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Abstract 14 

The overall malaria burden in the Americas has decreased dramatically over the past two 15 

decades, but residual transmission pockets persist across the Amazon Basin, where 16 

Plasmodium vivax is the predominant infecting species. Current elimination efforts require a 17 

better quantitative understanding of malaria transmission dynamics for planning, monitoring, 18 

and evaluating interventions at the community level. This can be achieved with mathematical 19 

models that properly account for risk heterogeneity in communities approaching elimination, 20 

where few individuals disproportionately contribute to overall malaria prevalence, morbidity, 21 

and onwards transmission. Here we analyse demographic information combined with 22 

routinely collected malaria morbidity data from the town of Mâncio Lima, the main urban 23 

transmission hotspot of Brazil. We estimate the proportion of high-risk subjects in the host 24 

population by fitting compartmental susceptible-infected-susceptible (SIS) transmission 25 

models simultaneously to age-stratified vivax malaria incidence densities and the frequency 26 

distribution of P. vivax malaria attacks experienced by each individual over 12 months. 27 

Simulations with the best-fitting SIS model indicate that 20% of the hosts contribute 86% of 28 

the overall vivax malaria burden. Despite the low overall force of infection typically found in 29 

the Amazon, about one order of magnitude lower than that in rural Africa, high-risk individuals 30 

gradually develop clinical immunity following repeated infections and eventually constitute a 31 

substantial infectious reservoir comprised of asymptomatic parasite carriers that is overlooked 32 

by routine surveillance but likely fuels onwards malaria transmission. High-risk individuals 33 

therefore represent a priority target for more intensive and effective interventions that may 34 

not be readily delivered to the entire community.  35 

 36 
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 39 

Author summary 40 

Malaria transmission models that disregard risk heterogeneity at the community level, 41 

classifying individuals as uniformly susceptible or infected, may not properly recapitulate the 42 

epidemiology of malaria in real-life settings. Here we fit a compartmental susceptible-infected-43 

susceptible model to malaria morbidity data from Mâncio Lima, the main urban transmission 44 

hotspot of Brazil, and estimate that 20% of the urban residents contribute 86% of the overall 45 

vivax malaria burden in the town. Despite the low average force of infection, one order of 46 

magnitude lower that in rural Africa, high-risk individuals experience enough repeated 47 

infections to develop clinical immunity and constitute an asymptomatic reservoir that fuels 48 

onwards malaria transmission. Therefore, these high-risk subjects account for the paradoxical 49 

finding of clinical immunity and frequent asymptomatic parasite carriage in low-endemicity 50 

Amazonian communities. We argue that mathematical models accounting for risk 51 

heterogeneity are crucial to plan and evaluate malaria control and elimination interventions 52 

targeted to high-risk groups in communities, municipalities, and regions. 53 

 54 

Introduction 55 

Heterogeneity in the risk of infection with several pathogens has been repeatedly documented 56 

in human populations, with 20% of the hosts typically harbouring 80% of the pathogen burden 57 

in the community [1]. For example, residents in the same village in rural Africa may greatly 58 
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differ in their malaria risk, leading to over-dispersed frequency distributions of malaria attacks 59 

per person over time, with few subjects in the community experiencing frequent infection and 60 

disease [2].  61 

 62 

One source of malaria risk heterogeneity is the varying hosts' exposure to the pathogen, which 63 

can be measured as the number of infectious mosquito bites per host per unit of time, termed 64 

the entomological inoculation rate (EIR). About 20% of the children are estimated to receive 65 

80% of all infectious mosquito bites in rural African settings, suggesting that malaria parasites 66 

may also conform to the “20/80 rule” [3]. Significant malaria risk heterogeneity has also been 67 

described in towns and cities in Africa [4-6]. For example, EIRs across the city of Brazzaville 68 

were estimated in the early 1980s to range between <1 every three years and >100 per year 69 

[7]. Not surprisingly, community-wide EIR measurements are affected by a range of 70 

environmental factors (e.g., proximity of houses to water bodies that serve as larval habitats 71 

for vectors), behavioural characteristics of individuals (e.g., occupational exposure to 72 

mosquitoes and patterns of bednet use), and individual differences in attractiveness to 73 

mosquitoes [e.g., 8]. Variation in overall malaria risk may also result from differences in 74 

individual susceptibility to infection and subsequent disease given exposure, due to innate 75 

resistance and acquired immunity developing after repeated infections [9].  76 

 77 

A quantitative understanding of malaria transmission dynamics is required for planning, 78 

monitoring, and evaluating interventions aimed at its elimination [10]. However, classical 79 

susceptible-infected-susceptible (SIS) malaria models often disregard, totally or partially, risk 80 

heterogeneity at the community level and classify hosts as more uniformly susceptible or 81 

infectious than they actually are. Models that take insufficient account of real-world 82 



 

 5 

heterogeneities may not properly recapitulate the transmission dynamics of malaria in 83 

endemic settings, in addition to not providing insights into the impact of targeting control 84 

interventions to high-risk groups [1, 10]. SIS models of infectious diseases may incorporate risk 85 

heterogeneity among hosts as, for example, a continuous distribution of hosts' susceptibility 86 

to infection, which can be determined empirically from the proportions of hosts that are 87 

experimentally infected at different pathogen challenge doses [11-13]. Alternatively, models 88 

may assume that the population of susceptible individuals is divided into a finite number of 89 

susceptibility classes or frailty groups [13-17].  90 

 91 

The incidence of malaria in the Americas has decreased dramatically over the past two 92 

decades, but residual transmission pockets persist across the Amazon and challenge current 93 

elimination efforts. Residual malaria refers to the transmission that persists despite achieving 94 

high coverage of effective control measures such as use of insecticide-treated bednets and 95 

indoor residual spraying [18]. Plasmodium vivax, the predominant human malaria parasite in 96 

the region, is found in nearly 76% of cases in this continent [19]. Here, we fit compartmental 97 

SIS models that incorporate risk heterogeneity to malaria surveillance data, aiming to explore 98 

the transmission dynamics of P. vivax in the main urban malaria hotspot of the Amazon Basin 99 

of Brazil. 100 

 101 

Results 102 

A homogeneous-risk model does not satisfactorily recapitulate the 103 

epidemiology of Plasmodium vivax malaria 104 



 

 6 

We first fitted empirical data by using a compartmental SIS model that considers the entire 105 

host population as being homogeneously at risk (!! = 1 and $! = 1; parameters are described 106 

in Materials and Methods section) of clinical vivax malaria (Fig 1C). The simultaneous fitting to 107 

empirical profiles of incidence by age and number of annual episodes per person (parameter 108 

estimation process is fully described in S1 File) is optimal when the age-dependent force of 109 

infection (Equation 1) takes parameter values %" = 0.7452, , = 0.8787 and . = 0.0282 (Fig 110 

1D) and the partial immunity factor (Equation 2) decays at constant rate / = 0.1162 per 111 

infection experienced (Fig 1E). The homogeneous-risk model output recapitulates how malaria 112 

incidence density varies with age (Fig 1A; see also [20]) but does not satisfactorily fit the 113 

number of episodes per person over the one-year follow-up (Fig 1B).  114 

 115 

Fig 1. Model with homogeneous risk. (A) Age-specific malaria incidence data (red circles) and 116 

the best fitting model output (blue line). (B) Frequency distribution of the number of cases per 117 

person, empirical data (red bars) and model output (blue bars). (C) Homogeneous risk 118 

distribution. (D) Age-dependent force of infection (Equation 1) with parameters %" = 0.7452, 119 

, = 0.8787 and . = 0.0282. (E) Partial immunity factor (Equation 2) with parameter / =120 

0.1162 . 121 

 122 

A 20% fraction of high-risk individuals accounts for 86% of the 123 

community-wide malaria burden 124 

We next consider two susceptibility classes (high-risk [HR] and low-risk [LR] groups) to account 125 

for risk heterogeneity in the host population. We optimised model fitting (S1 File) for different 126 
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proportions of individuals in the HR and LR groups, with the best fit corresponding to a model 127 

with 20% of the host population allocated to the HR group (Table 1).  128 

 129 

Table 1. Model fitting for different risk distributions 130 

HR-LR (in %) Log-likelihood 

0-100 118.4802 

10-90 133.2681 

15-85 141.4236 

20-80 142.6645 

25-75 140.6231 

30-70 137.4449 

 131 

The best-fitting solution obtained with the heterogeneous model is presented in Fig 2. Fig 2A 132 

compares empirical age-specific malaria incidence data to the model output, which combines 133 

incidence densities in the LR and HR groups. Overall, the HR group is estimated to contribute 134 

86.0% of the overall vivax malaria burden in the community, roughly as expected from the 135 

“20/80 rule” [1]. High-risk individuals become infected earlier and acquire partial immunity 136 

faster than their low-risk counterparts, resulting in markedly different, subgroup-specific age-137 

incidence patterns. In the HR group, the incidence of clinical malaria sharply increases with age 138 

among children and adolescents, but declines thereafter; in contrast, malaria incidence density 139 

increases slowly in the LR group and reaches a plateau in the fourth decade of life. Fig 2B shows 140 

that the model properly fits the empirical frequency distribution of cases per person 141 

accumulated over one year of follow-up. 142 

 143 
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Fig 2. Model with heterogeneous risk. (A) Age-stratified incidence data (red circles) and the 144 

model output (blue line) as a composition of incidence densities in the low-risk (LR; red line) 145 

and high-risk (HR; yellow) groups. (B) Frequency distribution of the number of cases per 146 

person, empirical data (red bars) and model output (blue bars). (C) Risk distribution with 147 

variance 1 = 3.3247 [95% credible interval: 3.1057 - 3.3845], partitioning the population into 148 

80% (!! = 0.8) in the LR group ($! = 0.0883 [95% CI: 0.0801- 0.1189]) and 20% (!# = 0.2) in 149 

the HR group ($# = 4.6467 [95% CI: 4.5246- 4.6794]). (D) Age-dependent force of infection 150 

(Equation 1) with parameters %" = 0.6197 [95% CI: 0.3680 - 0.7174], , = 0.8720 [95% CI: 151 

0.6638 - 0.9642] and . = 0.0493 [95% CI: 0.0392 - 0.1173]. (E) Partial immunity factor 152 

(Equation 2) with parameter / = 0.0285 [95% CI: 0.0162 - 0.0330]. 153 

 154 

Figs 2C, 2D and 2E show, respectively, the risk distribution, the age-dependent force of 155 

infection and the partial immunity factor. The risk distribution has variance 1 = 3.3247 [95% 156 

credible interval: 3.1057 - 3.3845], with 80% (!! = 0.8) of the population having low risk $! =157 

0.0883 [95% CI: 0.0801- 0.1189]) (LR group) and 20% (!# = 0.2) high risk $# = 4.6467 [95% 158 

CI: 4.5246- 4.6794]) (HR group). Note that P. vivax malaria risk is approximately 26-fold higher 159 

in individuals in the 4",# compartment, which comprises malaria-naïve high-risk subjects, 160 

compared to their counterparts in the 4",! compartment, which comprises malaria-naïve low-161 

risk subjects. However, this difference changes with age as individuals in each group become 162 

infected and acquire partial immunity. The model fits the data optimally when the age-163 

dependent force of infection (Equation 1) takes parameter values %" = 0.6197 [95% CI: 164 

0.3680 - 0.7174], , = 0.8720 [95% CI: 0.6638 - 0.9642] and . = 0.0493 [95% CI: 0.0392 - 165 

0.1173], and the partial immunity factor (Equation 2) decays at rate / = 0.0285 per infection 166 

[95% CI: 0.0162 - 0.0330]. 167 
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 168 

High-risk individuals develop immunity and constitute a clinically silent 169 

reservoir of infection 170 

We next incorporate to the model, compartments with individuals who are infected but 171 

asymptomatic. The dynamics of individuals through model compartments, considering that 172 

asymptomatic infections last an average of 90 days (i.e. 5%= 1/90 per day), is shown in Fig 3. 173 

Individuals in the LR group move slowly between compartments (Fig 3A, 3B and 3C), compared 174 

with their HR counterparts (Fig 3D, 3E and 3F). Using the population age structure determined 175 

by our census survey, the model predicts that, in the current population, 77.8% and 5.4% of 176 

the individuals of the HR and LR groups, respectively, had at least one clinical malaria attack. 177 

As a consequence, acquired immunity following repeated P. vivax malaria episodes affects 178 

almost exclusively the dynamics of HR individuals, leading to frequent asymptomatic infections 179 

(Figs 3C and 3F). 180 

 181 

Fig 3. Age-profiles of repeated malaria in a heterogeneous host population comprising a high-182 

risk (HR) and a low-risk (LR) group.  (A) Susceptible individuals in the LR group; (B) Symptomatic 183 

infected individuals in the LR group; (C) Asymptomatic individuals in the LR group; (D) 184 

Susceptible individuals in the HR group; (E) Symptomatic infected individuals in the HR group; 185 

(F) Asymptomatic individuals in the HR group. 186 

 187 

Because the asymptomatic infection recovery rate 5′ is unknown, we assumed the average 188 

duration of asymptomatic parasite carriage (7&) to range from 30 to 180 days (Fig 4). Model 189 

outputs recapitulate the age-dependent increase in the prevalence of asymptomatic P. vivax 190 



 

 10 

carriage that has been described in Amazonian communities (Fig 4A; e.g., [21]) and, as 191 

expected, indicate that the community-wide prevalence of asymptomatic P. vivax infection 192 

increases with longer parasite carriage duration (Fig 4B). Model simulations indicate that HR 193 

individuals constitute the vast majority of asymptomatic parasite carriers (Fig 4C). Although 194 

this maybe somewhat overrated due to the assumption that acquired immunity reduces 195 

symptoms without preventing infection, it highlights plausible trends warranting future 196 

empirical studies. 197 

 198 

Fig 4. Prevalence of asymptomatic Plasmodium vivax infection according to the average 199 

duration of parasite carriage. (A) Age-stratified prevalence of asymptomatic infection 200 

considering an average duration of asymptomatic parasite carriage 7&	of 30, 90 and 180 days. 201 

(B) Variation in the community-wide prevalence of asymptomatic infection according to the 202 

average duration of asymptomatic parasite carriage. (C) Age-stratified prevalence of 203 

asymptomatic infection in the low-risk (LR) and high-risk (HR) groups considering an average 204 

duration of asymptomatic parasite carriage 7&	of 30 days (upper panel), 90 days (middle panel) 205 

or 180 days (lower panel).  206 

 207 

The relative contribution of asymptomatic and symptomatic infections to the overall burden 208 

of P. vivax infection in the community was also simulated (Fig 5). We observe that, even with 209 

short-lived asymptomatic parasite carriage (7& = 1 5% = 30⁄  days) and considering the 210 

average duration of symptomatic infections that are diagnosed and treated as either 4, 8, or 211 

12 days, 66-85% of subjects carrying P. vivax infection at a given time will be asymptomatic, 212 

consistent with empirical estimates from across the Amazon ranging between 52% and 90% 213 
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[21-24]. We note that these empirical data can be used to estimate 5′ and 7& in the target 214 

populations. 215 

 216 

Fig 5. Simulated proportions of community-wide Plasmodium vivax infections that are 217 

symptomatic or asymptomatic. We consider the average duration of symptomatic infections 218 

that are diagnosed and treated as either 4, 8, or 12 days; the duration of asymptomatic parasite 219 

carriage that remains undetected and untreated (7&) is considered to be 30 days (panel A), 90 220 

days (panel B), or 180 days (panel C). 221 

 222 

Finally, we simulated the relative contribution of asymptomatic parasite carriers to onwards P. 223 

vivax transmission in a wide range of plausible scenarios. To this end, we consider that 224 

symptomatic and asymptomatic parasite carriers remain infectious for 4, 8 and 12 days and 225 

30, 90 and 180 days, respectively, with a relative infectiousness (RI) of asymptomatic compared 226 

to symptomatic infections of 1/2, 1/10 and 1/30 (Fig 6). Model outputs indicate that even 227 

short-lived asymptomatic P. vivax carriage (7& = 30 days) can contribute substantially to 228 

onwards malaria transmission in the community if the overall RI ranges between 1/2 and 1/10 229 

(Figs 6A and 6D). Sustained asymptomatic P. vivax carriage (7& = 90 days) can account for 30-230 

87% of the infectious reservoir if IR ranges between 1/2 and 1/10 (Figs 6B and 6E), with a minor 231 

further increase with 7& = 180 days (Figs 6C and 6F). We further note that, for most 7& and 232 

RI value combinations, the relative contribution of symptomatic infections to the infectious 233 

reservoir can be substantially reduced by providing prompt CQ-PQ treatment to reduce the 234 

mean gametocyte clearance time (or average duration of infectiousness) from 12 to 4 days.  235 

 236 
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Fig 6. Relative contribution to the Plasmodium vivax infectious reservoir of individuals with 237 

symptomatic and asymptomatic infections. Model outputs consider different average 238 

durations of asymptomatic parasite carriage 7& (7& = 30 days in panels A, D and G; 90 days in 239 

panels B, E and H; and 180 days in panels C, F and I) and different relative infectiousness (RI) 240 

of asymptomatic compared to symptomatic infections (RI = 1/2 in panels A, B and C; 1/10 in 241 

panels D, E and F; and 1/30 in panels G, H and I. For every combination of 7& and RI, we 242 

simulated the average duration of infectiousness of symptomatic infections as either 4, 8 or 12 243 

days. 244 

 245 

Discussion 246 

Measuring how malaria infection risk varies among individuals is challenging. Product of 247 

exposure to infectious mosquitoes and susceptibility to infection given exposure, each 248 

individual’s risk is determined by numerous interacting factors. Despites notorious efforts 249 

being invested in characterising specific determinants, such as individual mobility to and from 250 

hotspots [25], parasite genetics [26] and human genetics [27], a complete catalogue of risk 251 

factors and respective measures is not on the horizon. Smith [28] suggested that individual-252 

level variation in susceptibility to malaria given exposure can be inferred by modelling malaria 253 

incidence as a function of EIR measured in the same population. Similarly, matched EIR and 254 

parasite prevalence data have been used to quantify heterogeneity in malaria susceptibility by 255 

assuming a gamma distribution of relative infection rates in the host population [5]. However, 256 

the widespread use of these approaches is limited by the restricted availability of reliable EIR 257 

measurements, which are notoriously difficult to obtain, from across endemic communities. 258 

Malaria transmission models that consider heterogeneity have instead assumed either a small 259 



 

 13 

number of measured risk factors or unmeasured ranges of individual risk variation 260 

incorporated as either discrete frailty groups or a continuous variable (e.g., [29]).  261 

 262 

Here, we show that a compartmental SIS model with heterogeneous risk notoriously 263 

outperforms its mean-field approximation in recapitulating the transmission dynamics of P. 264 

vivax in the main malaria hotspot of Brazil. We provide an empirical basis to estimate risk 265 

heterogeneity in host populations by simultaneously fitting SIS models to two sets of 266 

surveillance data -- namely, age-related malaria incidence and frequency distribution of 267 

malaria cases per person -- derived from the same population-based cohort. The best-fitting 268 

heterogeneous-risk model considers that the HR group comprises 20% of the host population 269 

and contributes 86% of the vivax malaria burden in the community. We suggest that this 270 

approach can be used to fit empirical data from across a range of malaria-endemic settings to 271 

test whether other host populations conform to this 20/80 pattern.  272 

 273 

The estimated force of infection in the main residual malaria hotspot of Brazil is one order of 274 

magnitude lower than that estimated for P. falciparum in children from across rural Africa (e.g., 275 

[20, 30]). As a consequence, our study population appears to acquire partial immunity to 276 

malaria rather slowly. Indeed, the model predicts that as much as 25 past clinical malaria 277 

attacks, on average, are required in order to reduce by half the risk of a clinical malaria attack. 278 

In holoendemic settings, children are typically continuously infected during the transmission 279 

season, with frequent superinfection and overlapping clinical malaria episodes during their first 280 

years of life. For example, children aged 1-5 years in Papua New Guinea were estimated to 281 

experience an average of 2.5 episodes of clinical vivax malaria per year in 2006-2007, before 282 

intensified, large-scale control interventions were implemented nationwide [31]. Similarly, in 283 
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Mali an average of 2.4 episodes of clinical falciparum malaria per child aged 3-59 months per 284 

year have been estimated to occur, despite the distribution of long-lasting insecticide-treat 285 

bed nets at baseline [32]. Both estimates give an average of 25 malaria attacks by the age of 286 

10-11 years. Indeed, in such areas, malaria remains common throughout most of childhood, 287 

and a significant decrease in risk of infection is seen in adolescence and early adulthood. In our 288 

study site, although partial immunity develops earlier in the HR group, with a decline in malaria 289 

incidence after the second decade of life (Fig 2A), HR individuals across all age groups still 290 

constitute the main contributors to the overall clinical malaria burden. 291 

 292 

Despite the low overall force of infection in the study area, the fraction of HR individuals who 293 

experience repeated P. vivax infections and gradually develop partial immunity will eventually 294 

become asymptomatic but potentially infectious parasite carriers overlooked by routine 295 

surveillance. Although the overall average incidence of clinical P. vivax malaria in Mâncio Lima, 296 

estimated at 20.90 episodes/100 person-years at risk between October 2015 and September 297 

2016, is substantially lower than that observed in holoendemic settings, some HR individuals 298 

may be nearly as exposed to malaria as the average child living in rural Africa. In fact, around 299 

one fourth of study subjects experienced one or more episodes of clinical vivax malaria during 300 

the study period; 29.9% of those with symptomatic P. vivax infections diagnosed during the 301 

study period had two or more episodes (Fig 2B, red bars), indicating that a fraction of exposed 302 

subjects actually experience repeated P. vivax episodes over one year of follow-up. Therefore, 303 

the paradoxical finding of clinical immunity and frequent asymptomatic infections in 304 

Amazonian communities exposed to low overall levels of malaria transmission [33] can be 305 

explained by the presence of a fraction of HR subjects that experience the majority of 306 

infections in the community and acquire clinical immunity. Statistical modelling of malaria 307 
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surveillance data has identified young adult males living in the less urbanized periphery of the 308 

town as the main HR individuals in Mâncio Lima [34]. Importantly, these HR individuals not only 309 

contribute disproportionately to the overall burden of clinical disease (Fig 2A), but also 310 

constitute the silent reservoir of sustained asymptomatic infections (Fig 4C) that are left 311 

untreated and may contribute significantly to onwards malaria transmission in this and other 312 

low-endemicity settings [35]. Estimates of the proportions of asymptomatic infections that are 313 

patent (consistent with RI close to 1/2) vary by one order of magnitude, from 4.5% [24] to 314 

46.7% [22], in Amazonian populations. 315 

 316 

The importance of characterising malaria reservoirs in endemic regions has recently been 317 

highlighted [36] and the results from this work further underscore how essential this 318 

information is to inform elimination programmes for properly planning control interventions. 319 

Heterogeneous risk implies that imperfect control measures, such as leaky vaccines, if 320 

uniformly applied to the entire host population, are unlikely to reduce substantially the overall 321 

malaria burden [29]. Our model simulations, however, suggest that a dramatic reduction in the 322 

community-level burden of clinical P. vivax malaria can be achieved by selectively targeting HR 323 

subjects, if they can be readily identified, to more intensive and effective measures that may 324 

not be readily delivered to the entire population.  325 

 326 

We have limited the present analysis to P. vivax, which predominates in the areas of residual 327 

malaria transmission across the Amazon Basin. One major feature of P. vivax is that parasites 328 

may persist for several months in human hosts as hypnozoites, the dormant liver stages that 329 

eventually reactivate and may cause one or more new blood-stage infections termed relapses 330 

following a single infectious mosquito bite [37]. Radical cure of vivax malaria thus requires the 331 
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use of antimalarial drugs that target both blood and liver stages, such as PQ and tafenoquine. 332 

Although we do not consider relapses explicitly in our compartmental models, they are 333 

implicitly integrated into the force of infection, which combines blood-stage infections arising 334 

from infecting stages (sporozoites) inoculated during mosquito bites and relapses arising from 335 

reactivating hypnozoites. We hypothesise that HR and LR individuals initially differ in their 336 

exposure to infectious mosquitoes or susceptibility to infection and disease once challenged 337 

with infecting sporozoites, but over time HR individuals become also more likely to have P. 338 

vivax relapses originating from the large hypnozoite reservoir that they have accumulated in 339 

the liver following repeated infections. Importantly, new infections and relapses entail 340 

different control measures; while the incidence of new infections can be reduced by 341 

decreasing exposure to mosquito bites, e.g. with insecticide-treated bednets, relapses can be 342 

prevented by improved anti-relapse treatments. 343 

 344 

The present study has some limitations. First, we used routinely collected malaria morbidity 345 

data for model fitting, but blood samples were not available for further confirmatory (e.g., 346 

molecular) diagnostic tests. Moreover, surveillance data used to fit our models do not include 347 

sub-patent and asymptomatic malaria episodes experienced by the target population. Second, 348 

our modelling approach does not allow for estimating the impact of improved anti-relapse 349 

therapies on the overall P. vivax malaria burden, since we do not differentiate between blood-350 

stage infections arising from hypnozoites and newly inoculated sporozoites. Third, there are 351 

no empirical data, obtained in the same population, to properly measure the relative 352 

infectiousness of asymptomatic infections, either patent or not, and estimate more precisely 353 

their potential contribution to malaria transmission in the community.  354 

 355 
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Materials and Methods 356 

Ethics statement 357 

The study protocol was approved by the Institutional Review Board of the Institute of 358 

Biomedical Sciences, University of São Paulo, Brazil (CEPH-ICB 1368/17); written informed 359 

consent and assent were obtained for the census survey. 360 

 361 

Study site and population 362 

The study site, the municipality of Mâncio Lima (07°36' 51"S, 72°53' 45"W), is situated in the 363 

upper Juruá Valley, next to the border between Brazil and Peru. With 17,910 inhabitants (half 364 

of them in the urban area) and 9,278 laboratory-confirmed malaria cases notified in 2017, 365 

Mâncio Lima has currently the highest annual parasite incidence (API) in Brazil, estimated at 366 

518.0 malaria cases per 1,000 inhabitants. Mâncio Lima is unique in Brazil in that 49% of all 367 

local malaria infections are reportedly acquired in urban settings, compared to a country's 368 

average of 15% (Ministry of Health of Brazil; unpublished data available at: 369 

http://www.acessoainformacao.gov.br/). 370 

 371 

The study cohort comprised 8,783 permanent residents in the town of Mâncio Lima, aged from 372 

<1 to 80 years and distributed into 2,329 households. These individuals were systematically 373 

enumerated during a demographic census survey carried out by our field team between 374 

November 2015 and April 2016. Dates of entry in the study cohort were the subject¢s date of 375 

birth or October 1, 2015, whatever was the most recent; this information was used to calculate 376 

the number of person-years at risk for incidence density estimation. For the purposes of this 377 
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analysis, we assumed that no study participant left the study area before September 30, 2016, 378 

when the latest morbidity data were collected.  379 

 380 

Malaria morbidity data 381 

We retrieved all records of laboratory-confirmed clinical malaria cases notified in Mâncio Lima 382 

between October 1, 2015, to September 30, 2016. Case records were entered into the 383 

electronic malaria notification system of the Ministry of Health of Brazil (SIVEP-Malaria; 384 

http://200.214.130.44/sivep_malaria/). Because malaria is a notifiable disease in Brazil and 385 

only public health facilities provide laboratory diagnosis and malaria treatment, the electronic 386 

malaria notification system is estimated to comprise 99.6% of all clinical malaria cases 387 

diagnosed countrywide [38]. However, asymptomatic parasite carriage and persistently 388 

subpatent infections, which are not detected by microscopy or commercially available, 389 

antigen-based rapid diagnostic tests, may have been overlooked. We used patient's name, 390 

gender, and age to link malaria case records to individuals in our census survey database, given 391 

the absence of common unique patient identifiers. Name entries were compared using the 392 

Jaro-Winkler string distance [39] as implemented in the stringdist package of the R software 393 

[40]. Criteria for associating malaria case records to subjects enumerated during our census 394 

survey were: (a) same gender, (b) maximum reported age difference of 1 year, and (c) 395 

maximum Jaro-Winkler distance between names of 0.10, with penalty factor of 0.05 (constant 396 

scaling factor for how much the score is adjusted downwards for having common prefixes).  397 

 398 

A minimal interval of 28 days between two consecutive malaria notifications was required to 399 

count the second case as a new malaria episode. When different infecting species were 400 
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detected in samples obtained less than 28 days apart, the subject was considered to have a 401 

single mixed-species infection. Overall, we found 2,057 malaria notifications in the cohort of 402 

urban residents during the 12-month study period, with 8,770.8 person-years of follow-up. P. 403 

vivax accounted for 1,833 cases (89.1%), P. falciparum for 193 cases (9.4%) and both species 404 

for 31 cases (1.5%). The present analysis is limited to P. vivax infections, since this is the most 405 

abundant in our study location. Describing the transmission dynamics of multiple Plasmodium 406 

species would escalate model complexity and assumptions beyond the realm of the current 407 

study. We found an average malaria vivax incidence density of 20.90 episodes/100 person-408 

years at risk. By combining demographic information and malaria morbidity data, we 409 

computed age-specific vivax malaria incidence densities and the number of vivax malaria 410 

episodes per person recorded in the urban cohort over 12 months. These empirical data were 411 

used to fit model outputs. 412 

 413 

The mathematical model 414 

The compartmental SIS model describing the epidemiology of clinical vivax malaria is 415 

represented diagrammatically in Fig 7. Any population of susceptible individuals is 416 

heterogeneous with regards to risk of infection. Individual risk is a continuous characteristic 417 

which we discretise in two groups: low risk (LR) and high risk (HR). This is a coarse description 418 

of individual heterogeneity that nevertheless suffices to our modelling purposes of capturing 419 

the effects of variance in risk. Within each risk group, individuals are classified as either 420 

susceptible or infected. Each risk group comprises a proportion !'  (0 < !' < 1, < = 1, 2 and 421 

!! + !# = 1) of the total population and is associated with a risk factor $' > 0 (< = 1, 2). 422 

Without loss of generality, we assume that the overall average risk is equal to 1 ($!!! + $#!# =423 
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1) since the factors $'  are modifiers of individual responses to a force of infection which will 424 

be allowed to vary. This setting configures a risk distribution with variance 1 = !!($! − 1)# +425 

!#($# − 1)#. 426 

 427 

Fig 7. Susceptible-infected-susceptible (SIS) compartmental model representing the dynamics 428 

of malaria over age in a heterogeneous host population. The compartments describe the 429 

following epidemiological classes: 4(,'  represents susceptible individuals from risk group < (1 = 430 

low-risk [LR]; 2 = high-risk [HR]) who have experienced B past clinical malaria attacks; C(,'  431 

represents symptomatic infected individuals from risk group < who are currently experiencing 432 

their Bth clinical malaria attack. Individuals experience new infections due to an age-dependent 433 

force of infection %(D) modified by a risk factor $', and a partial immunity weight E(B); all 434 

individuals recover at the same rate 5.  435 

 436 

We assume an age-dependent force of infection %(D) (Equation 1), which correlates mosquito 437 

biting activity with human body mass [30, 41]. This function strictly increases with age, with 438 

minimum %"(1 − ,) (at age zero) and upper limit %". The parameter . determines how steeply 439 

the force of infection increases in early ages and , controls the value at birth. 440 

 441 

 %(D) = %"(1 − ,F)*+) (1) 

 442 

Assuming that individuals acquire partial immunity after repeated clinical malaria attacks, due 443 

to antibody- and cell-mediated responses [42], we introduce a factor describing the 444 

development of partial immunity. The strictly positive decreasing function E(B) of the number 445 

B (B ≥ 0) of past clinical vivax malaria attacks each individual has experienced (Equation 2), with 446 
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a maximum for malaria-naïve individuals (E(0) = 1), simulates a partial immunity factor and 447 

weights down the age-dependent force of infection %(D) as the number of cumulative clinical 448 

malaria episodes increases. The factor describing partial immunity is controlled by the 449 

parameter /, which determines the rate at which immunity develops after repeated infections. 450 

 451 

 E(B) = F),∙(  (2) 

 452 

Assuming equilibrium with respect to time, in addition to the age-dependent force of infection, 453 

partial immunity acquisition and risk heterogeneity, malaria unfolds in age domain according 454 

to a system of ordinary differential equations (ODEs) (system of equations 3). 455 

 456 

 

H4",'
HD = −$'E(1)%(D)4",' 																											
HC!,'
HD = +$'E(1)%(D)4",' − 5C!,' 														
H4!,'
HD = −$'E(2)%(D)4!,' + 5C!,' 													
HC#,'
HD = +$'E(2)%(D)4!,' − 5C#,' 														

⋮
H4.)!,'
HD = −$'E(J)%(D)4.)!,' + 5C.)!,'

HC.,'
HD = +$'E(J)%(D)4.)!,' − 5C.,' 									

⋮

 
Initial conditions: 

4",'(0) = !'   

4(,'(0) = C(,'(0) = 0  

< = 1,2 , B = 1,2, … 

 

(3) 

 457 

Individuals in the LR group are initially allocated to compartment  4",!, comprising susceptible 458 

individuals who are malaria-naïve. At a rate which is determined by the age-dependent force 459 

of infection %(D) and the risk factor $!, LR individuals move to compartment C!,! after 460 

experiencing their first clinical vivax malaria attack. After recovering (with recovery rate 5), 461 
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they become susceptible again and move to the next compartment 4!,!, which comprises 462 

susceptible individuals who have already experienced one past malaria attack and acquired 463 

some degree of partial immunity. These individuals may acquire a second infection, according 464 

to the same age-dependent force of infection and risk factor, but now weighted down by the 465 

partial immunity E(1). LR individuals can move forward between compartments within the LR 466 

group. With similar dynamics, HR individuals move forward within the HR group, but with a risk 467 

factor $# (Fig 7). This is denominated as the heterogeneous risk model. 468 

 469 

For comparison purposes, we built a similar compartmental model where the same average 470 

risk is applied to the entire host population (homogeneous risk model; !! = 1 and $! = 1, e.g., 471 

[20]). We fitted the heterogeneous and the homogeneous risk models to empirical data and 472 

compared their ability to recapitulate the epidemiology of vivax malaria in the study 473 

population. 474 

 475 

Mathematical model with asymptomatic infections 476 

We refined the SIS model with compartments comprising infected but asymptomatic 477 

individuals, by assuming that the proportion of asymptomatic infections depends on gradually 478 

acquired partial immunity. This partial immunity is sometimes termed “clinical” or “anti-479 

disease immunity” to emphasise that individuals remain susceptible to infection but become 480 

gradually less likely to develop clinical disease once infected. We followed the same basic 481 

assumptions of the first model: susceptible individuals from risk group <, with age D and with B 482 

past clinical attacks (4(,'(D)) develop their Bth clinical case at rate $'E(B)%(D). Partial immunity 483 

developed after B	past attacks (Equation 2) reduces by 1 − E(B) the probability of susceptible 484 
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individuals 4(,'(D)	presenting clinical symptoms once infected again. Note that in this model 485 

rates of clinical malaria episodes decline explicitly due to clinical immunity, in contrast with the 486 

previous implementation which did not specify whether these declines were due to immunity 487 

against disease or against infection. Infected subjects thus move to the asymptomatic 488 

compartment L if they do not develop clinical malaria upon infection. More formally, 489 

susceptible individuals 4(,'(D)	become infected but asymptomatic L(,'(D) at rate $'(1 −490 

E(B))%(D). Individuals with asymptomatic infections from group <, age D and who experienced 491 

B past clinical malaria attacks (L(,'(D)) can eventually progress to their Bth new clinical attack, 492 

at rate $'E(B)%(D), or recover and become susceptible again at rate 5′. The compartmental 493 

SIS model considering asymptomatic infections is represented diagrammatically in Fig 8. 494 

 495 

Fig 8. Susceptible-infected-susceptible (SIS) compartmental model representing the dynamics 496 

of malaria in a heterogeneous host population considering asymptomatic infections. The 497 

compartments correspond to the following epidemiological classes: 4(,'  represents susceptible 498 

individuals from risk group < (1 = low-risk [LR]; 2 = high-risk [HR]) who have experienced B 499 

clinical malaria attacks; C(,' 	represents individuals with symptomatic infection from risk group 500 

< who are currently experiencing their Bth clinical malaria attack; L(,'  represents individuals 501 

with asymptomatic infections from risk group < with B past clinical malaria attacks. Individuals 502 

experience malaria episodes due to an age-dependent force of infection %(D) modified by a 503 

risk factor $', and a partial immunity weight E(B). Individuals from compartments C and L 504 

recover and become susceptible again at rates 5 and 5′, respectively. 505 

 506 
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We assume that naïve individuals from compartment 4",'(D) cannot remain asymptomatic 507 

once infected for the first time, since they have not yet developed partial immunity. Indeed, 508 

with acquired immunity modelled by an exponential function (Equation 2), we have for naïve 509 

individuals E(0) = 1. Therefore, the probability of naïve individuals becoming infected but 510 

asymptomatic is 0 ($' . 0. %(D)). 511 

 512 

Introducing asymptomatic compartments (L) to the model does not change the dynamics of 513 

symptomatic infections, which are represented by our empirical morbidity data. With the 514 

assumptions describe above, both susceptible and infected but asymptomatic individuals are 515 

at risk of symptomatic infection; therefore, the incidence of clinical malaria and the frequency 516 

distribution of clinical cases per person remain the same for both models. We thus apply the 517 

same parameters estimated in the first model (parameter estimation process is fully described 518 

in S1 File), but can now distinguish uninfected and susceptible individuals from those who are 519 

infected but remain asymptomatic, according to the recovery rate 5′. 520 

 521 

Asymptomatic parasite carriers, duration of infection and the 522 

infectious reservoir 523 

We simulated several scenarios to address the relative contribution of asymptomatic parasite 524 

carriers to the overall burden of infection and onwards transmission in the community. First, 525 

we assume individuals with asymptomatic infections to be 2, 10 and 30 times less infectious to 526 

mosquitoes than individuals with symptomatic infections (relative infectiousness (RI) of 1/2, 527 

1/10 and 1/30, respectively). Empirical RI estimates vary widely according to the average 528 

gametocyte density [43] and are close to 1/2 for microscopy-detected asymptomatic P. vivax 529 
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infections in Ethiopia [44] but range from 1/14 to 1/29 for asymptomatic infections in Colombia 530 

and Brazil that can be detected only by molecular methods [45, 46].  531 

 532 

Next, we assume that, on average, symptomatic infections can be detected by laboratory 533 

methods during 4, 8 and 12 days. Symptomatic infections are curtailed by treatment and their 534 

average length primarily depends on: (a) the duration of the patent but subclinical period that 535 

precedes full-blown disease manifestations, which remains elusive; (b) the mean time from the 536 

appearance of symptoms to the introduction of chloroquine (CQ)-primaquine (PQ) treatment 537 

(2.7 days in our population [47]), and (c) the mean P. vivax clearance time following CQ-PQ 538 

treatment (1.9 day in our population; [47]). We thus divided the proportion of individuals 539 

within the infected (I) compartments by 7 (=28/4), 3.5 (28/8) or 2.3 (28/12) to represent the 540 

prevalence of symptomatic blood-stage infections that can be detected by laboratory methods 541 

during the subject's 28-day stay in the I compartments. 542 

 543 

We further assume that asymptomatic blood-stage infections undetected by routine 544 

surveillance and left untreated can last between 30 and 180 days. Empirical evidence is rather 545 

limited in this area and the duration is clearly context-specific. Once detected by microscopy, 546 

asymptomatic P. vivax infections in 4 years-old Papua New Guinean children lasted on average 547 

15 days [48], but the time elapsed before blood-stage parasite detection has not been 548 

measured. If asymptomatic P. vivax infections were first sampled at a random time point during 549 

their trajectory, the time to parasite clearance after detection (15 days) is expected to equal, 550 

on average, the time elapsed before parasite detection, giving a total duration of 30 days. Here 551 

we simulate scenarios with asymptomatic P. vivax infections between 30 and 180 days, which 552 
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corresponds to the median duration of asymptomatic P. vivax infections in a cohort study in 553 

Vietnam [49]. 554 

 555 

Finally, we consider the duration of infectiousness to equal the total duration of blood-stage 556 

infection in both symptomatic and asymptomatic carriers, under the assumption that virtually 557 

all blood-stage P. vivax infections comprise mature gametocytes [22,50]. Empirical data from 558 

Brazil show that vivax malaria patients become little infectious within 10 hours of CQ-PQ 559 

treatment [51], but untreated asymptomatic carriers of subpatent P. vivax parasitemia may 560 

remain infectious for up to 2 months after parasite detection [52]. 561 

 562 

We conclude that considering risk heterogeneity in the host population is crucial for properly 563 

describing the transmission dynamics of P. vivax using compartmental SIS models and provide 564 

a framework to test the hypothesis that a few HR subjects contribute the vast majority of the 565 

vivax malaria burden at the community level. Moreover, HR subjects are important 566 

contributors to the silent infectious reservoir that likely fuels onwards malaria transmission in 567 

low-endemicity settings. These results can be further explored for the evidence-based 568 

planning and deployment of control interventions towards the elimination of residual P. vivax 569 

malaria across the Amazon Basin. 570 
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Parameter estimation process 

The SIS compartmental model does not consider a latent period. We therefore assume that 

individuals recover and become susceptible again in an average of 28 days after infection 

(equivalently, with a recovery rate ! = 1/28 per day). This time interval corresponds 

approximately to the duration of the post-treatment prophylactic effect of a full course of 

chloroquine (CQ; total dose, 25 mg of base/kg over 3 days) and primaquine (PQ; 0.5 mg of 

base/kg/day for 7 days), the antimalarial drugs used for radical cure of vivax malaria in Brazil 

[1]. Remaining parameters were estimated by simultaneously fitting two sets of empirical data: 

(a) the age-specific malaria incidence density in the urban population of Mâncio Lima 

(() = {(+, -.)/)}/2343 ) and (b) the number of vivax malaria episodes notified per urban resident 

over 12 months of follow-up ((5 = {(+, -.5/)}/236 ). This approach contrasts with previous 

attempts to fit similar SIS models to age-related malaria prevalence or incidence data in that 

we also consider the overall frequency distribution of malaria episodes in the population [2, 

3]. First, assuming equilibrium conditions, the system of ODEs was simulated, in age domain, 

from age 0 to 80 in order to generate incidence profiles over age and risk group. Next, we 

reprofiled incidence over age according to the population age structure determined by our 

census survey and computed a distribution of the number of cases experienced per person 

over 12 months. Parameter estimation was performed with the software Matlab, using PESTO 

(Parameter EStimation Toolbox; [4]). We assume that the residuals between model outputs 

and data are normally distributed, with unknown standard deviations. Our optimisation 

process maximized the likelihood (Equation S1) of observing both datasets, that is, 
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in which -) is the model output for age-specific malaria incidence densities, -5 is the model 

output for the number of cases per person over 12 months, :) is the standard deviation of the 

measurement noise for -), and :5 is the standard deviation of the measurement noise for -5. 

We optimized the model fitting considering that the HR group comprised 10%, 15%, 20%, 25% 

or 30% of the hosts; although where exactly we partition what is conceivably a continuous risk 

distribution is somewhat arbitrary we informed this selection on likelihood values. To ensure 

that the observed maximum is global, we performed 30 multi-starts initialised with randomly 

sampled parameter values following a Latin hypercube. We also used PESTO to derive 95% 

credible intervals for each parameter by using Monte-Carlo Markov Chain methods considering 

10G iterations. 
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