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Abstract 

A central goal in biology is to determine the ways in which evolution repeats itself. One of the 

most remarkable examples in nature of convergent evolutionary novelty is animal venom. 

Across diverse animal phyla, various specialized organs and anatomical structures have 

evolved from disparate developmental tissues to perform the same function, i.e. produce and 

deliver a cocktail of potent molecules to subdue prey or predators. Venomous organisms 

therefore offer unique opportunities to investigate the evolutionary processes of convergence 

of key adaptive traits, and the molecular mechanisms underlying the emergence of novel genes, 

cells, and tissues. Indeed, some venomous species have already proven to be highly amenable 

as models for developmental studies, and recent work with venom gland organoids provides 

manipulatable systems for directly testing important evolutionary questions. Here, we provide 

a synthesis of the current knowledge that could serve as a starting point for the establishment 

of venom systems as new models for evolutionary and molecular biology. In particular, we 

highlight the potential of various venomous species for the study of cell differentiation and cell 

identity, and the regulatory dynamics of rapidly-evolving, highly expressed, tissue-specific, 

gene paralogs. We hope that this review will encourage researchers to look beyond traditional 

study organisms and consider venom systems as useful tools to explore evolutionary novelties.  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article-abstract/doi/10.1093/m
olbev/m

saa133/5848011 by guest on 02 June 2020



Introduction 

Across the tree of life, species are often found to evolve analogous novel traits when 

independently presented with similar environmental or biological challenges, a process known 

as convergent evolution (Stern 2013). One of nature’s most remarkable examples of such 

repeated evolution of a key adaptive trait is animal venom. On more than one hundred 

occasions, animal lineages, including extinct dinosaurs (Gong et al. 2010) and mammals (Fox 

and Scott 2005), have independently evolved the ability to produce and deliver cocktails of 

bioactive molecules into other animals (Schendel et al. 2019). These biochemical weapons 

have typically evolved as an adaptation for foraging, defence or intraspecific competition, and 

their evolutionary acquisition remodels the predator-prey interaction from a physical to a 

biochemical battle, often enabling small venomous organisms to subdue or escape from much 

larger animals (Casewell et al. 2013). There are more than 200,000 venomous animal species 

known to science and, unsurprisingly, they have been the subject of public fascination 

throughout human history – often small and fragile-looking animals are capable of injecting 

complex secretions that can result in devastating damage, including death (Figure 1).  

Acquiring a venom system is not a simple process, and it involves several steps including: i) 

turning normal, physiological proteins into toxic molecules and, at the same time, developing 

mechanisms of auto-resistance against them; ii) evolving novel tissues to secrete and transport 

venom such as exocrine glands, ducts, and muscular bulbs; and iii) developing anatomical 

structures for efficient venom delivery, such as fangs, stingers, harpoons, forcipules, barbs 

among others. Despite often having the same overarching function (e.g. prey capture or 

predator deterrence), the anatomy and organization of venom systems differ dramatically 

between lineages, providing insights into the constraints (e.g. morphology, ecology, genetics) 

that shape organismal complexity (Schendel et al. 2019). Venom systems therefore represent 

exceptional opportunities to investigate the mechanisms underlying the evolution and 

development of novel proteins, tissues and morphological structures, and ultimately to 

understand the basis of how similar solutions are used repeatedly in nature - in turn contributing 

to a more general and predictive formulation of evolutionary theories. 

Venom systems have already proven to be unique models for the study of regulatory evolution 

of novel cells. For instance, in the last 15 years, cnidarians (mainly Nematostella vectensis and 

Hydra magnipapillata) have been established as laboratory models for this emerging field of 

research (Darling et al. 2005; Galliot 2012; Babonis and Martindale 2014; Layden et al. 2016; 

Sachkova and Burkhardt 2019), providing important insights into the relative contribution of 

conserved and derived genes in regulatory networks (GRNs), and the role of various 
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transcription factors and signalling pathways in cell identity (see below). While Cnidaria are 

amenable models for a detailed resolution at the cellular level, other venomous animals offer 

the opportunity to study the molecular basis of the repeated evolution of novel anatomical 

structures and organs. However, only a small number of studies, mainly focused on snakes, 

have investigated and identified regulatory elements and their potential roles within the venom 

production cycle (e.g. Ma et al. 2001; Nakamura et al. 2014; Han et al. 2016; Schield et al. 

2019) (Figure 2). This is surprising given the extensive research effort that has focused on 

characterizing the molecular and biochemical composition of animal venom systems. While 

we generally lack a comprehensive understanding of the precise cellular and regulatory 

mechanisms responsible for the origin, development and functioning of venom systems, work 

to this point provides a promising foundation to build a unified understanding of the processes 

underlying the evolution of these key evolutionary innovations. Furthermore, the recent 

development of new models, such as venom gland organoids (Post et al. 2020), enable in depth 

investigations of the regulatory mechanisms governing venom production in homologous study 

systems. 

Animal toxins are also remarkable models for studying evolutionary processes relating to the 

acquisition of novel gene function or protein neofunctionalization, and the regulatory dynamics 

of convergently recruited proteins. The classic model for the origin of venom toxins involves 

the duplication of genes encoding for physiological body proteins, often followed by 

neofunctionalization (Kordiš and Gubenšek 2000; Casewell et al. 2011; Chang and Duda 

2012), additional duplications, and selective increased expression in the venom gland 

(Whittington et al. 2008; Reyes-Velasco et al. 2014; Junquiera-de-Azevedo et al. 2015; 

Margres et al. 2017). However, other mechanisms, including the co-option of single-copy 

genes (Wong et al. 2012; Martinson et al. 2017; Drukewitz et al. 2019), horizontal gene transfer 

(Moran et al. 2012a; Martinson et al. 2016), alternative splicing (Cousin et al. 1998; Zeng et 

al. 2012), and exon shuffling (Wang et al. 2017) may also contribute to the suite of mechanisms 

that underpin the acquisition of venom genes. Several of the most abundant and potent toxins 

found in animal venoms belong to large, highly diverse protein families characterized by 

accelerated sequence evolution (Casewell et al. 2011; Sunagar et al. 2015). Indeed, certain 

toxin families represent some of the fastest diversifying proteins identified to date (Chang and 

Duda 2012). Ultimately, these variable processes can result in a single venom containing 

several hundred different bioactive molecules. Despite this extraordinary complexity and 

variability, there is a remarkable degree of convergence in both the physiological targets of 

toxins and the molecules selected for use as toxins. Indeed, of the plethora of available building 
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blocks, a relatively limited number of protein groups (e.g. cysteine rich secretory proteins, 

hyaluronidase, kunitz, phospholipase A2 [PLA2], serine proteases) have been convergently 

recruited as venom components across multiple metazoan lineages, suggesting that relatively 

few protein families are amenable for a toxic role (Fry et al. 2009; Casewell et al. 2013, 2019). 

The reasons for this remain unclear; the non-toxin ‘physiological’ roles of these protein types 

are diverse, and many of these toxin paralogs are themselves members of large multi-locus 

gene families with, in snakes at least, broad low-level expressional profiles across diverse 

tissue types (Reyes-Velasco et al. 2014; Junquiera-de-Azevedo et al. 2015). These features 

make venom toxins highly amenable to use as models for investigating the regulatory dynamics 

of novel, highly-expressed and tissue-specific genes that have evolved rapidly under strong 

natural selection from paralogous genes with distinct expression backgrounds. 

Thus, venom systems provide unique opportunities to investigate the: i) evolutionary processes 

relating to the convergence of key adaptive traits; ii) molecular mechanisms underlying the 

emergence and development of novel cell types and organs, and iii) regulatory dynamics of 

novel functional genes. It is well known from developmental studies that GRNs control cell 

differentiation and might therefore be considered to define cell types (Davidson 2010). 

Understanding the evolution of novel cells requires first identifying the components of the 

GRN, because a well characterized GRN is a critical tool for testing hypotheses on the 

conservation of molecular mechanisms and regulatory relationships across different cell types 

and taxa (Babonis and Martindale 2014). The goal of this review is thus to provide a synthesis 

of the current knowledge that could serve as starting point for the establishment of the venom 

system as a novel model in evolutionary and molecular biology. First, we provide an overview 

of the different origins of venom-secreting cells and tissues; then we discuss the regulation of 

venom in a hierarchical fashion. More specifically, we summarize current knowledge on the 

regulatory mechanisms involved in: i) differentiation and identity of venom secreting cells; ii) 

overall functioning of the venom gland; iii) transcription of toxin genes, and iv) selective 

expression of venom components. While post-translational modifications contribute 

substantially to the diversity of toxins found in many venom systems (Buczek et al., 2005; 

Moura-da-Silva et al. 2016; Delgado-Prudencio et al. 2019) we choose not to discuss this in 

depth here, and instead focus on the processes directly affecting the regulation of venom-

secreting cells and their gene expression profiles.  

 

The origin of venom-secreting cells 
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Cells that produce venom are all secretory cells of the epithelium. The most striking feature of 

these cells, either as a unicellular system or organized into tissues and glands, is the variety of 

ways in which they have evolved. Indeed, even if the venom apparatus appears outwardly 

similar in terms of structure and function between independent venomous lineages, the mode 

of development may vary. The question of great interest is whether the molecular basis of 

different venom systems are similar, i.e. whether distinct lineages adopted the same regulatory 

strategies for the evolution of the venom system. Here, we provide an overview of what is 

currently known about the origins of animal venom systems. 

 

Cnidaria 

Cnidarians (e.g. jellyfish, sea anemones, etc) represent the oldest extant group of venomous 

animals. They produce venom in specialized cells called cnidocytes, which contain miniature 

stinging devices, cnidocysts; additionally, toxins are also produced in ectodermal gland cells 

(Moran et al. 2012b). A close evolutionary relationship has been proposed between cnidocytes 

and the elaborate extrusive cells of some protists (Shostak 1993; Denker et al. 2008; Ozbek et 

al. 2009), although no molecular evidence of lateral gene transfer was found to support this 

hypothesis (Technau et al. 2005). Additionally, structural, functional and phylogenomic data 

support the independent origin of cnidocytes in cnidarians and the homologous harpoon-like 

secretory organelles in dinoflagellate protists (Gavelis et al. 2017). Because of the ability of 

cnidocytes to sense and respond to the surrounding environment, it was hypothesized that they 

are an unusual type of neuron (Pantin 1942). The expression of several common regulatory 

genes in the precursor of both neurons and cnidocytes (e.g. cnox-2, prdl-b, and COUP-TF) 

(Galliot and Quiquand 2011) indeed support the hypothesis of a common neuron-cnidocyte 

progenitor (Miljkovic-Licina et al. 2007). However, single-cell RNA-seq analysis of Hydra 

has shown that cnidocytes emerge from a common progenitor before this differentiates into 

neurons or gland cells (Siebert et al. 2019). Cnidocytes differentiate synchronously from the 

centralised population of progenitor cells, and then migrate to the tissue where they will be 

deployed (Khalturin et al. 2007). While in Hydrozoa cnidocytes originate from multipotent 

interstitial stem cells (David 2012), in other cnidarians, such as Anthozoa (e.g. Nematostella) 

and Scyphozoa (e.g. Aurelia), they originate from epitheliomuscular cells (Gold and Jacobs 

2013; Sebé-Pedrós et al. 2018; Gold et al. 2019). In Nematostella, cnidocytes develop early, at 

the onset of gastrulation (Zenker et al. 2011), and throughout all life stages they develop 

individually and asynchronously in the epithelium (Babonis and Martindale 2014, 2017). An 

interesting research direction that would contribute to our understanding of cell-type 
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differentiation would be to investigate how interstitial cells came to regulate cnidogenesis in 

the most derived lineage of cnidarians, the Hydrozoa (Gold et al. 2019). 

 

Snakes 

In snakes, the venom glands and fangs arise from a joint invagination of the oral epithelium in 

the ocular region, separately from other supralabial glands (Kochva 1963; Shayer-Wollberg 

and Kochva 1967). Interestingly, despite this development from oral tissue and a potential 

origin of the venom gland from a labial gland, it was hypothesized by Kochva (1987) and 

further supported by Vonk et al. (2013), that a developmental link also exists between the 

venom gland and the pancreas. Some pancreatic enzymes (e.g. PLA2) have counterparts that 

are detectable in the salivary and venom glands, the latter of which are utilized as toxins (Fry 

2005). The observation of abundant venom gland expression of miR-375, which is a canonical 

microRNA in the vertebrate pancreas, also suggests that regulatory components of the venom 

secretory system may have a pancreatic origin (Vonk et al. 2013). These data hint that the 

evolution of the venom system in snakes may have involved the co-option and orchestration of 

components from multiple anatomical origins, although further research is required to fully 

elucidate this process. 

 

Cone snails 

Cone snails are marine predatory Neogastropods that possess a sophisticated venom apparatus 

consisting of: i) a long, convoluted duct where toxins are secreted, ii) a muscular bulb that 

contracts to expel the venom through the duct, and iii) a harpoon-like structure for the injection 

of venom into prey or predator. The unusual morphology of this venom gland has generated 

controversy about its evolutionary derivation which has been interpreted as either a highly 

derived salivary gland (Alpers 1931; Fretter and Graham 1962), a completely new structure 

(Smith 1967), or homologous to the mid-oesophageal glands of other gastropods (Ponder 1973; 

Ponder and Lindberg 1997; Modica and Holdford 2010). Support for the latter hypothesis has 

been provided from developmental studies showing that the venom gland arises during 

metamorphosis from hypertrophy of epithelial cells of the ventral zone within the mid-foregut 

region, followed by rapid pinching-off of the newly formed duct from the main dorsal channel 

(Ball 2002; Page 2011). Although the precise homology between the various mid-oesophageal 

structures is still controversial (Ponder et al. 2019) and currently under investigation, it is clear 

that the epithelial tubes and granules of the venom duct originate from a pre-existing epithelial 

sheet via remodelling (Page 2011). 
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Other lineages 

For most other animal lineages, data on the origin of their venom secreting cells remains scarce. 

In spiders, the venom system has evolved from small ‘primitive’ glands in the basal segment 

of the chelicera of the oldest taxon, the Mesothelae (Foelix and Erb 2010), to well-developed 

glands located in the prosoma of the advanced araneomorphs (true spiders) (Langenegger et al. 

2019). Venom glands are already present in the first prelarval stage of Phoneutria nigriventer 

(Silva et al. 2011) and are derived from ectodermal invagination (Simpson and Casas 2011). 

Contrastingly, in centipedes, several recent studies have suggested that the venom glands 

originated as patches of glandular epidermal epithelium and its adjoining cuticle, which 

became increasingly invaginated into the interior of the forcipules (summarized in von 

Reumont et al. 2014). Among vertebrates, Siluriformes (catfishes) possess relatively simple 

venom glands composed of aggregations of glandular cells enclosed within an integumentary 

sheath of epithelial cells and associated with bony spines in dorsal and pectoral fins (Wright 

2017). Multiple evidences suggest an origin from epidermal secretory cells, possibly from 

thickening of glandular tissue surrounding the spines followed by subsequent evolutionary 

changes (summarized in Wright 2017). However, whether the venom glands derive from club 

cells secreting defensive crinotoxins (Cameron and Endean 1973) or cells producing healing 

and antimicrobial secretions (Wright 2009) is still debated and further research is needed. The 

venom glands of the platypus, one of very few venomous mammals, are derived from modified 

apocrine sweat glands, which migrate during development from the inner surface of each thigh 

to their final position on the dorsocaudal surface of the pelvis (Krause 2010). The earliest stages 

of gland ontogeny examined are from nestling and recently emerged platypus juveniles (six 

months old). 

 

Regulation of venom-secreting cells and tissues 

To the best of our knowledge, the GRN of venom-secreting cells have been poorly explored; 

however, a relatively small number of studies performed over the past twenty years have started 

to shed some light on the molecular basis of the venom system (Figure 2). The regulatory 

dynamics of cell identity and differentiation has only been studied in Cnidaria; by contrast, 

DNA analysis of toxin genes and the potential elements regulating their expression have been 

mainly performed on snakes and a few other organisms. Below, we present the main findings 

and discuss the potential of these results as candidates to test in future studies by means of 

advanced molecular techniques and/or comparative genomic and transcriptomic approaches. 
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Regulatory elements involved in the differentiation of venom-secreting cells 

The processes upstream of the formation of venom-secreting cells have only been studied in 

cnidarians. Research on this topic has benefited from a long history of pioneering studies 

(summarized in Babonis and Martindale 2014), and the relative ease of applying genetic 

manipulations that are challenging to perform in other venomous organisms. 

Transgenic reporter lines and knockdown experiments were used to identify various 

transcription factors crucial for cnidocyte differentiation from multipotent cells. SoxB2 and 

SoxB3, orthologs of bilaterian SoxB genes, were found to regulate the differentiation of the 

progenitor cells into neurons and cnidocytes in two distantly related cnidarian species, the 

anthozoan Nematostella vectensis (Richards and Rentzsch 2014) and the hydrozoan 

Hydractinia echinata (Flici et al. 2017). Indeed, the Sox family of conserved transcription 

factors is known to be involved in the development and maintenance of cell identity (Bowles 

et al. 2000). Downstream of SoxB2, PaxA plays a critical role in the development of cnidocytes 

in Nematostella (Babonis and Martindale 2017). Paired box (Pax) genes are a family of 

conserved transcription factors involved in the development of sensory structures in diverse 

metazoan tissues (Blake and Ziman 2014), and cnidarians possess orthologs of Pax genes as 

well as lineage-specific ones, namely PaxA, PaxC and PaxD (Matus et al. 2007; Suga et al. 

2010). Knockdown of PaxA, but not PaxC, results in a loss of developing cnidocytes, and 

causes downregulation of myocyte enhancer factor 2 (Mefv2), another transcription factor 

found to be important for the normal expression of cnidocyst-specific genes (Genikhovich and 

Technau 2011). Recent single-cell transcriptomic analyses of Nematostella confirmed these 

previous findings, with SoxB2 expressed in the early stage of cnidocyte differentiation, 

followed by the expression of PaxA (Sebé-Pedrós et al. 2018). A similar study in Hydra 

(Siebert et al. 2019) found Pax binding motifs significantly enriched in the regulatory regions 

of a set of genes (“metagene”) that are expressed during early and mid-cnidogenesis; 

furthermore, PaxA itself was expressed, confirming its role in cnidogenesis also in Hydra, and 

suggesting some degree of generality. Other motifs were also found enriched during 

cnidogenesis, including forkhead (Fox) which was enriched at mid- and late stages, and Pou at 

the late stage. Similarly, and also in Nematostella, FoxL2 and Pou4 were expressed at mid- and 

late stages (Sebé-Pedrós et al. 2018). 

While it is less challenging to study the regulatory elements involved in cell differentiation 

relating to unicellular venom systems, particularly since these cells regenerate throughout the 

lifetime of cnidarians, it is far more problematic to perform such research for centralized, 
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tissue-based systems like venom glands. However, with ever increasing advances in DNA 

sequencing and genomic engineering (e.g. CRISPR/Cas9), coupled with recently-described, 

amenable and manipulatable model systems such as venom gland-derived organoids (Post et 

al. 2020), we foresee the possibility to test whether elements involved in cell differentiation 

are shared across distinct venomous lineages, while simultaneously establishing 

representatives of other venomous lineages as models for developmental biology studies. 

 

Regulatory elements expressed in venom-secreting cells and tissues 

While SoxB2 and PaxA are involved early on in the development of cnidocytes associate with 

cnidarian venom, a small number of other regulatory elements have been found implicated 

downstream of this cell identity pathway. For example, by means of CRISPR/Cas9 and FACS 

sorting followed by RNA-seq, Sunagar et al. (2018) found transcription factors differentially 

expressed in cnidocytes. Two genes paralogous to proto-oncogenic transcription factors c-Jun 

and c-Fos, named by the authors cnido-Jun and cnido-Fos1, were strongly upregulated, and 

knockdown experiments of cnido-Jun resulted in reduced development and impairment of 

cnidocytes, which displayed atypical shape. c-Jun and c-Fos are known to form the activation 

protein 1 (AP1) complex which mediates gene regulation in response to stress, infection and 

other stimuli (Hess et al. 2004), and c-Jun in particular has previously been found involved in 

various signalling pathways including tissue development (Meng and Xia 2011). Phylogenetic 

analysis showed that these two transcription factors originated by gene duplication around 500 

million years ago in the common ancestor of hexacorallians. The paralogous c-Jun and c-Fos 

were not upregulated in cnidocytes, therefore it appears likely that cnido-Jun and cnido-Fos1 

evolved a different function to that related to stress-response. Furthermore, a Jun factor was 

also found expressed in the late differentiation stages of cnidocyte development in 

Nematostella, and motif-enrichment analysis on potential enhancer elements found Jun 

associated with a cnidocyte-specific set of genes (Sebé-Pedrós et al. 2018). 

Intriguingly, AP1 and another transcription factor, NFkB, have been shown to increase their 

activity in the venom glands of the snake Bothrops jararaca after venom gland stimulation 

(Luna et al. 2009). In other systems, NFkB is present in cells in an inactivated state, enabling 

a rapid-acting response to stimuli (Gilmore 2006); thus, it appears that stress-related 

transcription factors are also part of the GRN of venom-secreting cells in snakes. AP1 and 

NFkB are members of the extracellular signal-related kinases 1 and 2 (ERK 1/2) signalling 

pathway, and other members of this pathway were found involved in toxin gene regulation. 

Several full-length sequences encoding proteins with homology to epithelium-specific 
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transcription factors (ETS) were identified in a cDNA library of the venom gland of the habu 

snake, Protobothrops flavoviridis (Nakamura et al. 2014). ETS are also activated by ERK, and 

neighbouring ETS and AP1 binding sites can act as response elements for transcriptional 

activation by this pathway (Hollenhorst 2012). Within the ETS family, proteins that are 

specifically expressed in epithelial-rich tissues are classified into the ESE subfamily. Among 

these, ESE-1 is broadly expressed in multiple tissues, while ESE-2 and ESE-3 are expressed in 

tissues enriched with glandular epithelia, such as salivary and mammary glands (Kas et al. 

2000). All three ESEs were found expressed in the P. flavoviridis venom gland, with ESE-3 

showing higher expression levels and specificity for the venom gland compared to other 

tissues. ESE-3 was also the only factor able to activate the promoter of PLA2 toxin encoding 

genes (Nakamura et al. 2014). More recently, Schield and colleagues (2019) reported a set of 

12 transcription factors significantly upregulated in the venom gland of the prairie rattlesnake, 

Crotalus viridis, compared to other body tissues. Of these 12 transcription factors, grainyhead 

like transcription factor 1 (GRHL1), which is known to function in epidermal barrier formation 

and repair (Ting et al. 2005; Kim and McGinnis 2011), is also directly regulated by ERK. 

Outside the ERK pathway, they detected transcription factors linked to the repair of the 

glandular epithelium (e.g. ELF5) and secretory functions (e.g. ATF6 and CREB3L2). 

Additionally, transcript sequences belonging to the nuclear factor I (NFI) family were also 

found to be upregulated; NFI members are known to drive tissue-specific expression 

(Gronostajski 2000) and function in chromatin remodelling and transactivation (Fane et al. 

2017). While investigations of the transcription factors expressed in venom glands can provide 

us with exploratory evidence of which regulatory elements are expressed and thus might play 

important regulatory roles, they do not provide direct evidence of the interactions with DNA. 

Advanced genomics technologies such as chromatin immunoprecipitation sequencing (ChIP-

seq), which directly analyses proteins-DNA interactions, and assay for transposase-accessible 

chromatin sequencing (ATAC-seq), which assesses genome-wide chromatin accessibility, 

could be readily implemented to identify the transcription factor binding sites of toxin genes 

and their associated proteins (Geertz and Maerkl 2010). 

 

Transcriptional regulation of toxin genes 

While differential expression analysis of transcription factors provides insights into the GRN 

of venom-secreting cells, it does not reveal which elements directly control for the expression 

of their main products, i.e. toxins. Studies performing comparative DNA analyses of gene 

structure, reporter assays, motif binding testing, among others, have started to shed some light 
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on the processes controlling for individual expression of venom genes. A full list of the 

transcription binding sites collected from the literature is provided in Table S1 and S2. 

 

Cis-regulatory elements in promoter regions 

A good starting point for gaining insights into transcriptional regulation is to analyse the region 

~1000 bp upstream of the transcription start site of toxin genes because it contains specific 

DNA sequences (“cis-regulatory elements”) that provide binding sites for transcription factors, 

enhancers, silencers and other elements that up- or down-regulate gene expression. Studies in 

Nematostella have indeed demonstrated that the promoter region and first part of the genes 

encoding toxins contain all of the necessary elements, not only for expression, but also for 

tissue-specificity (Colombus-Shenkar et al. 2018; Sachkova et al. 2019). Unfortunately, the 

transcription factors directly controlling for toxin gene expression were not investigated in 

these studies; nonetheless, the large amount of genomic data currently available offers the 

opportunity to identify such motifs and binding sites for further exploration of this topic. 

DNA sequence analysis of promoter regions have been mainly performed in snakes. A study 

on a cardiotoxin gene belonging to the three-finger toxin (3FTX) family in the spitting cobra 

Naja sputatrix revealed the presence of two putative glucocorticoid receptor binding sites, and 

chloramphenicol acetyltransferase (CAT) reporter assay experiments showed an inhibitory 

effect on gene expression when glucocorticoid receptors were present (Ma et al. 2001). 

Activated glucocorticoid receptors can complex with NFkB or AP1 - both found in venom 

gland nuclear extracts (Luna et al. 2009) - and prevent them from binding their target genes, 

hence indirectly repressing their expression (Ray and Prefontaine 1994). The glucocorticoid 

receptor has also been shown to be important in salivary gland development and secretion 

(Jaskoll et al. 1994), and multiple binding sites have previously been found in the promoter 

region of the salivary-gland specific protein cystatin S (Shaw and Chaparro 1999). Therefore, 

glucocorticoid receptors are good candidates for playing a role in the higher machinery 

regulating toxin transcription; however, further analysis on the presence of glucocorticoid 

receptors in venom gland cells is required to understand the potential generality of the role 

these play in different venom systems. 

Insertions in promotor regions have also been implicated in influencing the expression of 

venom genes. For example, nucleotide sequence comparison of Trocarin D (TroD), a venom 

prothrombin activator (vPA) from Tropidechis carinatus, and its paralogous physiological 

counterpart, the blood coagulation factor X (TrFX), reveals the presence of an insertion in the 

promoter region of TroD, termed VERSE. A similar insertion is also found in the promoter of 
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the catalytic subunit of Pseutarin C (PCCS), another vPA from Pseudonaja textilis, although 

these two insertions are thought to originate from independent events (Reza et al. 2007). Such 

insertions have been postulated to be important elements in the recruitment process responsible 

for the switch from low level expression of factor X in the liver, to high expression of TroD 

and PCCS in the venom gland (Reza et al. 2007, Kwong et al. 2009). In TroD, VERSE harbours 

cis-elements that upregulate gene expression by 19- to 49-fold but do not control for venom-

gland specific expression (Kwong et al. 2009). Analogously, an insertion was identified in the 

promoter region of group IA PLA2 toxin genes in the sea snake Laticauda semifasciata (Fujimi 

et al. 2002a, 2004; Han et al. 2016). Comparative sequence analysis and reporter gene assays 

showed that this insertion significantly increased gene expression compared to the related 

group IB PLA2 gene where the promoter insertion was absent. Group IA PLA2 are highly 

expressed in the venom of this snake, whereas group IB PLA2 – which contain a pancreatic 

loop in their amino acid sequences and are more similar to the digestive PLA2 secreted in the 

pancreas of mammals – are generally lowly expressed and undetectable in the venom. The 

promoter insertion in group IA PLA2 contains two E boxes and one GC box, and is present in 

other group IA PLA2 venom genes from several snake species, suggesting that this sequence 

likely pre-dates the elapid snake radiation (Fujimi et al. 2002b, 2004). Insertions in promoter 

regions therefore seem to play an important role in increasing the expression levels of toxin 

genes, particularly compared to their physiological, non-toxin counterparts. However, these 

experiments were all performed in mammalian cell cultures, hence the specific function of 

these insertions and the role of the relevant binding transcription factors remain to be 

systematically tested in homologous systems. 

Early experiments in Naja sputatrix revealed that the transcription binding sites of a 3FTX 

cardiotoxin were largely distinct to those found in the promoter region of PLA2 genes 

(Jeyaseelan et al. 2001; Ma et al. 2001), though some were present in both toxin-encoding gene 

families, such as SP-1 with activator/enhancer activities. Transcription binding sites were also 

found to be conserved within members of the same toxin gene family, but not between different 

toxin families, in L. semifasciata (Fujimi et al. 2002a, 2004) and T. carinatus (Han et al. 2016). 

Since venom gene paralogs originate from duplication events, we can thus infer that each new 

copy likely inherited the promoter region, and hence the regulatory machinery, from the 

paralog from which it was derived, and this would explain the similarity in DNA sequences in 

the promoter regions within but not between gene families. Indeed, such venom toxin paralogs 

are often found arrayed in tandem in snake genomes, but with different toxin family gene 

clusters placed at distinct chromosomal locations (Vonk et al. 2013; Shibata et al. 2018; Schield 
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et al. 2019; Suryamohan et al. 2020). Subsequent paralog-specific mutations in the promoter 

region of individual genes might be at least partially responsible for differential expression 

within any particular gene family, and thus likely contribute towards the ‘fine tuning’ of gene 

expression. Since some of the toxin families discussed here are found in numerous animal 

venom systems (e.g. PLA2 toxins are found in reptiles, arachnids, cephalopods, cnidarians, 

hymenopterans, among others) (Fry et al. 2009), it would be fascinating to compare the 

promoter regions across these diverse animal lineages to explore whether the regulatory 

elements associated with the convergent molecular evolution of these toxins have also evolved 

in a repeatable manner. 

Promoter regions are also known to interact with elements located at long distances from target 

genes (Schoenfelder and Fraiser 2019). These long-range enhancers, silencers and insulators 

are found in close spatial proximity to the promoters of their target genes, and deletion 

experiments have shown that distal enhancers are essential for the regulation of spatiotemporal 

expression of target genes (e.g. Sagai et al. 2005). Recently developed sequencing techniques 

such as Promoter Capture Hi-C (PCHi-C) enable the genome-wide detection of these distal 

promoter-interacting regions for all promoters in a single experiment (Schoenfelder et al. 

2018). The application of PCHi-C to venom-secreting cells can therefore facilitate the pull-

down of promoter sequences and the identification of their frequent long-range interaction 

partners. Subsequent validation of the identified promotors via genome manipulation 

experiments in homologous systems, such as venom gland organoids (Post et al. 2020), would 

in turn enable robust assessments of promoter function, while comparative analyses of these 

regions across different venomous lineages can provide extensive insights into the large-scale 

regulatory architecture of this key evolutionary trait. 

 

Cis-regulatory elements in introns 

Besides promoter regions, introns also play functional roles, with the first mostly involved in 

transcriptional regulation, while downstream introns control gene splicing (Storbeck et al. 

1998; Levy et al. 2001; Majewski and Ott 2002). In the Chinese scorpion (Mesobuthus 

martensii), genes encoding for neurotoxins have a conserved structure with two exons and only 

one intron which may control both splicing and transcription levels (Cao et al. 2013). Indeed, 

when replacing the intron of a potassium-channel toxin gene with that of another toxin in 

cultured human cells, the expression of the artificial construct increased (Zhijian et al. 2006). 

A similar study in cone snails showed that E. coli competent cells transfected with a vector 

containing an intron-free A-conotoxin construct had lower expression levels than the vector 
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containing the intron (Wu et al. 2013). Gene analysis of ⍺-latrotoxin and its related paralog in 

the black widow (Latrodectus hesperus) revealed several transcription binding sites in the 

introns, although those elements seemed unrelated to venom production (Bhere et al. 2014). 

Studies on snakes went one step further and identified potential regulatory elements within 

introns of venom genes. For instance, luciferase assays were employed to show that venom 

gland-specific expression of the TroD toxin is regulated by elements located within three 

insertions of the first intron (Fujima et al. 2004; Han et al. 2016). Among these regulatory 

elements, AG-rich motifs were identified to have tissue-specific silencing function, with the 

most potent capable of switching off >95% of gene expression (Han et al. 2016). Transcription 

factors including YY1, Sp3 and HMGB2 were identified to bind to the AG-rich motifs and to 

silence gene expression in mammalian cells. Similar AG-rich motifs were observed in venom 

genes belonging to other toxin families, such as PLA2 in L. semifasciata, but not in their 

physiological counterparts, nor in housekeeping genes (SDHA, GAPDH, TBP, RPL13A and 

ACTG1) (Han et al. 2016). Interestingly, the insertions harbouring the AG-rich motifs have 

low sequence similarity between distinct toxin genes; bearing in mind that venom gene families 

have different chromosomal locations and recruitment times, it is plausible that the 

evolutionary histories and mechanisms involved are distinct across the various gene families 

that encode venom toxins (Fujimi et al. 2002a, Fujimi 2004; Han et al. 2016).  

Some of the AG-rich motifs identified in TroD are similar to polycomb response elements. 

These elements recruit polycomb group proteins and transcription factors to repress 

transcription of particular target genes (Han et al. 2016; Lanzuolo and Orlando 2012). In 

Drosophila, transcription factors binding to polycomb response element sites include Pho, 

Dsp1 and Spps, which are homologous to YY1, HMGB2 and Sp-1/3, respectively, in snakes 

(Lanzuolo and Orlando 2012; Kassis and Brown 2013). Since these transcription factors and 

their binding sites are conserved through Drosophila to mammals, it is conceivable to 

hypothesize that they may play a similar regulatory role in venom gland-specific expression. 

Investigations to test whether polycomb repressive complexes play crucial roles in venom 

gland-specific expression will thus likely be of fundamental importance to also expand our 

understanding of polycomb group proteins in non-model organisms, and therefore of gene 

regulation in general. 

 

Modes and mechanisms of selective toxin expression 

Another layer of complexity relating to the regulation of venom is those factors that control 

which toxins are produced, when they are produced, and how much of them are produced. Of 
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the numerous toxin genes found in the genome of venomous animals, it is apparent that not all 

of them make peptides/proteins that are detectable in secreted venoms - some are not 

transcribed, whereas others are modified or not translated. The selective expression of toxins 

has important implications: it can increase venom diversity and complexity which, in turn, 

might be advantageous, for example, to maximize the chance of targeting a crucial receptor 

across a diverse range of prey, or for compensating against the evolution of toxin resistance 

(Arbuckle et al. 2017). While tissue-specific expression of toxin genes seems to be mostly 

controlled by transcriptional regulation, e.g. gene silencing, variation in venom proteins appear 

to be regulated both by pre- and post-transcriptional processes (Figure 3). 

 

Spatiotemporal variation in venom composition 

In recent years, an increasing number of venomous animals have been found to produce toxins 

in a heterogeneous way across venom-secreting tissue. Cone snails are capable of producing 

distinct venoms for use either as paralytic toxins against predators or to elicit a state of sensory 

deprivation and hypoactivity for prey immobilization. The distinct sets of toxins associated 

with these predator- or prey-specific venoms are differentially expressed and synthesized along 

the venom duct, with defence-evoked toxins secreted in the proximal region and predation-

evoked venom produced in the distal region (Dutertre et al. 2014). A similar 

compartmentalization has also been observed in centipedes (Undheim et al. 2015) and assassin 

bugs (Walker et al. 2018), with both cases similar to cone snails, where venom with different 

functions are produced in different parts of the venom gland. In all cases, transcriptomic and 

proteomic levels correlate, suggesting a regulatory machinery for differential transcription, 

either through silencing or enhancing, or a combination of both. Although no evidence exists 

to suggest that snakes are capable of producing analogous, functionally distinct, venoms from 

the same gland, recent work suggests some elements of toxin localization may exist in the 

venom gland. Single cell RNA-seq revealed that different cell populations of venom gland-

derived organoids differentially express distinct toxin classes (Post et al. 2020), while mass 

spectrometry imaging showed that different toxins are spatially distributed in a highly variable 

manner in snake venom glands (Hamilton et al. 2020). 

 

Alternative splicing 

A common post-transcriptional regulatory mechanism is alternative splicing, which is often 

generated by exon skipping or intron retention. The latter is most common in plant, fungi, and 

unicellular eukaryotes; it is generally associated with down-regulation of gene expression via 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article-abstract/doi/10.1093/m
olbev/m

saa133/5848011 by guest on 02 June 2020



nonsense mediated decay (NMD), whereby the retained intron sequences interrupt the main 

open reading frame (ORF) of the mRNA leading to the introduction of premature stop-codons 

or secondary start-codons (Jacob and Smith 2017). Both mechanisms occur in the habu snake 

(P. flavoviridis), where extensive alternative splicing was observed in three protein families, 

namely metalloproteinase (SVMP), serine protease (SVSP) and vascular endothelial growth 

factor (VEGF); however, no other venom genes, nor their physiological counterparts, exhibited 

evidence of alternative splicing (Ogawa et al. 2019). Besides cis-spliced transcripts, trans-

spliced variants were also found to originate from multiple, tandemly clustered genes (Ogawa 

et al. 2019). Chimeric mRNA sequences from PLA2 toxin-encoding genes have been described 

from the prairie rattlesnake (Crotalus viridis) (Tsai et al. 2003); however, these chimeric PLA2s 

were absent in the venom, suggesting a mechanism (e.g. NMD) preventing their translation or 

secretion. A trans-spliced toxin transcript was also found in the Chinese scorpion (Mesobuthus 

martensii); this was characterized by an early stop codon and multiple ORFs suggesting rapid 

degradation by the NMD pathway (Zhu et al. 2001). The common house spider (Parasteatoda 

tepidariorum) also appears to show complex patterns of transcription of venom genes, 

produced by alternative 5’ and 3’ splice sites, exon skipping, mutually exclusive exons and 

alternative first and last exons, but not via intron retention (Haney et al. 2019). Interestingly, 

Bhere et al. (2014) found the presence of an intron in the 3’ UTR of a ⍺-latrotoxin paralog of 

the black widow spider, which may result in the transcript having reduced translation via the 

NMD pathway. Indeed, the ⍺-latrotoxin paralog was not detected by mass spectrometry in the 

venom, whereas the main ⍺-latrotoxin, which does not possess the intron in the 3’ UTR, was 

secreted. 

Compared to other venomous animals, variation in venom toxins in sea anemones appears to 

be controlled by both transcriptional and post-transcriptional processes. Several toxins display 

variation in expression patterns across developmental stages and body tissues, and their 

transcriptomic and proteomic abundances correlate well, suggesting that transcriptional 

mechanisms control for spatiotemporal dynamics (Moran et al. 2012b; Macrander et al. 2016; 

Colombus-Shenkar et al. 2018; Sachkova et al. 2019; Surm et al. 2019). However, the 

neurotoxin Nv1 is transcribed throughout the whole life cycle of Nematostella, but the embryos 

and planulas lack the mature toxin due to intron retention in the Nv1 transcript (Moran et al. 

2008).  

 

MicroRNAs 
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Besides the regulatory processes discussed above, another post-transcriptional mechanism 

identified as being responsible for, or contributing to, variation in venom composition, are 

microRNAs (miRNA). miRNA represents a class of small (~22 nt) noncoding RNA that 

regulate gene expression by degrading their target mRNA and/or inhibiting their translation 

(Ambros 2004). Durban et al. (2013) demonstrated that age-dependent changes in the 

concentration of miRNAs that target SVMP and crotoxin (a neurotoxic PLA2) toxin-encoding 

mRNAs modulate the transition from juvenile crotoxin-rich venom to adult SVMP-rich venom 

in the rattlesnake species Crotalus simus. The same mechanism was then described in three 

other congeneric rattlesnake species (Durban et al. 2017), suggesting miRNAs may play an 

important role in modulating ontogenetic shifts in venom, in snakes at least. Interestingly, 

miRNAs appear to have a dual action in this case, as they not only silence the translation of 

crotoxin, but seemingly simultaneously up-regulate SVMP-targeting mRNAs. Surprisingly, 

the role of miRNA in venom regulation has only been investigated in depth in these few species 

of rattlesnakes, and thus it would be of great interest to extend such investigations of small 

RNAs to other venomous lineages.  

 

Concluding remarks and future directions 

In summary, venomous organisms offer exciting models for addressing key question relating 

to evolutionary and molecular biology (Figure 4), and with ever increasing advances in -omics 

technologies, the appreciable value of venom research is gaining momentum among the wider 

scientific community (Holford et al. 2018; Post et al. 2020; Suryamohan et al. 2020). However, 

much more research effort is required before a broad understanding of the molecular 

mechanisms underlying the origin, evolution and regulation of diverse animal venom systems 

can be realized. In particular, we encourage researchers to: 

i. establish representatives of different venomous lineages as models that can be applied to 

expand our knowledge on the origin of venom-secreting cells and tissues. In turn, these 

models will allow to robustly explore one of the fundamental questions in evolutionary 

biology: how did distinct animal lineages evolve similar traits? 

ii. Expand existing genomic data from venomous animals by improving the assemblies of 

currently available genomes, and using new sequencing technologies to generate new 

genomic data. These data resources are required to underpin the adoption of advanced 

genomics techniques (e.g. PCHi-C, Chip-Seq) to shed light onto the GRN of venom-

secreting cells. 
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iii. Embark on comparative genomics studies of regulatory regions of toxin genes across 

different protein families and animal lineages to explore whether the regulatory elements 

associated with the convergent molecular evolution of toxin families have also evolved 

in a repeatable manner. 

The considerable amount of sequencing data currently available for a diverse array of 

venomous organisms already provides a valuable initial resource for such comparative analyses 

to identify elements involved in the GRN. The role of cis- and trans-regulatory elements 

resulting from these comparisons, together with those already reported in literature, can be 

tested by means of genomic manipulations such as CRISPR/Cas9 - already successfully 

employed in Nematostella - and RNA interference (RNAi) - which has been established in 

spiders to study embryonic development and segmentation (e.g. Schönauer et al. 2016). These 

data, coupled with gene expression levels, proteomic data, mass spectrometry imaging and 

single cell sequencing approaches, will continue to advance the field in helping to identify the 

regulatory processes and elements involved in the selective expression of novel adaptive genes 

and members of the GRN associated with the emergence, retention and diversification of 

evolutionary novelties. Ultimately, we believe that the convergent evolution of animal venoms, 

which have emerged frequently across the breadth of the animal tree of life, can be harnessed 

as valuable models to provide powerful insights in to the generalities of the mechanisms that 

underpin the evolution of novel adaptations. 

 

Supplementary Material 

Supplementary data are available at Molecular Biology and Evolution online. 
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Figure Legends 

 

Figure 1. Diversity of venomous animals and their venom apparatuses. (A) The starlet sea 

anemone, Nematostella vectensis; (B) cone snail, Conus legatus, with extended proboscis; (C) 

African rain spider, Palystes sp., showing chelicerae; (D) scorpion Parabuthus sp. with stinger; 

(E) platypus, Ornithorhynchus anatinus; (F) the Mediterranean banded centipede, Scolopendra 

cingulata, with forcipules; (G) bluespotted stingray, Taeniura lymma, with spines on the tail; 

(H) spitting cobra, Naja mossambica, spitting venom from its fangs. Photo credits: Wikimedia 

Commons contributors (A, E, F), D. Massemin (B), W. Wüster (C, D, H), G. Zancolli (G). 

 

Figure 2. Schematic illustration of our current knowledge of the regulatory elements and 

mechanisms detected in different animal lineages that influence transcriptional and post-

transcriptional regulation of venom genes. 

 

Figure 3. Schematic of the mechanisms that generate venom toxin diversity. The complexity 

and variability of the toxins detected in venoms are the result of a variety of processes acting 

at different levels of the genome to proteome continuum. First, at the genome level, novel 

toxins can arise by gene duplication and subsequent evolution of the resulting paralogs. During 

transcription, multiple isoforms can be produced by alternative splicing. During translation of 

the resulting mRNAs, certain transcripts can be silenced by the action of microRNAs (miRNA) 

and other mechanisms. Finally, toxin proteins are often further modified by means of post-

translational (PT) modifications, which can include proteolytic cleavage, protein splicing and 

the formation of multimeric structures. 

 

Figure 4. Summary of outstanding questions relating to the origin and regulation of 

evolutionary novelties that can be addressed by using venomous animals as model systems. 
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Figure 3.   
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