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Abstract

The evolution of insecticide resistance mechanisms in natural populations of Anopheles malaria 

vectors is a major public health concern across Africa. Using genome sequence data, we study the

evolution of resistance mutations in the resistance to dieldrin locus (Rdl), a GABA receptor targeted 

by several insecticides, but most notably by the long-discontinued cyclodiene, dieldrin. The two 

Rdl resistance mutations (296G and 296S) spread across West and Central African Anopheles via 

two independent hard selective sweeps that included likely compensatory nearby mutations, and 

were followed by a rare combination of introgression across species (from A. gambiae and A. 

arabiensis to A. coluzzii) and across non-concordant karyotypes of the 2La chromosomal inversion. 

Rdl resistance evolved in the 1950s as the first known adaptation to a large-scale insecticide-

based intervention, but the evolutionary lessons from this system highlight contemporary and 

future dangers for management strategies designed to combat development of resistance in 

malaria vectors.
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Introduction

The recurrent evolution of insecticide resistance in the highly-variable genomes of Anopheles 

mosquitoes (Neafsey et al. 2015; Miles et al. 2017; The Anopheles gambiae 1000 Genomes 

Consortium 2019) is a major impediment to the ongoing efforts to control malaria vector 

populations. Resistance to dieldrin was the first iteration of this cyclical challenge: this 

organochlorine insecticide was employed in a pioneering vector control programme in Nigeria in 

1954, but resistant Anopheles had already appeared after just 18 months (Elliott and Ramakrishna 

1956) due to a single dominant mutation (Davidson 1956; Davidson and Hamon 1962). Dieldrin 

use ceased in the 1970s due to its high persistence as an organic pollutant and unexpectedly wide

toxicity, culminating in a ban by the 2001 Stockholm Convention on Persistent Organic 

Pollutants. However, resistance has remained strikingly persistent in natural Anopheles 

populations for more than 40 years (Du et al. 2005). The study of the genetic architecture of 

dieldrin resistance can thus provide key insights into the evolutionary ‘afterlife’ of resistance 

mechanisms to legacy insecticides. We address this issue by studying its emergence and 

dissemination in contemporary African populations of the A. gambiae species complex. 

Dieldrin resistance in Anopheles spp. is caused by mutations in its target site, the -aminobutyric γ

acid (GABA) receptor gene, a ligand-gated chloride channel also known as resistance to dieldrin 

locus—or Rdl—that is strongly conserved in a wide range of insects (ffrench-Constant, Rocheleau, 

et al. 1993; Thompson et al. 1993; Du et al. 2005). Two resistance mutations have been found in 

anophelines, both in codon 296: alanine-to-glycine (A296G) and alanine-to-serine (A296S). 

Resistant mutations in the homologous Rdl codon have also evolved in other insects, e.g. in 

Drosophila spp. (codon 302) (ffrench-Constant, Rocheleau, et al. 1993; Thompson et al. 1993; Du et

al. 2005). Populations of Anopheles gambiae sensu stricto (henceforth, A. gambiae) and its sister 

species A. coluzzii possess both 296G and 296S alleles (Du et al. 2005; Lawniczak et al. 2010), 

whereas the 296S allele is the only one reported in A. arabiensis and the more distantly-related 

malaria vectors A. funestus and A. sinensis (Du et al. 2005; Wondji et al. 2011; Yang et al. 2017). 

Normally, dieldrin inhibits the activity of Rdl receptors, causing persistent neuronal excitation 

and rapid death; but codon 296 mutations confer resistance by reducing its sensitivity to the 

insecticide (ffrench-Constant et al. 2000). However, in the absence of exposure, Rdl mutations 

appear to carry fitness costs, such as lower mosquito mating success (Platt et al. 2015) or 

impaired response to oviposition and predation-risk signals (Rowland 1991a; Rowland 

1991b) (although see (ffrench-Constant and Bass 2017)). Consequently, with seemingly limited 

current benefit via exposure to insecticides targeting Rdl, persistence of the mutations in 
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anophelines is puzzling. 

We interrogate the Anopheles gambiae 1000 Genomes cohort (The Anopheles gambiae 1000 Genomes

Consortium 2017; The Anopheles gambiae 1000 Genomes Consortium 2019) to ascertain how often

dieldrin resistance mutations have evolved in the A. gambiae/A. coluzzii species pair, and the 

mechanisms by which these alleles spread across Africa and may persist. We identify two distinct 

Rdl resistance haplotypes in these species, defined by hard selective sweeps and the perfect 

linkage of the 296G and 296S alleles with putatively compensatory mutations. Furthermore, the 

resistance haplotypes are across genomes from different species (A. gambiae, A. coluzzii and A. 

arabiensis), and across chromosomes with differing karyotypes in the 2La inversion (the longest 

inversion in Anopheles genomes) (Coluzzi 2002) within which Rdl resides. Inter-species 

reproductive isolation and inversions such as 2La both result in reduced recombination rates 

(Sturtevant 1917; Andolfatto et al. 2001; Ayala and Coluzzi 2005; Kirkpatrick 2010), which would 

in principle hinder the spread of these adaptive alleles. Here, we provide evidence that Rdl 

resistance alleles, which our structural modelling shows have divergent effects on the channel 

pore, underwent a rare combination of interspecific and interkaryotypic introgression.

Overall, we show that two founding resistance mutations spread with remarkable ease across 

geographical distance, species, and recombination barriers. This evolutionary trajectory has 

parallels with later-emerging target site resistance mechanisms, such as knock-down resistance 

mutations in the Vgsc gene (Martinez-Torres et al. 1998; Davies et al. 2007; Clarkson et al. 2014; 

Clarkson et al. 2018). The persistence of dieldrin resistance also challenges the efficacy of current

and newly developed insecticides that also target Rdl (Gant et al. 1998; Nakao and Banba 2015; 

Miglianico et al. 2018), as well as the efficacy of rotative insecticide management strategies 

(World Health Organization 2012). These results thus emphasise the influence of past 

interventions on current and future programmes of vector population control.
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Results

Distribution of Rdl resistance mutations across African populations

First, we investigated the genetic variation in Rdl across populations of the Anopheles gambiae 

species complex, including A. gambiae and A. coluzzii from the Anopheles gambiae 1000 genomes 

project (Ag1000G Phase 2, n = 1142) (The Anopheles gambiae 1000 Genomes Consortium 2019), and

outgroups from four other species (A. arabiensis, A. quadriannulatus, A. melas and A. merus; n = 36) 

(Fontaine et al. 2015). All genomes and their populations of origin are listed in Supplementary 

Material SM1.
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Figure 1. Rdl mutations. A) Frequency of non-synonymous mutations in Rdl across populations of A. gambiae, A. 
coluzzii (Ag1000G Phase 2) and A. arabiensis. Only variants with >5% frequency in at least on population are 
included. B) Distribution of genotypes for the two mutations in codon 296 (A296S and A296G). Note: A. gambiae 
populations denoted with an asterisk (The Gambia, Guinea-Bissau and Kenya) have high frequency of 
hybridisation and/or unclear species identification (see Methods).

We identified six non-synonymous mutations that are segregating in at least one population at 

≥5% frequency (Figure 1A; complete list of variants in Supplementary Material SM2), including 

the 296G and 296S resistance alleles. 296G is present in West and Central African populations of 

both A. gambiae and A. coluzzii, with frequencies ranging from 30% (Cameroon A. gambiae) to 96% 

(Ghana A. gambiae). 296S is present in A. coluzzii specimens from Burkina Faso (63%), as well as A. 
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arabiensis (Burkina Faso, Cameroon, Tanzania) and A. quadriannulatus (Zambia). Resistance alleles 

occur as both homozygotes or heterozygotes in all species except A. quadriannulatus, which is 

always heterozygous (Figure 1B). 

We also identified two mutations in codon 345 with very similar frequencies to those of each 

codon 296 mutation: T345M (C-to-T in the second codon position), co-occurring with A296G; and 

T345S (A-to-T in the first codon position), co-occurring with A296S. The high degree of linkage 

disequilibrium between genotypes in codons 296 and 345 confirmed that they were co-occurring 

in the same specimens (Figure 2; e.g., the 296G/345M allele pair had a Huff and Rogers r and 

Lewontin’s D′ = 1), and was apparent in all individual populations where the alleles were present 

(Supplementary Material SM3). Codons 296 and 345 are located in the 7th and 8th exons of Rdl, 

separated by 3935 bp; and they map to the second and third transmembrane helices of the RDL 

protein, respectively (Supplementary Material SM4). 
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Figure 2. Linkage disequilibrium. Linkage disequilibrium between non-synonymous 
mutations in Rdl, calculated using Huff and Rogers’ r (A) and Lewontin’s D′ (B).

Rdl resistance mutations evolved on two unique haplotypes in A. gambiae 
and A. coluzzii

The high frequency of the 296S and 296G alleles in various populations of A. gambiae and A. coluzzii

(Figure 1), together with their co-occurrence with nearby mutations (Figure 2), were suggestive of 

a selective sweep driven by positive selection on the resistance alleles. To clarify this possibility, 

we inspected the similarity of haplotypes in A. gambiae, A. coluzzii and the four outgroup species (n 

= 2356 haplotypes) using a minimum spanning network based on 626 phased variants located 

10,000 bp upstream and downstream of codon 296 (Figure 3). 
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Figure 3. Rdl haplotypes. A) Minimum spanning network of haplotypes around Rdl codon 296 (626 phased 
variants located +/− 10,000 bp from the 2L:25429236 position). Only haplotype clusters with a frequency >1% in 
the cohort are represented (complete networks available as Supplementary Material SM6). Each node in the 
network is color-coded according to its species composition. Haplotype clusters carrying the resistance alleles 
296G and 296S are highlighted in blue. Red arrows indicate the direction of non-synonymous mutations (relative 
to reference genome). B) Frequency of resistance haplotypes per population. Pie area reflects sample size, 
ranging from Guinea A. coluzzii (n = 8) to Cameroon A. gambiae (n = 594). Detailed frequencies with absolute counts 
in Supplementary Material SM14. Note: gam=A. gambiae, col=A. coluzzii; gam populations denoted with an asterisk 
have unclear species identification and/or high rates of hybridisation.

We identified two distinct groups of haplotypes associated with resistance mutations. First, the 

296G cluster contained haplotypes sharing the 296G/345M alleles which were widely distributed 

in Central and West Africa (11 populations of A. coluzzii and A. gambiae; n = 651 haplotypes). The 

296G group showed two sub-clusters associated with the downstream mutations N530K and 

H539Q (red arrows in Figure 3A), which were present in a subset of mostly A. gambiae populations 

(Guinea, Ghana, Burkina Faso and Cameroon; Figure 1A); with just a few A. coluzzii from Côte 

d’Ivoire in the N530K cluster. Both N530K and H539Q are in partial linkage disequilibrium with 

296G alleles (Figure 2). 

In contrast, the 296S cluster, defined by ubiquitous co-occurrence of the 296S/345S allele pair, was

restricted to A. coluzzii from Burkina Faso (n = 94; Figure 3A, B), whereas the A. arabiensis and A. 
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quadriannulatus 296S haplotypes appeared as distantly related singletons (not visible on Figure 3, 

see Supplementary Material SM5 and SM6). We also found four smaller wild-type clusters (296A 

allele; henceforth wt) that are specific to other geographical locations (Kenya, Mayotte, and The 

Gambia/Guinea-Bissau). The remaining haplotypes are also wt and group in smaller clusters or 

singletons with frequencies <1% in the dataset (n = 1476, 62.6% of all examined haplotypes; 

Supplementary Material SM5 and SM6). 

Both the 296G and 296S haplotype clusters are often found in high frequencies within their 

respective populations. For example, 296S was present in 62.3% of all Burkinabè A. coluzzii, and 

296G reached 91.7% in Ghanaian A. gambiae (Figure 3B). 

The haplotype clustering analysis shows that all non-synonymous mutations (T345M, T345S, 

N530K, and H539Q) are associated with either the 296G or the 296S resistance haplotypes. The 

existence of seven non-synonymous mutations associated in haplotypes that have evolved over 

the last 70 years is remarkable: mosquito Rdl genes are highly conserved and have accumulated 

very few amino-acid mutations since anophelines diverged from culicines (for instance, A. 

gambiae Rdl retains a 97.6% amino-acidic identity with its Aedes aegypti ortholog and dN/dS = 0.052, 

indicating predominant purifying selection; Supplementary Material SM4). Here, we observe that 

the resistant haplotypes accumulate an excess of non-synonymous mutations compared to the wt,

with non-synonymous to synonymous genetic diversity ratios (πN/πS) being ~18x higher in the 

296G cluster (πN/πS
 = 2.428 +/− 0.009 standard error) than in wt haplotypes (πN/πS

 = 0.135 +/− 

0.001); and ~4x higher in 296S (πN/πS
 = 0.485 +/− 0.018).

The 296S and 296G alleles are associated with hard selective sweeps

Next, we investigated the signals of positive selection linked to the 296S and 296G resistance 

haplotypes. First, we found that haplotypes carrying 296G and 296S alleles had longer regions of 

high extended haplotype homozygosity (EHH) than the wt (Figure 4A), as expected under a 

scenario of selective sweeps linked to these resistant variants. A closer examination revealed that 

EHH decays slower at the 3′ region of Rdl (Figure 4A): in both clusters, EHH is above 0.95 (i.e. 95% 

of identical haplotypes) in the region downstream of codon 296 (exons 7 and 8), but decays more 

rapidly towards the 5′ of the gene (EHH < 0.20 in exon 6a/6b, EHH < 0.10 in exon 1). The core 

resistance haplotypes had lengths of 5,344 bp for 296G and 4,161 bp for 296S (defined at EHH > 

95%), which were one order of magnitude higher than wt haplotypes (460 bp), and covered all 

non-synonymous mutations linked to codon 296 alleles (T345M, T345S, N530K, and H539Q).

Next, to estimate the softness/hardness of the sweep, we calculated the profile of Garud’s H 
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statistics (Garud et al. 2015) and haplotypic diversity along the 2L chromosome arm (Figure 4B-

D). Both 296G and 296S haplotype clusters showed signals of a hard selective sweep: (i) they had 

markedly higher Garud’s H12 (296G: 0.698 +/− 0.001 standard error; 296S: 0.744 +/− 0.006) than wt

(0.003 +/− 0.0), which indicates an over-abundance of the most frequent haplotypes in the cohort 

(Messer and Petrov 2013; Garud et al. 2015); (ii) lower H2/H1 ratios (296G: 0.052 +/− 0.0; 296S: 

0.011 +/− 0.007) than wt (0.756 +/− 0.001), indicative of a hard sweep with decreased background 

variation (Messer and Petrov 2013; Garud et al. 2015); and (iii) low haplotypic diversity (296G: 

0.501 +/− 0.001; 296S: 0.377 +/− 0.007) compared to the wt (0.998 +/− 0.000). 
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Figure 4. Positive selection of haplotypes carrying resistance mutations. A) Profile of EHH decay for each group
of haplotypes (296G, 296S and wt), built from 11,180 phased variants located +/− 100,000 bp from codon 296 
(2L:25429236 position). Coordinates of nearby genes are indicated above the EHH panel (in Rdl, exons are 
numbered and red arrows indicate the position of codons 296and 345). B-D) Profiles of Garud H12, Garud H2/H1 
and haplotypic diversity along chromosomal arm 2L, highlighting the region covered by the 2La inversion (orange
vertical lines) and the location of Rdl (red arrow). Each statistic was calculated separately for haplotypes carrying 
the 296G, 296S and wt alleles, using sliding blocks of 500 variants with 20% overlap.

Unexpectedly, chromosomes containing 296G and 296S alleles also exhibited signals of positive 

selection at a distant pericentromeric region of 2L (Figure 4B-D), typically associated with strong 
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selective sweeps around the Vgsc gene (Lynd et al. 2010; Clarkson et al. 2014; Clarkson et al. 

2018), which is the target site of pyrethroids and DDT (Davies et al. 2007). Vgsc selective sweeps 

are linked to two non-synonymous substitutions that confer resistance to these insecticides – the 

L995F and L995S knock-down resistance (kdr) mutations, commonly known as L1014F and L1014S 

after their codon coordinates in Musca domestica (Clarkson et al. 2018). Positive selection in Vgsc 

was particularly strong in chromosomes that also carried 296S alleles (H12 = 0.917 +/− 0.004 

standard error), followed by 296G (H12 = 0.412 +/− 0.001) and, to a lesser degree, wt (H12 = 0.147 +/

− 0.000). However, neither of the Vgsc kdr alleles (995F and 995S) are in linkage disequilibrium 

with 296G or 296S (Supplementary Material SM7, SM8). Rather, this apparent association is due to 

geographical overlap: 296G and 296S are present in West African populations that are near-fixed 

for Vgsc resistance alleles (>80% 995F in 7 out of 10 populations; Supplementary Material SM8), 

but are mostly absent elsewhere. 

Overall, Rdl resistance alleles are found on two unique sets of highly similar haplotypes (Figure 3),

each of them specific to one allele (296S and 296G), that underwent independent hard selective 

sweeps (Figure 4).

Co-segregation of Rdl haplotypes and 2La inversions

Rdl lies within the 2La chromosomal inversion, which is the longest in the A. gambiae genome 

(20.5-42.1 Mb) (Coluzzi 2002). The 2La inversion emerged in the last common ancestor of the A. 

gambiae species complex (Fontaine et al. 2015) and is currently polymorphic in A. gambiae and A. 

coluzzii (Stump et al. 2007), where it is linked to a range of important phenotypes including 

adaptation to human environments (Coluzzi et al. 1979), aridity (Cheng et al. 2012), insecticide 

resistance (Weetman et al. 2018), and susceptibility to Plasmodium falciparum (Riehle et al. 2017). 

Given that recombination is strongly reduced between chromosomes with discordant inversion 

karyotypes (Andolfatto et al. 2001; Ayala and Coluzzi 2005; Kirkpatrick 2010), any assessment of 

the evolution of genes within the 2La inversion, such as Rdl, needs to take into consideration 

whether haplotypes reside in inverted (2La) or non-inverted (2L+a) backgrounds.

To address this issue, we estimated the 2La inversion karyotypes for the Ag1000G Phase 2 

samples using a principal component analysis of allele presence/absence in the inverted region 

(using genomes with known inversion karyotypes as a reference; Figure 5A and Supplementary 

Material SM1 and SM9). The first principal component clearly discriminated between each of the 

inversion genotypes (non-inverted 2L+a/2L+a homozygotes, inverted 2La/2La homozygotes, and 

2La/2L+a heterozygotes). We used this information to compare the frequencies of 2La karyotypes 
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with Rdl codon 296 genotypes (Figure 5B), and the karyotype frequencies per population (Figure 

5C). The pan-African 296G allele is present in all inversion karyotypes, but is more common in 

non-inverted backgrounds (73% of 296G/296G homozygotes have 2L+a/2L+a karyotypes; Figure 

5B), in both A. gambiae and A. coluzzii populations (Figure 5C). On the other hand, 296S alleles from

A. arabiensis and Burkinabè A. coluzzii occur exclusively within the 2La inversion (100% of 

296S/296S homozygotes are in 2La/2La karyotypes; Figure 5B).

A) PCA from allele frequencies in 2La inversion C) 2La karyotypes per population and haplotype group
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Figure 5. Genotypes of the 2La inversion. A) Principal component analysis of genotype frequencies of 10,000 
random variants located within the 2La inversion (coordinates: 2L:20524058-42165532). Specimens from 
Ag1000G Phase 1 are color-coded by 2La karyotype (homozygotes and heterozygotes), and they are used as a 
reference to assign 2La genotypes to Phase 2 specimens (grey). Grey dotted lines highlight the separation of three 
clusters according to 2La karyotype. B) Frequency of 2La inversion and Rdl codon 296 genotypes. C) Frequency of 
2La inversion karyotypes per population (heatmap, left), and number of specimens from each population carrying
resistance alleles (296G and 296S), broken down by 2La karyotype (barplots, right). Note: A. gambiae populations 
denoted with an asterisk (The Gambia, Guinea-Bissau and Kenya) have high frequency of hybridisation and/or 
unclear species identification (see Methods).

Introgression of Rdl resistance haplotypes

In order to obtain a more complete picture of possible introgression events, we performed a 

phylogenetic analysis of haplotype alignments at four loci around Rdl: 5′ and 3′ regions of the 

gene, and two loci upstream and downstream of the gene body (Figure 6). These phylogenies 

highlight two events of interspecific introgression (explored below in grater detail): 296G between 
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A. gambiae and A. coluzzii (as reflected by their identical swept haplotypes; Figure 3), and 296S 

between A. coluzzii and A. arabiensis. In addition, they also confirm the spread of 296G haplotypes 

across different 2La inversion types (interkaryotypic introgression; Figure 5). In the following 

paragraphs, we characterise these introgressions and attempt to identify the donors and 

acceptors of each event.

Introgression
296S ara → col

84% (97%)

2La haplotypes:

wt 2La, arabiensis
296S 2La, arabiensis
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wt 2La
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gam & col
97%
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100%
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Figure 6. Phylogenies of haplotypes around the Rdl locus. A) Maximum-likelihood phylogenetic analysis of 
variants present at the 3′ region of Rdl (20,000 kbp). Nodes are haplotypes and have been color-coded according to
their Rdl genotype (296S, 296G, wt), 2La karyotype (2La, 2L+a) and species. Orange bubbles highlight clades with 
hypothetical introgression events. Grey bubbles highlight outgroup clades. Statistical supports are shown on 
selected clades (UF bootstrap). B-D) Analogous phylogenies from the Rdl 5′ region, upstream, and downstream 
regions within the 2La inversion (+/− 1 Mb of Rdl). Complete alignments and phylogenies in Supplementary 
Material SM10 and SM11. Species abbreviations: col=coluzzii, gam=gambiae, ara=arabiensis, mer=merus; mel=melas, 
qua=quadriannulatus. Arrows indicate introgression events.
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Interspecific introgression of 296G and 296S haplotypes

All four phylogenies exhibit two main clades separating A. gambiae and A. coluzzii haplotypes 

according to their 2La inversion karyotype, rather than by species (2La in blue, left; 2L+a in red, 

right; ultrafast bootstrap support [UFBS] 91% and 97% respectively; Figure 6A). This clustering is 

due to the fact that the 2La inversion has been segregating in A. gambiae and A. coluzzii since 

before the beginning of their speciation (Fontaine et al. 2015).

A closer examination shows that Rdl-specific phylogenies (Figure 6A, B) have a distinct sub-clade 

within the 2La cluster, consisting of A. coluzzii 296S haplotypes and A. arabiensis, some of which 

also possess the 296S allele (light blue and green sequences in Figure in Figure 6A; UFBS 97%, 

84% for their sister-branch relationship). The deep branching of A. arabiensis haplotypes within 

the A. gambiae/coluzzii 2La clade is to be expected, as A. arabiensis 2La inversions descend from an 

ancient introgression event from the A. gambiae/coluzzii ancestor (Fontaine et al. 2015). However, 

their close phylogenetic relationship with A. coluzzii 296S haplotypes is suggestive of interspecific 

introgression.

To confirm this event of introgression and ascertain its direction, we compared the results of two 

complementary Patterson’s D tests (Figure 7). The D statistic compares allele frequencies between

three putatively admixing populations (A, B and C) and one outgroup (O), and can identify 

introgression between populations A and C (in which case D > 0) or B and C (D < 0; see Methods 

and (Durand et al. 2011; Patterson et al. 2012)). 

Here, if 296S had emerged in A. arabiensis and later introgressed into A. coluzzii, we would expect 

296S A. coluzzii specimens to exhibit D > 0 when compared to 296S A. arabiensis, but also to be 

more similar to wt A. arabiensis (from which 296S evolved) than to wt A. coluzzii. As predicted, we 

identify evidence of introgression between A. coluzzii 296S homozygotes and both (i) 296S A. 

arabiensis (D = 0.687 +/− 0.106 standard error, p = 8.621 × 10−11 derived from a Z-score 

distribution) and (ii) wt A. arabiensis (D = 0.506 +/− 0.123, p = 3.959 × 10−5; left panel in Figure 7A). 

Conversely, if 296S had introgressed from A. coluzzii into A. arabiensis, we would see evidence of 

introgression between 296S A. arabiensis and wt A. coluzzii, but we do not (right panel in Figure 7A; 

D = −0.033 +/− 0.224, p = 0.884). These results are robust to various choices of outgroup species 

(A. christyi and A. epiroticus), and tests involving a negative control with fixed 2La inversions (A. 

merus) do not show evidence of introgression with 296S specimens (Supplementary Material 

SM12). Thus, we conclude that the 296S allele originated in A. arabiensis and later spread into A. 

coluzzii. 

13

232

234

236

238

240

242

244

246

248

250

252

254

256

258

260

262



-1.0

-0.5

0.0

0.5

1.0

D

Rdl

25 26
Mb

-1.0

-0.5

0.0

0.5

1.0

D

25 26
Mb

RdlHypothesis:
col 296G ↔ gam wt?
(Accepted)

Hypothesis:
gam 296G ↔ col wt?
(Rejected)

A) 296S-2La introgression A. arabiensis ↔ A. coluzzii

col Burkina Faso ↔ ara
D = 0.687 +/- 0.106
p = 8.621 × 10-11

col Burkina Faso ↔ ara
D = 0.506 +/- 0.123
p = 3.959 × 10-5

A: col 296S-2La
B: col wt-2La
C: ara 296S-2La
O: chr wt-2La

A: col 296S-2La
B: col wt-2La
C: ara wt-2La
O: chr wt-2La

A: ara 296S-2La
B: ara wt-2La
C: col wt-2La
O: chr wt-2La

A: ara 296S-2La
B: ara wt-2La
C: col 296S-2La
O: chr wt-2La

ara ↔ col Burkina Faso
D = 0.699 +/- 0.161
p = 1.402 × 10-5

ara ↔ col Burkina Faso
D = -0.033 +/- 0.224
p = 0.8843

B) 296G-2L+a introgression A. gambiae ↔ A. coluzzii

gam wt

col wt

D>0?D>0?

gam wt

col wt

D>0?D>0?

gam
296G

col
296G

gam
296G

col
296G

A: gam 296G-2L+a

B: gam wt-2L+a

C: col wt-2L+a

O: qua wt-2L+a

A: gam 296G-2L+a

B: gam wt-2L+a

C: col 296G-2L+a

O: qua wt-2L+a

gam Gabon ↔ col Angola
D = 0.841 +/- 0.065
p = 5.203× 10-38

gam Gabon ↔ col Angola
D = 0.103 +/- 0.141
p = 0.4632

col Angola ↔ gam Gabon
D = 0.542 +/- 0.107
p = 3.839 × 10-7

A: col 296G-2L+a

B: col wt-2L+a

C: gam wt-2L+a

O: qua wt-2L+a

A: col 296G-2L+a

B: col wt-2L+a

C: gam 296G-2L+a

O: qua wt-2L+a

col Angola ↔ gam Gabon
D = 0.872 +/- 0.041
p = 5.907 × 10-99

-1.0

-0.5

0.0

0.5

1.0

D

Rdl

25 26
Mb

ara wt

col wt

D>0?D>0?

ara
296S

col
296S

Hypothesis:
col 296S ↔ ara wt?
(Accepted)

-1.0

-0.5

0.0

0.5

1.0

D

25 26
Mb

Rdl

ara wt

col wt

D>0?D>0?

ara
296S

col
296S

Hypothesis:
ara 296S ↔ col wt?
(Rejected)

Figure 7. Interspecific introgression. A) Direction of 296S introgression between A. arabiensis and A. coluzzii (2La/
2La background). We test two complementary hypothesis using Patterson’s D statistics: left, introgression 
between A. coluzzii 296S homozygotes (population A), A. coluzzii wt (B) and A. arabiensis (296S or wt; C) using A. 
christyi as outgroup (O); right, reversing the position of A. coluzzii and A. arabiensis as populations A/B and C. The 
complementary hypotheses can be summarised as follows: if 296S homozygotes from species i show evidence of 
introgression with wt homozygotes from species j (first test) but not with wt from species i (second test), 296S 
originated in species j. B) Direction of 296G introgression between A. gambiae and A. coluzzii (2L+a/2L+a 
background), testing two complementary hypothesis using Patterson’s D statistics: left, introgression between A. 
coluzzii 296G homozygotes (population A), A. coluzzii wt (B) and A. gambiae (296G or wt; C) using A. quadriannulatus as
outgroup (O); right, reversing the position of A. coluzzii and A. gambiae as populations A/B and C. Color-coded 
cladograms at the bottom of each plot indicate the groups of specimens used in each test, including the average D 
in the Rdl locus with standard errors and p-values (estimated from the Z-score of jack-knifed estimates; see 
Methods). See detailed lists of comparisons and statistical analyses in Supplementary Material SM12 and SM13.

Rdl phylogenies (Figure 6A, B) also show a sub-clade of highly similar A. gambiae and A. coluzzii 

haplotypes within the 2L+a cluster, all of them carrying 296G alleles. This clade corresponds to the

swept haplotypes identified above (Figure 3). We established the polarity of introgression using 

complementary Patterson’s D tests. Here, we found that 296G haplotypes from resistant A. coluzzii 

populations (Côte d’Ivoire, Angola, and Ghana) exhibited signals of introgression with wt A. 

gambiae from Gabon (e.g. D = 0.542 +/− 0.107, p = 3.839 × 10−7 compared to Angolan A. coluzzii; 
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Figure 7B); but that this signal of introgression disappeared when comparing wt A. coluzzii to 296G

A. gambiae from Gabon (e.g. D = 0.103 +/− 0.141, p = 0.4632 compared to Angolan A. coluzzii; 

Figure 7B) or elsewhere (Supplementary Material SM13). These results support the introgression 

of 296G from A. gambiae to A. coluzzii. 

The fact that only Gabonese A. gambiae have significant support as the 296G donor population 

could indicate that they are closer to the founding 296G haplotype and/or the original 

introgression event. However, the negative results in other populations harbouring 296G alleles 

(Cameroon, Guinea; Supplementary Material SM13) could also be due to methodological 

limitations of our analysis – e.g., our conservative approach is restricted to specimens that are 

homozygous for both the inversion karyotype (2L+a/2L+a) and codon 296 (296G/296G or wt/wt); 

and the similarity between wt A. gambiae and A. coluzzii relative to the highly divergent swept 

haplotype can hinder the identification of the original background.

The 296G haplotype spread from 2L+a to 2La chromosomes

The haplotype phylogeny from the Rdl 3′ region, where codon 296 variants reside, also revealed 

that the 2L+a clade (non-inverted, red; Figure 6A) contained a sub-cluster of 296G haplotypes 

from both 2L+a (orange) and 2La orientations (purple; Figure 6A; UFBS 98%). The deep branching

of 296G-2La haplotypes within the 2L+a clade implies that 296G originated in a non-inverted 

background and later spread to inverted chromosomes via interkaryotypic introgression. 

Chromosomal inversions are strong barriers to recombination, but double cross-overs or gene 

conversion events can result in allelic exchange between non-concordant inversions (Andolfatto 

et al. 2001; Kirkpatrick 2010) and thus explain this phylogenetic arrangement.

However, the phylogeny of Rdl 5′ haplotypes (which excludes codon 296 and the adjacent non-

synonymous mutations) showed that 296G-2La sequences (purple) branched within the wt-2La 

clade instead (blue; Figure 6B). Thus, interkaryotypic introgression only affects the swept 

haplotype at the 3′ end of Rdl (Figures 3 and 4), whereas the 5′ region is closer to the wt. We can 

confirm whether the introgression is specific to the 3′ swept haplotype by examining the profile of

sequence divergence along the Rdl gene locus (Dxy; Figure 8). We expect 296G haplotypes to be 

more similar to wt-2L+a than to wt-2La, given that the 296G allele first evolved in a 2L+a 

background (blue line, Dxy ratio > 1; Figure 8). In the case of 296G alleles from 2La chromosomes, 

this expectation holds at the 3′ region of Rdl but not at 5′ nor outside of the gene, where allele 

frequencies are more similar to the wt-2La (purple line, Dxy ratio < 1; Figure 8). 
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Figure 8. Interkaryotypic introgression of 296G haplotypes. Ratio of sequence 
divergence (Dxy) between 296G and wt haplotypes of 2L+a and 2La origin. In this ratio, 
numerators are divergences between 296G haplotypes (of either 2L+a or 2La origin, in 
blue and purple respectively) relative to wt-2La haplotypes, and denominators are 
relative to wt-2L+a. Ratios >1 indicate similarity to wt-2L+a, and values <1 indicate 
similarity to wt-2La. All values are calculated in windows of 20,000 kbp with 10% 
overlap.

The presence of alleles from different karyotypic backgrounds in the 296G-2La Rdl sequences is 

consistent with the sudden decay of haplotype homozygosity immediately upstream to codon 296

(Figure 4A), as the presence of wt alleles of 2La origin at 5′ of the 296G swept haplotypes causes a 

faster decay in haplotype homozygosity in 2La than in 2L+a haplotypes (Supplementary Material 

SM14A). Concordantly, haplotype diversity at the 5′ region of Rdl is higher in 296G-2La than in 

296G-2L+a haplotypes (Supplementary Material SM14B). 

Structural modelling predicts that 296G and 296S disrupt the dieldrin 
binding site in alternative ways

Finally, we investigated the effects of 296G and 296S resistance alleles on the structure of RDL 

receptors. The A. gambiae RDL receptor was modelled as a homopentamer based on the human 

GABAA receptor structure (Masiulis et al. 2019) (Figure 9). In wt receptors, the 296A residue is 

located near the cytoplasmic end of the pore-lining second transmembrane helix (M2) and its 

side chain is orientated into the pore (Figure 9A). Residue 345 is located distant from the pore, at 

the cytoplasmic end of the M3 helix with its side chain orientated towards the lipid bilayer. We 

carried out automated ligand docking for dieldrin in the wt receptor, finding a putative binding 

site along the receptor pore where the insecticide docked with estimated free energy of binding 

( GΔ b) of −8.7 kcal/mol (Figure 9B). The 296A side chains form a major point of contact with the 

ligand. A structure of human GABAA in complex with picrotoxin showed that this ligand forms 
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multiple hydrogen bonds with residues lining the pore (Masiulis et al. 2019), but dieldrin lacks 

equivalent hydrogen bond-forming groups. Thus, the close contacts between 296A side chains 

and dieldrin suggest that van der Waals interactions between these molecules are the 

predominant binding interaction.
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Figure 9. RDL receptor models with docked dieldrin. A) Homology model of the A. gambiae RDL homopentamer, 
viewed from the membrane plane (top) and cytoplasm (bottom). The 296A (purple) and 345T (red) positions are 
shown in space-fill. The dotted outlines depict the receptor regions in panels B-D. B) Docking prediction for 
dieldrin in the pore of the 296A (wt) receptor. Dieldrin is shown in green, in sticks and transparent surface. Side 
chains lining the pore are shown as sticks and 296A is coloured purple. C-D) Superimposition of dieldrin docking 
onto models of the 296G and 296S receptors, respectively. E) Pore radii in 296A, 296G and 296S models.

Next, we superimposed the wt dieldrin docking coordinates onto models of resistant RDL 

receptors, resulting in disruptions of the predicted form of interaction (Figure 9C, D). The A296G 

substitution widens the pore at the dieldrin docking site (2.9Å to 3.8Å) and reduces the surface 

area of contact between the lumen and dieldrin (Figure 9C, E). A296S has the opposite effect: it 

results in a narrower pore (2Å) and shows an overlap between the serine side-chains and dieldrin,

which indicates that steric hindrance could prevent the insecticide from binding at this location 

(Figure 9D, E). 
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Discussion

Evolution of Rdl resistance: selective sweeps and multiple introgression 
events

Contemporary dieldrin-resistant A. gambiae and A. coluzzii appear to descend from two unique 

hard selective sweeps linked to the A296G and A296S mutations, respectively (Figures 3 and 4). 

Both sweeps occurred independently on different genomic backgrounds (Figure 6), and have 

undergone at least three introgression events (Figures 6-8): (i) 296G from A. gambiae to A. coluzzii; 

(ii) 296G from 2L+a to 2La chromosomes; and (iii) 296S from A. arabiensis to A. coluzzii.

In the case of 296G, our data supports an origin in A. gambiae with 2L+a chromosomes, followed by 

interspecific introgression into A. coluzzii, and interkaryotypic introgression into 2La 

chromosomes. The A. gambiae origin is inferred from the background similarity between A. 

coluzzii swept haplotypes and A. gambiae wt specimens from Gabon (according to Patterson’s D 

test; Figure 7B). A. gambiae resistance haplotypes have accrued more non-synonymous mutations 

than A. coluzzii (N530K and H539Q; Figure 1A), which is consistent with a longer evolutionary 

history in the former. In either case, the swept haplotype currently spans populations of both 

species across West and Central Africa – mimicking the pan-African selective sweep described for

the homologous Rdl mutation in D. melanogaster (ffrench-Constant, Rocheleau, et al. 1993; ffrench-

Constant, Steichen, et al. 1993; Thompson et al. 1993). This result is in line with previous studies 

that had hypothesized the existence of a pan-African 296G sweep due to the strong genetic 

differentiation found in this locus (Lawniczak et al. 2010). 

The interkaryotypic introgression of 296G haplotypes from non-inverted 2L+a into 2La 

chromosomes (Figures 6 and 7) also facilitated the spread of 296G resistance alleles, e.g. in A. 

gambiae populations with high frequencies of 2La/2La karyotypes such as Burkina Faso (Figure 

5C). This introgression event affected a short region around codon 296 at the 3′ end of Rdl, which 

contributes to the faster decay in haplotype homozygosity immediately upstream to the 

resistance mutations (Figure 4A and Supplementary Material SM14A). While it is generally 

acknowledged that chromosomal inversions strongly suppress recombination (Sturtevant 1917), 

genetic exchange can occur via double cross-over recombination or gene conversion (Chovnick 

1973; Rozas and Aguadé 1994; Andolfatto et al. 2001; Kirkpatrick 2010). The reduction in 

recombination is weaker in regions distant from the inversion breakpoints (Andolfatto et al. 

2001), as it is the case for Rdl (located ~4.8 Mb and ~16.7 Mb away from the 2La breakpoints), 

which results in reduced differentiation at the centre of the inversion (Stump et al. 2007; Cheng et
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al. 2012) (Supplementary Material SM15). To the best of our knowledge, reports of adaptive 

introgression of individual genes within inversions are rare. In Anopheles, one of such cases are 

certain loci involved in adaptation to desiccation, which are linked to 2La inversions but are 

exchanged in 2La/2L+a heterozygotes (Cheng et al. 2012; Ayala et al. 2019). Another example, 

possibly linked to gene conversion, could be the APL1 cluster of hyper-variable immune genes: 

their pattern of sequence variation is more strongly influenced by geography and species (A. 

gambiae/A. coluzzii) than by the 2La inversion where they reside (Rottschaefer et al. 2011). 

On the other hand, the 296S selective sweep has a more restricted geographical distribution. In 

the Ag1000G cohort, 296S is only found in A. coluzzii from Burkina Faso (Figure 3). We also identify 

296S alleles in A. arabiensis specimens from East (Tanzania), Central (Cameroon) and West Africa 

(Burkina Faso); as well as two A. quadriannulatus specimens from Zambia (which appears to be the

first record in this species; Figure 1B). 

Interestingly, we find clear evidence of 296S introgression from A. arabiensis into A. coluzzii even 

when comparing to A. arabiensis wt specimens (Figure 7A), and despite the fact that none of the A. 

arabiensis 296S share the A. coluzzii swept haplotype (Figures 3A, 6A, and Supplementary Material 

SM6). Thus, lack of genomic evidence from A. arabiensis precludes the identification of the actual 

donor haplotype. A wider sampling of A. arabiensis populations will be necessary to complete the 

picture of 296S evolution, in order to (i) identify the number of historical A296S mutations in this 

species; (ii) establish whether they were associated with one or more selective sweeps; and (iii) 

whether any of these hypothetical sweeps introgressed into A. coluzzii.

Persistence of Rdl mutations after dieldrin withdrawal

Rdl is a highly conserved gene, with an extreme paucity of non-synonymous mutations over >100 

Mya of evolutionary divergence (Neafsey et al. 2015) in culicines and anophelines, and low dN/dS 

ratios that indicate a prevalence of purifying selection (Supplementary Material SM4). In this 

context, the persistence of 296G and 296S alleles in natural populations for more than 70 years, in 

spite of its fitness costs in the absence of insecticide (Rowland 1991a; Rowland 1991b; Platt et al. 

2015), has been a long-standing puzzle.

Our study provides two key insights to this question. First, we find that, relative to the wt, 

haplotypes with resistance alleles have an excess of non-synonymous genetic diversity (~18x 

increase in πN/πS in 296G, ~4x in 296S). This observation suggests that the emergence of 296G and, 

to a lesser degree, 296S, has substantially altered the selective regime of Rdl and enabled the 

accumulation of additional non-synonymous mutations in an otherwise highly constrained 
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protein. This accelerated rate of protein evolution appears to have occurred in the only copy of 

the resistance haplotype, as there is no evidence of copy number variation polymorphisms 

affecting Rdl in the Ag1000G dataset (Lucas et al. 2019; The Anopheles gambiae 1000 Genomes 

Consortium 2019). A similar change has been recently observed for resistance mutations in Vgsc 

(the target site of pyrethroids), whereby 995F haplotypes accumulate an excess of amino-acidic 

substitutions (Clarkson et al. 2018). 

Second, we identify a high degree of genetic linkage between the 296G/345M and 296S/345S allele 

pairs, which is observed in all West African populations where codon 296 mutations are present 

(Figures 1, 2, and Supplementary Material SM3) due to the fact that virtually all swept haplotypes 

include both mutations (Figures 3 and 4). This near-universal association is highly relevant 

because codon 345 mutations are suspected to have compensatory effects that offset the costs of 

codon 296 variants (Remnant et al. 2014; Taylor-Wells et al. 2015). Studies of fipronil resistance 

have shown that both the 296G allele and the combination of 296G and 345M alleles resulted in 

decreased insecticide sensitivity in A. gambiae (Taylor-Wells et al. 2015), D. melanogaster (Remnant 

et al. 2014), and D. simulans (Le Goff et al. 2005). Crucially, Taylor-Wells et al. (Taylor-Wells et al. 

2015) showed that, in addition to fipronil resistance, the A. gambiae 296G allele causes heightened 

sensitivity to the GABA neurotransmitter (possibly contributing to the observed fitness costs 

(Rowland 1991b; Rowland 1991a; Platt et al. 2015)); and that the addition of the 345M mutation 

reduces these detrimental effects while still conferring resistance. 

Interestingly, our structural modelling analyses predict opposite resistance mechanisms for each 

resistance allele: 296G results in a wider RDL pore with reduced van der Waals interactions with 

dieldrin (Figure 9C, E); whereas 296S narrows the pore and impedes dieldrin docking due to steric

hindrance (Figure 9D, E). These two effects suggest the possibility that the mechanisms behind 

the hypothesised compensatory roles of codon 345 mutations could be different as well, and open

a new line of inquiry to investigate the exclusive association of each resistance variant with 

downstream mutations (296G with 345M, 296S with 345S). Yet, the exact nature of the interaction 

between these codon 296 and 345 mutations remains unclear. Firstly, residue 345 does not have 

direct contacts with dieldrin or residue 296 (Figure 9A), and changes on its side chain do not 

directly affect the pore conformation. Secondly, indirect effects are uncertain too: in human 

receptors, mutations at the interface between the third and second transmembrane helices 

(where residues 345 and 296 reside, respectively) affect the transition to the desensitized 

functional state (Gielen et al. 2015); but residue 345 in A. gambiae is not buried in this interface 

and is instead facing the lipid bilayer (Figure 9A), and the predicted effects of mutations T345M 

20

398

400

402

404

406

408

410

412

414

416

418

420

422

424

426

428



and T345S are not obvious.

Other possible factors behind the persistence of Rdl resistance alleles include the long half-life of 

dieldrin as an environmental organic pollutant; as well as the fact that it is the target site of 

insecticides other than dieldrin. The use of fipronil as a pesticide has been proposed to explain 

the high frequencies of Rdl mutations after dieldrin withdrawal from specific sites (Wondji et al. 

2011; Kwiatkowska et al. 2013), e.g. in A. coluzzii from the Vallée du Kou (Burkina Faso) 

(Kwiatkowska et al. 2013). Neonicotinoids (imidacloprid) and pyrethroids (deltamethrin) could 

also contribute to Rdl mutation maintenance, as they interact with Rdl as a secondary target when 

used at high concentrations (Taylor-Wells et al. 2015). Pyrethroids have been a major vector 

control tool across most of sub-Saharan Africa (van den Berg et al. 2012; Oxborough 2016)  in the 

years prior the collection of the samples used in this study (up to 2012). Finally, other drugs 

known to interact with Rdl have a less clear possible connection with the persistence of the 296G 

or 296S alleles. For example, isoxazolines and meta-diamides are still effective in the presence of 

codon 296 mutations (Ozoe et al. 2010; Nakao et al. 2013; Asahi et al. 2015), which suggests that 

they are unlikely to be a primary cause of the maintenance of these alleles in natural populations. 

Rdl is also a secondary target of ivermectin (Chaccour et al. 2013). This drug does not bind in 

proximity to codon 296, but the 296S allele nevertheless appears to reduce ivermectin interaction 

with an in vitro-expressed GABA receptors in Drosophila (Nakao et al. 2015). Ivermectin was 

introduced into mass drug administration campaigns in the 1990s, first for onchocerciasis, then 

lymphatic filariasis (Hoerauf et al. 2011). Whilst the interaction of ivermectin with Rdl resistance 

alleles in vivo is not currently understood, these mutations have persisted for two decades 

between the discontinuation of cyclodiene use and the first mass ivermectin administration 

campaigns.

Implications for vector control

The apparent ease with which Rdl adaptive haplotypes have spread across the barriers to 

recombination posed by species isolation (A. gambiae/A. coluzzii and A. arabiensis/A. coluzzii) and 

non-concordant chromosomal inversions (2L+a/2La) mirrors previous findings in Vgsc target site 

mutations (Clarkson et al. 2014), and suggests worrying consequences for insecticide deployment

programmes. Burkina Faso, where resistance alleles have traversed both barriers to 

recombination, is a case-in-point example of this risk: the high frequency of 2La inversions 

(Figure 5C) did not prevent the spread of 296G, and interspecific introgression of 296S from A. 

arabiensis compounded this problem in A. coluzzii. 
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Also noteworthy is the overlap of Rdl and Vgsc resistance variants in West and Central Africa. The 

lack of genetic linkage between Vgsc and Rdl resistance haplotypes suggests that this co-

occurrence is purely geographical, and does not fit a hypothetical epistatic relationship 

(Supplementary Material SM7 and SM8). Yet, this overlap is still relevant for vector control: as 

pyrethroid resistance increases in Anopheles populations (Ranson et al. 2011), the search for 

substitutes should take into account that some can be rendered ineffective by 296S or 296G (e.g. 

fipronil (Gant et al. 1998), ivermectin (Miglianico et al. 2018), or, possibly, neonicotinoids such as 

imidacloprid (Taylor-Wells et al. 2015)). This risk is currently highest in the West and Central 

African populations of A. gambiae and A. coluzzii where both 296G and Vgsc 995F (Clarkson et al. 

2018) are common (Supplementary Material SM8). In the future, the introgression of 296S from 

East African A. arabiensis could further compound current complications caused by the already 

high frequencies of Vgsc 995S in this region (Clarkson et al. 2018). 

This case study of the mechanisms that underlie persistence of dieldrin resistance is also relevant

for integrated resistance management. Strategies such as insecticide rotations or mosaics rely on 

a gradual decline in resistance over time (World Health Organization 2012). Instead, 296G and 

296S haplotypes have accumulated additional non-synonymous mutations (Figure 3A), some of 

which (codon 345) are putatively compensatory. As mentioned above, a similar altered selective 

regime has also been observed in Vgsc haplotypes with kdr mutations (Clarkson et al. 2018). 

Interestingly, a study of Brazilian Aedes aegypti found that Vgsc kdr mutations did not decrease in 

frequency after a decade without public pyrethroid spraying campaigns (Macoris et al. 2018). 

Brazilian Aedes have a longer history of pyrethroid-based treatments than African Anopheles spp. 

(van den Berg et al. 2012; Macoris et al. 2018); thus, their resilient kdr mutations could be (i) 

recapitulating our observations with respect to Rdl and dieldrin, and (ii) prefiguring a similar 

persistence of Vgsc kdr in the A. gambiae complex after a future phasing-out of pyrethroids in 

response to their decreasing efficacy (Ranson et al. 2011).

Overall, our results show that the Rdl resistance mutations that appeared after the pioneering 

deployment of dieldrin in the 1950s will still be relevant in the immediate future. Continued 

monitoring is thus necessary to understand the evolving landscape of genomic variation that 

underlines new and old mechanisms of insecticide resistance.
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Methods

Data collection

We used genome variation data from A. coluzzii and A. gambiae mosquitoes from the Anopheles 

gambiae 1000 Genomes Phase 2-AR1. This dataset consists of 1,142 wild-caught mosquitoes 

(1,058 females and 84 males) from 33 sampling sites located in 13 sub-Saharan African countries

(Supplementary Material SM1). To ensure population representativeness, The Anopheles gambiae 

1000 Genomes Consortium aimed at minimum sample size of 30 specimens per country (Miles et

al. 2017) and avoided confounding factors during collection (e.g. insecticide resistance). The list 

of locations includes continental and island populations, and covers different ecosystems 

(including rainforest, coastal forests, savannah, woodlands, and grasslands; details in (Miles et al. 

2017; The Anopheles gambiae 1000 Genomes Consortium 2019)). Specimens were collected at 

different times between 2009 and 2012 (with the exception of samples from Gabon and 

Equatorial Guinea, collected in 2000 and 2002 respectively). 

The methods for genome sequencing and analysis of this dataset have been previously described 

in detail as part of the Phase 1 and Phase 2 releases of Ag1000G (Miles et al. 2017; The Anopheles 

gambiae 1000 Genomes Consortium 2019). Briefly, DNA was extracted from each of the 1,142 

mosquitoes using Qiagen DNeasy Blood and Tissue Kit (Qiagen Science, US) and sequenced with 

the Illumina HiSeq 2000 platform (Wellcome Sanger Institute, UK) using paired-end libraries 

(100 bp reads with insert sizes in the 100-200 bp range) and aiming at a 30x coverage per 

specimen (see original papers for details). Variant calling was performed using bwa 0.6.2 (Li and 

Durbin 2009) and the GATK 2.7.4 UnifiedGenotyper module (Van der Auwera et al. 2013). Haplotype

phasing was estimated with SHAPEIT2 (Delaneau et al. 2013), and variant effects were predicted 

using SnpEff 4.1b (Cingolani et al. 2012).

We retrieved the phased genotype calls, SNP effect predictions, and the array of accessible 

genomic positions for each of the 1,142 specimens from the Ag1000G Phase 2-AR1 online archive 

(The Anopheles gambiae 1000 Genomes Consortium 2017). We also obtained the same data for 

populations of four species in the Anopheles complex (A. arabiensis, A. quadriannulatus, A. melas and 

A. merus) and two outgroups (A. epiroticus and A. christyi) (Neafsey et al. 2015), as available in the 

Ag1000G online archive (The Anopheles gambiae 1000 Genomes Consortium 2017). The complete 

list of genomes with accession codes is available in Supplementary Material SM1.

The reference gene annotation of A. gambiae was obtained from Vectorbase (Giraldo-Calderón et 
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al. 2015) (GFF format, version AgamP4.9). Gene and variant coordinates employed in this study 

are based on the AgamP4 version of the genome assembly.

Genotype frequencies and linkage disequilibrium

We retrieved all non-synonymous genomic variants located within the coding region of Rdl 

(genomic coordinates: 2L:25363652-25434556) that were biallelic, phased, and segregating at 

>5% frequency in at least one population (henceforth, ‘non-synonymous variants’). Parsing and 

filtering of genotype calls from Ag1000G was done using the scikit-allel 1.2.1 library (Miles and 

Harding 2017) in Python 3.7.4.

We calculated the linkage disequilibrium between each pair of non-synonymous variants using (i)

Rogers’ and Huff r correlation statistic (Rogers and Huff 2009), as implemented in scikit-allel 

(rogers_huff_r); and (ii) Lewontin’s D′ statistic (Lewontin 1964), as implemented in (Clarkson et al. 

2018).

Haplotype networks

We constructed a network of haplotype similarity using 626 biallelic, phased and non-singleton 

(shared between more than two samples) variants located in a region +/− 10kbp of Rdl codon 296 

(middle nucleotide, coordinate 2L:25429236). We used the presence/absence of each allele within

this genomic region to calculate Hamming distances and build minimum spanning networks 

(Bandelt et al. 1999), using the hapclust function from (Clarkson et al. 2018) (with distance breaks 

>3 variants). Network visualizations were produced using the graphviz 2.38.0 Python library 

(Ellson et al.), with haplotype clusters being color-coded according to species, population and 

presence/absence of the resistance alleles in codon 296 (296S, 2L:25429235; 296G, 2L:25429236) 

and the 995th codon of Vgsc (Figure 3, Supplementary Material SM5, and SM6). The network 

visualization in Figure 3A excludes singletons and haplotype clusters with a cohort frequency 

<1%.

We calculated the sequence diversity (π) of each haplotype group in the same region 

(sequence_diversity function in scikit-allel), using a jack-knife procedure (iterative removal of 

individual haplotypes without replacement) (Tukey 1958) to estimate the average and standard 

error. We also calculated the sequence diversity in non-synonymous coding variants from this 

region (πN), synonymous coding variants (πS), and their ratio (πN/πS).

Positive selection in haplotype clusters
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We analysed the signals of positive selection in three haplotype groups, divided according to 

alleles in codon 296: wt (n = 1476), 296S (n = 94) and 296G (n = 651) (Supplementary Material 

SM5). First, we calculated the extended haplotype homozygosity decay (EHH) of each group of 

haplotypes, using 22,910 variants (phased and biallelic) located +/− 200 kbp of codon 296 

(2L:25429236) (using the ehh_decay utility in scikit-allel). For each haplotype group, we recorded 

the genomic region where EHH decay >0.95 and <0.05.

Second, we calculated the profile of Garud’s H statistics (Garud et al. 2015) along the 2L 

chromosomal arm (moving_garud_h utility in scikit-allel; block length = 500 phased variants with 

20% step). We performed the same calculations for the haplotypic diversity 

(moving_haplotype_diversity in scikit-allel). We calculated the Garud H and haplotypic diversity 

estimates in the Rdl locus, using a jack-knife procedure (Tukey 1958) (iterative removal of 

individual haplotypes without replacement) to calculate the mean and standard error of each 

statistic.

Karyotyping of 2La inversions

In order to assign karyotypes of the 2La inversion in all specimens from Ag1000G Phase 2, we 

used known 2La karyotypes from Phase 1 as a reference (Miles et al. 2017), and analysed 

genotype frequencies within the inversion by principal component analysis (PCA). Specifically, we

retrieved the genotype frequencies of 1142 specimens from Ag1000G Phase 2, 765 of which were 

also present in Phase 1 and had been previously karyotyped for this inversion (Miles et al. 2017); 

and selected 10,000 random SNPs (biallelic, shared between more than two samples, phased, 

segregating in at least one population, and located within the 2La inversion 2L:20524058-

42165532). SNPs fitting these criteria were selected using the scikit-allel Python library, and the 

PCA was performed using the randomized_pca utility (with Patterson scaling). 

Manual inspection of the principal components (Supplementary Material SM9) showed that PC1 

(6.35% of variance explained) was sufficient to discriminate between known karyotypes from 

Phase 1 using a clear-cut threshold (2La/2La, 2La/2L+a and 2L+a/2L+a). We determined the 

optimal classification thresholds using the C-Support Vector classification method (SVC, a method

for supervised learning) implemented in the scikit-learn 0.21.3 Python library (Pedregosa et al. 

2011). Specifically, we used the SVC function in scikit-learn (svm submodule) to train a classifier 

with known karyotypes from Phase 1 (765 observations) and the main principal components of 

the PCA analysis (10 variables), using a linear kernel and C=1. The selected thresholds were able 

to classify Phase 1 data into each of the three categories (2La/2La, 2La/2L+a and 2L+a/2L+a) with 
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100% accuracy (as per the classifier score value), precision and recall (calculated using the 

classification_report function from the scikit-learn metrics submodule).

Phylogenetic analysis of haplotypes

We obtained genomic alignments of SNPs located from four regions around the Rdl locus, at the 

following coordinates: (i) 5′ start of the gene (2L:25363652 +/− 10,000 kbp, 696 variants), (ii) 3′ 

end of the gene (2L:25434556 +/− 10,000 kbp, 428 variants), (iii) unadmixed region 1Mb 

upstream of Rdl (2L:24363652 + 20,000 kbp; 2903 variants; inside of the 2La inversion), and (iv) 

unadmixed region 1Mb downstream of Rdl (2L:26434556 + 20,000 kbp, 2594 variants; inside of 

the 2La inversion). These alignments were built from phased, biallelic variants within the 

aforementioned regions, obtained from A. coluzzii and A. gambiae (Ag1000G Phase 2), A. arabiensis, 

A. quadriannulatus, A. melas and A. merus. We restricted our analysis to haplotypes pertaining to 

individuals homozygous for the 2La inversion (2La/2La and 2L+a/2L+a), totalling 1684 haplotypes 

(out of 2356 haplotypes in the original dataset, obtained from 1178 specimens). Invariant sites 

were removed from the alignments using snp-sites 2.3.3 (Page et al. 2016). All alignments are 

available in Supplementary Material SM10. 

Each genomic alignment was then used to compute Maximum-Likelihood phylogenetic trees 

using IQ-TREE 1.6.10 (Nguyen et al. 2015). The best-fitting nucleotide substitution model for each 

alignment was selected using the TEST option of IQ-TREE and according to the Bayesian 

Information Criterion (BIC), which suggested the GTR substitution matrix with ascertainment 

bias correction, four gamma (Γ) rate categories, and empirical state frequencies observed from 

the alignment (F) (i.e. the GTR+F+ASC+G4 model in IQ-TREE). We calculated branch statistical 

supports using the UF bootstrap procedure (Minh et al. 2013; Hoang et al. 2018) and refined the 

tree for up to 10,000 iterations, until convergence was achieved (correlation coefficient ≥ 0.99). 

Tree visualizations were created in R, using the plot.phylo function from the ape 5.3 library 

(Paradis and Schliep 2019) and stringr 1.4.0 (Wickham 2019). Each phylogeny was midpoint-

rooted with phytools 0.6-60 (Revell 2012) (midpoint.root), and branch lengths in Figure 6 were 

constrained for display purposes (5 × 10−5 to 5 × 10−3 per-base substitutions range; unmodified 

trees available in Supplementary Material SM11).

Interspecific introgression with Patterson’s D statistic

We analysed the signals of introgression along the 2L chromosomal arm using Patterson’s D 

statistic (Durand et al. 2011; Patterson et al. 2012). This statistic requires allele frequencies in 
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four populations (A, B, C and O) following a predefined (((A,B),C),O) phylogeny, where A, B and C 

are populations with possible introgression events, and O is an unadmixed outgroup. Then, D > 0 

if there is an excess of allele frequency similarities between A and C (which means either A → C or 

C → A introgression) and D < 0 for excess of similarity between B and C (B → C or C → B 

introgression) (Durand et al. 2011; Patterson et al. 2012). We calculated Patterson’s D along blocks

of adjacent variants in the 2L chromosomal arm (block length = 10,000 variants, with 20% step 

length; phased variants only) using the moving_patterson_d utility in scikit-allel. We also calculated 

D in the Rdl locus (2L:25363652-25434556), and estimated its deviation from the null expectation 

(no introgression: D = 0) with a block-jackknife procedure (block length = 100 variants; 

average_patterson_d in scikit-allel). We then used these jack-knifed estimates to calculate the 

standard error, Z-score and the corresponding p value from the two-sided Z-score distribution.

Using the procedure described above, we performed multiple analyses of introgression between 

combinations of populations fitting the (((A,B),C),O) phylogeny. For each analysis, we selected A, B,

C and O populations according to two criteria: (i) which interspecific introgression event was 

under test (A. gambiae ~ A. coluzzii or A. coluzzii ~ A. arabiensis); (ii) homozygous karyotypes of the 

2La inversion within which Rdl is located (given that it introduces a strong effect on genotype 

frequencies across the entire A. gambiae species complex (Fontaine et al. 2015)) and the 

resistance haplotype in question; and (iii) exclude populations with high frequencies of hybrids, 

with controversial species identification, or with extreme demographic histories (Guinea-Bissau, 

The Gambia, and Kenya) (Miles et al. 2017; Vicente et al. 2017). Following these criteria, we then 

tested the presence and direction introgression between the combinations of populations 

specified below.

First, we tested the A. coluzzii ~ A. arabiensis introgression of the 296S haplotype in inverted 

genomes (2La/2La homozygotes; Figure 7A and Supplementary Material SM12). We performed 

two versions of this test, using either A. coluzzii or A. arabiensis as donors (population C), which can

give an indication of the population of origin of the 296S mutation. First, we tested the A. arabiensis

→ A. coluzzii hypothesis using: (i) 296S homozygous A. coluzzii from Burkina Faso as population A; 

(ii) wt homozygous A. coluzzii from Burkina Faso as population B; (iii) A. arabiensis and A. merus 

specimens as multiple C populations (donors) C, treating 296S and wt homozygous specimens as 

different populations; and (iv) A. epiroticus and A. christyi as population O. Second, we tested the A. 

coluzzii → A. arabiensis hypothesis but switching the position of A. arabiensis (now population A and 

B, for 296S and wt respectively) and A. coluzzii populations (now population C, together with the A. 

merus negative control). Under this setup, we expect to see evidence of introgression between 
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296S A. coluzzii and 296S A. arabiensis in both tests (positive controls), but a positive result with any 

of the wt comparisons can indicate that 296S haplotypes in either species is more similar to wt 

from the other (and hence, the second species is the species of origin). A detailed account of all 

comparisons, populations and complete statistical reports are available in Supplementary 

Material SM12.

We performed the same series of tests for the A. gambiae ~ A. coluzzii introgression of the 296G 

cluster in individuals without the 2La inversion (2L+a/2L+a homozygotes; Figure 7B and 

Supplementary Material SM13A, B) and with the 2La inversion (Supplementary Material SM13C, 

D). In these tests, homozygous individuals from various A. gambiae and A. coluzzii populations 

were alternatively used as groups A/B (A if 296G, B if wt) and C (296G and wt, separately); and wt 

outgroups were selected according to their 2La karyotype (2L+a/2L+a: A. quadriannulatus and A. 

melas; 2La/2La: A. merus). A detailed account of all comparisons, populations and complete 

statistical reports are available in Supplementary Material SM13.

Sequence divergence between 2La karyotypes

To ascertain whether 296G karyotypes from 2La chromosomes were introgressed from a 2L+a 

background, we calculated the absolute sequence divergence (Dxy (Takahata and Nei 1985)) 

around the Rdl locus between all combinations of the following groups of haplotypes: (i) between 

296G-carrying haplotypes from 2L+a/2L+a homozygotic genomes, (ii) wt haplotypes from 2La/2La; 

(iii) 296G haplotypes from 2La/2La, (iv) wt haplotypes from 2La/2La (Figure 8). Dxy estimates were

calculated along the 2L arm using the windowed_divergence utility in scikit-allel (window 

size=20,000 bp with 10% overlap). At each window, we also calculated the ratio between the 

following Dxy estimates: (i) 296G-2L+a ~ wt-2La / 296G-2L+a ~ wt-2L+a; and (ii) 296G-2La ~ wt-2La / 

296G-2La ~ wt-2L+a. Thus, windows with ratios >1 are more similar to the wt-2L+a background, 

and windows with ratios <1 are more similar to the wt-2La background.

Alignment of Rdl orthologs

We retrieved Rdl orthologs from the following species of the Culicidae family (available in 

Vectorbase): A. gambiae, A. arabiensis, A. melas, A. merus, A. christyi, A. epiroticus, A. minimus, A. 

culicifacies, A. funestus, A. stephensi, A. maculatus, A. farauti, A. dirus, A. atroparvus, A. sinensis, A. 

albimanus, A. darlingi, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. We retained (i) 

those orthologs that resulted in complete predicted peptides (defined as having the same start 

and end codons as the A. gambiae Rdl), and (ii) the longest isoform per gene (except for A. gambiae, 

where all three isoforms were retained). These sequences were aligned using MAFFT 7.310 (1,000 
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rounds of iterative refinement, G-INS-i algorithm) (Katoh and Standley 2013). Pairwise sequence 

identity between peptide sequences was calculated using the dist.alignment function (with a 

identity distance matrix, which was then converted to a pairwise identities) from the seqinr 3.4-5 

library (Charif and Lobry 2007), in R 3.6.1 (R Core Team 2017). Pairwise dN/dS ratios were 

calculated from a codon-aware alignment of CDS sequences, using the dnds function from the ape 

5.3 R library (Paradis et al. 2004). The codon-aware alignment of full-length CDS was obtained 

with PAL2NAL (Suyama et al. 2006), using the peptide alignment as a reference. Tables of 

pairwise identity and dN/dS values have been created with pheatmap 1.0.12 (Kolde 2019).

Homology modelling and automated ligand docking

The structure of human GABAA receptor bound with picrotoxin (PDB accession: 6HUG) provided 

the template for generating a homology model of the homopentameric A. gambiae RDL receptor 

(UniProtKB accession: Q7PII2). Sequences were aligned using Clustal Omega (Sievers et al. 2011), 

and 50 homology models were generated using MODELLER 9.23 (Eswar et al. 2006). A single best 

model was chosen based on the internal scoring values from MODELLER and by visually 

inspecting models in Swiss-PdbViewer (Guex et al. 1999) to eliminate candidates with structural 

problems. The A296G and A296S mutants were generated using Swiss-PdbViewer to introduce the 

amino acid substitutions and to energy minimise the resulting structures using 50 steps of 

conjugate gradient energy minimization. The pore radii of the channel models were calculated 

using HOLE 2.0 (Smart et al. 1996). The 3-dimensional structure of dieldrin was generated ab 

initio using MarvinSketch 19.22 of the ChemAxon suite (ChemAxon 2019). AutoDockTools 1.5.6 

(Morris et al. 2009) was used to define rotatable bonds and merge non-polar hydrogens. 

Automated ligand docking studies with the wild-type GABA receptor model were performed using

AutoDock Vina 1.1.2 (Trott and Olson 2009) with a grid of 20 × 20 × 20 points (1Å spacing) centred 

on the channel pore. Figures were produced using PyMOL (Schrödinger 2015).

Availability of code and data

Python (3.7.4) and R scripts (3.6.1) to reproduce all analyses in this manuscript are available on 

GitHub: https://github.com/xgrau/rdl-Agam-evolution

All genome variation data has been obtained from the publicly available repositories of the 

Ag1000G project Phase 2-AR1 (The Anopheles gambiae 1000 Genomes Consortium 2017). Accession

codes are available in Supplementary Material SM1 and download instructions can be found in 

the above-mentioned GitHub repository.
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Supplementary legends

Supplementary Material SM1. Data sources. List of genome samples from Ag1000G Phase 2-AR1 

(table A), the Phase 1-AR3 subset (table B) (both of which contain A. gambiae and A. coluzzii specimens), 

and outgroup species (table C; includes A. arabiensis, A. quadriannulatus, A. christyi, A. epiroticus, A. merus 

and A. melas). For each sample, we include their country and population of origin, accession numbers 

(based on Ag1000G for Phase 1 and 2, and on NCBI SRA for outgroups), and the estimated 2La 

karyotypes.

Supplementary Material SM2. List of genetic variants in Rdl. A) List of all variants present in the Rdl 

gene (AGAP006028), including their genomic coordinates, reference and alternative alleles, 

coordinates of the mutation along Rdl CDS and peptide sequences, effect on the peptide sequence 

(aminoacid substitution), and frequencies in each of the populations of the cohort (Phase 2 and 

outgroups). B) Genotypes of Rdl non-synonymous mutations in each sample (for the six mutations 

reported in Figure 1), where 0=wt homozygote, 1=heterozygote, 2=alternate allele homozygote.

Supplementary Material SM3. Linkage disequilibrium in Rdl. Linkage disequilibrium between non-

synonymous mutations in Rdl, separated by population. Only populations where non-synonymous 

variants are shown are displayed. For each population, we display Huff and Rogers’ r (left) and 

Lewontin’s D′ (right).

Supplementary Material SM4. Alignments of Rdl orthologs. A) Alignment of Rdl orthologs from 12 

species from the Culicidae family: A. gambiae (Anogam) A. arabiensis (Anoara), A. atroparvus (Anoatr), A. 

darlingi (Anodar), A. dirus (Anodir), A. epiroticus (Anoepi), A. farauti (Anofar), A. funestus (Anofun), A. 

merus (Anomer), A. minimus (Anomin), and Aedes aegypti (Aedaeg). Pfam-predicted protein domains, 

transmembrane regions and the 296 and 345 codons are shown on top of the alignment (coordinates 

based on the A. gambiae ortholog). B-C) Pairwise sequence identity and dN/dS between Rdl orthologs, 

including all A. gambiae isoforms (RA, RB, RC).

Supplementary Material SM5. Haplotype classification and population frequency. A) Clustering of 

haplotypes according to the minimum spanning networks (built from 626 phased variants located 

around codon 296; Figure 3 and Supplementary Material SM6). For each cluster, we report their 

population and country of origin, species, and allele present in Rdl codon 296 (296G, 296S, wt) and Vgsc 

codon 995 (995F, 995S and wt). Cluster “4” includes haplotypes with 296G alleles, cluster “34” includes 

296S alleles; all other clusters are wt. B) Absolute frequency of 296G, 296S and wt haplotype clusters 

per population.

Supplementary Material SM6. Minimum spanning networks of Rdl haplotypes. Minimum spanning 
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networks of haplotypes around Rdl codon 296 (626 phased variants located +/− 10,000 bp from the 

2L:25429236 position), including all non-singleton haplotype clusters. Purple arrows indicate the 

direction of non-synonymous mutations (relative to reference assembly). A) Nodes are color-coded 

according to genotype in Rdl codon 296 . B) Nodes are color-coded according to genotype in Vgsc codon

995. C) Nodes are color-coded according to species.

Supplementary Material SM7. Linkage disequilibrium of Rdl and Vgsc. Linkage disequilibrium 

between non-synonymous mutations in Rdl and Vgsc, calculated using Huff and Rogers’ r (A) and 

Lewontin’s D′ (B). Resistance variants in both genes are highlighted in orange (Vgsc) and cerise red 

(Rdl).

Supplementary Material SM8. Co-segregation of Rdl and Vgsc mutations. A-B) Frequency of alleles 

in Vgsc codon 995 and Rdl codon 296 per population, calculated per chromosome. Note: A. gambiae 

populations denoted with an asterisk (The Gambia, Guinea-Bissau and Kenya) are listed separately 

due to their high frequency of hybridisation and/or unclear species identification (see Methods). C) 

Geographical co-occurrence of Rdl and Vgsc mutations, at 10% and 30% frequency thresholds (chosen 

for illustrative purposes). Dots indicate presence. D) Euler diagrams and contingency table depicting 

the co-occurrence of Vgsc 995F and 995S alleles with Rdl 296G, 296S and wt alleles within chromosomes 

analysed in this study (n = 2356). For chromosomes carrying each of the Rdl haplotype groups, we 

include the percentage of associated genotypes at Vgsc codon 995. E) Number of chromosomes 

carrying 296S or 296G mutations (x axis) against number of 995F mutations (y axis), per population 

(only values >0 included). F) Contingency tables of Rdl and Vgsc resistance mutations co-occurrence, 

per population. Only populations were resistance alleles in are segregating in both genes are included. 

p values and odds ratios [OR] correspond to Fisher’s exact tests (one-sided, testing for a greater co-

occurrence of Rdl codon 296 and Vgsc 995 resistance alleles).

Supplementary Material SM9. PCA of 2La karyotypes. Principal component (PC) analysis of allele 

presence/absence from 10,000 random variants located within the 2La inversion (coordinates: 

2L:20524058-42165532). Specimens from Ag1000G Phase 1 and A. arabiensis are color-coded by 2La 

genotype (homozygotes and heterozygotes, blue-purple), and they are used as a reference to assign 

2La genotypes to Phase 2 specimens (grey). Panels A and B show PC1, PC2 and PC3; panel C shows the 

fraction of variance explained by each PC. The 2La karyotypes of all Phase 2 specimens are available in

Supplementary Material SM1.

Supplementary Material SM10. Alignments of Rdl haplotypes. A) 5′ start of the gene (2L:25363652 , 

696 variants). B) 3′ end of the gene (2L:25434556, 428 variants). C) Unadmixed upstream region 

within the 2La inversion (1 Mb upstream of Rdl; 2903 variants). D) Unadmixed downstream region 
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within the 2La inversion (1 Mb downstream of Rdl, 2594 variants). The name of each sequence name 

indicates the specimen (codes from Supplementary Material SM1; e.g. AA0040-C), haplotype (a or b), 

population of origin (e.g. GHcol), genotype at codon 296 (gt0=wt, gt1=296G, gt2=296S), and 2La 

background (kt0=2L+a/2L+a, kt1=2La/2L+a, kt2=2La/2La).

Supplementary Material SM11. Phylogenies of Rdl haplotypes. Phylogenetic trees from alignments 

around the Rdl locus (Supplementary Material SM10), in Newick format and including ultrafast 

bootstrap (UFBS) statistical supports. The name of each sequence (e.g. “AA0040-Ca_GHcol_gt0_kt0”) 

indicates the specimen (codes from Supplementary Material SM1; “AA0040-C”), chromosome (“a” or 

“b”), population of origin (“GHcol”), allele at codon 296 (gt0=wt, gt1=296G, gt2=296S), and 2La 

karyotype (kt0=2L+a/2L+a, kt1=2La/2L+a, kt2=2La/2La).

Supplementary Material SM12. 296S introgression between A. coluzzii and A. arabiensis. A) Profile 

of Patterson’s D in 2La/2La backgrounds, using A. coluzzii specimens as populations A and B (296S and 

wt, respectively); A. arabiensis as population C (296S as positive controls, wt as test), A. merus as a 

negative control for population C (wt); and either A. christyi or A. epiroticus as outgroups (wt). B) Profile 

of Patterson’s D in 2La/2La backgrounds, using A. arabiensis specimens as populations A and B (296G 

and wt, respectively); A. coluzzii as population C (296S as positive controls, wt as test), A. merus as a 

negative control for population C (wt); and either A. christyi or A. epiroticus as outgroups (wt). 

In all panels, the hypothesis under test can be summarised as follows: if 296S homozygotes from 

species i show evidence of introgression with wt homozygotes from species j but not with wt from i, it 

means that 296S originated in species j. Left plots depict the entire 2L chromosomal arm (orange lines 

demarcate 2La inversion), and rightmost plots focus on the Rdl locus (Rdl gene coordinates highlighted 

in red). D was calculated in sliding blocks of 10,000 phased variants (with 20% overlap). For each 

comparison, we report the mean value of D in the Rdl locus and use a block-jackknife procedure (block 

length = 100 variants) to estimate its standard error, a Z-score (standardized D) and p-value (that 

reflects deviation from the null expectation of D = 0).

Supplementary Material SM13. 296G introgression between A. gambiae and A. coluzzii. A) Profile of 

Patterson’s D in 2L+a/2L+a backgrounds, using A. coluzzii specimens as populations A and B (296G and 

wt, respectively); A. gambiae as population C (296G as positive controls, wt as test); and either A. 

quadriannulatus or A. melas as outgroups (wt). B) Profile of Patterson’s D in 2L+a backgrounds, using A. 

gambiae specimens as populations A and B (296G and wt, respectively); A. coluzzii as population C (296G

as positive control, wt as test); and either A. quadriannulatus or A. melas as outgroups (wt). C) Profile of 

Patterson’s D in 2La/2La backgrounds, using A. coluzzii specimens as populations A and B (296G and wt,

respectively); A. gambiae as population C (296G as positive controls, wt as test); and A. merus as outgroup
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(wt). D) Profile of Patterson’s D in 2La/2La backgrounds, using A. gambiae specimens as populations A 

and B (296G and wt, respectively); A. coluzzii as population C (296G as positive controls, wt as test); and 

A. merus as outgroup (wt). 

In all panels, the hypothesis under test can be summarised as follows: if 296G homozygotes from 

species i show evidence of introgression with wt homozygotes from species j but not with wt from i, it 

means that 296G originated in species j. Left plots depict the entire 2L chromosomal arm (orange lines 

demarcate 2La inversion), and rightmost plots focus on the Rdl locus (Rdl gene coordinates highlighted 

in red). D was calculated in sliding blocks of 10,000 phased variants (with 20% overlap). For each 

comparison, we report the mean value of D in the Rdl locus and use a block-jackknife procedure (block 

length = 100 variants) to estimate its standard error, a Z-score (standardized D) and p-value (that 

reflects deviation from the null expectation of D = 0).

Supplementary Material SM14. Diversity of 296G haplotypes in 2L+a and 2La backgrounds. A) 

Profile of EHH decay for each group of 296G haplotypes (296G in 2L+a/2L+a, 2La/2L+a and 2La/2La 

backgrounds), built from 16,623 phased variants located +/− 150,000 bp from codon 296 

(2L:25429236 position). B) Profile of haplotypic diversity along chromosomal arm 2L (sliding blocks of

500 variants with 20% overlap). C) Absolute sequence divergence (Dxy) between 296G alleles of 2L+a 

background and wt resistance haplotypes of 2L+a and 2La backgrounds. D) Absolute sequence 

divergence (Dxy) between 296G alleles of 2La background and wt resistance haplotypes of 2L+a and 2La

backgrounds. All values are calculated in windows of 20,000 kbp with 10% overlap.

Supplementary Material SM15. Genetic differentiation in the 2La inversion. Differentiation 

(Hudson’s FST) along the 2L chromosomal arm between A. gambiae and A. coluzzii species, separated by 

their 2La karyotype (2La/2La or 2L+a/2L+a). Panel A shows comparisons with A. gambiae with 2L+a/2L+a

karyotypes, and panel B for A. gambiae with 2La/2La karyotypes. FST estimates have been calculated in 

adjacent blocks of 5,000 phased variants with 20% overlap. Sub-panels at the right focus on the Rdl 

genomic locus. Note that interkaryotype comparisons have higher FST in the 2La region than inter-

species comparisons.
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