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Abstract 8 

RNA editing is a source of molecular diversity that regulates the functional repertoire of animal 

transcriptomes. Multiple studies in Drosophila have revealed that conserved editing events can be a 10 

source of evolutionary adaptations, and there is a solid body of evidence linking editing and the 

fine-tuning of neural genes, which are often targeted by insecticides used in vector control. Yet, 12 

despite these suggestive connections, genome-wide analyses of editing in insect vectors are 

conspicuously lacking. Future advances will require complementing the growing wealth of vector 14 

genomes with targeted transcriptome analyses. Here, we review recent investigations of the genetic 

footprints of adaptive RNA editing in insects and provide an overview of new methodologies 16 

applicable to studies of RNA editing in insect vectors.  

Highlights 18 

• RNA editing introduces transcript-specific mutations that are not detected in genetic assays. 

• The regulated edition of transcriptomes is conserved and globally adaptive across various 20 

Drosophila species, suggesting a general principle in insects. 

• RNA editing fine-tunes the functions of neural channels that are involved in insecticide 22 

resistance. Yet, genome- and transcriptome-wide studies in insect vectors are still lacking.  
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Introduction 24 

The synthesis of transcripts involves post-processing and chemical modifications of the RNA 

molecules, which can fine-tune their functions and create distinct isoforms from a single DNA 26 

template. RNA editing is a form of transcript post-processing that involves the chemical 

modification of single bases in immature RNA molecules, resulting in transcript-specific 28 

ribonucleoside mutations [1]. RNA editing is a source of molecular novelty that may fuel adaptive 

evolution [2,3], in common with other mechanisms of transcriptome diversification—with which 30 

it should not be confused—such as alternative splicing. RNA editing is regulated by conserved cis-

encoded signals [1,3] that are subject to natural selection. Consequently, both the regulatory 32 

causes and the adaptive consequences of these transcriptomic mutations can be readily studied from 

a population genomic perspective. 34 

Yet surprisingly, there have been very few studies of RNA editing in insect vectors, and none 

focusing on its population genetics. Here we review evidence of editing in disease vectors, in which 36 

it may generate functional changes in genes involved in adaptation to insecticide resistance. The 

emergence of resistance is an important public health issue, as it jeopardises the effectiveness of 38 

vector control programmes. Genetic monitoring programmes of insecticide resistance, however, do 

not routinely probe possible adaptations mediated by RNA editing. We also consider recent studies 40 

on the role of editing in environmental adaptations in model insects, primarily Drosophila 

melanogaster, and its regulation via population-specific polymorphisms. Finally, we provide 42 

examples of genome-wide approaches on the interaction between microevolutionary processes and 

RNA regulation that can inform future studies utilising vector genomic resources. 44 

The molecular basis of RNA editing 

Animals exhibit multiple types of RNA editing, each of them effected by a different family of 46 

enzymes that target specific nucleotides, and often show preference for certain types of transcripts 

and sub-regions within transcripts (coding and non-coding). The most common type of editing is 48 

the deamination of adenosine into inosine (A-to-I) by ADAR enzyme family [1,4], which is 

conserved in most animals [5]. Inosines are recognised as guanosines by the translational 50 

machinery and the reverse transcriptase used in RNA sequencing protocols [1,3], making A-to-I, 

effectively, a transcript-specific A-to-G substitution. Insects also undergo other, less common [3], 52 

types of editing: C-to-U deamination effected by the cytidine deaminase APOBEC-1 [6], and U-

to-C or G-to-A trans-aminations [7].  54 



 

RNA editing can have various effects at the molecular level (Figure 1) [1,3]. The most direct 

consequences are ‘recoding’ changes, which is relatively common in Drosophila [8], and can 56 

result in non-synonymous substitutions and possibly new protein isoforms (Figure 1a). Editing can 

also influence alternative splicing: it can disrupt or create new cis-regulatory signals that regulate 58 

splicing (e.g. the acceptor/donor splice sites) [9] (Figure 1b); alter the stability of the dsRNA 

structures formed during splicing [10,11]; and the editing molecular machinery can compete with 60 

splicing factors for physical access to the nascent RNA [10,11]. A-to-I changes also regulate 

microRNA activity (Figure 1c): editing of precursor mRNAs (3′ or 5′ untranslated regions) or the 62 

microRNA itself can reconfigure microRNA binding sites and influence transcript expression and 

degradation rates [1,12]. Finally, ADAR enzymes also act on clustered editing sites located in 64 

repetitive pre-mRNA regions, often rich in retroelements such as Alu that are prone to form dsRNA 

structures [3]. Intense editing of repetitive elements been linked to the regulation of the cytosolic 66 

immune response against dsRNA structures [3], and to the exonisation of retroelements via 

creation of new splicing sites [1]. 68 

 

Genetic footprints of adaptive RNA editing 70 

Transcript editing results in increased sequence diversity [3], potentially providing a source of 

evolutionary adaptations [2]. RNA variants enable the exploration of phenotypic space (e.g. novel 72 

protein isoforms) that is inaccessible by genomic mutations, which can carry fitness costs [2]. The 

incidence of editing can be regulated in a tissue- or stage-specific manner. For example, A-to-I 74 

 
Figure 1. Molecular effects of RNA editing. (a) ‘Recoding’ events result in non-synonymous 

substitutions and the production of new protein isoforms. (b) Editing can modify conserved splicing 

regulatory signals present in precursor mRNA, such as donor (GT) or acceptor (AC) splice sites. (c) 

Editing can add/remove binding sites for microRNAs (often present in untranslated regions of the 

precursor mRNA), or (d) act on the microRNA molecule itself. 



 

editing in D. melanogaster is enriched in brains and adult tissues [13,14], and it exhibits neuron 

type-specific profiles [15]. Editing is also responsive to environmental cues, e.g. the response to 76 

temperature acclimation in D. melanogaster [16,17]. 

If editing is linked to adaptive evolution, it should leave genetic footprints in the genome that can be 78 

detected by comparative analyses. Indeed, non-synonymous A-to-I sites in brain transcriptomes are 

frequently conserved and under positive selection across the Drosophila genus [18,19*,20*]. 80 

Interestingly, phylogenetic comparisons of editing in individual insect genes show that, as 

hypothesised [2], it expands phenotypic space by introducing sequence variation into highly 82 

conserved or invariant loci [21], or—more subtly—in variable regions within highly conserved 

genes, e.g. potassium voltage-gated channels [22]. These diversifying effects can be especially 84 

significant in neuronal genes that tend to evolve under strong functional constraints [20*], such as 

insect nicotinic acetylcholine receptors in which RNA editing provides substantial diversity [23].  86 

Adaptive editing can also be studied from a population genetic perspective. For example, 

evolutionarily recent A-to-I sites in rhesus macaques are more common than expected in loci with 88 

recent G-to-A mutations (relative to humans) for both fixed and currently polymorphic loci, and 

these novel A-to-I sites are under positive selection across macaque populations [24]. These 90 

results suggest that A-to-I compensates the costs of recent G-to-A mutations, a view also supported 

by detailed analyses of editing conservation in insect nicotinic acetylcholine receptors [23]. In 92 

contrast, Popitsch et al. [25*] reported that the adaptiveness of A-to-I in human and D. 

melanogaster populations was due to higher relative fitness of G alleles in these sites, which A-to-I 94 

effectively mimics. These conflicting hypotheses, which can be tested with transcriptomic and 

population genetic methods, imply that different natural selection mechanisms could be acting on 96 

editing sites [25*]. 

RNA editing is a source of environmental adaptation in insects 98 

A recent study by Yablonovitch et al. [26**] provides strong support for the relationship between 

editing, adaptation, and fine-scale population genetic diversity. Several editing events were 100 

associated with aridity tolerance in D. melanogaster from opposite slopes of the ‘Evolution 

Canyon’, near Israel’s Mount Carmel, which show dramatic microclimatic differences. The study 102 

combined whole-genome sequencing, RNA-seq, and microfluidics-based multiplex PCR (a high-

throughput assay to measure allele-specific transcript frequencies [27*]) (Box 1) to investigate the 104 

role of DNA mutations in regulating gene expression and the frequency of A-to-I editing in flies 



 

originating from opposite slopes of the canyon. 106 

Fine-scale population structure in the ‘Evolution Canyon’ flies correlated with transcriptomic 

regulation both at the editing and expression levels. Furthermore, differentially edited A-to-I sites 108 

were frequently associated with highly-differentiated DNA polymorphisms in their editing 

complementary sequences (the region in dsRNA molecules that is required for ADAR-mediated A-110 

to-I deamination); and the genomic regions surrounding differential editing sites had stronger inter-

population differentiation than those of constitutive editing sites (Figure 2). A CRISPR-Cas9 112 

mutagenic assay was used to demonstrate the effect of DNA variation in editing rates for the 

prominin gene, in which an intronic polymorphism exclusive to the north-facing population 114 

hindered dsRNA stability and resulted in lower editing rates.  

 116 

The link between genetic and editing variation is based on the assumption that ADAR activity is 

regulated by genetically-encoded signals [20*]. Current evidence suggests that multiple cis-118 

regulatory factors influence editing, such as sequence motifs in A-to-I sites (depletion/enrichment of 

guanosines upstream/downstream of adenosine sites [16,28]) and their complementary sequences 120 

(e.g. cytosines opposite to the editing site increase dsRNA stability and facilitate ADAR activity 

[21,29]). A study of D. melanogaster polymorphisms with quantitative effects on A-to-I frequency 122 

showed that regulatory loci are located close to (but not overlapping) editing sites, and influence 

editing frequency by altering dsRNA stability [30]. Interspecific variation in editing frequency is 124 

also influenced by sequence conservation in the D. melanogaster/D. sechellia species pair [31]; 

and functionally relevant, conserved editing sites in Drosophila are often under positive selection 126 

[18,19]. 

 
Figure 2. Genetic differentiation around A-to-I editing sites between D. 

melanogaster populations collected from south-facing (arid) and north-

facing (humid) slopes in the ‘Evolution Canyon’. Differentiation is higher in 

A-to-I sites that are differentially edited between the two populations 

(purple) than in constitutive sites (green), reflecting slope-specific regulatory 

polymorphisms. Figure adapted from Yablonovitch et al. 2017 [26**], with 

permission from the authors, and reproduced under a Creative Commons 

Attribution 4.0 International License (creativecommons.org/licenses/by/4.0). 

http://creativecommons.org/licenses/by/4.0/


 

Yet, editing can also be influenced by environmental factors such as temperature. In D. 128 

melanogaster, A-to-I editing is more common at lower temperatures because ADAR enzymes are 

more active [14,17], recognise dsRNA motifs with higher specificity [16], and dsRNAs are 130 

more stable [16,17]. The relative importance of cis-regulatory and environmental factors was 

investigated by Yablonovitch et al. [26**], who found that genetic effects were site-specific and 132 

stronger than environmental factors; whereas temperature increases had broad, unspecific effects by 

virtue of globally reduced editing rates.  134 

RNA editing regulates the activity of insecticide target site proteins 

Whilst genome- and transcriptome-wide analyses of RNA editing remain restricted to few taxa, 136 

there have been several studies focusing on individual genes and species, with a particular focus on 

neural ion channels whose kinetics can be fine-tuned by editing-mediated substitutions [32]. 138 

Crucially, many ion channels where functional editing has been described are also target sites of 

insecticides [33,34] – for example, γ-aminobutyric acid receptors (GABA) [15,35], subunits of 140 

the nicotinic acetylcholine receptors (nAChR) [15,36,37], or voltage-gated sodium channels 

(VGSC) [15,38]. Given that mutations in target site genes are a major cause of rising insecticide 142 

insensitivity, editing is well-suited to have similar adaptive effects [33,34].  

γ-aminobutyric acid receptors (GABA receptors) 144 

GABA receptors are targeted by the insecticides dieldrin, fipronil, and ivermectin [39–41], an 

anti-parasitic and insecticidal drug that shows considerable promise for vector control [41]. Es-146 

Salah et al. [42] characterised an editing event near the GABA binding site in Drosophila 

(R122G) that decreased its sensitivity to the GABA neurotransmitter and fipronil. Rather than 148 

creating a resistant phenotype, this modification enhanced survival in flies carrying resistance 

alleles (A301S/A301G and/or T350M, suggesting compensation of fitness costs [39,43]).  150 

A recent study in the mosquito vectors Anopheles gambiae, Culex pipiens and Aedes aegypti 

[44**] identified new editing sites with effects on insecticide resistance. Specifically, the 152 

combination of six non-synonymous editing sites in the A. gambiae receptor (R119G, I162V, I176V, 

N183G, I278V, N289D) altered the activating and inhibiting potencies of the receptor in presence of 154 

GABA and ivermectin. Interestingly, functional editing sites in mosquito vectors were located near, 

but not overlapping, described D. melanogaster sites [44**]. This suggests that, unlike the 156 

conserved effects of known resistance mutations (codon 301 or 296 mutations in D. melanogaster 

or A. gambiae, respectively [43]), the location of editing sites in GABA receptors could more 158 



 

species-specific. 

Nicotinic acetylcholine receptors (nAChRs) 160 

The subunits of the nicotinic acetylcholine receptor (nAChR) assemble in heteromeric channels 

involved in cholinergic synaptic transmission, and are targeted by spinosad [45] and neonicotinoid 162 

insecticides [46]. Multiple conserved editing sites have been identified in the ɑ5, ɑ6 and ɑ7 

subunits of D. melanogaster nAChRs [15,36,37], some of which are differentially edited across 164 

neuron types [15], and located near functionally significant protein domains [47]. Editing has 

been linked to reduced sensitivity to the neonicotinoid imidacloprid in the major pest species, the 166 

brown planthopper Nilaparvata lugens (N133D and N73D in the nAChR β1 subunit) [48]. 

Concordantly, ADAR-defective D. melanogaster have increased susceptibility to imidacloprid and 168 

spinosad [49*], which suggests that A-to-I editing contributes to an unrecognised resistance 

mechanism to these insecticides. 170 

Voltage-gated sodium channels (VGSC) 

VGSCs are the target site of pyrethroids and DDT [50]. Many base substitutions that reduce the 172 

channel sensitivity (knock-down resistance mutations, kdr) have been identified in insects, 

including disease vectors [50]. Initial reports of links between editing-mediated kdr substitutions 174 

and pyrethroid resistance in the mosquitoes Culex quinquefasciatus, Aedes albopictus, the house fly 

Musca domestica, and the cockroach Blatella germanica [51–53] were later attributed to 176 

methodological errors [54], which we speculate may have discouraged further investigations into 

RNA editing in vectors. Nevertheless, there is independent evidence of non-synonymous editing 178 

effecting changes in voltage dependence of activation/inactivation in B. germanica (A-to-I: K184R 

and I1663M; C-to-U: L1285P and V1685A) [55] and D. melanogaster (A-to-I: I260V) [38].  180 

Conclusions 

Genome-wide investigations of RNA editing in insect vectors have been, to date, noticeably 182 

lacking, preventing informed assessment of heir aggregate importance in generating phenotypic 

diversity. However, evidence from D. melanogaster suggests that this is a fertile line of inquiry for 184 

at least two medically-relevant phenotypes: environmental adaptations, and insecticide resistance.  

There are multiple paths leading from RNA editing to adaptive evolution, each of them with distinct 186 

phylogenetic [19*,20*] and population genetic footprints [25*] that can be detected in cis-

regulatory motifs governing editing rates [20*,26**,30,31]. Yablonovitch et al. [26**] provide a 188 



 

blueprint for joint surveys of fine-scale genomic and transcriptomic variation in insects, a path to 

validate causal links between both, and valuable evidence of overlooked adaptive cis-regulatory 190 

changes.  

Future investigations in vectors should go beyond single-gene approaches [35,44**] and leverage 192 

existing population and comparative genomic resources [56,57] to elucidate the dominant 

mechanisms of evolution of RNA editing in a wider selection of species, and identify regulatory 194 

polymorphisms involved in adaptive evolution in natural vector populations. Transcriptome-wide 

analyses can also expand the range of editing candidate genes to include, for example, enzymes 196 

involved in metabolic insecticide resistance [58], which have not been usually covered by target-

gene approaches. Furthermore, it has recently become possible to investigate the cell type 198 

specificity of RNA editing using full-transcript single cell transcriptomic approaches [59,60], 

which can provide fine-grained insights on its functional effects—including resistance 200 

adaptations—and possibly inform the development of novel insecticides. Insect disease vectors 

have remarkable capacity to rapidly evolve and evade control, and going beyond focus on DNA 202 

substitutions to understand the range of contributory mechanisms is a key step for the vector 

genomics community. 204 

  



 

Box 1 – Methods for genome-wide identification of RNA editing sites 206 

Genome-wide scans of RNA editing sites can be performed using high-throughput sequencing 

approaches, often based on the fact that inosine bases are incorporated as guanosines by the reverse 208 

transcriptases used in RNA-sequencing protocols [1,3]. 

RNA editing detection methods based on RNA-seq (see [61] for a detailed review) require two 210 

steps: (i) RNA-to-genome mapping to identify transcript variants, and (ii) a series of filters aimed at 

discriminating between editing sites and other sources of polymorphism, such as genomically-212 

encoded variants (SNPs) and sequencing errors [62,63] (Figure 3). A common solution to filter 

out genomic variants is the use of paired WGS and RNA-seq experiments from the same sample, 214 

under the assumption that variants present in RNA but not in the DNA reads will result from editing 

(suitable tools include JACUSA [62], RES-Scanner [64], or reditools [65]).  216 

Less costly procedures based on RNA-seq alone can discriminate editing sites from SNPs by 

filtering out genomic variants from pre-compiled databases, complete [66] or partial (GIREMI 218 

[67]). Other tools discriminate between editing sites and SNPs by taking advantage of the 

tendency of editing to occur in hyper-editing clusters ([68], SPRINT [69]).  220 

Any analysis of RNA editing might also benefit from a comparative perspective – i.e., differential 

editing between insect populations, tissues, or biological conditions, etc. In that respect, all the 222 

above-mentioned methods provide per-site editing frequencies that can be compared ad-hoc, and 

some are able to perform explicit differential analyses (JACUSA [62]). 224 

Finally, the microfluidics-based multiplex PCR (mmPCR-seq) is a general approach to measure 

transcript allelic ratios, including editing events [27*]. This high-throughput method requires 226 

prior knowledge of the sites, but it enables the estimation of editing rates at higher accuracy than 

RNA-seq. It has been used to investigate population- [26**] and tissue-specific [15,20] editing 228 

profiles in D. melanogaster. 



 

 230 

  

 

Figure 3. Summary of a high-throughput approach to detect RNA editing 

events, based on paired RNA-seq and DNA-seq experiments. A-to-I editing 

is used as an example. 



 

Key references 232 

Duan et al. 2017 [19*]. Investigation of A-to-I editing in neural tissues in closely-related 

Drosophila species. The authors demonstrate that editing is enriched in neural tissues and affects 234 

functionally constrained genes, and highlight the adaptive value of conserved editing sites in 

insects. 236 

Zhang et al. 2017 [20*]. Using comparative transcriptomic and genomic analyses of multiple 

Drosophila species, the authors demonstrate the importance of the cis-regulatory landscape in 238 

regulating editing variation. The authors also trace gains and losses of editing sites across species, 

and show that widely-conserved sites are enriched in slow-evolving neural genes. 240 

Popitsch et al. 2017 [25*]. Investigation of the population-genetic footprints underpinning the 

evolution of adaptive editing. The authors provide a comprehensive list of hypotheses with testable 242 

predictions. They find support for an adaptive role of A-to-I editing as a transcriptomic ‘mimicry’ of 

adaptive A-to-G mutations in both D. melanogaster and humans. 244 

Yablonovitch et al. 2017 [26**]. The authors use a combination of WGS, RNA-seq and targeted 

assays to unravel the role of A-to-I editing in two closely related populations of D. melanogaster 246 

with divergent climatic adaptations. They are able to link population genetic divergence to 

regulatory variation in editing, and they identify candidate genes for validation.  248 

Zhang et al. 2014 [27*]. The authors propose a new high-throughput assay to measure allelic 

ratios in transcripts at high precision, which can be coupled with genomic and transcriptomic 250 

analyses to RNA editing variants. 

Taylor-Wells et al. 2018 [44**]. This ground-breaking study demonstrates that multiple editing 252 

events in the GABA receptor of A. gambiae can change the electrophysical properties of the 

channel, and result in reistane to ivermectin. The authors also study the evolutionary conservation 254 

of the mutations in other vectors and D. melanogaster. 

Rinkevich et al. 2012 [49*]. The authors demonstrate that ADAR-defective D. melanogaster are 256 

more susceptible to insecticides that target the heavily edited nicotinic acetylcholine receptors.  
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