural scan-sampling summary obtained for a single 

3-minute video cone replicate. 

The plot shows the proportion of mosquitoes resting on the cone, in-flight, resting on the 

test netting, or obscured from view during a 3-minute exposure to an untreated net in the 

video cone test (5 mosquitoes exposed). 

 

 Baited box test: experimental methods 

 

The ‘thumb test’ (Hughes et al., Unpublished) and ‘baited box’ test are variants of a 

laboratory benchtop test that records a video of mosquito activity at the bed net interface 

as the mosquitoes respond to a human host. The thumb test used individual mosquitoes 

and the baited box test used batches of mosquitoes. In the thumb test access to the host 

was possible only at a 2.5 cm diameter opening, covered by the test netting, situated 

opposite the mosquito entrance tube (Figure 5.3). This allowed all blood-feeding activity to 

be captured by a single camera focused on the net surface. The operator placed their 

thumb behind the test netting to act as a host. The mosquito was permitted to feed on the 

host's thumb or prevented from feeding by installing an additional untreated net barrier on 

the human side of the test net. Mosquitoes were aspirated individually into a gated holding 

tube, which was opened at the start of the test. Mosquitoes were classified as non-

responders if they failed to exit the holding tube within 3-minutes, or if they fail to probe at 

the net interface within 10-minutes of exiting the holding tube (Hughes et al., 

Unpublished). 
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Figure 5.3. The thumb test box setup (left) in position with LED and camera (middle) and 

with the operator’s thumb in position (right). 

 

Baited box test: equipment setup 

 

The baited box method used here was an adaptation of the thumb test. The baited box test 

arena is a 10 cm3 acrylic box (Retailacrylics, UK) with clear sides and base and a removable 

white roof (Figure 5.4). On one side it has four small ventilation holes (1.5 cm) and a gated 

mosquito entrance tube. The horizontal base and roof both have a central hole (7 cm). The 

base hole is a ventilation hole and the roof hole is the exposure hole where test netting is 

placed. The operator’s forearm is positioned above the roof hole during exposure, which 

allows host cues to be present during the test. The ventilation holes are covered with 

polypropylene mesh. To set up the box, test netting is placed over the uncovered roof and 

taped across all four sides, taking care not to obscure the filming area when securing the 

netting. The white plastic roof is then placed over the netting. 

 

The test is recorded using an infra-red camera (Ximea MQ013RG-E2 1.3 Megapixel near-

infrared enhanced CMOS Camera, Ximea, Munster, Germany) with a 60 mm lens (F2.8 

Nikon camera lenses used at F8). It is conducted in darkness and the setup is illuminated by 

an infra-red LED light (M850L2: wavelength spectrum from 790-885nm, ThorLabs Ltd, Ely, 

UK) passed through a paper or acrylic diffuser (16 x 16 cm, COMAR optics, Linton, 

Cambridge, UK). The setup is passively illuminated by light from the nearby computer 

screen. The box is placed on a ~5 cm platform, ~20 cm from the LED light and ~80 cm from 

the camera. The acrylic diffuser is positioned ~ 10 cm in front of the LED light. The LED light 

and diffuser are held in place with clamps stands and the camera with a tripod. The camera 

is connected directly to the recording computer by USB (Figure 5.4). Tests were recorded 

individually between 10 - 50 FPS using StreamPix recording software (StreamPix V.7, 

Norpix, Montreal, Canada) and recordings were saved as AVI or MP4 files. 
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Figure 5.4. The baited box test apparatus in the laboratory in Banfora, Burkina Faso.  

Images show the position of the infra-red LED and diffuser (top) and camera and laptop 

(bottom) in relation to the baited box test arena. The camera is held in position using a 

tripod, and the infra-red LED and diffuser using clamp stands. All videos were recorded 

directly onto the laptop. 
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Baited box test: Net exposure protocol 

 

Mosquitoes were exposed to test netting using a baited box setup with a human host 

present. Mosquitoes were 3-to-6-days-old, non-blood-fed females, which had been starved 

of sugar and water for a minimum of 24-hours prior to testing. Boxes with test netting and 

mosquitoes were acclimatised to the testing room for >1 hour before experiments began. 

The test netting was not changed between replicates, so mosquitoes were exposed to the 

same net piece per treatment. Testing began after 19:00 to coincide with peak indoor 

Anopheles biting times in Burkina Faso (Dambach et al., 2018; Epopa et al., 2019). 

 

Mosquitoes (~5) were aspirated from a holding cup into a holding tube and the recording 

was initiated. Within 1-minute mosquitoes were aspirated via the gated entrance tube 

directly into the box. The operator exhaled through the test net/exposure hole on the roof 

of the box for 30-seconds at the start of the exposure, before placing an uncovered 

forearm above the box. The operator refrained from using scented substances for ~8-hours 

before the test. A gap between the test netting and operators arm inhibited mosquito 

blood-feeding during exposure. The operator exhaled naturally towards the box during the 

exposure. 

 

Mosquitoes were video recorded for 20-minutes and then transferred back into holding 

cups. After the test, they were provided with 10% glucose solution soaked onto cotton 

wool. Mortality was recorded daily for 7-days, and dead mosquitoes were stored in silica. 

The recorded temperature in the testing room ranged from 27.8 – 28.1°C, and humidity 

between 52.3 – 99.9%.  

 

Baited box test: Data collection and analysis 

 

Videos were visually scan sampled at 10-second intervals and the number of mosquitoes 

exhibiting each behaviour (flying, box resting, base resting, mesh resting, mesh probing, 

mesh contact, net resting and net probing) was recorded. Behaviours were classified using 

predetermined criteria (adapted from Hughes et al., Unpublished, Table 5.2). The start time 

of the exposure was defined as when the gate to the entrance tube was closed after 

mosquitoes were aspirated into the box. Videos were analysed in BORIS behavioural 

software version v. 7.4.4. (Friard and Gamba, 2016). Mosquito numbers varied between 
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replicates (3-6 mosquitoes), and in some instance’s mosquitoes escaped through test 

netting during the 20-minute test. To account for this variation, the proportion of 

mosquitoes displaying each behaviour at each time point was calculated. During data 

analysis, some behaviours were combined as described in Table 5.2 (e.g. mesh contact is a 

combination of mesh resting and mesh probing behaviours). The mean proportion of 

mosquitoes exhibiting each behaviour at each time point were plotted onto scatter graphs. 

95% confidence intervals were calculated to show the variability between test replicates. 

To visualise mosquito location in baited boxes during the exposure composite images were 

created by overlaying the recorded image every 0.1 seconds. They were created using 

ViCTA by Dr Jeff Jones (Jones et al., Unpublished). 

 

Table 5.2. Classifications used to define mosquito behaviours in baited box tests adapted 

from definitions used by Hughes et al. (Unpublished). 

Behaviour  Description 

Flight 
Mosquito is in flight or has touched the net or box at the sampling time point but 

during a bouncing flight where it does not rest on the net or box 

Box resting Mosquito is resting on the box sides or has landed on the box sides 

Base resting Mosquito is resting on the base of the box or has landed on the base of the box 

Mesh resting 
Mosquito is resting on the untreated mesh covering the airholes or has landed 

on the untreated mesh but is not probing 

Mesh probing Mosquito is probing on the untreated mesh covering the air holes 

Mesh contact Mosquito is contacting mesh by ‘mesh resting’ or ‘mesh probing’ 

Net resting 
Mosquito is resting on the treatment netting or has landed on the treatment 

netting but is not probing 

Net probing Mosquito is probing on the treatment netting 

Net contact Mosquito is contacting treatment net by ‘net resting’ or ‘net probing’ 

 

To quantify mosquito activity within the box, videos were examined using ViCTA, a bespoke 

behavioural image analysis software (Jones et al., Unpublished). The box arena was divided 

into 100 regions (Figure 5.5), and mosquito movement within these regions was analysed 

by sampling video frames at 0.1 second intervals. Moving mosquitoes were detected using 

a Mixture of Gaussians (MOG) background model and the detected outline contours of 

moving objects were assessed to ensure they lay within a minimum and maximum 

threshold size range (previously determined empirically to correspond to the size of a 



128 
 

mosquito). To summarise movement activity, the moving mosquito detection counts at 

every 0.1 second frame intervals were aggregated at every 5-seconds and summed to give 

discrete 5-second time periods of movement for each of the 100 regions. To improve image 

quality, and therefore movement activity detection, gamma correction, brightness, and 

contrast enhancement were applied as required to enhance the signal range of the video 

footage before sampling. This was to compensate for variations in video quality (for 

example low exposure rates, noise contamination and speckling caused by the infra-red 

LED passing though the diffuser) caused by the challenging experimental field conditions. 

 

Total activity detected within the whole box, and within the top row of the box only (Figure 

5.5), was then summarised for each net type. When mosquito numbers deviated away 

from 5 mosquitoes (e.g. mosquito escaped during the exposure) activity was weighted 

using the following equation: 

 

𝑇𝑤 =  
𝑇

(𝑛 5⁄ )
 

 

Where Tw is the weighted activity level, T is the total activity level, and n is the number of 

mosquitoes in the replicate. When mosquito numbers are <5 the weighting function 

increased the total activity, and when mosquito numbers are >5 it decreased the total 

activity. Activity over time was also calculated, however, this was unweighted as results 

were strongly affected by weighting. The effect of treatment on the number of detected 

mosquito movements was compared using GLMMs with a negative binomial distribution to 

account for overdispersion. The experimental day was included as a random effect in the 

model. The analysis was conducted within R statistical software version 3.6.2 (2019-12-12) 

(R Core Team, 2017) using the glmmADMB (Fournier et al., 2012) package. 
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Figure 5.5. Image showing the regional division of the baited box for ViCTA analysis. 

The baited box is divided into 100 (10 x 10) regions and mosquito movement within each of 

these regions is recorded every 0.1 seconds by the ViCTA software (Jones et al., 

Unpublished). Total activity within the whole box, or within the top row of the box only 

(indicated with a blue arrow) was then summarised for each net type. 

 

5.3 Results 

 

 Video cone test 

 

Video cone tests were conducted over 8 non-consecutive days between August – October 

2018. On each experimental day at least 1 untreated netting replicate was conducted 

alongside test nets, therefore the number of days tested, and replicates vary between net 

treatments (Table 5.3). Immediate mortality (within 24-hours) was less than 25% for all 

insecticidal nets, except for PermaNet 3.0 roof where mortality was 100% (Table 5.3).   

 

Video cone tests were analysed using two methods. In the first method, the video 

recordings were scan-sampled every 5-seconds and behaviours were documented (Figure 

5.7). In the second method, composite images of each video replicate were created by 

overlaying the recorded frames every 0.1s (Figure 5.6).  
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Table 5.3. Summary of video cone tests performed and mortality post-testing. 

Number of testing days and replicates varied between net treatments. The total number of 

mosquitoes exposed in video cone tests and the total number recorded for mortality differ 

due to accidental loss of mosquito during the test. 

Net type 
No. days 

testing 

No. 

replicate 

tests 

Total no. 

mosquitoes 

exposed 

Mortality 

Total no. 

mosquitoes  

% 24-hour 

mortality  

(95% CI) 

Untreated 8 14 65 61 
3.28 

(-1.19 – 7.75) 

Olyset Net 2 10 47 43 0.00 

PermaNet 

3.0 sides 
3 10 49 47 

2.13  

(-2.00 – 6.25) 

PermaNet 

3.0 roof 
5 10 50 50 100 

Interceptor 

G2 
2 10 50 47 

23.40  

(11.30 – 

35.51) 

 

In all video cones, regardless of test netting type, the proportion of mosquitoes obscured 

from view during exposure was low (less than 0.2). Composite images, as exemplified by 

Figure 5.6, show no patterns in mosquito location in the cones in response to any net type 

(all composite images can be found in Appendix 1). 

 

The scan sampling plots, summarised in Figure 5.7, suggest that the behaviour of the 

Tengrela population was similar during exposure to untreated and pyrethroid-only netting 

(Olyset Net and PermaNet 3.0 sides). In response to these net types, mosquitoes quickly 

changed between the different behaviours (resting on the net, resting on the cone, in-

flight) at each sampling point, causing the behaviours to converge. No behavioural patterns 

were observed over time and no behaviours were dominant during the exposure (Figure 

5.7 A-C). At most time points, 95% confidence intervals overlapped for the three 

behaviours as a result of variability between the testing replicates. 
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The mosquitos response to the next-generation nets was different depending on the net 

type. During exposure to PermaNet 3.0 roof (deltamethrin + PBO net), mosquito flight was 

dominant for the first 90-seconds of the test (Figure 5.7D), suggesting contact irritancy. At 

this timepoint, flight declined as mosquito resting on the net increased, resulting in all 

behaviours converging towards the end of the exposure. In Interceptor G2 

(alphacypermethrin + chlorfenapyr) exposure, mosquito resting on the net was the high 

and resting on the cone was low throughout the exposure (Figure 5.7E). This suggests a lack 

of contact irritancy or repellence and a potential reduction in mosquito activity.  

 

 

Figure 5.6. Example composite image showing mosquito location during exposure to an 

untreated net in the 3-minute video cone test. 

Composite images were created by overlaying each recorded video frame every 0.1 seconds. 

Images were created using ViCTA by Dr Jeff Jones (Jones et al., Unpublished). All composite 

images can be found in Appendix 1. 
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Figure 5.7. Scan sampling analysis of mosquito behaviour during exposure to test netting 

in 3-minute video cone test. 

Mosquitoes were exposed to test netting and the mean proportion of mosquitoes resting on 

the cone, in-flight, resting on the test netting, or obscured from view is shown. Error bars 

show 95% confidence intervals. (A) Untreated net: 14 replicates; (B) Olyset Net: 10 

replicates; (C) PermaNet 3.0 sides: 10 replicates; (D) PermaNet 3.0 roof: 10 replicates; (E) 

Interceptor G2: 10 replicates. 
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 A preliminary study of the thumb test for field use 

 

Previous studies with the thumb test used laboratory colonised mosquito strains. This 

preliminary study was conducted to investigate the feasibility of using the thumb test for 

field, use using a wild larval-reared population of Anopheles. 

 

The original thumb test setup and several variations were trialled, as follows: 

1. Original thumb test setup and response classification (Section 5.2.3, Page 123). Results: 

a. Untreated netting: 5-7-day-old non-blood-fed non-starved mosquitoes, 19% 

response rate (n = 21 mosquitoes tested), of the non-responders 61% (n = 11 

mosquitoes) failed to leave the holding tube within 3 minutes.  

b. PermaNet 2.0 netting: 6-day-old non-blood-fed non-starved mosquitoes, 12% 

response rate (n = 17 mosquitoes tested). 

2. 24-hours starvation: Mosquitoes were sugar and water-starved for 24-hours prior to 

testing. 7-day-old non-blood-fed mosquitoes were exposed to untreated netting using 

the original setup and response classification. Result: 0% response rate (n = 5 

mosquitoes), 60% (n = 3 mosquitoes) failed to leave the tube within 3 minutes.  

3. Inverted box: The thumb box arena was inverted so that test netting could be placed 

on the large air hole normally found on the base of the box. Result: It was not possible 

to visualise mosquito probing in this version as the thicker acrylic wall obscured the 

view.   

4. Netted roof: The test setup was altered so that mosquitoes were exposed to netting by 

draping it over the roof of the thumb box. This increased the host surface area 

available to mosquitoes. The response classification was altered to 5-minutes for 

mosquitoes to exit the holding tube. Result: 20% response rate (n = 25 mosquitoes), 

65% of non-responders exited the tube within 5-minutes but failed to probe within 10-

minutes. 

5. 48-hours starvation: Mosquitoes were fully sugar and water-starved for 48-hours prior 

to testing. Mosquitoes were exposed to untreated netting using the netted roof setup 

and 5-minute responder classification. Result: 0 responders (n = 5 mosquitoes), 60% (n 

= 3 mosquitoes) left the tube within 5-minutes but failed to probe within 10-minutes.  

6. Forced entry: Mosquitoes who failed to exit the holding tube within 3-minutes were 

manually pushed into the box using a modified plunger system added to the entry 

tube. Mosquitoes were classified as non-responders if they failed to probe within 10-
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minutes of entering the box. 3-5-day old unfed starved mosquitoes were exposed to 

untreated netting. Result: 29% response rate (n = 17 mosquitoes). 

7. An. gambiae Kisumu control: 7-day-old An. gambiae Kisumu starved on the day of 

testing were exposed to untreated netting using the netted roof setup with 5-minute 

responder classification. Additionally, the ventilation holes in the box were blocked. 

Result: 100% response rate and blood-feeding (n = 5 mosquitoes). 

 

The original thumb test setup achieved low response rates when using individual wild 

larval-reared Anopheles, this contrasted with results from the lab susceptible strain where 

a 100% response rate was obtained. The low response rate coupled with the length of time 

required to complete each individual thumb test (25 minutes) clearly demonstrated that it 

was not practical to continue to pursue the use of the original methodology. It was 

therefore decided to abandon the thumb test variant and revert to a baited box, in which 

mosquitoes were exposed to a 10 x 10 cm area of netting in batches of ~5 mosquitoes per 

replicate. The baited box test does not give information on individual mosquito’s 

responses, or duration of behaviours, but it is able to describe how behaviours of a group 

of mosquitoes change over time during insecticidal net exposure. The initial responder 

classification, used in the thumb test, defined mosquitoes as responding only when they 

probed through the test netting. This was originally characterised when testing pyrethroid-

only netting and would be unsuitable for testing nets which repelled, caused contract 

irritancy, or affected mosquito biting behaviour. Therefore, in the baited box test reported 

here, no responder classification was used. Mosquitoes were aspirated directly into the box 

arena and all behaviours were recorded for 20-minutes.  

 

 Baited box test 

 

Baited box tests were conducted over 3 non-consecutive days in October 2018. On each 

experimental day at least 1 untreated box replicate was conducted alongside test boxes, 

therefore the number of days tested, and replicates vary between net treatment (Table 

5.4). In baited box tests, immediate mortality was 100% following exposure to PermaNet 

3.0 roof. All other net types showed mortality levels of less than 10% (Table 5.4). 

 

Baited box tests were analysed using three methods. In the first method, 10-second scan 

sampling was used to record mosquito behaviour. The results of the scan sampled activity 



136 
 

are summarised in Figure 5.8. In the second and third method, bespoke ViCTA image 

analysis was used to (1) detect and count mosquito movements, in the whole box or top 

row of the box only, and (2) create composite images of each video replicate to show 

location of detected movement within the baited box (Figure 5.9, Figure 5.10 and Table 

5.5).  

 

Table 5.4. Summary of baited box test performed and mortality post-testing. 

Number of testing days and replicates varied between net treatments. The total number of 

mosquitoes exposed in baited box tests and the total number recorded for mortality differ 

due to accidental mosquito release during the transfer from boxes to holding cups. 

Net type 

No. 

days 

testing 

No. 

replicate 

tests 

Total no. 

mosquitoes 

exposed 

Mortality 

Total no. 

mosquitoes 

% 24-hour 

mortality 

(95% CI) 

% 7-day 

mortality 

(95% CI) 

Untreated 3 8 38 33 0 

9.09 

(-0.72 – 

18.90) 

PermaNet 

3.0 sides 
3 8 39 36 0 

5.56  

(-1.93 – 

13.04) 

PermaNet 

3.0 roof 
2 6 26 26 100 100 

Interceptor 

G2 
3 10 51 51 

1.96 

(-1.84 – 

5.77) 

7.84  

(0.46 – 

15.22) 

 

The scan sampled activity plots suggest that the behaviour of the Tengrela mosquito 

population was similar during exposure to all net types in 20-minute baited box (Figure 

5.8). The exception to this was PermaNet 3.0 roof netting, where mosquitoes showed 

increased resting on the base of the box (analogous to knockdown), compared to other 

behaviours. In all the other net types, mosquitoes quickly moved between the different 

behaviour at each sampling point with no behavioural patterns or dominant behaviours 
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observed. At most time points 95% confidence intervals overlapped indicating variability 

between replicates. 

 

During exposure with untreated netting (Figure 5.8A), few mosquitoes rested on the base 

of the box, instead showing higher proportions resting on the box sides. In the entire box, 

ViCTA analysis detected 17,653 mosquito movements, with 42% (12 – 65%) of this activity 

occurring in the top row of the box closest to the human host (Figure 5.9, Table 5.5). 

Detected mosquito movement oscillated over time but remained constant in both the 

entire box and top row (Figure 5.10).  

 

When exposed to PermaNet 3.0 sides (deltamethrin-only netting), contact with the netting 

was higher within the first 2-minutes of exposure but then declined to relatively low levels. 

This suggests mosquitoes were initially attracted to land on the test netting in response to 

host cues but deterred from continuously resting on the net. Mosquito movement 

detected in the entire box, or in the top row only, were not significantly different from 

untreated (Figure 5.9, Table 5.5). On average, 35% (13 - 73%) of detected activity was 

observed in the top row. Mosquito movement detected in the entire box and the top row 

oscillated over time, tailing off towards the end of the exposure (Figure 5.10). 

 

When exposed to PermaNet 3.0 (deltamethrin + PBO) roof netting (Figure 5.8C), flight was 

the dominant behaviour initially, however, this rapidly declined within the first minute, and 

fell to extremely low levels at around 10-minutes. Mosquito resting on the base of the box 

steadily increased over time and was the dominant behaviour after the first 3-minutes. 

Compared to all other netting types tested, activity was significantly reduced in both the 

entire box and top row following PermaNet 3.0 roof exposure (Figure 5.9, Table 5.5). 

However, the proportion of this activity spent in the top row (35% average, 17 – 54%) was 

similar to levels seen in PermaNet 3.0 sides and untreated. Detected movement 

dramatically declined to extremely low levels within the first 5-minutes of the exposure 

(Figure 5.10). 
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Figure 5.8. Scan sampling analysis of mosquito behaviour during exposure to test netting 

in 20-minute baited box test. 

Mosquitoes were exposed to test netting and the mean proportion of mosquitoes resting on 

the base, resting on the box, in-flight, in contact with the test netting (resting or probing) or 

in contact with the untreated mesh (resting or probing) is shown. Error bars show 95% 

confidence intervals. (A) Untreated net: 8 video replicates; (B) PermaNet 3.0 side: 8 video 

replicates; (C) PermaNet 3.0 roof: 6 video replicates, (D) Interceptor G2: 10 video replicates. 
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Figure 5.9. Mean total weighted mosquito activity detected in the entire box (A), or in the 

top row of the box only (B) during 20-minute exposure to test netting in baited boxes.  

Activity levels were detected using ViCTA software. Error bars show standard deviation. 

Asterisks show when activity was significantly different compared to untreated control (P > 

0.05, GLMMs). Untreated net: 8 video replicates; PermaNet 3.0 side: 8 video replicates; 

PermaNet 3.0 roof: 6 video replicates, Interceptor G2: 10 video replicates. 
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Figure 5.10. Mean unweighted mosquito activity over time detected in the entire box (A), 

or top row of the box only (B) during 20-minute exposure to test netting in baited boxes. 

Activity levels were detected using ViCTA software. Untreated net: 8 video replicates; 

PermaNet 3.0 side: 8 video replicates; PermaNet 3.0 roof: 6 video replicates, Interceptor G2: 

10 video replicates. 
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Table 5.5. The number of mosquito movements detected by ViCTA in 20-minute baited 

boxes in the top row only, or whole box. 

Movements have been weighted when mosquito numbers deviate from 5. Values in the 

same row sharing a letter superscript do not differ significantly (P > 0.05, GLMMs: Appendix 

1, Error! Reference source not found.). 

 Untreated PermaNet 3.0 sides PermaNet 3.0 roof Interceptor G2 

Top row 7455a 5542a 1339 3017 

Whole box 17653a 15843a, b 3861 18664a, b 

 

In Interceptor G2, flight and resting on the box were more common than other behaviours 

(Figure 5.8D). Flight appears to be more dominant within the first 10-minutes of the test 

and box resting towards the end of the test. Net contact rapidly declines after the first 2 ½ 

minutes to low levels. Movement detected in the whole box was similar to the untreated 

net and PermaNet 3.0 sides (Figure 5.9A, Table 5.5). Movement detected in the top row 

with Interceptor G2 was significantly different to all other net types, this was reduced 

compared to untreated and PermaNet 3.0 sides and increased compared to PermaNet 3.0 

roof (Figure 5.9B, Table 5.5). The proportion of activity which occurred in the top row (16% 

average, 5 – 63%) was reduced compared to other net types. Detected movement in the 

entire box and the top row oscillated over time, tailing off towards the end of the exposure 

(Figure 5.10). 

 

Composite images showed activity levels to vary between replicates, and this appeared to 

be associated with the date tested (Appendix 1, Figure A1.6 - 9). The date was included as a 

random effect in GLMM analysis of detected activity. In untreated boxes, composite images 

show mosquitoes movement was largely detected on the box roof in contact with the 

netting or on the left-hand side of the box towards the host (Figure 5.11; Appendix 1; 

Figure A1.6). In PermaNet 3.0 sides and Interceptor G2, composite images show the 

location and amount of detected activity vary dramatically between replicates (Figure 5.11; 

Appendix 1 : Figure A1.7, Figure A1.9). In PermaNet 3.0 roof detected activity is shown to 

be markedly reduced (Figure 5.11, Appendix 1, Figure A1.8).  
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(A) UN 10

 

(B) P3T 7

 

(C) P3S 4

 

(D) P3S 14 

 

 

Figure 5.11. Examples of composite images showing detected mosquito activity during 

exposure to untreated (A), PermaNet 3.0 roof (B), and PermaNet 3.0 Sides (C & D) in 20-

minute baited boxes. 

Red dots show when mosquito activity was detected by ViCTA automated analysis. All 

composite images can be found in Appendix 1. 

 

5.4 Discussion 

 

 Exploring the feasibility of using video benchtop tests for field use 

 

The primary aim of the work discussed in this chapter was to explore the feasibility of using 

video benchtop tests as a method for describing and quantifying behaviours of wild 

Anopheles during interactions with different insecticidal nets. Behavioural responses of 
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wild larval-reared mosquitoes during exposure to insecticidal netting were investigated 

using three methods: video cone tests, thumb tests, and baited box tests. These tests differ 

in their duration of exposure, the size of the test arena, the time required to complete a 

series of tests and appropriate controls and the types of behaviour they can record for 

quantification. 

 

The video cone test is a standard WHO cone bioassay (WHO, 2013a) modified with the 

addition of a human host and recorded using a smartphone. As with the standard cone test 

setup, the test is rapid, simple and reproducible to perform under field conditions and 

required minimal adaptation, additional training, or cost. It is a simple way of observing 

mosquito behaviour under more naturalistic (human host present) conditions than the 

standard cone bioassay and collected simple behavioural data on several net types. By 

monitoring the proportion of mosquitoes in contact with the net or cone over time, the 

test provides observational information on a net’s contact irritancy, and the proportion of 

mosquitoes in flight provides insight into mosquito activity following net exposure. In 

addition to outcomes usually recorded (i.e. mosquito knockdown and mortality), the test 

can be used as a method of insecticidal net exposure when examining sub-lethal effects, 

such as blood-feeding or longevity (reported in Chapter 4). In the iteration reported in this 

chapter, using wild-larval reared mosquitoes in a field setting, the video cone test was able 

to detect flying and resting behaviours and distinguish resting on the net from resting on 

the cone.  

 

The thumb test and baited box test also record mosquito behaviour at the bednet interface 

in the presence of a human host. The original thumb test setup was deemed unsuitable for 

use in this current project as mosquito response rates were extremely low and time 

available for testing was limited. In the baited box test variation (Hughes et al., 

Unpublished), mosquitoes are aspirated directly into the box, and exposure to the net is at 

a larger aperture. Compared to the video cone test, the larger recording/test arena of the 

box, combined with the higher resolution camera, altered netting area, and longer 

exposure time, allowed additional information on mosquito behaviour to be observed. 

Additionally, by filming in infra-red light the visual environment is more natural for this 

nocturnal species (Gibson, 1995). However, it requires more complex bespoke equipment 

and longer training for its use. In the baited boxes, mosquitoes could rest on the treated 

netting, sides, or base of the box. Their location within the box allowed further information 
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on net contact irritancy or killing efficacy to be collected. Using ViCTA to detect mosquito 

movement in the whole box or limited to the top row (closest to the host), allowed 

evaluation of how mosquito activity was altered (e.g. is it increased or decreased) by the 

presence of test netting. 

 

Aspirating mosquitoes directly into boxes and analysing them as a group using scan 

sampling at 10-second intervals overcame the issue with response rates that were 

encountered with the thumb test. However, it reduced the level of behavioural detail 

obtained from each test. Individual mosquito recordings would allow data to be collected 

which showed sequence and duration of behaviours in response to insecticidal net 

exposure, which was not possible with the grouped scan sampling. Subsequently, when 

time is not a limiting factor, the original thumb test setup could be used to collect more 

detailed information on mosquito behaviour. 

 

In the baited box test, sensory cues emanating from the host probably enter the test arena 

through the untreated meshed airholes on the side of the box as well as the large exposure 

hole on the roof of the box. Mosquitoes were often observed probing though and resting 

on the untreated mesh air holes on the box side. These behaviours, mesh probing and 

mesh resting, were originally classified separately, but during analysis were pooled into 

“mesh contact” (Table 5.2). When resting on the untreated mesh mosquitoes could be 

responding to host cues that enter through the mesh, so it was important to distinguish 

this behaviour from box resting. Additionally, mesh probing, which is suggestive of host-

seeking behaviour, was separated from net probing as although mesh probing provided an 

insight into mosquito host-seeking behaviour, it was important to differentiate this from 

the host-seeking activity which occurred while being simultaneously exposed to the 

insecticidal net. During analysis net resting and net probing were also combined into a 

single behaviour (“net contact”, Table 5.2), to provide insight into any net repellent or 

contract irritant effects the net may have. This highlights that pre-defining behaviours prior 

to testing require consideration. This may be especially important when assessing next-

generation nets which have novel active ingredients or modes of action. When classifying 

these behaviours, it is important to be mindful of what these could mean for insecticidal 

net contact or mosquito host seeking. For example, in the baited box test mesh probing 

and net probing could have been combined into “probing” behaviour, or mesh resting 

could have been included with box resting. Each of these behaviours tells us something 
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different about the mosquito’s interaction and response to the test netting, so it is 

important for them to be discrete, while at the same time not being so specific that no 

meaningful conclusions can be described from the data. 

 

The ViCTA movement detection and composite image analysis allowed mosquito location 

within the box to be visualised, and activity levels to be quantified using GLMMs. The ViCTA 

composite images (overlaid every 0.1 seconds) can detect nuances in mosquito location 

within the box which may not be captured using scan sampling if they change behaviours in 

quick succession. By focusing on movement detection in different areas, ViCTA can quantify 

behavioural responses. In the tests reported in this chapter, movement detection was 

focused on the top row of the box to provide insight into net contact and responses to host 

cues, but similarly, detection could focus on movement in the lower half of the box to 

investigate repellent or contact irritant effects of the netting. ViCTA Composite image 

analysis of baited boxes showed day of testing noticeably affected mosquito behaviour, 

and this this appeared to be consist across treatments. For example, mosquito activity was 

higher in both PermaNet 3.0 side and Interceptor G2 boxes when visually comparing 

composite images from the 19th October 2018 with other days (Appendix 1, Figure A1.6 - 

9). This effect did not appear to be related to temperature and humidity and may be as a 

result of different cohorts of mosquitoes tested. Subsequently, date was included as a 

random effect in all models.  

 

ViCTA analysis augments the scan sampling analysis, which is better able to describe 

specific behaviours such as probing, and if feeding was permitted, blood-feeding. 

Additionally, visually scanning the videos over their duration allows the operator to identify 

behaviours or activities which may merit further investigation with the ViCTA software. 

 

 Defining and measuring the effect of insecticidal net exposure on the 

behaviour of a wild population of Anopheles gambiae behaviour at the net interface  

 

The second aim of this study was to use the video cone and baited box tests to describe the 

effects of exposure to standard and next-generation nets on the behaviour of wild An. 

gambiae at the net interface. 
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The video cone test has been previously used to evaluate the behaviour of laboratory 

reared susceptible and resistant Anopheles at the LLIN interface (Hughes, 2018; McCall, 

Personal communication). In the field tests reported here, behaviour between individual 

test replicates was highly variable, in contrast with what was observed by Hughes (2018), 

who found behaviour to be more consistent. When mosquitoes are colonised, genetic 

diversity quickly decreases as a result of inbreeding (Ng’habi et al., 2015), and several 

short-range behavioural studies have previously reported colonisation to affect mosquito 

behaviours such as repellence, attraction, and blood-feeding (Chadee and Beier, 1997; 

Chadee, Beier and Mohammed, 2002; Thanispong et al., 2009; Clark et al., 2011). The 

genetic diversity of the wild population could partially explain the behavioural variation 

observed between test replicates.  

 

In the previous lab studies, mosquitoes spent more time resting on the net than in flight or 

resting on the cone (Hughes, 2018), or did not rest on the cone at all (McCall, Personal 

communication), regardless of net type. In the video cone tests and baited box tests 

reported in this chapter, except for PermaNet 3.0 roof, no behaviour dominated across the 

duration of the test following exposure to all other net types. Mosquitoes moved between 

the behavioural categories in quick succession, which resulted in behaviours converging. 

The changing behaviour of the mosquito could reflect them being attracted to the host but 

stimulated to fly when the physical net barrier inhibits host contact, thus causing the 

mosquito to fluctuate between flying and resting on the net.  

 

Following exposure to pyrethroid-only netting mortality was comparable to untreated (24-

hour mortality >5% in all tests; 7-day mortality >10% in baited box tests). No significant 

difference in detected activity between PermaNet 3.0 sides or untreated was observed, 

when comparing mosquito movements in the whole baited box or top row only.  

 

PermaNet 3.0 roof netting (deltamethrin + PBO) caused 100% 24-hour mortality in all tests. 

Following exposure to PermaNet 3.0 roof flight declined quickly as resting increased in both 

video tests. This occurred after 60-seconds in video cone tests and 180-seconds in baited 

box tests. This decline in activity is likely as a result of the combined effect of the 

pyrethroid and PBO. The PBO inhibits enzymes which usually detoxify the pyrethroid in this 

resistant strain (Williams et al., 2019), allowing the neurotoxic effect of the pyrethroid to 

immobilises the mosquito. In the baited box test, resting on the base of the box was the 
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dominant behaviour. Although this behaviour is defined as “resting”, observationally it was 

clear that mosquitoes were rapidly knocked down by the PermaNet 3.0 roof netting 

following aspiration into the box. This occurred after ~3 minutes, the time at which the 

video cone test exposure stops, which potentially explains why knockdown was not 

observed during the video cone test.  

 

Composite image analysis suggests that contact with the treated netting in baited boxes 

was very brief, however, this was enough to rapidly knockdown and kill the highly 

pyrethroid-resistant Anopheles. Mosquito activity in the box quickly declined to a low 

baseline following exposure and overall was significantly reduced in comparison to all other 

net types, both in the whole box and in the top row only. The proportion of activity 

detected in the top row of the box (closest to the host) was similar to untreated and 

PermaNet 3.0 sides, suggesting that the PermaNet 3.0 roof is no more repellent than other 

test nets. The mortality levels seen here are supported by additional field data: An 

experimental hut trials conducted in the same locality found that wild Anopheles mortality 

rates were 1.69-1.78-fold greater in huts with PBO-nets compared to pyrethroid-only LLINs 

(Toe et al., 2018). PBO by itself is not insecticidal, and it works by inhibiting metabolic 

enzymes within the mosquito that detoxify pyrethroid. Additionally, a Cochrane review has 

shown that in areas of high-pyrethroid resistance PBO-nets increase mosquito mortality 

and reduce blood-feeding rates (Gleave et al., 2018). 

 

PBO-bed nets were the first next-generation nets to receive WHO PQ listing (WHO, 2019a) 

and reach the market. Understanding how pyrethroid-susceptible and resistant field 

mosquitoes interact with these nets and documenting mosquito behaviour to see how this 

might change with changes in susceptibility to these nets is essential. The efficacy of PBO-

bed nets depends on the mosquitoes resistance level and mechanisms (Churcher et al., 

2016; Gleave et al., 2018). Subsequently, it is important that the behavioural effects of 

these nets be examined using field populations with varying susceptibility and resistance 

mechanisms to establish how behaviour might be altered, as any repellent properties of 

the net, for example, will reduce their efficacy. In some pyrethroid-PBO nets, PBO is only 

present on the net roof, and so a resistant mosquito population targeted by the PBO 

component of the net must contact this section for the net to be effective. Although 

responses to a complete human-occupied bednet have not yet been determined, the 
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results presented here indicate that the proportions of mosquitoes arriving at the 

PermaNet 3.0 roof should not be compromised by the presence of PBO. 

 

Following exposure to Interceptor G2 netting, 24-hour mosquito mortality was greater in 

video cone tests (~25%) than in baited box tests (>2%). In the baited box tests, composite 

image of baited boxes shows behaviour to be extremely variable depending on day tested. 

Accounting for the date effect, no difference in mosquito activity in the whole box was 

seen in Interceptor G2 compared to untreated or PermaNet 3.0 sides, however activity in 

the top row (closest to the host) was significantly reduced. When examining the proportion 

of total activity that occurred in the top row i.e. closest to the test netting/host, this was 

reduced compared to other net treatments suggesting repellence. Interceptor G2 is a dual 

insecticide LLIN which is coated with alpha-cypermethrin and chlorfenapyr. 

Alphacypermethrin is known to have repellent properties, which is suggested by the 

reduction in contact with the top row seen following Interceptor G2 exposure compared to 

other net types 

 

Interceptor G2 has been reported to have improved efficacy compared to Interceptor LN 

(alphacypermethrin-only LLIN) against pyrethroid-resistant mosquitoes in several 

experimental hut trials (N’Guessan et al., 2016b; Bayili et al., 2017; WHO, 2017d; Camara et 

al., 2018). However, reproducing the levels of mortality observed in huts in benchtop tests 

has been challenging. In a standard 3-minute cone bioassay several studies have 

documented low mortality (24 to 72-hour) following exposure to unwashed Interceptor G2 

against resistant, and more concerningly, pyrethroid-susceptible mosquitoes (N’Guessan et 

al., 2016b; Camara et al., 2018). Higher mortalities have been observed when Interceptor 

G2 is used in overnight tunnel tests leading several authors to suggest that cone bioassays 

are not suitable for predicting the performance of the net (N’Guessan et al., 2016a; Bayili et 

al., 2017). This is sometime attributed to the higher activity of chlorfenapyr during the 

night (Oxborough et al., 2015), when as a result of the Anopheles circadian rhythm, flight is 

increased, and subsequently cellular respiration and oxidative metabolism which the 

chlorfenapyr targets (Balmert et al., 2014), is at its peak. In these studies, the authors did 

not compare the same types of assay (e.g. tunnel tests) during the day and overnight. 

However, in a previous study of chlorfenapyr only net Oxborough et al. (2015) observed 

increased mortality when 30-minute cylinder bioassays were conducted during the night 

compared to the day.  
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In the current tests, video cone test (> 22:00) and baited box tests (>19:00) were conducted 

after dusk to coincide with peak Anopheles biting times in Burkina Faso, and to imitate the 

light: dark rearing cycle, and therefore the circadian rhythm, of the test mosquitos. The 

extremely low mortality observed in these tests suggest that Interceptor G2 does not work 

effectively at night using the employed benchtop tests to measure efficacy. However, as 

mortalities cannot be compared to tests conducted during the day, it is not possible to 

establish if the net performs better at night as suggested by N’Guessan et al. (2016) and 

Camara et al. (2018). 

 

5.5 Conclusion 

 

The work reported in this chapter suggest that the video cone test can be conducted using 

wild population under field conditions. The thumb-test was unsuitable in this setting due to 

low mosquitoes response rates coupled with the time required to perform the test, and 

limited time in the field. The baited-box test was able to collect behavioural information on 

groups of wild-Anopheles. Automated bespoke video analysis (ViCTA) of baited boxes tests 

allowed mosquito movement to be detected and activity levels to be quantified in response 

to net exposure, providing insight into the actions of the net. 

 

It is important that these results are verified by further evaluation of the tests in other field 

mosquito populations, to establish if the results reported here are characteristic of field 

populations in general, or specific to the Tengrela populations tested here, which exhibit 

some of the highest levels of pyrethroid resistance reported in An. gambiae. 

 

Despite this high level of resistance, brief exposure with pyrethroid-PBO netting was 

sufficient to rapidly knockdown and kill this population. 
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 General discussion 
 

Changes to mosquito density, lifespan or blood-feeding ability may dramatically influence 

their vectorial capacity and subsequent malaria transmission potential. Little is known 

about how these parameters are affected by insecticide exposure, particularly in wild 

insecticide-resistant populations. Consequently, the first part of this thesis investigated 

how insecticide exposure, mainly from insecticidal nets, impacted on wild pyrethroid-

resistant Anopheles life-history traits and behaviour. In response to increasing insecticide 

resistance, new vector control products with novel modes of action are being developed 

and deployed. Efficacy test to assess these products should be able to evaluate new 

intervention classes initially, but also, monitor these products operationally. Current 

standard tests were developed for evaluating pyrethroid-only nets, which cause rapid 

knockdown and death in susceptible mosquitoes. These tests will not be suitable in 

instances where modes of action differ from simply lethality alone, or where lethality is 

delayed. Consequently, if current tests are used, we risk underestimating the efficacy of a 

product or disregarding its potential effectiveness in early stage testing. Thus, the second 

part of this thesis investigated the suitability of two novel benchtop bioassays for 

describing and quantifying behaviours of Anopheles at the LLIN bednet interface. 

 

Overall, there was little evidence that exposure to either pyrethroid-only or next-

generation nets led to detectable impacts on longevity, blood-feeding or reproductive 

output. No impacts on mosquito longevity were observed following exposure to PermaNet 

2.0, Olyset Net (Chapter 3), PermaNet 3.0 or Interceptor G2 (Chapter 4), regardless of 

exposure method/bioassay (i.e. WHO cone tests or experimental hut trials). Immediate 

mortality (within 24-hours) was also extremely low in the mosquito population studied. In 

experimental hut trials with wild-Anopheles, immediate mortality did not exceed 20% in 

pyrethroid-net huts. This level is similar to another hut trial conducted in the same study 

area in 2014 (Toe et al., 2018), but lower than mortality recorded in other countries at that 

time (Malima et al., 2017; Oumbouke et al., 2019). In recent years, mortality from hut trials 

using pyrethroid-only nets has dramatically declined to similar low levels (Bayili et al., 2019; 

Furnival-Adams et al., 2020). In the present study, mortality was higher in hut trials with 

reared-release mosquitoes, but this was still less than 50%. Concerningly, in the lab-studies, 

mortality was still below the level defining insecticide susceptibility (>80% mortality) 

following multiple net exposures. After up to five exposure, mortality was less than 10% in 
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young mosquitoes (<10-days-old) and did not exceed 65% in older mosquitoes (16-day-old). 

The low immediate mortality and absence of any impact on longevity following LLIN 

exposure indicates there could be a loss of community protection here and is a major 

concern for malaria control in this region. 

 

Blood-feeding inhibition was observed in the experimental hut trials, with lower blood-

feeding rates in pyrethroid-net huts comparted to controls (Chapter 3). Following collection 

from pyrethroid-net huts, blood-feeding levels were ~20% in trials where mosquitoes were 

reared and released, and 40-50% in trials where mosquitoes naturally entered huts. Blood-

feeding levels in naturally-entering Anopheles are similar to those reported in the same 

study site in 2014 (Toe et al., 2018), but reduced compared to trials conducted in Burkina 

Faso in recent years, which documented higher blood-feeding rates (Bayili et al., 2019). In 

other countries, blood-feeding rates reported recently are comparatively low (e.g. Côte 

d’Ivoire, ~35% blood-feeding, Furnival-Adams et al., 2020). These results suggest that in 

this area pyrethroid-only nets provide some personal protection that extends beyond 

simply the nets physical barrier. The results from the blood-feeding lab experiment 

reported here suggest any blood-feeding inhibition effect, however, may not be long-

lasting (Chapter 4). In this study, blood-feeding rate was reduced at 1-hour post-exposure 

in Olyset Net arms compared to untreated, but this effect was lost within 8-hours post-

exposure. A high proportion of mosquitoes obtained a blood meal within 8-hours (~85% 

mosquitoes’ blood-fed), regardless of exposure-net type. Due to the experimental design of 

this assay, the Olyset Net effect reported could be as a result of lethality in this arm, rather 

than the mosquitoes being unwilling or unable to blood-feed due to a sub-lethal effect. In 

this experiment, mosquitoes were presented with a host to feed on, so only their ability to 

blood-feed, and not their ability to orientate towards and locate a host, were investigated. 

It would be beneficial to establish if blood-feeding inhibition occurs in scenarios where the 

effects on long-range host-seeking are also evaluated. If blood-feeding inhibition is such a 

short-lasting effect, this could mean mosquitoes initially inhibited from feeding on an 

individual protected by an insecticidal net may readily feed on an unprotected individual 

the same night. Consequently, further studies examining how mosquitoes respond to and 

interact with protected and unprotected individuals within the same sleeping space are 

needed. Room-scale mosquito video tracking technology (Parker et al., 2015; Angarita-

Jaimes et al., 2016) for example, could provide a means to investigate this using wild-

population in a controlled but more naturalistic setting. 
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Regarding reproductive output, the results reported in Chapter 4 suggest pyrethroid-net 

exposure does not impact mosquito fertility or fecundity. This supports two previous 

studies which also describe an absence of effect (Hauser, Thiévent and Koella, 2019; 

Mulatier et al., 2019). Given the neuronal target site of the pyrethroids, this may not be 

surprising. Methods for measuring Anopheles reproductive output following bednet 

exposure are not standardised. Insecticidal nets containing pyrethroids plus juvenile 

hormone analogues (e.g. Royal Guard), which affect mosquito reproduction, have received 

PQ-listing from WHO (WHO, 2019a). Consequently, normative guidelines on how the 

efficacy of such products are evaluated are needed. Without detailed guidance, studies 

may use different methodology or measure different outcomes. This will complicate or 

prevent comparisons between trials and potentially result in difficulties confirming the 

entomological efficacy of such novel net types. This may be more important for “second-in-

class” nets evaluated after Royal Guard, which will not require epidemiological evidence of 

impact, but will required to show non-inferiority to the “standard net” (Royal Guard) using 

entomological data from several hut trials. 

 

The lack of effect of insecticidal net exposure on longevity could be as a result of high-

pyrethroid resistance (Appendix 2, Hughes et al., 2020). The Tengrela population of 

mosquitoes studied here exhibit some of the highest levels of pyrethroid resistance 

reported in An. gambiae. This resistance is driven by several mechanisms, some previously 

undescribed in other populations (Ingham et al., 2019; Williams et al., 2019). Delayed 

mortality has been reported in other studies in less resistant strains (Viana et al., 2016), 

and was observed in this thesis when mosquitoes were exposed to extremely high 

pyrethroid concentration in WHO tube bioassays. Similarly, the absence of an effect seen in 

other life history traits evaluated here could be related to the intensity of resistance 

eroding any sub-lethal impacts, hence further research is needed to conclude that these 

nets do not induce sublethal effects. Burkina Faso is one of the top-10 high burden 

countries for malaria in Africa (WHO, 2019b), and the intense pyrethroid resistance in their 

mosquito populations is likely a contributing factor to why malaria is persistently high here 

despite several mass-LLIN distribution campaigns. The lack of sub-lethal effects detected 

following net exposure may also be contributing to this. Field populations are inherently 

behaviourally and genetically diverse. It is possible that sub-lethal effects will differ 

between species and within species. Given this diversity and the challenge of accounting 
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for random effects in the field, the tests reported here may be inadequately powered or 

not sensitive enough to detect sub-lethal impacts. Consequently, it would be irresponsible 

to extrapolate the absence of effects observed here to other populations and countries. 

Additional studies investigating sub-lethal effect in less resistant field population or 

population with different insecticide resistance mechanisms are required.  

 

This thesis sought evidence for sub-lethal effects following insecticidal net exposure, so by 

design only focused on adult host-seeking female mosquitoes. Insecticide exposure from a 

range of sources has the capacity to affect mosquitoes at each stage of their life cycle. 

Mosquitoes may also encounter sub-lethal concentrations of insecticide in their juvenile 

stages, either directly through targeted larviciding, or indirectly from insecticidal run-off 

into breeding sites from agricultural or domestic insecticide use. Several studies in Aedes 

have observed sub-lethal pyrethroid concentrations to reduce locomotor activity of larvae 

when compared to unexposed controls (Tomé et al., 2014; Marriel et al., 2016; Sampaio et 

al., 2017; Costa et al., 2018). This could have subsequent effects on their foraging and 

predator avoidance ability. Additionally, insecticide exposure could impact on male 

mosquito behaviours, such as swarm formation or mating ability. In other insects, 

insecticide exposure has been observed to increase reproductive male fitness (Haddi et al., 

2016). As they do not transmit malaria, males are often disregarded when it comes to 

studying the impact of vector control tools. However, although not the primary target of 

the intervention, effects on reproduction could affect mosquito density, and possibly 

susceptibility to parasites (Dahalan et al., 2019), with resultant impacts on transmission. 

 

This thesis focused on how exposure to insecticidal nets impacted mosquitoes and did not 

consider other interactions which may have a role in malaria transmission. For example, 

studies have shown that ivermectin ingestion, and exposure to bendiocarb and DDT affect 

Plasmodium development in Anopheles (Alout et al., 2014; Kobylinski, Escobedo-Vargas, et 

al., 2017; Kobylinski, Ubalee, et al., 2017). If insecticidal net exposure impacts on 

Plasmodium development this will have a significant impact on disease transmission. 

Furthermore, in several insects, beneficial symbiosis with endosymbiont bacteria which 

degrade insecticides have been observed to confer insecticide-resistance (Kikuchi et al., 

2012; Tago et al., 2015; Itoh et al., 2018). Recently, artificial manipulation of An. arabiensis 

gut microbiota was observed to both improve and decreases insecticide-resistance in a 

strain specific way (Barnard et al., 2019), with evidence from whole genome sequencing 
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suggesting an association between gut microbiota and insecticide resistance (Dada et al., 

2018). Furthermore, Wolbachia (an intracellular bacterium) has been documented to occur 

naturally in Anopheles (Baldini et al., 2014), and interfere with fecundity and Plasmodium 

development (Shaw et al., 2016) in populations from Burkina Faso. Other studies have 

shown pesticide exposure to reduce diversity in extracellular bacteria in mosquito larval 

habitats (Muturi, Orindi and Kim, 2013; Muturi et al., 2017). But, despite the indication of 

symbiont-mediated resistance in Anopheles and their effects on Plasmodium development, 

investigations of how insecticide exposure affects intracellular bacteria are limited to one 

study (Dada et al., 2019). This investigation reported differences in the bacterial 

composition of An. albimanus exposed to pyrethroids compared to unexposed, and found 

some insecticide-degrading bacterial species in greater abundance in exposed mosquitoes. 

The study also reported that the cuticle surface of both larval and adult mosquitoes had 

more diverse microbiota than their gut, which could have implications for cuticular 

resistance, if these bacteria also degrade insecticides.  

 

To transmit malaria, a mosquito must take an infectious bloodmeal, survive the parasite’s 

intrinsic incubation period (9-16 days; Beier, 1998; Vaughan, 2007; Paaijmans et al., 2010), 

and take a secondary blood-meal. Consequently, in terms of age, mosquitoes used in 

efficacy tests are generally not characteristic of the disease transmitting population. In 

standard tests, mosquitoes are exposed to insecticides at 2-5-days-old (WHO, 2013a). If a 

product is more efficacious in older mosquitoes we may be under estimating the efficacy of 

interventions with currently used tests (Alout et al., 2017). In the tests reported in this 

thesis, sub-lethal effects were evaluated in mosquitoes < 11-days-old (predominately 3-to-

5-days-old). In general, the age range used for monitoring studies (2-5-days-old) allows 

programmes to be able to collect and rear mosquitoes in adequate numbers for testing and 

allows comparability of results globally and overtime. Although this is understandable due 

to its convenience for routine monitoring, the evaluation of commercial products could be 

improved, if efficacy was also evaluated on mosquitoes of disease transmitting age (i.e. > 

14-days-old). In phase III testing, mosquito mortality and blood-feeding are evaluated 

(WHO, 2013a), however collecting information on how these products affect mosquito 

population age structure would provide information on if/how such tools were selectively 

impacting on older mosquitoes in a natural environment. Therefore, adding estimations of 

mosquito age as outcomes in phase III trials would be beneficial.  
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As tested here against the highly resistant vector population in south west Burkina Faso, 

the efficacy of next-generation nets was highly variable. PermaNet 3.0 was able to rapidly 

incapacitate the vector, causing complete blood-feeding inhibition as a result of death soon 

after exposure, even when net contact was brief. This net has also been observed to be 

more effective than standard nets in experimental hut trials against the same mosquito 

population (Toe et al., 2018). Barrier bed-nets were shown to target and kill the wild 

population with greater efficacy that standard pyrethroid-only nets (Chapter 3, Murray et 

al., 2020). Conversely, Interceptor G2 performed relatively poorly, with no evidence of 

blood-feeding inhibition and low mortality in laboratory experiments, although this net was 

not evaluated in experimental huts in this study. Interceptor G2 was distributed in Burkina 

Faso’s 2019 national net distribution campaign and is being operationally monitored for 

efficacy. 

 

In the face of widespread insecticide resistance, the success of next-generation control 

tools will be fundamental to reverse current trends in malaria, which have seen case 

reductions stagnate and increase in some instances (WHO, 2019b). There has been a 

switched from a “one size fits all” to a targeted approach for malaria control, and the 

community has pushed for locally tailored vector control tools (WHO, 2017b; Wilson et al., 

2020). In the same way, on a micro-scale, this ideology should be adopted when evaluating 

novel vector control tools. Evaluation methods should vary depending on their primary 

objective. Tests which aim to evaluate the efficacy of products initially (e.g. screening and 

phase I testing) should be flexible to a range of products and focus on to the mode of 

action of the product being evaluated. In this situation there is no one size fits all approach. 

Monitoring products operationally, however, will require tests with less flexibility and 

greater field utility to allow the study outputs to be compared over time and space. The 

video test used in the studies reported in this thesis (Chapter 5) were able to quantify 

mosquito behaviour at the bed-net interface and provide information on activity levels 

following exposure. In a field setting, they provided information on how the nets were 

impacting on the wild pyrethroid-resistant population, which assisted in answering 

research questions, however, with the analysis method reported here, their applicability as 

a tool for monitoring efficacy is questionable, due to the time associated analysing the 

results of the tests. 
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Current tests do not capture the full action of vector control tools. By not measuring sub-

lethal or behavioural effects during product evaluations and routine testing we may be 

overlooking the protective mode of action being exerted by both existing and novel 

products. More troublingly, however, by not measuring such effects we may fail to notice 

promptly when control tools become less effective, which worryingly appears to be the 

case in Burkina Faso. Incorporating measurement of sub-lethal effects into standard 

efficacy tests are needed. If an AI in development is found to irreversibly inhibit blood-

feeding with little or no killing effects, for example, the implications of such a chemistry 

would be comparable to complete lethality from a transmission perspective. Similarly, if a 

product does not kill a mosquito immediately but can decrease its lifespan to under 14-

days-old (the age at which a mosquito is likely to be infectious), this may still impact 

transmission. By focusing on lethality, we may be overlooking other areas where the 

disease transmitting population could be controlled. There is a need for the vector control 

community to move away from products that purely cause mosquito death to investigate 

other areas which could provide protection (e.g. bed nets which inhibit parasite 

development, Paton et al., 2019) and complement existing interventions.  

 

6.1 Priorities for further research 
 

This thesis found sub-lethal exposure to insecticidal nets had little impact on the life-history 

traits and behaviour of the wild pyrethroid-resistant Anopheles gambiae s.l. population 

tested. Further studies, such as those suggested below, would be beneficial to collect 

additional information in this area: 

 

• Studies on the sub-lethal effects of insecticidal net exposure using wild-Anopheles 

populations with lower insecticide resistance levels, or different insecticide resistance 

mechanisms. 

• Tests looking at the sub-lethal effects of exposure following interactions with other 

insecticidal vector control interventions, such as IRS, where the duration of insecticide 

contact is likely to be longer.  

• The impact of insecticidal net exposure on the longevity of Anopheles mosquitoes that 

are more characteristic of the likely infectious population (i.e. mosquitoes that have 

been previously blood-fed and are greater than 14-days-old). 
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• The impact of insecticidal net exposure on the development of Plasmodium and 

subsequently the longevity of Plasmodium-infected Anopheles following net exposure. 

• Room-scale video tracking tests which investigate how mosquitoes respond to and 

interact with individuals protected with a bednet and unprotected individuals within 

the same sleeping space. Additionally, such tests could be complemented with video 

bench-top assays that measure the mosquitoes’ time-to-blood-feed following 

insecticidal net exposure. 

• The development of standardised test protocols for measuring longevity and 

reproductive output following exposure to vector control interventions. 
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Appendix 1 
 

Additional tables and figures 

 

Chapter 3 

 

Table A1.1. Summary of longevity analysis of An. gambiae s.l. from multiple study sites 

following exposure to increasing multiple insecticides in a WHO tube assay. 

Survival was compared between treatment and control using Cox regression. Immediate 

mortality (within 24-hours) was excluded from the analysis, * indicate statistically statistical 

significance (P < 0.05). 

Mosquito population Insecticide Total mosquitoes P-value 

Mangodara 
Control 44 

0.262 
Bendiocarb 3 

Sitiena 

Control 42 
0.853 

Deltamethrin 0.50% 11 

Control 17 
0.658 

Deltamethrin 0.75% 3 

Tengrela 

Control 46 
0.778 

Bendiocarb 9 

Control 29 
0.081 

Propoxur 4 

Toumousenni 

Control 24 
0.993 

Bendiocarb 12 

Control 70 
0.733 

Deltamethrin 0.25% 56 

Control 70 
0.09 

Deltamethrin 0.50% 15 

Control 49 
0.905 

Deltamethrin 0.75% 1 

Control 37 
0.329 

Deltamethrin 1.00% 7 

Control 45 0.006* 
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Malathion 2 

Control 69 
0.845 

Propoxur 38 

Toundoura 

Control 25 
0.947 

Deltamethrin 0.25% 4 

Control 25 
0.499 

Deltamethrin 0.50% 1 

 

Table A1.2. Summary of number of nights volunteer sleepers and net treatment spent in 

each hut during ‘reared-release’, ‘wild-entry’ and ‘barrier bednet’ experimental hut trials 

in 2016 and 2017. 

Shaded cells show hut not in use. Abbreviations: SH, OY, BA, SO SA IS, YA MO, AM 

(anonymised volunteer names); PN2 (PermaNet 2.0); OP (organophosphate fenitrothion); 

NPI (non-pyrethroid insecticide). 

Year Trial Volunteer/net treatment 
Hut 

1 2 3 4 5 6 

2016 

Reared-release 

Sleeper SH     4 2 

Sleeper OY     2 4 

Untreated Net     5 1 

PermaNet 2.0     1 5 

Wild-entry 

Sleeper SH     6 4 

Sleeper OY     4 6 

Untreated Net     5 5 

PermaNet 2.0     5 5 

Barrier bednet 

Sleeper BA 4 4 4 4   

Sleeper SO 4 4 4 4   

Sleeper SA 4 4 4 4   

Sleeper IS 4 4 4 4   

Untreated Net 4 4 4 4   

PermaNet 2.0 4 4 4 4   

PermaNet 2.0 + PN2 Barrier 4 4 4 4   

PermaNet 2.0 + OP Barrier 4 4 4 4   

2017 Reared-release Sleeper SH  4 2    
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Sleeper OY  2 4    

Untreated Net  5 1    

PermaNet 2.0  1 5    

Wild-entry 

Sleeper BA 2 2 2 2 2 2 

Sleeper SO 2 2 2 2 2 2 

Sleeper SA 2 2 2 2 2 2 

Sleeper IS 2 2 2 2 2 2 

Sleeper YA 2 2 2 2 2 2 

Sleeper MO 2 2 2 2 2 1 

Sleeper AM      1 

Untreated Net 6 6  6 6  

PermaNet 2.0  6 6  6 6 

Olyset Net 6  6 6  6 

Barrier bednet 

Sleeper BA 6 6 6 6 6 6 

Sleeper SO 6 6 6 6 6 6 

Sleeper SA 6 6 6 6 6 6 

Sleeper IS 6 6 6 6 6 6 

Sleeper YA 6 6 6 6 6 6 

Sleeper MO 6 6 6 6 6 6 

Untreated Net 6 6 6 6 6 6 

PermaNet 2.0 6 6 6 6 6 6 

PermaNet 2.0 + PN2 Barrier 6 6 6 6 6 6 

PermaNet 2.0 + OP Barrier 6 6 6 6 6 6 

PermaNet 2.0 + NPI Barrier 6 6 6 6 6 6 

Untreated Net + PN2 Barrier 6 6 6 6 6 6 
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Table A1.3. Volunteer sleeper and net treatment rotation for 2016 reared-release 

experimental hut trial. 

Abbreviations: UN (untreated net); PN2 (PermaNet 2.0); SH, OY (anonymised volunteer 

names). 

Week Day Hut 5 Hut 6 Date  

   UN PN2   

1 1 SH OY 26-Sep 

1 2 OY SH 27-Sep 

1 3 SH OY 28-Sep 

1 4 OY SH 29-Sep 

1 5 SH OY 30-Sep 

   PN2 UN   

2 6 SH OY 03-Oct 

 

Table A1.4. Volunteer sleeper and net treatment rotation for 2016 wild-entry 

experimental trial.  

Abbreviations: PN2 (PermaNet 2.0); UN (untreated net); SH, OY (anonymised volunteer 

names). 

Week Day Hut 5 Hut 6 Date 

   PN2 UN   

1 1 SH OY 10-Oct 

1 2 OY SH 11-Oct 

1 3 SH OY 12-Oct 

1 4 OY SH 13-Oct 

1 5 SH OY 14-Oct 

   UN PN2   

2 6 SH OY 17-Oct 

2 7 OY SH 18-Oct 

2 8 SH OY 19-Oct 

2 9 OY SH 20-Oct 

2 10 SH OY 21-Oct 
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Table A1.5. Volunteer sleeper and net treatment rotation for 2016 barrier bednet 

experimental hut trial. 

Abbreviations: PN2 (PermaNet 2.0); PN2B (PermaNet 2.0 barrier); OPB (organophosphate 

fenitrothion barrier), UT (untreated net); BA, SO SA IS (anonymised volunteer names). 

Week Day Hut 1 Hut 2 Hut 3 Hut 4 Date 

    PN2 PN2+PN2B PN2+OPB UT   

1 1 BA SO SA IS 26-Sep 

1 2 IS BA SO SA 27-Sep 

1 3 SA IS BA SO 28-Sep 

1 4 SO SA IS BA 29-Sep 

   UT PN2 PN2+PN2B PN2+OPB   

2 5 BA SO SA IS 03-Oct 

2 6 IS BA SO SA 04-Oct 

2 7 SA IS BA SO 05-Oct 

2 8 SO SA IS BA 06-Oct 

   PN2+OPB UT PN2 PN2+P2B   

3 9 BA SO SA IS 10-Oct 

3 10 IS BA SO SA 11-Oct 

3 11 SA IS BA SO 12-Oct 

3 12 SO SA IS BA 13-Oct 

   PN2+P2B PN2+OPB UT PN2   

4 13 BA SO SA IS 17-Oct 

4 14 IS BA SO SA 18-Oct 

4 15 SA IS BA SO 19-Oct 

4 16 SO SA IS BA 20-Oct 
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Table A1.6. Volunteer sleepers and net treatment rotation for 2017 reared-release 

experimental hut trial. 

Abbreviations: UN (untreated net); PN2 (PermaNet 2.0); IS, SE (anonymised volunteer 

names). 

Week Day Hut 2 Hut 3 Date 

    UN PN2   

1 1 IS SE 11-Sep 

1 2 SE IS 12-Sep 

1 3 IS SE 13-Sep 

1 4 SE IS 14-Sep 

   PN2 UN   

2 5 IS SE 18-Sep 

2 6 SE IS 19-Sep 

2 7 IS SE 20-Sep 

2 8 SE IS 21-Sep 

2 9 IS SE 22-Sep 

2 10 SE IS 23-Sep 
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Table A1.7. Volunteer sleepers and net treatment rotation for 2017 wild-entry 

experimental trial. 

Abbreviations: UN (untreated net); PN2 (PermaNet 2.0); OLY (Olyset Net); BA, SO, SA, IS, YA, 

AM, MO (anonymised volunteer names). 

Week Day Hut 1 Hut 2 Hut 3 Hut 4 Hut 5 Hut 6 Date 

    UN PN2 OLY UN PN2 OLY   

1 1 BA SO SA IS YA AM 02-Jul 

1 2 MO BA SO SA IS YA 03-Jul 

1 3 YA MO BA SO SA IS 04-Jul 

1 4 IS YA MO BA SO SA 05-Jul 

1 5 SA IS YA MO BA SO 06-Jul 

1 6 SO SA IS YA MO BA 07-Jul 

   OLY UN PN2 OLY UN PN2   

2 7 BA SO SA IS YA MO 09-Jul 

2 8 MO BA SO SA IS YA 10-Jul 

2 9 YA MO BA SO SA IS 11-Jul 

2 10 IS YA MO BA SO SA 12-Jul 

2 11 SA IS YA MO BA SO 13-Jul 

2 12 SO SA IS YA MO BA 14-Jul 
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Table A1.8. Volunteer sleepers and net treatment rotation for 2017 barrier bednet 

experimental hut trial. 

Abbreviations: PN2 (PermaNet 2.0); PN2B (PermaNet 2.0 barrier); NPIB (non-pyrethroid 

insecticide barrier); UN (untreated net); OPB (organophosphate fenitrothion BARRIER); BA, 

SO, SA, IS, YA, MO (anonymised volunteer names). 

Wee

k 

Da

y 
Hut 1 Hut 2 Hut 3 Hut 4 Hut 5 Hut 6 Date 

   
PN2+P2

B 
PN2 

PN2+NPI

B 
UT PN2+OPB UT+OPB   

1 1 BA SO SA IS YA MO 16-Jul 

1 2 MO BA SO SA IS YA 17-Jul 

1 3 YA MO BA SO SA IS 18-Jul 

1 4 IS YA MO BA SO SA 19-Jul 

1 5 SA IS YA MO BA SO 20-Jul 

1 6 SO SA IS YA MO BA 21-Jul 

   UT+OPB 
PN2+PN

B 
PN2 

PN2+NP

B 
UT PN2+OPB   

2 7 BA SO SA IS YA MO 23-Jul 

2 8 MO BA SO SA IS YA 24-Jul 

2 9 YA MO BA SO SA IS 25-Jul 

2 10 IS YA MO BA SO SA 26-Jul 

2 11 SA IS YA MO BA SO 27-Jul 

2 12 SO SA IS YA MO BA 28-Jul 

   
PN2+OP

B 
UT+OPB 

PN2+PN

B 
PN2 

PN2+NPI

B 
UT   

3 13 BA SO SA IS YA MO 30-Jul 

3 14 MO BA SO SA IS YA 31-Jul 

3 15 YA MO BA SO SA IS 
01-

Aug 

3 16 IS YA MO BA SO SA 
02-

Aug 

3 17 SA IS YA MO BA SO 
03-

Aug 
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3 18 SO SA IS YA MO BA 
04-

Aug 

   UT 
PN2+OP

B 
UT+OPB 

PN2+PN

B 
PN2 

PN2+NPI

B 
  

4 19 BA SO SA IS YA MO 
06-

Aug 

4 20 MO BA SO SA IS YA 
07-

Aug 

4 21 YA MO BA SO SA IS 
08-

Aug 

4 22 IS YA MO BA SO SA 
09-

Aug 

4 23 SA IS YA MO BA SO 
10-

Aug 

4 24 SO SA IS YA MO BA 
11-

Aug 

   
PN2+NPI

B 
UT 

PN2+OP

B 
UT+OPB 

PN2+PN2

B 
PN2   

5 25 BA SO SA IS YA MO 
13-

Aug 

5 26 MO BA SO SA IS YA 
14-

Aug 

5 27 YA MO BA SO SA IS 
15-

Aug 

5 28 IS YA MO BA SO SA 
16-

Aug 

5 29 SA IS YA MO BA SO 
17-

Aug 

5 30 SO SA IS YA MO BA 
18-

Aug 

   PN2 
PN2+NPI

B 
UT 

PN2+OP

B 
UT+OPB 

PN2+PN2

B 
  

6 31 BA SO SA IS YA MO 
20-

Aug 
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6 32 MO BA SO SA IS YA 
21-

Aug 

6 33 YA MO BA SO SA IS 
22-

Aug 

6 34 IS YA MO BA SO SA 
23-

Aug 

6 35 SA IS YA MO BA SO 
24-

Aug 

6 36 SO SA IS YA MO BA 
25-

Aug 

 

Table A1.9. Parameters for GLMMs run on experimental hut trials. 

Treated nets were compared to untreated controls. Table lists response, fixed effects and 

random effects variables, and the statistical distribution used. Trial ID; 1 = 2016 longevity 

hut trial, 2 = 2017 longevity hut trial, 3 = 2016 reproductive output hut trial, 4 = 2017 

reproductive hut trial, 5 = 2016 barrier net hut trial, 6 = 2017 barrier net hut trial. 

ID Response Fixed effects 
Random 

effects 
Distribution Comparison 

P-

value 

1 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.002 

1 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.000 

1 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.003 

2 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.000 

2 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.000 

2 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.075 

3 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.181 

3 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.183 
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3 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.993 

3 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 

Negative 

Binomial 
UN vs PN2 0.816 

4 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.015 

4 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.028 

4 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.604 

4 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 

Negative 

Binomial 
UN vs PN2 0.015 

4 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs OLY 0.001 

4 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs OLY 0.052 

4 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs OLY 0.559 

4 Deterrence 

Net 

treatment, 

Date 

Sleeper, Hut Binomial UN vs OLY 0.585 

4 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 
Poisson UN vs OLY 0.639 

5 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.700 

5 
Blood-

feeding 

Net 

treatment, 

Date 

Sleeper, Hut Binomial UN vs PN2 0.032 

5 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.040 

5 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 

Negative 

Binomial 
UN vs PN2 0.197 

5 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+PN2B 
0.079 
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5 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+PN2B 
0.003 

5 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+PN2B 
0.000 

5 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 

Negative 

Binomial 

UN vs 

PN2+PN2B 
0.162 

5 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+OPB 
0.002 

5 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+OPB 
0.002 

5 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+OPB 
0.012 

5 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 
Poisson 

UN vs 

PN2+OPB 
0.222 

6 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+PN2B 
0.037 

6 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+PN2B 
0.000 

6 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+PN2B 
0.000 

6 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 

Negative 

Binomial 

UN vs 

PN2+PN2B 
0.125 

6 Mortality 

Net 

treatment, 

Date, Hut 

Sleeper Binomial UN vs PN2 0.152 

6 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.000 

6 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial UN vs PN2 0.001 

6 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 
Poisson UN vs PN2 0.041 

6 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+NPI 
0.000 
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6 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+NPI 
0.000 

6 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+NPI 
0.001 

6 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 

Negative 

Binomial 

UN vs 

PN2+NPI 
0.121 

6 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+OPB 
0.000 

6 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+OPB 
0.000 

6 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

PN2+OPB 
0.238 

6 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 

Negative 

Binomial 

UN vs 

PN2+OPB 
0.005 

6 Mortality 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

UN+OPB 
0.000 

6 
Blood-

feeding 

Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

UN+OPB 
0.000 

6 Exophily 
Net 

treatment 

Date, 

Sleeper, Hut 
Binomial 

UN vs 

UN+OPB 
0.700 

6 Deterrence 
Net 

treatment 

Date, 

Sleeper, Hut 

Negative 

Binomial 

UN vs 

UN+OPB 
0.006 
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 Chapter 5 

UN1 – 12/08/18

 

UN2 – 12/08/18

 

UN3 – 12/08/18

 
   

UN4 – 12/08/18

 

UN5 – 12/08/18

 

UN6 – 12/08/18

 
   

UN7 – 21/08/18

 

UN8 – 24/08/18

 

UN9 – 10/09/18

 
 

UN10 – 12/09/18

 

UN11 – 13/09/18

 

UN12 – 04.10.18
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Figure A1.1. Composite images showing mosquito location during exposure to untreated 

netting in the 3-minute video cone test. 

Text above image shows video replicate ID and date of testing. Composite images were 

created by overlaying each recorded video frame every 0.1 second. Images were created 

using ViCTA by Dr Jeff Jones (Jones et al., Unpublished). 

 

  

UN13 – 07/10/18 

 

UN14 – 07/10/18
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OLY1 – 12/09/18

 

OLY2 – 12/09/18 

 

OLY3 – 12/09/18 

 

OLY4 – 12/09/18 

 

OLY5 – 12/09/18 

 

OLY6 – 13/09/18

 

OLY7 – 13/09/18

 

OLY8 – 13/09/18

 

OLY9 – 13/09/18

 

OLY10 – 13/09/18

 

  

Figure A1.2. Composite images showing mosquito location during exposure to Olyset Net 

netting in the 3-minute video cone test. 

Text above image shows video replicate ID and date of testing. Composite images were 

created by overlaying each recorded video frame every 0.1 second. Images were created 

using ViCTA by Dr Jeff Jones (Jones et al., Unpublished). 
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P3S1 – 21/08/18 

 

P3S2 – 21/08/18 

 

P3S3 – 21/08/18 

 
P3S4 – 21/08/18 

 

P3S5 – 24/08/18 

 

P3S6 – 24/08/18 

 
P3S7 – 07/10/18 

 

P3S8 – 07/10/18 

 

P3S9 – 07/10/18 

 
P3S10 – 07/10/18 

 

  

Figure A1.3. Composite images showing mosquito location during exposure to PermaNet 

3.0 side netting in the 3-minute video cone test. 

Text above image shows video replicate ID and date of testing. Composite images were 

created by overlaying each recorded video frame every 0.1 second. Images were created 

using ViCTA by Dr Jeff Jones (Jones et al., Unpublished). 
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P3T1 – 21/08/18 

 

P3T2 – 21/08/18 

 

P3T3 – 21/08/18 

 

P3T5 – 24/08/18 

 

P3T6 – 24/08/18 

 

P3T7 – 04/10/18 

 

P3T8 – 04/10/18 

 

P3T9 – 07/10/18 

 

P3T10 – 07/10/18 

 

P3T11 – 07/10/18 

 

  

Figure A1.4 Composite images showing mosquito location during exposure to PermaNet 

3.0 roof netting in the 3-minute video cone test. 

Text above image shows video replicate ID and date of testing. Composite images were 

created by overlaying each recorded video frame every 0.1 second. Images were created 

using ViCTA by Dr Jeff Jones (Jones et al., Unpublished). 
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IG21 – 10/09/18 

 

IG22 – 10/09/18 

 

IG23 – 10/09/18 

 

IG24 – 10/09/18 

 

IG25 – 10/09/18 

 

IG26 – 10/09/18 

 

IG27 – 04/10/18 

 

IG28 – 04/10/18 

 

IG29 – 04/10/18 

 

IG210 – 04/10/18 

 

  

Figure A1.5. Composite images showing mosquito location during exposure to Interceptor 

G2 netting in the 3-minute video cone test. 

Text above image shows video replicate ID and date of testing. Composite images were 

created by overlaying each recorded video frame every 0.1 second. Images were created 

using ViCTA by Dr Jeff Jones (Jones et al., Unpublished).  
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Figure A1.6 Composite images showing mosquito activity detected during exposure to untreated (UT) net in 20-minute baited box tests. Red dots show the movement of mosquitoes
detected by ViCTA software. Numbers above images indicate replicate ID, and the highlighted colour represents the date of testing on 12th (green), 15th (yellow) or 19th (blue) 
October 2018. Replicate ID numbers are not sequential as some videos failed to record.
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P3S 12 P3S 13 P3S 14 P3S 15

Figure A1.7. Composite images showing mosquito activity detected during exposure to PermaNet 3.0 sides (P3S) net in 20-minute baited box tests. Red dots show the movement of mosquitoes detected by ViCTA software.Numbers
above images indicate replicate ID, and the highlighted colour represents the date of testing on 12th (green), 15th (yellow) or 19th (blue) October 2018. Replicate ID numbers are not sequential as some videos failed to record.
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P3T 5 P3T 7 P3T 8

Figure A1.8. Composite images showing mosquito activity detected during exposure to PermaNet 3.0 roof (P3T) net in 20-minute baited box tests. Red dots show the movement of
mosquitoes detected by ViCTA software. Numbers above images indicate replicate ID, and the highlighted colour represents the date of testing on 12th (green) or 15th (yellow) 
October 2018. Replicate ID numbers are not sequential as some videos failed to record.
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Figure A1.9. Composite images showing mosquito activity detected during exposure to Interceptor G2 (IG2) net in 20-minute baited box tests. Red dots show the movement of mosquitoes
detected by ViCTA software. Numbers above images indicate replicate ID, and the highlighted colour represents the date of testing on 12th (green), 15th (yellow) or 19th (blue) 
October 2018. Replicate ID numbers are not sequential as some videos failed to record.
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Figure A1.10. The Video Cone Test Analyser (ViCTA) rig apparatus. The ViCTA rig 

immobilises the cone and camera in the same position for every video cone test. This 

reduces background noise in the video and allows for automated analysis. Image courtesy 

of Dr Jeff Jones. 

 

Table A1.1. Weighted mosquito movements detected by ViCTA in 20-minute baited boxes 

in the top row only, or whole box. Movements have been weighted when mosquito 

numbers deviate from 5. 

Net Date Rep 
Detected movement 

top row 

Detected movement 

whole box 

Untreated 

12th October 2018 

4 1,548 12,872 

5 5,130 15,345 

6 9,008 20,314 

7 2,499 15,961 

15th October 2018 

8 11,138 17,141 

10 16,116 24,922 

11 12,017 20,839 

19th October 2018 12 2,181 13,826 



 

PermaNet 

3.0 sides 

12th October 2018 
4 8,223 11,248 

6 1,973 5,331 

15th October 2018 

9 13,094 23,211 

10 6,456 12,936 

12 4,288 5,670 

19th October 2018 

13 4,447 32,400 

14 3,591 18,787 

15 2,263 17,162 

PermaNet 

3.0 roof 

12th October 2018 

1 2,197 4,822 

2 1,731 3,233 

3 991 2,994 

15th October 2018 

5 637 3,017 

7 1,471 3,108 

8 1,005 5,995 

Interceptor 

G2 

12th October 2018 

4 4,310 6,889 

5 2,833 11,100 

7 3,263 9,645 

15th October 2018 

9 2,543 7,338 

10 1,904 4,242 

12 2,977 10,506 

19th October 2018 

13 1,651 31,013 

14 3,295 30,714 

15 5,123 39,543 

16 2,272 35,652 

 

 

 

 

 

 

 

 



 

Table A1.2. Comparisons of the number of detected mosquito movements in the top row 

and whole baited box. Net treatments were compared using GLMMs with a negative 

binominal distribution and date included as a random effect. 

Net Comparison 
Detected movement 

top row 

Detected movement 

whole box 

Untreated vs PermaNet 3.0 side 0.589 0.613 

Untreated vs PermaNet 3.0 roof < 0.000 < 0.000 

Untreated vs Interceptor G2 0.005 0.057 

PermaNet 3.0 side vs PermaNet 

3.0 roof 
< 0.000 < 0.000 

PermaNet 3.0 side vs Interceptor 

G2 
0.010 0.950 

PermaNet 3.0 roof vs Interceptor 

G2 
< 0.000 < 0.000 
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Figure A1.1. Unweighted activity over time detected in the entire box for each netting 

replicate during 20-minute exposure to (A) Untreated net, (B) PermaNet 3.0 side, (C) 

PermaNet 3.0 roof, and (D) Interceptor G2 in baited boxes. 
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Publication: Murray, G.P.D., Lissenden, N., Jones, J. et al. (2020). Barrier 

bednets target malaria vectors and expand the range of usable insecticides. 

Nature Microbiology, 5, 40–47 (2020) doi:10.1038/s41564-019-0607-2. 
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Transmission of Plasmodium falciparum malaria parasites 
occurs when nocturnal Anopheles mosquito vectors feed on 
human blood. In Africa, where malaria burden is highest, bed-
nets treated with pyrethroid insecticide were highly effective 
in preventing mosquito bites and reducing transmission, and 
essential to achieving unprecedented reductions in malaria 
until 2015 (ref. 1). Since then, progress has stalled2, and with  
insecticidal bednets losing efficacy against pyrethroid-resistant  
Anopheles vectors3,4, methods that restore performance are 
urgently needed to eliminate any risk of malaria returning 
to the levels seen before their widespread use throughout  
sub-Saharan Africa5. Here, we show that the primary malaria 
vector Anopheles gambiae is targeted and killed by small 
insecticidal net barriers positioned above a standard bednet 
in a spatial region of high mosquito activity but zero contact 
with sleepers, opening the way for deploying many more 
insecticides on bednets than is currently possible. Tested 
against wild pyrethroid-resistant A. gambiae in Burkina Faso, 
pyrethroid bednets with organophosphate barriers achieved 
significantly higher killing rates than bednets alone. Treated 
barriers on untreated bednets were equally effective, without 
significant loss of personal protection. Mathematical model-
ling of transmission dynamics predicted reductions in clinical 
malaria incidence with barrier bednets that matched those 
of ‘next-generation’ nets recommended by the World Health 
Organization against resistant vectors. Mathematical models 
of mosquito–barrier interactions identified alternative barrier 
designs to increase performance. Barrier bednets that over-
come insecticide resistance are feasible using existing insecti-
cides and production technology, and early implementation of 
affordable vector control tools is a realistic prospect.

Sleeping under a long-lasting insecticidal net (LLIN) is the most 
effective way of preventing malaria in Africa, where the widespread 
use of LLINs was the main contributor to 50% and 40% reductions 
in malaria prevalence and clinical disease incidence, respectively, 
between 2000 and 20151. Those first-generation ‘standard’ LLINs 
used pyrethroids—fast-acting insecticides with minimal health 
risks for bednet users. By 2017, however, the annual reduction 
was replaced by an increase of 3.5 million malaria cases in the ten 
African countries2 with the highest burden. Although its contribu-
tion to this alarming development is unclear, pyrethroid resistance 
is widespread in Anopheles spp. vector populations4,5 and standard 

LLINs have lost efficacy against resistant vectors3–6. Thus, over-
coming resistance is a global priority, demanding insecticides that 
do not share resistance mechanisms with pyrethroids or methods 
that reduce dependency on insecticides7–9. Recent trial results have 
identified insecticide combinations effective against pyrethroid-
resistant vectors3,10,11, but toxicity restrictions on risks to occupants, 
especially infants, and the higher cost of new insecticides limit bed-
net-treatment options.

Previous studies have shown that A. gambiae host-seeking 
activity predominates on a bednet roof, typically above the supine 
host’s torso12–15. We also reported high numbers of flight paths tra-
versing the space above the bednet roof, comprising flights with 
minimal (‘visiting’) or zero (‘swooping’) net contact12,13. To target 
these flights, we proposed intercepting mosquitoes with insecti-
cidal net barriers projecting vertically from the bednet roof, where 
the insecticide would be beyond the reach of children, never 
touched by the bednet’s occupants and rarely touched during 
routine human activity. If effective, then small net targets might 
control malaria vectors using a wider range of insecticides than 
possible with standard bednets16.

As a proof of concept, we evaluated a single transverse bar-
rier (0.5 m tall, 0.9 m wide) above a standard pyrethroid LLIN 
(Permanet 2.0 (P2)), positioned off-centre above the sleeper’s 
torso (Fig. 1a,b). Barriers comprised P2 (P2B) or untreated net-
ting dipped in fenitrothion (OPB, 0.02 g m−2), an organophosphate 
widely used for indoor residual spraying (IRS) against pyrethroid-
resistant mosquitoes17–19, but never deployed on standard bednets. 
In initial laboratory bioassays (Fig. 1c), the unmodified P2 bed-
net killed 77% and 56% of insecticide-susceptible and resistant  
A. gambiae strains, respectively, within 48 h of exposure. Adding 
the P2B did not affect mortality rates with either strain, but the 
OPB was significantly better, killing 100% of resistant mosquitoes 
within 48 h (90% at 24 h; t-test, P < 0.01).

In a hut trial in a malaria-endemic setting in the Cascades region, 
Burkina Faso—where A. gambiae sensu lato (s. l.) vectors are highly 
resistant to deltamethrin but susceptible to fenitrothion (Extended 
Data Fig. 1)—we tested three different transverse barriers (Fig. 1d): 
P2B; fenitrothion-dipped netting (OPB; with 0.5 g m2 fenitrothion, 
20× higher than in the previous laboratory tests, equivalent to 25% 
of the target dose of IRS treatment); non-pyrethroid mixture (NPB; 
comprising indoxacarb and fenazaquin, each at 3–5%). The results 
show that all treatments significantly reduced mosquito entry rates 
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Fig. 1 | Performance of barrier bednets in laboratory and semi-field trials. a,b, Infrared tracks of mosquito flights at P2 bednets with a 50-cm-high 
transverse barrier (positioned off-centre, above the sleeper’s torso) (a) and unmodified P2 (b). Tracks were recorded during bioassays; 25 mosquitoes, 
60 min. c, Mean (± s.d., n = 6 trials per treatment) mortality rates of A. gambiae strains susceptible (IS) or resistant (IR) to pyrethroids, following free-
flight exposure to human-baited P2 nets, with or without barriers. P2 and P2 + P2B mortality rates were not significantly different for IS (t-test, n = 82, 
d.f. = 5.3, t = 0.75, P = 0.48) and IR (t-test, n = 109, d.f. = 8.7, t = 0.62, P = 0.55). P2 + OPB mortality at 24 h (90%) and 48 h (100%) significantly exceeded 
unmodified P2 mortality (IR 24 h, 45%; t-test, n = 91, d.f. = 6.1, t = 5.21, P < 0.01; IR 48 h, 57%; t-test, n = 31, d.f. = 5.1, t = 6.5, P < 0.01) and P2 + P2B (IR 24 h, 
46%; t-test, n = 91, d.f. = 5.8, t = 4.61, P < 0.01; IR 48 h, 49%; t-test, n = 41, d.f. = 5.1, t = 4.74, d.f. = 5.1, P < 0.01). d, Barrier bednet in situ, Burkina Faso.  
e, Summary of key results from the hut trial; all comparisons versus UT, unless stated otherwise; asterisks denote significant differences (0.05 ≥ *P > 0.01, 
0.01 ≥ **P > 0.001 and ***P < 0.001). Data are mean ± s.d. (Extended Data Fig. 2). Non-pyrethroid barriers (P2 + NPB, P2 + OPB and UT + OPB) killed 
significantly more than untreated controls (Poisson regression generalized linear model; n = 44, d.f. = 5, Z = 2.12, P = 0.03; n = 133, d.f. = 5, Z = 7.61, 
P < 0.001; and n = 152, d.f. = 5, Z = 8.32, P < 0.001, respectively). Personal protection (number of blood-fed mosquitoes prevented relative to untreated 
nets) was significantly higher with P2 + OPB (66%; negative binomial GLM; n = 109, d.f. = 5, Z = −2.649, P < 0.01); the reduction with UT + OPB was 
not significant (negative binomial GLM; n = 153, d.f. = 5, P = 0.954). Killing effects of test net versus unmodified P2 were higher with P2 + NPB (Poisson 
regression GLM; n = 44, d.f. = 5, Z = 1.82, P = 0.043), P2 + OPB (n = 133, d.f. = 5, Z = 5.91; P = 0.008) and UT + OPB (n = 152, d.f. = 5, Z = 7.53, P = 0.044) 
(Extended Data Fig. 2). Treatments: UT, untreated unmodified bednet; P2, unmodified Permanet 2.0 bednet with 55 mg m−2 deltamethrin; P2 + P2B 
(Permanet 2.0 and P2 barrier); P2 + OPB, P2 and fenitrothion barrier (0.02 g m−2 in laboratory, 0.5 g m−2 in field. Treatments P2 + NPB (P2 net and non-
pyrethroid barrier (3–5% indoxacarb and fenazaquin)) and UT + OPB (untreated bednet and fenitrothion-dipped barrier) were tested in the field only.
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and increased exit rates compared with untreated bednets (Fig. 1e 
and Extended Data Fig. 2; GLM, P < 0.001). All three non-pyre-
throid barriers increased killing, particularly OPB; OPB on P2 
bednets killed 28.8% more mosquitoes than unmodified P2 and 
increased personal protection by 23% and 66% relative to unmodi-
fied P2 (P < 0.001) and untreated bednets (P = 0.008), respectively. 
Remarkably, OPB on untreated bednets increased killing by nearly 
34% over unmodified P2 (P = 0.008), without significant loss in per-
sonal protection (P = 0.954).

We investigated these encouraging field results using a math-
ematical model of malaria transmission dynamics to estimate the 
expected public health impact in the Cascades region if existing nets 
were replaced with barrier bednets. By necessity, the model simpli-
fies malaria transmission as a series of mechanistic processes on 
the basis of assumptions about the probability of transmission20–22. 
Replacement with barrier bednets was modelled to determine how 
this would: (1) reduce the numbers of mosquitoes entering the 
house to feed; (2) reduce the feeding success of mosquitoes that 
enter houses and; (3) increase mosquito mortality relative to a sce-
nario without nets. LLINs reduce malaria infections in mosqui-
toes and humans by affecting vector survival and feeding rates, the 
strength and duration of which are specific to each LLIN type and 
parameterized from experimental hut data4,23. There are limitations 
to the model’s capacity to predict LLIN impact (see Supplementary 
Information), particularly when considering net durability, though 
this can be simulated by washing nets4,20,24.

Hut trial data (Extended Data Fig. 2) were converted to sum-
mary estimates of the probability of mosquitoes being killed, 
repeating host-searching behaviour or successfully feeding on 
each attempt, for each tested net and barrier type (Extended Data 
Fig. 3), with reductions in prevalence continuing until the active 
ingredient had waned. Over three years following replacement of 
P2 nets with P2 + OPB nets, the mathematical model predicted 
relative reductions in clinical malaria incidence of 10.4% (95% 
confidence interval (CI) 0–34.47%), 13.3% (95% CI 0–37.12%) 
and 16.4% (95% CI 1.15–39.76%), at net coverage rates of 60%, 
80% and 95%, respectively. With OPBs on untreated (UT) nets 
(UT + OPB), predicted impacts were even greater, at 13.8% (95% 
CI 0–37.30%), 18.4% (95% CI 4.62–40.71%) and 21.4% (95% CI 
11.66–43.67%) for the same coverage levels. We compared this 
result with next-generation pyrethroid LLINs that are co-treated 
with piperonyl butoxide (PBO) to disable resistance mechanisms, 
which are recommended by the World Health Organization 
(WHO) where pyrethroid resistance is confirmed23,25. From equiv-
alent values calculated using the association between experimen-
tal hut mortality and bioassay mortality data4, and similar vector 
resistance (99% survival in WHO bioassays), PBO nets were pre-
dicted to reduce clinical incidence by 13.0% (95% CI 0–36.09%), 
16.2% (95% CI 0–39.14%) and 18.4% (95% CI 0–41.66%) at simi-
lar respective coverage levels (Fig. 2b). These results, and the 12% 
reduction reported with another new pyrethroid LLIN (Olyset 
duo, containing pyriproxyfen) also in the Cascades region, are 
similar to the predictions for barrier bednets.

We investigated how barriers target mosquitoes using infra-
red video tracking to map and quantify mosquito–netting con-
tact (a proxy for insecticide exposure) using defined behavioural 
modes12,13. Contact predominated at the LLIN roof in all treatments 
(60–95% of total contact; Extended Data Fig. 4), demonstrating 
that barriers did not alter this characteristic behaviour at standard 
LLINs12,13. Adding P2Bs increased overall activity compared with 
unmodified LLINs (P < 0.001) (Fig. 3a,b), but not contact; P2Bs 
increased flight activity in behaviour modes with zero or minimal 
contact (P < 0.001) (Fig. 3c,d and Extended Data Fig. 6).

OPB killed resistant mosquitoes at contact durations of 12.5, 6.6 
and 9 s per mosquito for P2 + OPB (laboratory), P2 + OPB (hut trial) 
and UT + OPB (hut trial), respectively. Although these times are too 

brief to kill immediately, they are similar to the minimum levels of 
contact accrued by susceptible A. gambiae during the critical first 
10 min of activity at pyrethroid LLINs (range 11–57 s per mosquito), 
after which few survive12. A lethal dose of entomopathogenic fungus 
can be acquired from treated netting in only 5 s26.

Fenitrothion surface residues can be strongly repellent19, 
whereas P2 netting (deltamethrin) exerts a far weaker effect12. Thus 
without deltamethrin (P2 + OPB versus UT + OPB; Fig. 3c) contact 
increased with the untreated surface (Fig. 3c; P = 0.048), but not 
with the treated barrier (Fig. 3e). All barrier treatments resulted in 
higher activity but less contact overall (that is, visiting or swoop-
ing: 60–95% of total activity; Supplementary Video) compared with 
unmodified P2 LLINs (12– 27%) (Fig. 3e). The exception was the 
low dosage P2 + OPB (0.02 g m−2 fenitrothion), where low-contact 
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Fig. 2 | Summary of efficacy estimates of different bednet–barrier 
combinations and comparison with estimates for PBo bednets at high 
pyrethroid resistance. a, The probable outcome of a mosquito feeding 
attempt is determined for each net intervention: mosquitoes are either 
killed, deterred but return to feed again, or blood-feed successfully. 
Summary estimates were generated from hut trial data for UT and P2 with 
or without OPB (Extended Data Fig. 2). At a pyrethroid resistance level of 
99%, the probability of an OPB bednet killing mosquitoes was comparable 
to that of the PBO nets, with fewer mosquitoes blood-feeding, regardless 
of whether the bednet was untreated (UT + OPB) or treated (P2 + OPB). 
b, The efficacy of these five bednet–barrier combinations drives the 
contrasting predicted reductions in prevalence among two- to ten-year-old 
children for the years following net-distribution campaigns at year zero and 
year three. Colour codes match the different bednet–barrier combinations 
in a. The model’s parameters reflected the seasonality, entomology and 
endemicity of malaria in Cascades region, Burkina Faso.
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Fig. 3 | Behaviour at barrier bednets of A. gambiae s. l. laboratory colonies and wild population in Burkina Faso. a,b, Mean number (a) and duration  
(b) per test of flights contacting bednet or barrier for each treatment and mosquito laboratory strain. c,d, Mean duration of barrier or bednet contact in  
regions shown in the inset key (c) and mean total time spent in swooping mode (no net contact) (d) for wild mosquitoes. Inset: regions 16 and 18 correspond  
with 6 and 9, respectively, but activity in 15, 16 and 18 was pooled for analysis. Data are mean ± s.d.; number of independent samples is shown in Extended 
Data Figs. 4a,b, 5c and 6d. e, Activity at 5 min intervals during 60 min (laboratory) or 120 min (field) assays, showing mean durations of flight in high- 
(resting, bouncing) or low- (visiting, swooping) contact behaviour modes; pie charts show relative proportions of total duration per category. Treatment 
codes as in Fig. 1. Behaviour modes12: ‘Swooping’, tracks without net contact; ‘Visiting’, relatively lengthy flights with infrequent net contacts, trajectory 
turns of ≥ 80° and 0.4 s minimum interval between contacts; ‘Bouncing’, multiple rapid contact, intervals < 0.4 s or unbroken contact, never static; 
‘Resting’, static > 0.75 seconds, velocity < 1.33 mm s−1, unbroken net contact. Flight activity increased significantly with P2Bs (mean flight activity per 
trial; IS: 5,012 ± 1,975 s and 1,341.6 ± 741 s; Wilcoxon rank-sum test; n = 25, d.f. = 1, W = 5422, P < 0.001; IR, 577.2 ± 79 s and 464.4 ± 30 s; n = 65, d.f. = 1, 
W = 23,017, P < 0. 001), but not OPBs (371.2 ± 45 s and 464.4 ± 30 s; n = 65, d.f. = 1, W = 23,689.5, P = 0.155, P2 and P2 + OPB respectively). Low contact 
activity increased with P2Bs in IR (t-test, n = 65, d.f. = 176, t = 3.50, P < 0.001) and IS (t-test, n = 37, d.f. = 73, t = 2.519, P = 0.01) mosquitoes, but not with 
OPBs (P = 0.298). Significantly more swooping activity occurred over the host’s torso proximal to the barrier; t-test, n = 5, d.f. = 7.61, t = 2.6976, P = 0.028). 
Swooping (that is, zero contact) was significantly higher in both OPBs in the field (P2 + OPB, 79.5% of all flights; Pearson’s χ2 test; n = 125, d.f. = 3, 
χ2 = 163.4; UT + OPB, 64.2%; n = 124, d.f. = 3, χ2 = 86.7; P < 0.001). Netting contact duration (bednet plus barrier) was higher with OPBs on an untreated 
bednet than on a P2 bednet (t-test, n = 5, d.f. = 12, t = −2.19, P = 0.048).
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activity (53.3% total) was not significantly different from that with 
unmodified P2 (P = 0.298), but markedly lower than with the higher 
dosages in the field trial (0.5 g m−2; 85–95%; Fig. 3e). Increased flight  
without contact most probably combines a response to an insecti-
cide’s inherent repellent properties with the ability of A. gambiae  
to avoid net collisions12 and may typify behaviour at barriers; 
thus careful selection of net and barrier treatments is required to  
maximize lethality.

Nevertheless, increased mosquito–netting contact directly 
increases insecticide exposure and we investigated whether alter-
native barrier designs and sizes could increase the frequency of 
contact. We used an agent-based, 3D spatiotemporal model of mos-
quitoes at an occupied LLIN in a virtual insectary to determine the 
effect of the 50 cm transverse barrier (Fig. 4). With untreated net-
ting on bednet and barrier, transverse barriers showed only mod-
estly increased contact duration over unmodified bednets (42.75 
and 40.71 min, respectively; 25 mosquitoes, 1 h), whereas the com-
plex bilateral diagonal cross barrier accrued 103.08 min of contact 
(Extended Data Fig. 7). When both bednet and barrier were treated 
with insecticide, contact and kill rates increased with greater barrier 
surface area and complexity (Extended Data Fig. 8). However, as 
larger complex barriers increase manufacturing costs, barrier area 
was weighted by cost per m2, and the 30 cm longitudinal barrier per-
formed almost as well as the 50 cm bilateral vertical cross (Extended 

Data Fig. 8). Encouraged by our semi-field trial result (Fig. 1e), we 
modelled performance where only barriers delivered insecticide, 
increasing the hypothetical dosage such that barrier-only contacts 
killed all mosquitoes within a 1 h simulation time window. Again, 
complex designs killed the population more rapidly, but perfor-
mance levelled off at 20 cm barrier height. (Extended Data Fig. 7). 
Weighted by surface area however, and with the transverse barrier 
as reference, a simple 40 cm longitudinal barrier was nearly as effec-
tive as the more complex bilateral cross designs (Fig. 4) and was 
therefore a lead candidate for further development.

These results demonstrate that simple net barriers mounted on 
standard bednets can target A. gambiae. With appropriate insec-
ticide, potentially including previously excluded classes, barriers 
significantly improved bednet performance, essentially restoring 
efficacy against pyrethroid-resistant mosquitoes. More effective 
barrier designs are possible, as are different combinations of net and 
barrier treatments, to maximize lethality and improve durability, 
with significant public health benefits27.

We emphasize that we are not specifically proposing the use of 
organophosphate-treated barriers. We used fenitrothion primar-
ily for its availability and efficacy against malaria vectors in west 
Africa18,20, and expect comparable or better killing, repellency, net 
adherence and wash resistance from many insecticides or from 
non-insecticidal treatments26,28. Considerable industry and pub-
lic sector investments in the past decade have delivered three new 
LLIN classes, all comprising a pyrethroid combined with a syner-
gist3, second insecticide11 or insect-growth regulator10. If new or 
additional insecticides make LLINs more expensive, treating only 
barriers would reduce costs. The position of the barrier might 
enable relaxation of constraints on active ingredients for bednets 
(for example, knockdown rate or oral toxicity if ingested by infants), 
increasing the range of possible treatments. Furthermore, the poten-
tial to switch barrier treatments as resistance patterns shift would 
benefit resistance management and reduce insecticide waste. From 
manufacturing technology to correct nightly usage by communities 
in endemic settings, minimal change from existing LLIN processes 
and behaviours would be required to implement barrier bednets as 
an appropriate, safe and affordable method to extend LLIN lifespan 
in the fight against malaria.

Methods
Ethics review and research permission. All research methods were performed in 
accordance with approved guidelines for those procedures and written informed 
consent was obtained from all volunteers sleeping in experimental huts and laying 
under bednets during tracking experiments. The study was approved by the 
Research Ethics Committees at the Liverpool School of Tropical Medicine (LSTM) 
(Research Protocol 16–38, 11 October 2016, Liverpool) and Centre National de 
Recherche et de Formation sur le Paludisme (Deliberation no. 2016-9-097, 20 
September 2016, Ouagadougou). No adverse effects of treatment or mosquito-
borne infections were reported by volunteers during the course of the study.

Bednet and barrier materials. In all tests, rectangular bednets measuring 
2 m × 0.9 m × 1.5 m tall were used as the standard bednet. To facilitate image 
capture, the net roof was tilted on its long axis when facing the cameras to 
ensure activity on the roof was visible (Fig. 1 and 2b,c). Hence, the net height 
was 0.93 m near the camera and 1.19 m at the rear. Pyrethroid-treated nets were 
Permanet 2.0 (75 denier polyester net impregnated with deltamethrin at 55 mg m−2 
(Vestergaard)). New LLINs were hung for four weeks before use and tested for 
insecticidal activity using the standard WHO cone test and two laboratory strains 
(n = 4 repeats per mosquito strain–LLIN combination; see Evaluation of barrier net 
performance in the laboratory).

The barrier comprised a vertical net panel positioned transversely on the net 
roof (Fig. 1a), one of the simplest barrier designs16. The barrier was 0.9 m wide 
(extending edge-to-edge across the LLIN) and was fitted above the tilted roof of 
the rectangular LLIN. It measured 0.8 m high (front) and 0.54 m (rear) to ensure 
the top edge was horizontal at a total height of 1.9 m from the floor. The lower 
edge was pinned to the roof of the net slightly off-centre, at 0.8 m from the head 
end (that is, 0.2 m from the midpoint) (Fig. 2b,c). To facilitate video tracking, 
creases, sagging and wrinkles were minimized by suspending the barrier from 
the ceiling using string and supporting the net and barrier edges with 5 mm 
carbon fibre rods.
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Insecticidal barrier panels (0.6 m2) were cut from new Permanet 2.0 LLINs or 
untreated polyester netting treated with the organophosphate fenitrothion (to make 
the OPB). We selected this low fenitrothion concentration (100 times less than 
that used in IRS) to minimize any potential repellent effects of organophosphate 
residues. OPBs (0.02 g m−2) were prepared by immersing eight pre-cut untreated 
net barriers (plus 0.2 m2 fragment to ensure all liquid was absorbed) into a 224 ml 
aqueous emulsion containing 0.1 g of fenitrothion (Greyhound Chromatography 
and Allied Chemicals). Unmodified Permanet 2.0 LLINs were used for 
comparison. Fresh barriers were used for each test repeat (six IR and five for IS).

Evaluation of barrier net performance in the laboratory. Initial tests were 
conducted on human-occupied bednets in a dedicated insectary in the UK 
(5.6 m × 3.6 m × 2.3 m high; climate controlled at 27 ± 2 °C, 70 ± 10% relative 
humidity), using A. gambiae s. l. strains from LSTM colonies of Kisumu  
(A. gambiae senso stricto (s. s.); IS, n = 9) or Tiassalé (A. gambiae s. s. and 
Anopheles coluzzii mix; resistant to pyrethroids and the majority of other 
insecticides used in public health, IR, n = 17 (ref. 25). Three- to five-day-old unfed 
adult female mosquitoes (25 per experiment) were deprived of sugar and water 
for 4 h before transfer to the experimental room to acclimatize (1 h) before testing. 
All tests were conducted within 1–3 hours of the start of scotophase. Human 
volunteers lay uncovered on a fresh sheet over a 2 m × 0.9 m mattress (0.18 m 
thick; surface at 0.48 m above the floor). Mosquitoes were recorded using a video-
tracking system of paired identical camera setups (one each for the upper or 
lower body of a supine human), each comprising a single infrared LED (850 mm 
wavelength, 1,000 mA minimum; M850L2, Thorlabs) aligned with a pair of 
Fresnel lenses (mounted either side of the bed, with a 43 cm gap between the lens 
and mattress on each side) and monochrome camera with 12.5 mm imaging lens 
(Baumer HXC40NIR, Camera Link, 4 megapixels; Lambda Photometrics). Video 
was recorded at 50 frames s−1 using StreamPix software (www.norpix.com), and 
data were saved as .seq files. Thirty minutes after the volunteer entered the bed, 
recording was started and mosquitoes were released from a paper cup at a height of 
2 m, 1.4 m from the net. Activity was recorded for 60 min.

Bioassays of mosquito behaviour at human-occupied bednets. Eighteen human 
volunteers, 9 males and 9 females of different ethnicities, aged between 22 and 
49, were recruited from staff and students at LSTM. Volunteers were clothed and 
barefoot and lay on their backs, as immobile as comfort permitted during the 
1 h test. All were asked to eschew scented toiletries when testing. The majority 
were tested with both barrier-modified (P2B or OPB) and unmodified P2 nets on 
different days, with an average interval of 41 d between their tests. After each 1 h 
test, the number of live and dead mosquitoes in the room was recorded. Living 
mosquitoes were maintained with sugar and water and mortality was recorded at 
1, 24 and 48 h.

Video tracking mosquitoes in the laboratory. Tracking individual mosquitoes or 
determining the number of responders among the 25 released was not possible as it 
was not possible to view the entire room. Each flight track, from entry to exit of the 
field of view, was analysed individually using segmentation and tracking algorithms 
through bespoke software in the Matlab framework (Mathworks). Data were 
extracted and interpreted to quantify the number and duration of contacts with 
different bednet regions and flight activity in spatial regions around the barrier. 
Mosquito flight tracks were categorized in four behaviour modes, using previously 
reported quantification algorithms13,14: ‘Swooping’, flight tracks without net contact; 
‘Visiting’, extended flight tracks with infrequent net contacts; ‘Bouncing’, multiple 
rapid contacts with the bednet surface, including short flights between contacts, 
‘walking’ and ‘probing’ behaviour; and ‘Resting’, static or slow movement. The field 
of view recorded by the cameras was divided into specific regions on the surface of 
barrier and bednet or in the airspace surrounding it. The limits of each region were 
delineated accurately to fit every barrier–bednet assembly, as shown in Figs. 2a and 
3a. The number and duration of events in each behaviour mode were determined 
for every net and spatial region. When a single track included more than one 
behaviour mode, the time spent in each mode was recorded separately.

Quantifying mosquito contact at barriers and bednet regions. Bednet contact 
comprised all flight tracks in bouncing, visiting and resting behaviour modes. The 
number and duration of contacts were calculated for each test as total values and 
mean values per trial. Tracking individual mosquitoes throughout an entire assay 
is not possible with this system as it was not possible to view the entire room, and 
plausible estimates of minimum and maximum values of net contact per individual 
were calculated. The minimum value was total contact duration divided by the 
total number of released mosquitoes (n = 25); maximum net contact time per 
individual was calculated as the total contact duration divided by the maximum 
number of mosquitoes observed simultaneously (n < 4).

Evaluation of barrier bednets in the field. Between July and October 2017, barrier 
nets were tested against adult female mosquitoes morphologically identified as  
A. gambiae complex reared from wild larvae collected at Tengrela  
(10° 40′ N, 4° 50′ W) near Banfora, Burkina Faso. Species identification29, 
conducted on a random selection of adult females tested, identified 87.41% 

(n = 437) of samples to be A. coluzzii Coetzee and Wilkerson, which have 
previously been found to be highly resistant to pyrethroids at this site30.

Barrier bednets were assembled as described for the laboratory study, with the 
exception of OPB. These fenitrothion-dipped barriers were prepared by immersing 
pre-cut netting (0.65 m2 or 0.8 m2) in a solution of fenitrothion, prepared by adding 
7.3 ml or 9 ml of fenitrothion stock solution (0.044 g ml−1 in acetone; AK Scientific) 
to 22 ml or 27 ml acetone, giving 29.3 ml or 36 ml of 0.01 g fenitrothion ml−1 
acetone, respectively. At an absorbency rate of 45 ml m−2, this deposited 0.5 g m−2 
on the netting surface, equivalent to 25% of the target dose for IRS treatment. 
We selected this concentration, 25 times higher than in the initial laboratory 
experiment, on the basis of the absence of evidence for repellency in the initial 
laboratory experiments, and out of concern that durability of dipped nets at lower 
concentrations might be compromised in harsher field conditions.

Barriers (0.5 m high × 1.3 to 1.6 m) were placed across the full roof width of 
standard rectangular Permanet 2.0 (1.6 × 1.8 × 1.5 m) or untreated polyester nets 
(1.3 × 1.5 × 1.8 m), at an off-centre position, 0.7 m from the sleeper’s head and 1.1 m 
from the foot of the net (Fig. 3a). Unlike the laboratory study, the bednet was not 
tilted to aid video tracking.

Hut trial design and protocol. The trial followed WHO guidelines31 and 
was performed in six WHO standard cement huts of the West African design 
(3.5 × 2 × 2 m high) that had been used previously for evaluation of vector control 
tools including PBO nets32. The cement walls stand on concrete platforms with 
water-filled moats to minimize entry by ants and other scavengers. The roof 
is corrugated metal with a polythene sheet ceiling. Window and veranda traps 
were open during tests. To permit mosquito entry, holes were cut in all bednets 
as defined in the WHO Pesticide Evaluation Scheme guidelines: six 4 cm × 4 cm 
holes, two on the long sides and one on the short sides, were cut in each net. The 
experiment comprised six treatment arms:

 1. Untreated control bednet (UT): untreated polyester netting of similar denier 
and mesh size as LLINs used in other treatments, no insecticidal properties 
and no barrier

 2. Permanet 2.0 LLIN (P2): a WHO Pesticide Evaluation Scheme-recommended 
standard-size double LLIN (1.6 m × 1.8 m × 1.5 m) treated with deltamethrin 
at 55 mg m−2 with no barrier

 3. Permanet 2.0 LLIN with Permanet 2.0 barrier (P2 + P2B): standard LLIN with 
a barrier element of identical Permanet 2.0 netting

 4. Permanet 2.0 LLIN with non-pyrethroid insecticide barrier (P2 + NPB): 
standard P2 LLIN with an added barrier element treated with a combina-
tion of two non-pyrethroid insecticides: indoxacarb (3–5% oxadiazine) and 
fenazaquin (3–5% quinazoline)

 5. Permanet 2.0 LLIN with fenitrothion barrier (P2 + OPB): standard LLIN with 
an added barrier element treated with the organophosphate fenitrothion, at a 
concentration of 0.5 g m−2, equivalent to 25% of the level applied in IRS

 6. Untreated net with OP barrier (UT + OPB): untreated polyester bednet with 
an added barrier element treated with 0.5 g m−2 of fenitrothion

To complete a full rotation for this comparison of six treatment arms, 36 
experimental nights were required. Treatments were rotated between the huts 
weekly and the sleepers were allocated to different huts on each night (see 
Supplementary Information, Hut trial rotation plan). A new set of treated and 
untreated nets was prepared and used in each week of the trial. Before use, all 
manufactured LLINs and untreated control nets for use in any particular week were 
removed from their packaging and aired for seven days. OPB nets were dipped 
in fenitrothion as described above and aired for three days before use. To ensure 
the dipping process was successful, barrier samples were bioassayed before and 
after the trial (Supplementary Text). Human volunteers were recruited from the 
local community and each was used once with each treatment. After the clothed, 
barefoot volunteer had entered the bed, research staff checked the net to ensure it 
was secure. Sleepers remained under the net between 20:00 and 05:00. Seated at a 
distance of 10 m or more, a supervisor was on duty throughout the trial to ensure 
behaviour complied with the protocol and to assist the volunteers if required. At 
05:00, volunteers collected mosquitoes inside their nets (using glass universal tubes 
with cotton wool plugs) before exiting the net and closing the veranda traps to 
prevent mosquito movement between the veranda and hut. Mosquitoes were then 
collected from the main hut and veranda before research staff entered huts to check 
for remaining mosquitoes.

Retrieved mosquitoes were sorted by treatment and hut, location (inside net, in 
hut or in veranda), alive or dead, sex and abdominal status (blood fed, semi-blood 
fed, unfed, gravid or semi-gravid). Live A. gambiae s. l. were sorted by hut and 
held in paper cups (5 mosquitoes per 250 ml cup), separated by feeding status and 
location, provided with 10% sugar solution on cotton wool pads and retained in a 
nearby hut until natural death. Mortality was assessed within 2 h of the test ending 
and at 24 h intervals thereafter until no mosquitoes remained alive. We quantified 
and compared a range of outcomes incorporating the standard parameters 
recommended by the WHO for evaluating LLINs31:
•	 Deterrence: the reduction in hut entry relative to control huts (untreated nets)
•	 Exophily or repellency: the proportion of mosquitoes found in the veranda 

traps
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•	 Blood-feeding inhibition: the reduction in blood-feeding compared with the 
control huts (untreated nets)

•	 Immediate and delayed mortality: the proportions of mosquitoes entering 
the hut that are found dead in the morning (immediate mortality) or after 
being caught alive and held for 48 h with access to a sugar solution (delayed 
mortality)

Since deterrence and blood-feeding inhibition are indicators of personal 
protection, the personal protection effect of a treated net was calculated as:

Personal protection ð%Þ ¼ 100 ´ Bu � Btð Þ
Bu

where Bu is the total number blood-fed mosquitoes in huts with untreated nets and 
Bt is the total number of blood-fed mosquitoes in huts with treated nets.

Mortality (immediate and delayed) is an indicator of the potential mass 
killing effect of LLIN use; that is, a reduction in the density and/or longevity 
of mosquitoes in areas with high net coverage, resulting in community-wide 
protection that also benefits non-users of LLINs. The potential killing effect of a 
treated net was estimated from:

Mortality ¼ 100 ´ Kt � Kuð Þ
Tu

where Kt is the number of mosquitoes killed in huts with treated nets, Ku is the 
number of mosquitoes killed in huts with untreated nets, and Tu is the total number 
of mosquitoes collected from huts with untreated nets.

Predicting barrier-bednet effectiveness for malaria control in a highly endemic 
context. An individual-based transmission dynamics model of malaria20,22,33,34 was 
used to explore the public health impact of nets with organophosphate barrier 
panels fitted to the roof section. This model tracks P. falciparum infection in people 
and mosquitoes. Susceptible people are exposed to infectious mosquito bites at 
a rate dependent on local mosquito density and infectivity. Mosquito dynamics 
describe the effects of mosquito control and the resulting decline in egg laying22.

The specific seasonal profiles35 and historic scale-up of IRS and LLIN 
interventions from 2000 to 2015 were matched for the Cascades administration 
region in Burkina Faso (Malaria Atlas Project1, as per ref. 36). The mosquito 
density was adjusted to capture the underlying transmission intensity, which is 
high in the Cascades region. We used 60% prevalence in 2 to 10-year-old children 
at peak transmission as the baseline prevalence in this exercise. For all model 
simulations, the same baseline parameters were applied, but the parameters 
that determine net efficacy were estimated from the experimental hut data 
(Extended Data Figs. 2 and 3). Uncertainty in model predictions was generated by 
running the model 50 times with randomly drawn estimates from the posterior 
distribution of each model parameter, while fixing net-parameter estimates as 
recorded in the experimental hut trials. Next-generation nets are being developed 
to mitigate the potential lost impact of indoor interventions in the context of 
pyrethroid resistance. PBO synergist nets are the first next-generation nets to 
reach the market. PBO inhibits specific metabolic enzymes in mosquitoes that 
can detoxify pyrethroids, thereby extending the active life the insecticide in 
LLINs. We investigated how well barrier nets might perform relative to these 
PBO nets. Given that the average mortality in experimental huts for standard nets 
(unmodified Permanet 2.0) during the 8-week monitoring period was just 7.4%, 
and the relationship between discriminatory dose bioassay and experimental hut 
mortality determines that this corresponds to 99% resistance4, we compared nets 
at this level of pyrethroid resistance. Extended Data Fig. 2 outlines the parameter 
changes made in the model to represent the predicted impact of organophosphate 
panels on prevalence in two- to ten-year-old children and all clinical cases in the 
Cascades administrative region in Burkina Faso. In the absence of wash data (used 
to simulate the natural wearing of the active ingredient of nets and to determine 
net durability)4,23, we assumed a conservative estimate for the half-life of barrier 
nets based on maximum mortality estimates from the experimental hut data. 
This corresponds to approximately six months for the two barrier nets tested 
(P2 + OPB and UT + OPB). We compared the effect of PBO nets and barrier nets 
(P2 + OPB and UT + OPB) relative to P2 nets.

Video tracking mosquito flight in Burkina Faso. A dedicated experimental 
hut was constructed adjacent to the WHO huts at Tengrela to accommodate 
a video-tracking system based on a previously described system37. The room 
measured 6 m × 4 m in area and 3 m high, with a corrugated steel roof. Steel-
shuttered windows and eaves were also present on two walls that were closed 
during recording to limit the movement of mosquitoes, airflow and external light 
sources. Conditions inside the hut were similar to ambient, with a mean (± s.d.) 
temperature and humidity during recording of 28 °C (± 3.1 °C) and mean (± s.d.) 
relative humidity of 75% (± 12.5%). Thirty minutes before tests, the volunteer 
entered the bednet, the mosquitoes were placed in a paper cup resting on  
the lip of the eave, 2 m above the ground, and the room was closed.  
A section of eave screen was cut to enable a researcher to release the mosquitoes 
by uncovering and emptying the cup at the start of the trial before the eave 
screen and shutter were closed. Unfed females, insectary-reared from larvae 

collected at Tengrela and aged 4–7 days post-eclosion, were used in all tests. 
Mosquitoes were transferred to the experimental hut within 30 min of tests to 
acclimatize to the hut interior environment. All tests were run during the night, 
starting at or shortly after 19:30.

Five of each bednet–barrier combination (that is, P2 + OPB and UT + OPB) 
that had previously been used in the hut trial over six nights were used. Human 
volunteers lay on a 2 m × 0.88 m sleeping mat, with the bednet evenly tucked 
under by one of the researchers before filming. The recording period lasted 2 h 
from the time of mosquito release. Throughout, a researcher monitored the 
recording system from an adjacent control room. Before and after recording, 
mosquitoes in the room were collected with aspirators and the floor was swept 
to eliminate or recover any dead or knocked-down mosquitoes. The collected 
mosquitoes were maintained under ambient conditions in a separate hut nearby, 
were provided sucrose solution ad libitum and assessed (dead, knocked-down 
or alive) immediately at collection and 1, 24 and 48 h later. Video was recorded 
at 50 frames s−1 using StreamPix software (www.norpix.com) and saved as .seq 
files. Initial analysis was performed using segmentation and tracking algorithms 
through bespoke software in the Matlab framework (Mathworks) using these 
large files (>200 Gb video files). Following this, the video files were compressed 
with bespoke software using the .mp4 container and a dedicated video card 
(<5 Gb). This compression was designed to be compatible with the segmentation 
algorithms, allowing subsequent analysis to be performed on the compressed or 
re-rendered video files with negligible loss of information. All recorded video was 
then stored on multiple, redundant external drives.

Optimization of barrier size and shape. We developed an agent-based 3D 
spatiotemporal model of mosquito behaviour at a human-occupied LLIN in a 
virtual insectary to compare designs for optimizing barrier-net performance. 
Indoor vector control testing system (InVeCTS) is an attempt to create a virtual 
environment in which to assess mosquito populations’ interactions with their host 
and their environment. This is a multi-agent approach using a fine-grained spatial 
representation in which a mosquito population can interact with a human host 
over time. Mosquito flight occurs in real time and all mosquito flight paths and 
interactions with the environment are recorded for subsequent analysis.  
A population of mobile virtual mosquito insects are created. These individuals 
fly in a continuous 3D space representation inside a discretized spatial arena 
representing an insectary or hut containing a bednet and human host. For the 
experiments presented in this document an arena of size 5.6 × 3.6 × 2.3 m was 
used, corresponding to the experimental insectary at LSTM used previously10,11. 
Barrier bednets were designed from 3D triangular meshes, building on standard 
‘reference’ simple unmodified bednet design (Fig. 4). The standard bednet design 
measured 2 m long x 0.9 m wide (at its widest point on the floor) and 0.8 m high. 
Barrier bednets of different designs and heights (5, 10, 15, 20, 25, 30, 40 and 
50 cm) were assessed. The bednets were placed in the centre of a virtual insectary 
(5.6 m long × 3.6 m wide × 2.3 m high) and a population of 25 virtual mosquitoes 
were released from a wall-mounted position halfway along the longest axis (2.8 m) 
at a height of 2 m. A human-bait stimulus profile was centred in the bednet design 
with the head region furthest away from the release location. Each experiment 
was run for the equivalent of 1 h and results were recorded for further analysis. 
Five runs were performed at each barrier height. Experiments were performed 
under two treatment conditions. The untreated net condition was used to assess 
the contact time of the different net designs. The treated net condition was used 
to assess the effectiveness of the designs in reducing the activity of the virtual 
mosquito population.

Statistical analyses. Random effects generalized linear models were used for 
analyses of activity time, behavioural modes, region preferences, tortuosity, 
number of tracks, activity decay and effects of treatment type. Non-normality of 
data was tested for using Shapiro–Wilk tests. Welch’s independent two-sample 
unequal variances t-tests were used. For all tests, an α-threshold of 0.05 was used. 
Statistical analyses were performed using R v.2.15.1 (R Development Core Team, 
2012). In the hut trial, analysis was performed to assess the performance of the 
barrier bednet relative to the untreated control and standard PermaNet 2.0, with 
the extra arms allowing for a description of the relative benefits of the different 
insecticide treatments. The number of mosquitoes found inside the huts, blood-
feeding rates and mortality were compared using Poisson regression generalized 
linear models or negative binomial generalized linear models to account for over-
dispersion. In modelling barrier design and height, all statistical analyses were 
performed using R v.3.1.2 (http://www.R-project.org/). Comparisons of mortality 
and activity levels were performed on the basis of Welch’s two-sample (unequal 
variances) t-test; when the assumption of normality was not met, they were based 
on a Shapiro–Wilk test, and then a one-sided Wilcoxon signed-rank test was used. 
Generalized linear models with Poisson distribution were used to compare hut trial 
outcomes, except in cases of over-dispersion, where negative binomial GLMs were 
used. For all tests, an α-threshold of 0.05 was used. Unless stated otherwise, data 
are reported as arithmetic means and associated standard deviation.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
The hut trial dataset generated during the current study is available at Dryad 
Digital Repository (https://doi.org/10.5061/dryad.hqbzkh1b7). All data analysed 
during this study are available as described in the paper. All other data supporting 
the findings of this study are available within the article and its Supplementary 
Information files or are available from the authors on reasonable request.

Code availability
Data handling scripts and video segmentation and tracking software are available 
from the authors on reasonable request.
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Extended Data Fig. 1 | insecticide susceptibility status of the wild Anopheles gambiae s. l. population at Tengrela, Banfora in Cascades region of Burkina 
Faso. Adult female mosquitoes were tested using the WHO tube test. Mortality rates of less than 95% are indicative of resistance.
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Extended Data Fig. 2 | Complete results summary of the hut trial in Tengrela, Cascades Region, Burkina Faso. Treatment codes: UT (Unmodified 
untreated polyester bednet), P2 (unmodified Permanet 2.0), P2+P2B (Permanet 2.0 bednet and barrier of P2.0); P2+NPB (P2 net and non-pyrethroid 
mixture [indoxacarb/ fenazaquin, 3–5%]); P2+OPB (P2 and fenitrothion-dipped barrier, 0.5g/m2); UT+OPB (untreated bednet and fenitrothion-dipped 
barrier). Outcomes are defined in Methods. Asterisks denote significant differences between treatments (P=0.05-0.01*; 0.01-0.001**;<0.001***). All 
comparisons vs. UT, unless stated otherwise. Percentage Deterrence: Poisson regression GLM; P2+OPB, n=6, df=5, Z=3.02 P=0.02; UNT+OPB, n=6, 
df=5, Z=2.21, P= 0.03. Personal protection: Negative Binomial GLM; P2+OPB, n=109, df=5, Z=−2.649, P=0.008. Killing effect: Poisson regression 
GLM; P2+NPB, n=44, df=5, Z= 2.127, P= 0.03; P2+OPB, n=133, df=5, Z= 7.612, P<0.001; UT+OPB, n=152, df=5, Z=8.320, P<0.001. Percentage exiting: 
Negative Binomial GLM; UT, n=121, df=5, Z= −5.805 P<0.001. Percentage collected inside net: Negative Binomial GLM; UT, n=163, df=5, Z=−2.047 
P<0.0407. Killing effect vs. unmodified P2: Poisson regression GLM; P2+NPB, n=44, df=5, Z= 1.921, P= 0.04; P2+OPB, n=133, df=5, Z= 2.644, P=0.008; 
UT+OPB, n=152, df=5, Z=5.322, P=0.005. Personal protection vs. unmodified P2: Negative Binomial GLM; P2+OPB, n=109, df=5, Z=1.61, P=0.03.
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Extended Data Fig. 3 | Transmission model parameter estimates used to test the effect of organophosphate panels on bednets in the Cascades 
administration region of Burkina Faso. All other parameters match those previously reported (21,29,30,33). Parameter estimates are noted for: i) standard 
nets (for example. Permanet 2.0) working optimally; ii) standard nets working as predicted for the resistance scenario where 99% of mosquitoes survive 
during a discriminatory dose WHO bioassay test in the presence of pyrethroid insecticides; iii) Permanet 2.0 with an organophosphate barrier, and; iv) an 
untreated net with an organophosphate barrier.
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Extended Data Fig. 4 | Frequency and duration of mosquito contact with bednets and barriers in the laboratory. The number, location and duration of 
mosquito contact at unmodified and barrier bednets; data from video recordings of the bioassays in Fig. 1b (25 female mosquitoes, 1hr). The bednet roof 
was the primary contact location in all treatments (t-test: IS, P=0.45; IR, P=0.19; IR/OPB, P=0.93). Contact with treated netting (bednet+barrier) was 
similar between treatments for IS (mean±SD contact/ trial: 959±1032s and 1099±1035s; t-test, P=0.839) and IR mosquitoes (185±144.8 vs. 519±455.7, 
t-test, P=0.478; Fig. 2g); and between P2 and P2+OPB (185.0±144.8 vs. 212.8±239.1, t-test, P=0.309) or number (249.4±7.2 and 123.5±13; t-test, 
P=0.056).
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Extended Data Fig. 5 | Frequency and duration of contact at bednets with oP- treated barriers by wild Anopheles coluzzii in Banfora, Burkina Faso. The 
number, location and duration of mosquito contact on barrier bednets recorded during tests (Fig. 1b). Data refer to 2hr video recordings, with 25 female 
mosquitoes released. Comparisons of number or duration of contacts between treatments were not significant for the bednet or barrier, based on t-tests 
(normality tested using Shapiro–Wilk test). When bednet and barrier contacts were combined, duration was significantly higher in UT+OPB (t-test; n=5, 
df=12, t = −2.19, P=0.048).
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Extended Data Fig. 6 | Behaviour modes of Anopheles gambiae at bednets with or without barriers. Duration of activity in each behaviour mode; data 
from video recording of activity of 25 adult female Anopheles gambiae s.l. over 60min (pyrethroid susceptible [IS] or resistant [IR] strains; top) or 120min 
(wild Burkina Faso population, bottom). Total duration of all tracks classed in each behaviour mode (geometric mean ±SD, seconds). Since multiple 
mosquitoes were often active simultaneously in the field of view, the total activity times could exceed 60 minutes. Behaviour modes, defined previously12, 
were as follows: Swooping - tracks that did not contact netting; Visiting - tracks of relatively long flight period interspersed with infrequent bednet 
contacts, characterized by sharp trajectory turns of ≥80° and 0.4s minimum interval between multiple contacts; Bouncing - tracks of multiple rapid 
netting contact, at intervals of less than 0.4s, including short flights between contacts, or unbroken contact without being static, for example. ‘walking’ and 
‘probing’; Resting - static for at least 0.75 seconds, or velocity less than 1.33mm/s, unbroken contact with net.

NATuRE MiCRoBioLoGy | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


LettersNATurE MIcrOBIOlOgy

Extended Data Fig. 7 | Comparison of simulated performances of different barrier designs and heights. (A) Mean total mosquito population contact 
time (duration of all contact and resting events; minutes) per experiment for a standard untreated bednet and different untreated barrier designs at 
different heights. Note: with no negative impact from untreated net contact, virtual mosquitoes revisit the net ad infinitum, hence high contact rates within 
1hr. (B) Mean time in minutes to kill the entire mosquito population, when both bednet and barrier are insecticide-treated, by each barrier design and 
barrier height on treated nets. All net contact areas deliver a dose of 0.05 units per contact. The insecticide treatment is identical on every surface treated, 
and equivalent to a Permanet 2.0 in terms of repellency. The agent response to contacting a treated net is to decrement health and to select a new random 
direction and fly away. Thus, the insecticide approximates contact irritancy and not spatial repellency. (C) Mean population kill time when only the barrier 
is insecticide- treated (dose=1 unit per contact). Note: 5 and 10cm T-barriers did not kill the entire mosquito population in all runs.
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Extended Data Fig. 8 | Comparing different barrier designs and heights by evaluating performance in silico. (A) Population kill time (total time needed  
to achieve complete population death) when insecticide is delivered by both bednet and barrier, for different barrier designs at increasing barrier height. 
(B) Population kill time as in A, weighted by surface area with a standard unmodified bednet as reference. Plot colours correspond to barrier design 
borders in Fig. 4.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed
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Data collection Video was recorded using StreamPix V8 software (www.norpix.com). Segmentation and analysis of video footage was performed using 
bespoke software under the Matlab framework (Mathworks) and C++ programming languages. 

Data analysis Video files were compressed using bespoke software and the .mp4 container. Statistical analyses were performed using R (R version 
3.1.2) (R Development Core Team 2014).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The hut trial dataset generated during the study is available on Dryad Digital Repository under accession number: https://doi.org/10.5061/dryad.hqbzkh1b7. All 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Hut trial sample size was based on WHO guidelines - 28) World Health Organization. “Guidelines for laboratory and field testing of long-lasting 
insecticidal nets” http://apps.who.int/iris/bitstream/handle/10665/80270/9789241505277_eng.pdf?sequence=1 (2013). Tracking and 
modelling studies were based on power calculations, with estimated effect sizes unless limited by the availability of biological samples.  

Data exclusions No data were excluded from the analysis.

Replication Experimental findings were replicated across repeated trials, with general patterns conserved between laboratory and field trials. The key 
outcome, the hut trial, was based on standard WHO guidelines with reproducibility as a major consideration. 

Randomization Treatments and participants were assigned at random based on a blinded selection

Blinding Investigators were not blinded to the groups during filming or hut trial work due to the ease with which bednet designs could be distinguished 
visually. 
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals The study used two laboratory strains of mosquito: Anopheles gambiae s.s. Kisumu (insecticide susceptible) and a hybrid of 
Anopheles gambiae/ coluzzii Tiassale (pyrethroid resistant)

Wild animals The study reared adult Anopheles gambiae s.l. from aquatic stages collected at the study site in Burkina Faso.  Adult female 
mosquitoes were used in the experiments

Field-collected samples No samples were collected in the field.

Ethics oversight All research methods were performed in accordance with approved guidelines. The study was approved by the Research Ethics 
Committees at the Liverpool School of Tropical Medicine (LSTM Research Protocol 16-38, 11th October 2016, Liverpool) and 
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Population characteristics recruited from institutional staff and students. For hut trial and field-based filming, 6 volunteers were recruited from the local 
community, aged between 21 and 35. 

Recruitment Participants were asked to volunteer to participate in the study, field-based research participants were recruited with the 
assistance of a local guide as some previous experience of collecting mosquitoes was required. 

Ethics oversight All research methods were performed in accordance with approved guidelines for those procedures and written informed 
consent was obtained from all volunteers sleeping in experimental huts and laying under bednets during tracking experiments. 
The study was approved by the Research Ethics Committees at the Liverpool School of Tropical Medicine (LSTM Research 
Protocol 16-38, 11th October 2016, Liverpool) and Centre National de Recherche et de Formation sur le Paludisme (CNRFP 
Deliberation no. 2016-9-097, 20th September 2016, Ouagadougou). No adverse effects of treatment or mosquito-borne 
infections were reported by volunteers during the course of the study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Anopheles gambiae populations 
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Abstract 

Background: The efficacy of long-lasting insecticidal nets (LLINs) in preventing malaria in Africa is threatened by 
insecticide resistance. Bioassays assessing 24-hour mortality post-LLIN exposure have established that resistance 
to the concentration of pyrethroids used in LLINs is widespread. However, although mosquitoes may no longer be 
rapidly killed by LLIN exposure, a delayed mortality effect has been shown to reduce the transmission potential of 
mosquitoes exposed to nets. This has been postulated to partially explain the continued efficacy of LLINs against 
pyrethroid-resistant populations. Burkina Faso is one of a number of countries with very high malaria burdens and 
pyrethroid-resistant vectors, where progress in controlling this disease has stagnated. We measured the impact 
of LLIN exposure on mosquito longevity in an area of the country with intense pyrethroid resistance to establish 
whether pyrethroid exposure was still shortening mosquito lifespan in this setting.

Methods: We quantified the immediate and delayed mortality effects of LLIN exposure using standard laboratory 
WHO cone tests, tube bioassays and experimental hut trials on Anopheles gambiae populations originating from the 
Cascades region of Burkina Faso using survival analysis and a Bayesian state-space model.

Results: Following single and multiple exposures to a PermaNet 2.0 LLIN only one of the four mosquito populations 
tested showed evidence of delayed mortality. No delayed mortality was seen in experimental hut studies using LLINs. 
A delayed mortality effect was only observed in WHO tube bioassays when deltamethrin concentration was increased 
above the standard diagnostic dose.

Conclusions: As mosquito pyrethroid-resistance increases in intensity, delayed effects from LLIN exposure are 
substantially reduced or absent. Given the rapid increase in resistance occurring in malaria vectors across Africa it is 
important to determine whether the failure of LLINs to shorten mosquito lifespan is now a widespread phenomenon 
as this will have important implications for the future of this pivotal malaria control tool.

Keywords: Mosquito, Anopheles, Insecticide resistance, Delayed mortality, Longevity, Sub-lethal effects, Long-lasting 
insecticidal nets (LLINs), Burkina Faso
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Background
Long-lasting insecticidal nets (LLINs), which are 
the mainstay of many malaria control programmes 
in Africa, reduce contact between mosquitoes and 
humans by providing both a physical barrier and an 
insecticidal effect [1, 2]. In areas where LLINs are used 
on a large scale, they provide both personal and com-
munity-wide protection [3–5]. Across sub-Saharan 
Africa, ever-increasing numbers of people at risk of 
malaria are sleeping under an LLIN and this has been 
attributed to averting approximately two-thirds of 
potential malaria cases between 2000 and 2015 [6]. In 
Burkina Faso, malaria transmission remains high, and 
cases are increasing [7] despite high coverage of vector 
control tools, including three national LLIN distribu-
tion campaigns in 2010, 2013 and 2016. The majority of 
distributed LLINs were pyrethroid only, predominately 
deltamethrin; however, a small number of alphacyper-
methrin nets and nets containing piperonyl butoxide 
(PBO) were distributed in the 2010 and 2013 campaigns 
[8].

Insecticide resistance is defined as the ability of mos-
quitoes to survive exposure to a standard discriminat-
ing dose of insecticide [9]. Inevitably, after many years 
of prolonged use of pyrethroid insecticides to control 
agricultural pests and disease vectors, malaria vec-
tors with increasing levels of pyrethroid resistance 
have emerged, and this has impacted on the ability of 
LLINs to control these mosquito populations [10, 11]. 
The impact of pyrethroid resistance on malaria trans-
mission in Africa is contested [12–16]. The sometimes 
contradictory findings may be partially explained by 
the varying intensities of resistance in the study sites; 
a recent meta-analysis of bioassay studies and experi-
mental hut trials data [17] shows that the community 
protection provided by nets reduces rapidly as resist-
ance emerges whereas personal protection is only lost 
when resistance reaches much higher levels.

Although insecticide-resistant An. gambiae (sensu 
stricto), by definition, are not killed upon immediate con-
tact with insecticides, fitness costs incurred from expo-
sure may indirectly reduce their disease transmission 
potential [18]. Delayed mortality post-LLIN exposure has 
been demonstrated in a previous laboratory trial on pyre-
throid-resistant colonies [19], and in a field study using 
An. funestus (sensu lato) and An. gambiae (s.l.) from 
Cameroon [20]. These studies found that the magnitude 
of the delayed mortality effects decreases in strains that 
have developed multiple resistance mechanisms and/
or compensatory mutations [19, 20]. Given the rapid 
increase in resistance intensity observed in Burkina Faso 
and the emergence of additional potent resistance mech-
anisms [21, 22] we sought to quantify the presence of 

any delayed mortality following LLIN exposure in these 
highly resistant populations.

Methods
Study sites
Laboratory bioassays were performed in the insectaries 
at the Liverpool School of Tropical Medicine (LSTM), 
UK, and the Centre National de Recherche et de Forma-
tion sur le Paludisme (CNRFP) clinical research unit of 
Banfora, Burkina Faso (10°37′N, 04°46′W). Experimental 
hut studies were carried out at the CNRFP field station 
in Tengrela (10°40′N, 04°50′W). The huts are located on 
the outskirts of Tengrela village adjacent to rice growing 
fields. Tengrela is a rural town, mainly known as a rice 
and vegetable growing area, located in the Comoé Prov-
ince approximately 440 km south-west of Ouagadou-
gou, the country’s capital, and 7 km from the province’s 
capital, Banfora. Yendere (10°12′N, 04°58′W) is also a 
rural town with no specific agricultural practice. Cotton 
is grown in the areas surrounding the town. It is also in 
Comoé Province approximately 60 km from Banfora. 
Both sites are in the same health district of Banfora. The 
climate in this area of the country is characterised with a 
rainy season from June to October and a dry season from 
November to May. The average temperature is 27.5  °C 
and average annual rainfall is 1080 mm. Field experi-
ments were conducted between 2016 and 2018 during 
the rainy season.

Mosquito strains
Two laboratory strains (VK7 2014, hereafter referred to 
as VK7, and Banfora) and two field populations, collected 
as larvae from Tengrela and Yendere, of insecticide-
resistant An. gambiae (s.l.) from Burkina Faso were used. 
The insecticide-susceptible An. gambiae (s.s.) Kisumu 
reference strain [23] was used as a control in experiments 
conducted at LSTM, and to test the efficacy of netting 
used for tests in Burkina field studies. The Banfora labo-
ratory strain was colonised from the Tengrela field site in 
2015 and the VK7 strain from Valle du Kou, village no. 
7 in 2014. Both are An. coluzzii colonies and have been 
maintained at LSTM under standard insectary conditions 
(27 ± 2  °C, 80 ± 10% relative humidity (RH) with a 12:12 
h light:dark photoperiod). Field populations were col-
lected as larvae from Tengrela and Yendere over several 
collection days. Mosquitoes were sampled from different 
types of breeding site (e.g. temporary pools, rice fields). 
Larvae were reared to adults in the insectaries (25 ± 3 °C 
and 75 ± 25% RH) at CNRFP; these mosquitoes were 
used for insecticide bioassays and in reared-release stud-
ies in experimental huts. In Tengrela, mosquitoes were 
largely collected from rice fields. In Yendere, rice is not 
a major crop, and mosquitoes were collected from more 
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temporary breeding sites, where typically An. gambiae 
(s.s.) predominate over An. coluzzii [24, 25]. Freely enter-
ing adults from Tengrela, of unknown age, were used in 
wild-entry experiments. Species identification of field 
strains was conducted using SINE PCR [26] at LSTM. 
Anopheles coluzzii predominates in Tengrela (87%, 437 
mosquitoes tested) and An. gambiae (s.s.) in Yendere 
(90%, 203 mosquitoes tested).

Insecticide resistance status
The VK7 and Banfora laboratory strains are resistant to 
permethrin, deltamethrin and DDT [27]. Topical and tar-
sal permethrin dose-response assays suggest the Banfora 
strain to be more pyrethroid-resistant than VK7 although 
this difference is not significant. VK7 has a high fre-
quency of the 1014F kdr mutation with the 1575Y sodium 
channel mutation present at a low level; several P450s 
(CYP6M2, CYP6P3 and CYP6P4) with known pyrethroid 
metabolism activity are upregulated in this strain. The 
Banfora strain is also heterozygous for the 1014F and 
1575Y sodium channel mutations; metabolic resistance is 
less predominant in this strain and instead, topical assays 
suggest insecticide penetration barriers contribute to the 
resistance phenotype [27]. To establish the resistance sta-
tus of larval-reared field populations, WHO susceptibil-
ity tube bioassays [9] were performed using control and 
deltamethrin papers at the diagnostic dose (0.05%), plus 
further assays using papers of increasing deltamethrin 
concentrations (0.05%, 0.25%, 0.50%, 0.75% and 1.0%); 
daily survival following exposure was assessed. Details of 
sample sizes are provided in Additional file 1: Figure S1.

Net treatments
PermaNet®2.0 (Vestergaard Frandsen, Switzerland, del-
tamethrin 1.4–1.8 g/kg) and untreated nets (purchased 

locally) were used for both LSTM laboratory tests and all 
field tests. Nets were aired for a minimum of one week 
prior to experiments (with the exception of the 2016 hut 
trials where nets were used on the same day, without 
airing) and acclimatised to the respective testing room 
before use. Details of sample sizes are provided in Addi-
tional file 1: Table S2.

WHO cone bioassay
Mosquitoes were exposed to randomly selected pieces 
of untreated or PermaNet 2.0 netting using a standard 
three-minute WHO cone bioassay [28]. For laboratory 
assays and 2017 field tests, one untreated net and one 
PermaNet 2.0 were used for all tests. For field assays, 
in 2017 two untreated nets and two PermaNet 2.0 nets 
were used. Netting pieces were randomly sampled from 
the roof and sides of the nets. Cohorts were exposed to 
nets once (Assay A) or several times (Assays B–E) using 
a variety of differing test regimes (Table  1). For labora-
tory assays, cohorts of 70 mosquitoes were exposed, and 
for field assays cohorts ranged from 25–125 mosquitoes 
depending on availably of mosquitoes (details of sam-
ple sizes are provided in Additional file 1: Table S2). The 
laboratory and field assays were carried out at differ-
ent times and locations. The different exposure regimes 
approximate alternative types of exposure to LLINs that 
mosquitoes may experience during their lifespan [19]. 
Assay A (single exposure) provided a baseline level of 
net contact to compare untreated and treated netting. 
Assays B, C, and E (daily exposure for 2, 3 and 5 days, 
respectively) simulates the net contact a mosquito might 
encounter if it is repeatedly prevented from obtain-
ing a blood meal. Assay D (exposure every 4 days for 4 
exposures) simulates the level of net contact a mosquito 
might encounter every gonotrophic cycle. The exposure 

Table 1 Summary of experimental factors in cone bioassays. Mosquitoes were exposed to PermaNet 2.0 and untreated nets

a Age at first exposure

Abbreviation: Lab, laboratory

Cone assay ID LLIN exposure (times 
exposed)

Exposure regime Mosquito strain Age (days)a

A Single (×1) Exposed once VK7 (Lab) 4

Banfora (Lab) 4

Yendere (Field) 3–5

Tengrela (Field) 5–8

B Multiple (×2) Daily exposure for 2 consecutive days VK7 (Lab) 4

Banfora (Lab) 4

C Multiple (×3) Daily exposure for 3 consecutive days VK7 (Lab) 4

Banfora (Lab) 4

D Multiple (×4) Exposure every 4 days, for a maximum of 4 
exposures

Tengrela (Field) 4

E Multiple (×5) Daily exposure for 5 consecutive days Tengrela (Field) 4
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regimes varied between the laboratory and field experi-
ments for logistical reasons.

Age at first exposure to insecticides varied between 3 
to 8 days post-eclosion and only non-blood-fed females 
were used. Mortality at 24 hours post-exposure was 
recorded. After the final exposure, all surviving mosqui-
toes were held with access to a sugar solution and daily 
mortality was recorded until all mosquitoes were dead.

Experimental hut trials
The semi-field experimental hut station contained six 
huts built to the West African design [28] and is situ-
ated adjacent to Tengrela’s rice fields. Two trials (A and 
B) were conducted using either larval-reared mosquitoes 
or wild-entry mosquitoes, respectively over a two-year 
period (Table 2). Trials were replicated in 2016 and 2017. 
In Hut Trial B only mosquitoes without a visible blood-
meal were used to score longevity. Huts contained either 
untreated net (control) or unwashed  PermaNet® 2.0. Nets 
were holed according to WHO guidelines [28]. Sleepers 
were randomly rotated within huts; however, small mos-
quito numbers for release meant this occurred on non-
consecutive days, and between two and six huts were 
used for trials (full details Additional file 1: Table S1).

Volunteers entered the huts after ~20:00 h and 
remained under the nets until ~6:00 h. In the reared-
release trial, window shutters, entries and door frames 
were closed or covered with untreated netting to pre-
vent the exit of released mosquitoes. In the wild entry 
trial, window entries remained open. After acclima-
tisation (> 10 min) mosquitoes were either manually 
released into the hut (reared-release trial) or window 
traps opened to allow wild mosquitoes to enter (wild-
entry trial).

The following morning, mosquitoes were collected 
individually using glass universal tubes and placed into 
labelled bags separated by location (i.e. under net, in the 
veranda, in the main hut). The remaining mosquitoes 
were collected using a Prokopack aspirator (The John 
W. Hock Company, Florida, USA). All mosquitoes were 
morphologically identified [29], sexed, recorded as dead 
or alive, and scored for abdominal status (unfed, partially-
fed, blood-fed, semi-gravid/gravid). Dead female Anoph-
eles mosquitoes were stored in silica, and male Anopheles 

and non-anopheline mosquitoes were recorded and dis-
carded. Surviving female mosquitoes were transferred to 
paper cups and provided with 10% glucose solution. Mor-
tality was recorded daily until all mosquitoes were dead, 
and dead mosquitoes were stored in silica.

Data analysis
Chi-square or Fisherʼs exact test was used for immedi-
ate mortality analysis. If a mosquito was censored (e.g. 
mosquito escaped) during the 24 hours following expo-
sure, it was removed from immediate mortality analysis. 
In discrimination dose bioassays, immediate mortality 
following insecticide exposure was always less than 5 % 
so Abbotʼs correction [9] was not applied. In cone bioas-
says following single exposure control mortality was low 
across all treatments (< 5%). As control mortality during 
subsequent exposures in multiple exposure assays could 
be affected by mosquito age, cone bioassay mortality 
was not corrected in any exposures. For survival analy-
sis, Kaplan-Meier curves were used to visualise the data, 
and Cox regression was used to compare post-exposure 
survival. Immediate mortality (24-h post-exposure, and/
or dead on collection) was excluded, and censored data 
included. All analysis was conducted in IBM SPSS Sta-
tistics 24 (IBM Corp. IBM SPSS Statistics for Windows, 
Version 24.0. Armonk, NY, USA).

A Bayesian state-space survival model as developed by 
Viana et al. [19] was used to quantify the daily survival 
rate and the magnitude of any observed delayed mor-
tality effect in each experiment. Briefly, the observed 
number of mosquitoes alive each day was modelled 
from a  binomial distribution described by the  total 
number of mosquitoes alive and the probability of daily 
survival which, in turn was described with a logit link 
to its nonlinear predictor parameterised as a function 
of the treatment previously published [19]. The results 
were generated using this model executed in JAGS. 
The model, structure  and parameter priors have been 
previously published elsewhere [19]. The results were 
generated using a version of the model executed using 
Mathcad.

Table 2 Summary of experimental factors in experimental hut trials

Trial Mosquito population (strain) Year conducted Date conducted No nights Age (days) Blood-feeding status

A Reared-release (larval-reared Tengrela) 2016 26 September–3 October 6 5–8 Unfed; blood-fed

2017 10–22 September 10 5–8 Unfed; blood-fed

B Wild-entry (Tengrela) 2016 10–21 October 10 Unknown No visible blood meal

2017 2–15 July 12 Unknown No visible blood meal
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Results
WHO cone bioassays
Immediate mortality
The Kisumu susceptible strain showed high immedi-
ate mortality against PermaNet 2.0 (LSTM strain, 100% 
mortality, n = 100 mosquitoes; CNRFP strain, 98% 
mortality, n = 48 mosquitoes). In laboratory strains, 
after single and repeated exposure to PermaNet 2.0, the 
immediate mortality of the Banfora and VK7 was < 15% 
(Fig.  1a; Additional file  1: Table  S2). In the laboratory 
strains, a significant difference between PermaNet 2.0 
mortality and untreated net mortality was only seen in 
the Banfora strain, following the single exposure (Assay 
A, Fig.  1a, P = 0.029), and the second exposure of the 
two exposure assay (Assay B, Fig.  1a, P = 0.003). In all 
other exposures, no significant difference in immediate 
mortality between laboratory mosquitoes exposed to 
treated or untreated net was seen (Fig.  1a; Additional 
file 1: Table S2).

In the field strains (Tengrela and Yendere) no differ-
ence in immediate mortality between PermaNet 2.0 and 
the untreated net was observed following single expo-
sures (Assay A). However, significantly higher mortal-
ity was observed after the third exposure in Assay D (4 
exposures every four days), and the 4th and 5th expo-
sure in Assay E (5 exposures daily) (Fig. 1b; Additional 
file 1: Table S2).

Delayed effects
After a single exposure to LLINs, there was no signifi-
cant reduction in survival compared to a single expo-
sure to untreated netting in the laboratory VK7 strain 

(Cox regression, P = 0.57), and field Tengrela (Cox 
regression, P = 0.27) and Yendere (Cox regression, 
P = 0.52) populations (Fig.  2a). Only the laboratory 
Banfora strain showed significantly reduced survival 
after a single exposure to LLIN compared to the control 
(Cox regression, P = 0.03); Banfora mosquitoes exposed 
to PermaNet 2.0 had a 1.44-fold (95% CI: 1.13–1.84) 
increase in the risk of death compared to Banfora mos-
quitoes exposed to untreated netting.

After two exposures to LLIN (Fig.  3a), the Banfora 
strain showed no significant reduction in cumula-
tive survival compared to two exposures to untreated 
netting (Cox regression, P = 0.26), whilst the VK7 
strain showed a small, but significant (Cox regression, 
P = 0.008) increase in survival after two exposures to 
LLIN compared to the control;VK7 exposed to Per-
maNet 2.0 had a 0.72-fold (95% CI: 0.57–0.92) decrease 
in the risk of death compared to controls. After three 
exposures (Fig.  3b) neither laboratory strain showed a 
reduction in longevity compared to untreated netting 
(Banfora, P = 0.206; VK7, P = 0.085).

The Tengrela field population was exposed to LLINs 
either every fourth day, four times (Assay D) or daily for 
five days (Assay E). Neither exposure regime had any 
impact on long-term survival compared to untreated 
netting [Fig. 4a (P = 0.72) and 4b (P = 0.97)].

Experimental hut trials
Mosquito numbers, species identification and immediate 
mortality
Over the two-year study, a total of 1187 Anopheles and 
602 non-Anopheles were collected during 22 nights by 

Fig. 1 24-hour mortality of laboratory Banfora and VK7 (a) and field Tengrela and Yendere (b) mosquitoes after WHO cone bioassay exposure. 
Mosquitoes were exposed to PermaNet 2.0 or untreated net single (Assay A), or multiple (Assays B-E) times and their mortality recorded. Error bars 
show 95% confidence intervals for the population proportion. Numbers above bars show the number of mosquitoes tested. Numbers below the 
graph show the number of exposures and letters refer to the experimental design (see Table 1). Asterisks show when untreated and PermaNet 2.0 
mortality was significantly different (P < 0.05). See Additional file 1: Table S2 for details of the mortality in each assay
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volunteer sleepers in the wild-entry experimental hut tri-
als in Tengrela (Additional file 1: Table S1, Table S6). The 
average number of female Anopheles caught per night/
per hut were 16.9 in 2016 and 6.00 in 2017 for PermaNet 
2.0 huts, and 20.6 in 2016 and 8.08 in 2017 in untreated 
hut (Additional file  1: Table  S6). Lower mosquito num-
bers in 2017 may be due to the trial being conducted early 
in the rainy season (July), whereas mosquito numbers in 

2016 (October) are comparable to other hut trials con-
ducted at this site [30]. In the release-recapture hut tri-
als, 782 Anopheles were released and 493 recaptured 
across all huts. A total of 92 non-target (non-Anopheles 
or male Anopheles) were collected. Recapture rates were 
greater in untreated compared to PermaNet 2.0 huts 
over the two years (Additional file 1: Table S6; Untreated: 
76.21%; PermaNet 2.0: 49.87). Molecular ID confirmed 

Fig. 2 The longevity of laboratory and field populations after single WHO cone bioassay exposures. a Kaplan Meier survival curves show the 
proportion alive each day post-exposure. The dashed grey line indicates the day mosquitoes were exposed. Crosses represent censored data at the 
point of censoring. b Box and whisker plots of median survival (days) dead post-exposure. Mosquitoes were 4 (VK7 and Banfora), 3–5 (Yendere), 
or 5–8 (Tengrela) days-old on exposure. Coloured dots show outliers in the data. In both a and b immediate (within 24 h) mortality is excluded. 
Banfora: 2 replicates (PN2, n = 139 mosquitoes; UN, n = 133 mosquitoes); VK7: 2 replicates (PN2, n = 167 mosquitoes; UN, n = 156 mosquitoes); 
Tengrela: 2 replicates (PN2, n = 89 mosquitoes; UN, n = 95 mosquitoes); Yendere: 2 replicates (PN2, n = 101 mosquitoes; UN, n = 100 mosquitoes)

Fig. 3 The longevity of laboratory strains after multiple WHO cone bioassay exposures. Kaplan Meier survival curves show the proportion alive each 
day following two (a) or three (b) exposures. The dashed grey line indicates the day mosquitoes were exposed. Crosses represent censored data at 
the point of censoring. In both a and b immediate (within 24 h) mortality is excluded
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An. coluzzii to be the dominant species of mosquitoes 
collected from Tengrela (87.41% An. coluzzii; 2.97% An. 
gambiae (s.s.); 1.14% An. coluzzii/gambiae hybrids; 0.23% 
An. arabiensis; 8.24% unidentified; 437 mosquitoes tested 
in 2017), while An. gambiae (s.s.) were more abundant 
in mosquitoes collected from Yendere (90.15% An. gam-
biae (s.s.); 0.49% An. coluzzii/gambiae hybrids; 0.49% An. 
arabiensis; 6.40% unidentified; 203 mosquitoes tested in 
2018).

In the reared-release trials, where adult mosquitoes 
aged 5 to 8 days, raised from larval collections were 
released into the huts, immediate mosquito mortal-
ity (dead on collection or within 24-h) in PermaNet 
2.0 huts was 50% (95% CI: 38.61–61.39%) in 2016, and 
45.50% (95% CI: 33.66–51.34%) in 2017 (untreated hut 
mortality: 2016, 11.01%, 95% CI: 5.13–16.89%; 2017, 
16.22%, 95% CI: 10.90–21.53%). In the wild-entry tri-
als, where mosquitoes were of unknown age, mortality 
in PermaNet 2.0 huts was 8.38% (95% CI: 4.18–12.59%) 
in 2016, and 13.57% (95% CI: 7.90–19.24%) in 2017 
(untreated hut mortality: 2016, 4.93%, 95% CI: 1.95–
7.90%; 2017, 5.29%, 95% CI: 2.10–8.48%). Mortality in 
the PermaNet 2.0 huts was always higher than in the 
huts with untreated nets but this difference was not 
significant in the wild entry trials. Further details of 
mosquito exophily and blood-feeding are provided in 
Additional file 1: Table S7.

Delayed mortality
The effect of date, feeding status, hut, net treatment, 
and collection locations (e.g. in net, in veranda) on 
mosquito survival post-collection was analysed. For the 

reared-released trials, in 2016, only blood-feeding sta-
tus significantly affected mosquito longevity (Fig.  5, 92 
blood-fed mosquitoes, 42 unfed mosquitoes, P = 0.001). 
When non-significant variables were excluded from the 
regression analysis, blood-fed mosquitoes had a 0.561-
fold (0.384–0.819) lower risk of death (P = 0.003). In 
2017, date of collection (P = 0.005) and blood-feeding 
status (P < 0.0001) both significantly affected mosquito 
longevity. When non-significant variables were removed 
from the model, and results were stratified by day, blood-
fed mosquitoes had a 0.450-fold (0.327–0.618) reduc-
tion in the risk of death compared to unfed mosquitoes 
(Fig.  5b, 107 blood-fed mosquitoes, 113 unfed mosqui-
toes, P < 0.0001). Data were hence stratified into unfed 
and blood-fed groups. In the reared-release trials, expo-
sure to LLINs had no effect on longevity in either 2016 or 
2017 (Fig. 5, Additional file 1: Table S4).

In the wild-entry trials, only unfed mosquitoes were 
retained for post-collection longevity analysis (as blood-
fed mosquitoes were used in a separate experiment to 
investigate reproductive output not presented here). 
Again, in these trials, net treatment had no signifi-
cant effect on mosquito longevity (Fig. 6) in either 2016 
(untreated hut, n = 85 mosquitoes; PermaNet 2.0 hut, 
n = 85 mosquitoes, P = 0.405) or 2017 (untreated hut, 
n = 55 mosquitoes; PermaNet 2.0 hut, n = 53 mosquitoes, 
P = 0.892).

WHO intensity assays
In the discriminating dose assays, following exposure to 
the standard diagnostic dose of deltamethrin (0.05%), 
mortality was 2.01% for Tengrela (95% CI: -0.24–4.37%, 

Fig. 4 The longevity of field populations after multiple WHO cone bioassay exposures. Kaplan Meier survival curves show the proportion alive each 
day following four exposures every four days (a); or five daily exposures (b). In both a and b the dashed grey line indicates the day mosquitoes were 
exposed. Crosses represent censored data at the point of censoring. Immediate (within 24 h) mortality is excluded
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n = 149 mosquitoes). As the insecticide concentration 
was increased to 5× and 10× the diagnostic dose, mor-
tality increased but it then plateaued or even decreased 
at 15× and 20× concentrations possibly indicating that 
the solubility limit of deltamethrin had been exceeded 
at these higher concentrations; a significant difference 
between treated and control mortality was seen follow-
ing exposure to 0.25%, 0.5%, 0.75% and 1% deltamethrin 
papers (Additional file 1: Figure S1).

Excluding immediate mortality, there was no evidence 
of delayed mortality compared to untreated control at the 
standard dose of deltamethrin (0.05%, P = 0.395). How-
ever, as mosquitoes were exposed to increasing insecti-
cide concentration, reduced longevity was observed in 
the treated versus the control tubes (Fig.  7; Additional 
file 1: Table S5).

Discussion
In our earlier publication [19], we showed that expo-
sure to LLINs resulted in a delayed mortality effect that 
approximately halved the overall mosquito lifespan 
beyond the 24 hours post-exposure. The magnitude of 
this delayed mortality varied between strains, with LLIN 
exposure having a greater impact on median mortality in 
a moderately resistant Tororo laboratory strain than in 
the more highly resistant Tiassalé strain. However, the 
potential impact on malaria transmission of this delayed 
mortality was substantial for both strains, with exposure 
to LLINs estimated to reduce the malaria transmission by 
3.3-fold and 7.8-fold in Tororo and Tiassalé, respectively. 
At the time of publication, we noted that although this 
delayed mortality effect may be mitigating the impact of 
pyrethroid resistance on LLIN efficacy in the field, this 

Fig. 5 The longevity of field populations after exposure in reared-release hut trial. Daily survival curves from the state-space model show the 
proportion alive each day following collections of blood-fed and unfed mosquitoes in 2016 and 2017. Dashed grey lines represent day of insecticide 
exposure in the hut trial

Fig. 6 The longevity of field populations after exposure in wild-entry hut trials. Daily survival curves from the state-space model show the 
proportion alive each day following collections of blood-fed and unfed mosquitoes in 2016 and 2017. Dashed grey lines represent day of insecticide 
exposure in the hut trial. Shading represents 95% confidence intervals
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effect may be eroded as resistance increases in intensity. 
We also recognised the importance of testing for delayed 
mortality in field populations, using more realistic meth-
ods of LLIN exposure. As a consequence, we have been 
routinely measuring daily survival post-insecticide expo-
sure in our laboratory and field assessments of pyrethroid 
resistance. Here, we report data on the impact of LLIN 
exposure on lifelong survival in populations of An. gam-
biae (s.l.) from Burkina Faso.

Southwestern Burkina Faso is known as a hotspot for 
pyrethroid resistance [30]. We established two colonies 
of An. coluzzii from this region at LSTM in 2014 (VK7) 
and 2015 (Banfora), both of which have higher levels 
of pyrethroid resistance than our previous ‘gold stand-
ard’ resistant strain, Tiassalé [27]. Multiple exposures 
to LLINs in cone bioassays had very little impact on the 
24-hour post-exposure with mortality levels less than 
12% in all cases. Furthermore, there was no evidence of 
any delayed mortality in any of the exposure regimes for 
the VK7 strain. Delayed mortality was only observed in 
the Banfora strain although the magnitude of this effect 
was much smaller than observed in previous studies with 
Tiassalé and Tororo colonies (< 6% reduction in daily 
mortality in Banfora due to delayed mortality effects vs 
46% for Tororo and 12% for Tiassalé).

When cone bioassays were performed directly on 
mosquitoes collected from the field, again there was 
very little immediate mortality following LLIN expo-
sure and no evidence of any delayed mortality. The 
3-minute exposure used in the cone bioassays is a sim-
ple means of evaluating the response in the laboratory 
but does not reflect the realities of mosquito exposure 
to LLINs in the field. Indeed, the duration of contact of 
mosquitoes with LLINs in response to a human baited 
bed net has been shown to be less than three minutes 
[31]. The use of experimental huts enabled us to mimic 
LLIN exposure in the field under controlled conditions. 

Again, we observed no difference between the longevity 
of mosquitoes exposed to LLINs or control nets.

In hut trials, feeding status had a significant effect 
on mosquito longevity with blood-fed mosquitoes sur-
viving significantly longer post-collection than unfed 
mosquitoes. During blood meal digestion mosquitoes 
upregulate enzymes to detoxify harmful products from 
the blood meal. Subsequently, these enzymes could be 
providing an additional benefit following exposure to 
insecticides by assisting in insecticide detoxification 
[32]. In other laboratory trials acquiring a blood meal 
has been shown to improve survival following insecti-
cide exposure [33] and increase longevity [34] and sim-
ilar effects have documented in other field locations 
[35].

Reared released mosquitoes (Hut trial A, Fig.  6a, b), 
did not survive as long post-exposure as the wild entry 
mosquitoes in hut trial B (Fig.  7a, b). The experimen-
tal huts in Tengrela are situated between the rice fields 
and the village, and it is anticipated that a large propor-
tion of mosquitoes in the wild entry experiments may 
be newly eclosed mosquitoes seeking their first blood 
meal. Females used in the reared release trials were five 
to eight days-old. The presumed difference in age struc-
ture between the wild mosquitoes entering the experi-
mental huts and the reared and released, may explain 
the differences in observed longevity as it is well doc-
umented that mosquito susceptibility to insecticides 
increases as they age [36–38]. Additionally, by collect-
ing and rearing mosquitoes in the insectary for release, 
we may be including mosquitoes of lower fitness which 
in the wild may have died before reaching the huts. 
Additionally, the extra handling and transportation of 
the larval-reared mosquitoes to the hut station in the 
reared-release trial may have led to increased mortality, 
although we note that only a slight increase is observed 
in the untreated arm of the reared-release trial, in 

Fig. 7 The modeled daily survival curves of An. gambiae following a WHO longevity tube assay. Mosquitoes from Tengrela were exposed to 
increasing concentrations of deltamethrin or untreated control papers. Full lines represent the curve estimated from fitting the binomial model to 
the data, and the dotted lines represent the counterfactual curve predicted with no delayed effects. Lines correspond to the median prediction 
with shaded 95% credible intervals
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comparison to the wild-entry trial suggesting this may 
have a relatively minor impact on the differential mor-
tality observed in the two tests.

Having observed almost no impact of LLIN exposure 
on mosquito longevity in any of the populations or expo-
sure regimes, we sought to understand whether delayed 
mortality could be induced by increasing the amount 
of insecticide the mosquitoes were exposed to. Here we 
found that there was evidence of a delayed mortality 
effect at concentrations of > 5× the discriminating dose 
in WHO tubes assay. These results indicate pyrethroids 
can induce sub-lethal effects even in the highly resistant 
populations, but under standard exposure conditions, 
these effects are rarely evident.

Conclusions
Mosquito longevity is the primary determinant of vecto-
rial capacity. Our findings that standard pyrethroid nets 
are not impacting on the longevity of malaria vectors in 
southwestern Burkina Faso are of great concern. This 
study did not measure other potential sub-lethal effects 
of pyrethroid exposure in the resistant populations, such 
as reproductive output or re-feeding success, and these 
are now being investigated in follow-up studies. Further 
studies on the impact of exposure of pyrethroid-resistant 
mosquito populations on Plasmodium development are 
also needed to fully understand the impact of resistance 
on malaria transmission potential.
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