LSTM Home > LSTM Research > LSTM Online Archive

Insecticide resistance in Anopheles arabiensis and Anopheles gambiae from Mozambique

Casimiro, S., Coleman, Michael ORCID: https://orcid.org/0000-0003-4186-3526, Hemingway, Janet ORCID: https://orcid.org/0000-0002-3200-7173 and Sharp, B. (2006) 'Insecticide resistance in Anopheles arabiensis and Anopheles gambiae from Mozambique'. Journal of Medical Entomology, Vol 43, Issue 2, pp. 276-282.

Full text not available from this repository.

Abstract

Malaria control in the southern part of Mozambique is currently by indoor residual spraying with a carbamate insecticide and by pyrethroid-treated bed-nets distributed to pregnant women and children under five in northern Mozambique. The susceptibility of Anopheles gambiae s.s. and Anopheles arabiensis Patton to pyrethroid, carbamate, organochlorine, and organophosphorus insecticides was determined by World Health Organization adult mosquito susceptibility tests at 17 localities in Mozambique, from March 2000 to July 2002. Biochemical assays were carried out on mosquitoes from the same families to detect shifts in the quantity or activity of enzyme families involved in insecticide detoxification. An. gambiae s.s. from all localities remained fully susceptible to DDT and the organophosphorus insecticide malathion. A low level of pyrethroid resistance was detected in populations in southern Mozambique. Populations outside Maputo province were still susceptible to pyrethroids. Low level resistance to the carbamate propoxur also was detected in An. arabiensis from two localities. Mosquitoes from five of the localities had elevated p450 estimates, compared with the insecticide susceptible Durban strain, The lack of cross-resistance between pyrethroids and DDT in Mozambican populations suggests that a kdr-type target site resistance mechanism has not been selected. Increased frequencies of insecticide insensitive acetylcholinesterase, the target site for carbamates and organophosphates, were found in 16 of the populations tested. Although vector control with bendiocarb is not being compromised by the presence of the acetylcholinesterase mechanism alone, the high level of insensitive acetylcholinesterase unless sensibly managed may have long-term implications for malaria control programs in Mozambique.

Item Type: Article
Uncontrolled Keywords: anopheles gambiae anopheles arabienis insecticide resistance mozambique malaria vector acetylcholinesterase identification albimanus culicidae genotypes disease complex diptera ddt
Subjects: QV Pharmacology > Anti-Inflammatory Agents. Anti-Infective Agents. Antineoplastic Agents > QV 256 Antimalarials
QW Microbiology and Immunology > QW 45 Microbial drug resistance. General or not elsewhere classified.
QW Microbiology and Immunology > Immune Responses > QW 700 Infection. Mechanisms of infection and resistance.
QX Parasitology > Insects. Other Parasites > QX 510 Mosquitoes
QX Parasitology > Insects. Other Parasites > QX 515 Anopheles
QX Parasitology > Insects. Other Parasites > QX 650 Insect vectors
WA Public Health > Preventive Medicine > WA 240 Disinfection. Disinfestation. Pesticides (including diseases caused by)
WC Communicable Diseases > Tropical and Parasitic Diseases > WC 750 Malaria
Faculty: Department: Groups (2002 - 2012) > Vector Group
Digital Object Identifer (DOI): https://doi.org/10.1603/0022-2585(2006)043[0276:IRIAAA]2.0.CO;2
Depositing User: Sarah Lewis-Newton
Date Deposited: 24 Feb 2011 16:41
Last Modified: 06 Feb 2018 13:01
URI: https://archive.lstmed.ac.uk/id/eprint/1458

Statistics

View details

Actions (login required)

Edit Item Edit Item