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Influenza-like illness is associated with high pneumococcal carriage density in 

Malawian children. 

Running Title: Pneumococcal carriage density during ILI 
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Highlights 

 Influenza-like illness (ILI) in children is associated with high pneumococcal carriage 

density. 

 Children with ILI harboured more viral organisms than asymptomatic healthy children. 

 Children with ILI patients had higher IL-8 levels in nasal aspirates than asymptomatic 

healthy children 
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SUMMARY 

Background: High pneumococcal carriage density is a risk factor for invasive pneumococcal 

disease (IPD) and transmission, but factors that increase pneumococcal carriage density are 

still unclear.  

Methods: We undertook a cross-sectional study to evaluate the microbial composition, 

cytokine levels and pneumococcal carriage densities in samples from children presenting 

with an influenza-like illness (ILI) and asymptomatic healthy controls (HC).  

Results: The proportion of children harbouring viral organisms (Relative risk (RR) 1.4, 

p=0.0222) or ≥4 microbes at a time (RR 1.9, p<0.0001), was higher in ILI patients than HC. 

ILI patients had higher IL-8 levels in nasal aspirates than HC (median [IQR], 265.7 [0 – 

452.3] vs. 0 [0 – 127.3] pg/ml; p = 0.0154). Having an ILI was associated with higher 

pneumococcal carriage densities compared to HC (RR 4.2, p<0.0001).  

Conclusion: These findings suggest that children with an ILI have an increased propensity for 

high pneumococcal carriage density. This could in part contribute to increased susceptibility 

to IPD and transmission in the community. 
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Introduction 

Pneumococcal carriage is a prerequisite for disease and an important step for 

transmission. In Malawi, pneumococcus is known to be the major cause of meningitis and 

second cause of bacteraemia and community acquired pneumonia 
1–5

. The majority of 

invasive pneumococcal disease (IPD) cases are seen in children under the ages of 5 and 

carriage rates are known to increase with age between 0 to 5yrs 
6–8

. IPD cases have been 

shown to be on the decrease in Africa, including Malawi with uptake of the PCV 
9,10

. 

Pneumococcal meningitis frequently seen in those between the ages of 6 –18 months, while 

bacteraemia is commonly seen amongst those aged 6 – 36 months and pneumococcal 

pneumonia occurring in children between 3 – 60 months of age 
9,11

. In Malawi, 

pneumococcal disease peaks during the colder and drier months, with serotypes 1, 6A/B, 14 

and 23F being major causes of IPD in children 
1,5,12–14

.  

 Pneumococcal carriage is common in children, with approximately 80% of under-

fives in Malawi carrying at a given time 
15

, and is influenced by the microbial composition of 

the upper respiratory tract (URT), including viral co-infections 
16–21

. Colonisation studies 

have demonstrated that microbe–microbe competition and synergy occur in the URT 
18,22,23

. 

For example, strong positive associations of pneumococcal nasopharyngeal carriage with 

rhinovirus, influenza virus, respiratory syncytial virus (RSV) and parainfluenza virus have 

been reported 
24–26

.  

Viral-induced local inflammation in the nasal mucosa has been implicated as an 

important factor that promotes pneumococcal carriage and transmission 
27–29

. Respiratory 

viral infections are associated with increased pneumococcal carriage density 
25,27,30–32

. 

Specifically, a direct correlation between heightened mucosal inflammation and high 

pneumococcal carriage density has been reported in children with RSV infection 
27

. 

Inflammation in the nasal mucosa drives epithelial denudation, up-regulation of platelet-
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activating factor receptor (PAFr) and polymeric immunoglobulin receptor (pIgR) on 

epithelial cells, resulting in increased adherence of pneumococci and evasion of the nasal 

mucosal surface 
33–36

. These observations highlight the important association, clinical and 

epidemiological, between virally induced inflammation in the URT and the pneumococcus. 

 Influenza-like illness (ILI) is prevalent amongst children 
37–39

, with respiratory viral 

and bacterial pathogens reported as the key etiological agents 
40,41

. Recognising that ILI is 

common in Malawi and that the aetiology of ILI induces inflammation which increases both 

risk of carriage and carriage density, we hypothesised that children with an influenza-like 

illness (ILI) residing in Malawi, are more likely to harbour higher pneumococcal carriage 

densities than asymptomatic healthy controls. We conducted a cross-sectional study in 

children, recruiting those with and without ILI symptoms. Here, we show that children with 

an ILI harboured more respiratory microbes per individual, exhibited higher levels of IL-8 in 

the nasal mucosa, and had increased likelihood of high pneumococcal carriage densities, than 

asymptomatic healthy controls. These findings have potential broader implications in the 

development of interventions to curb pneumococcal disease and transmission. 

 

Methods 

Study design and participants  

HIV-uninfected children were recruited into a comparative cross-sectional study from 

the Gateway clinic, a government primary healthcare facility and surrounding communities, 

between June and September 2017. All participants were from within Blantyre, a commercial 

city in the southern part of Malawi. Children between the ages of 1 and 10 years were 

conveniently sampled into two groups; children fulfilling the WHO influenza-like-illness 

(ILI) case definitions and community asymptomatic healthy controls. ILI was defined as 

having an acute respiratory illness (ARI) of recent onset (within 10 days of screening) 
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manifested by fever (≥38.0°C), cough but not requiring hospitalisation 
42

. We excluded 

participants that had received antibiotics at least 14-days prior to recruitment into the study. 

HIV status was confirmed using a single rapid test kit, STAT-VIEW HIV 1/2 assay 

(ChemBio Diagnostic Systems Inc, USA), and willingness to test was part of the inclusion 

criteria. Written informed consent were obtained from parents/guardians for children under 

the age of 8 and assents for children aged 8 and above. Ethical approval was obtained from 

the local ethics committee COMREC (P.07/16/1990) and University of Liverpool 

(Ref:0783). 

 

Nasopharyngeal swab 

A nylon nasal swab (FLOQSwabs
TM

, Copan Diagnostics, USA) was inserted into the 

nostril to the nasopharynx, a depth equal to the outer ear and left in place for 2-3 seconds 

before slow removal with a rotating movement. Two different swabs were used to sample 

both nares, using the same method. The swabs were placed in 1 ml skim milk-tryptone-

glucose-glycerol (STGG) media and transported to the Malawi-Liverpool-Wellcome Trust 

laboratories for processing. 

 

Nasal aspirates  

Nasopharyngeal secretions were aspirated through a disposable sterile catheter 

connected to a mucus trap and vacuum source. The catheter was inserted into a nostril, 

directed posteriorly and toward the opening of the external ear to allow extraction from the 

nasopharynx. Suction (100-120mmHg for children; 120-150mmHg for adults) was applied 

whilst the catheter was slowly withdrawn using a rotating motion. Mucus from the other 

nostril was collected with the same catheter, using the same method. After mucus collection 
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from both nostrils, the catheter was flushed with 2 ml sterile phosphate buffered saline. 

Mucus aspirates were vortexed, aliquoted and frozen at -80˚C within 1-hour of collection. 

 

Streptococcus pneumoniae culture and lytA PCR 

Nasopharyngeal (NP) swabs, after collection and prior to initial freezing, were 

vortexed and 100µl of the suspension cultured on sheep blood agar with gentamicin (SBG; 

7% sheep blood agar, 5 µL gentamicin/mL) overnight at 37°C and 5% CO2. Plates showing 

no S. pneumoniae growth were incubated for a further 24-hours before being reported as 

negative. S. pneumoniae was identified by colony morphology and optochin disc (Oxoid, 

Basingstoke, UK) susceptibility and bile solubility test was done on isolates with zone 

diameter <14mm. Nasopharyngeal pneumococcal carriage was detected via qPCR, targeting 

S. pneumoniae virulence gene lytA and semi-quantitative microbiological culture (Miles and 

Misra), which was positively correlated with regards to detection and density determination 

and has been shown previously 
43

. Samples were classified as positive for pneumococci by 

the presence of growth by culture and/or if lytA qPCR signals were >10 DNA copies, <40 

cycles. 

 

Multiplex real-time PCR detection of 33 respiratory microbes 

Total nucleic acids were extracted from 300µl aliquots of the nasal aspirate by manual 

extraction using the QIAamp DNA Mini Kit (Qiagen, Manchester, UK), according to 

manufacturer’s instructions. 10µl of total nucleic acid extracted was used for the Fast-track 

Diagnostics (FTD
®;

 Luxembourg) multiplex. The multiplex real-time PCR uses the principle 

of the TaqMan
®

 technology to detect pathogen genes. The kit detects 33 respiratory microbes 

namely, influenza A virus; influenza B virus; influenza C virus; influenza A(H1N1) virus 

(swine-lineage); human parainfluenza viruses 1, 2, 3 and 4; human coronaviruses NL63, 
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229E, OC43 and HKU1; human metapneumoviruses A/B; human rhinovirus; human 

respiratory syncytial viruses A/B; human adenovirus; enterovirus; human parechovirus; 

human bocavirus; Pneumocystis jirovecii; Mycoplasma pneumoniae; Chlamydophila 

pneumoniae; Streptococcus pneumoniae; Haemophilus influenzae B; Staphylococcus aureus; 

Moraxella catarrhalis; Bordetella spp.; Klebsiella pneumoniae; Legionella 

pneumophila/longbeachae; Salmonella spp.; Haemophilus influenzae. All targeted 

microorganisms in a sample with a cycle threshold value of >10 and ≤37 were considered 

positive for that pathogen. 

 

Cytokine measurements 

IL-8, IL-10 and interferon (IFN)- levels in nasal aspirates were quantified using 

Quantikine ELISA kits (R&D systems, Minneapolis, USA), according to manufacturer 

instructions. Levels of active TGF- within nasal aspirates was determined using luciferase-

reporting transformed mink lung epithelial cells (MLEC) stably transfected with the 

expression construct p800neoLUC, containing a plasminogen activator inhibitor-1 (PAI-1) 

promoter fused to the firefly luciferase reporter gene. MLEC cells were cultured, and TGF- 

quantified from aspirates, as previously described 
44,45

. 

  

Statistical analyses 

We performed statistical analyses and graphical presentation using GraphPad Prism 8 

(GraphPad Software, USA). Statistically significant differences between groups were 

determined using the Mann-Whitney U test, and the data is summarised as median with 

interquartile ranges (IQR). Categorical data were summarised as proportions and compared 

using the Fisher’s exact test, with effect size reported as Relative Risk.   
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Results 

Demographic characteristics of study population 

A total of 47 HIV-uninfected children were recruited, comprising of 21 asymptomatic 

healthy children and 26 influenza-like illness outpatients (Table 1). The asymptomatic 

healthy controls were predominantly female (71.4%), while those with an influenza-like 

illness were predominantly male (75.0%). Furthermore, the ILI group was relatively younger 

(1 – 4yrs, 80.8 vs. 47.6%, p=0.029), and the age eligible children were more likely to have 

received the 13-valent pneumococcal conjugate vaccine (PCV13) (84.6 vs. 52.4%, p=0.025). 

PCV13 was rolled out in Malawi in 2011. 

 

ILI patients exhibit increased propensity for harbouring a viral organism and/or 

multiple microbes in nasal aspirates 

Using an FTD multiplex real-time PCR, we detected viruses, bacteria and fungi in the 

nasal aspirates among the ILIs and asymptomatic healthy controls (Figure 1A). ILI patients 

were more likely than healthy controls to have a virus in their nasal aspirate (Relative risk 

(RR), 1.4 [95% CI 1.069-1.953], p=0.0222). The prevalence of ILI-associated pathogens 

including influenza virus, human rhinovirus and enterovirus was 11.5%, 11.5% and 23% in 

ILI patients, and 4.7%, 4.7% and 14.3% in healthy controls, respectively. Furthermore, ILI 

patients were more likely to have greater than four microbes per individual compared to the 

asymptomatic healthy controls (RR, 1.9 [95% CI 1.427-2.395], p<0.0001) (Figure 1B). These 

findings suggest that children with ILI are not only more likely to harbour a viral organism 

but also multiple respiratory microbes within the nasal mucosa.  
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ILI patients harbour higher levels of pro-inflammatory IL-8 in the URT than 

asymptomatic healthy controls 

Having established that an ILI is associated with increased likelihood of detecting a 

viral organism and/or multiple microbes, we investigated the cytokine microenvironment in 

the upper respiratory tract (URT) by measuring the levels of pro- and anti-inflammatory 

cytokines in nasal aspirates of ILI patients and healthy controls. The levels of pro-

inflammatory cytokine IL-8 were higher in nasal aspirates from children presenting with ILI, 

compared to healthy controls (median [IQR], 265.7 [0 – 452.3] vs. 0 [0 – 127.3] pg/ml; p = 

0.0154) (Figure 2A). Furthermore, children with ILI were more likely to have detectable IL-8 

than asymptomatic healthy controls (RR, 1.9 [95% CI 1.46 – 2.72], p<0.0001). In contrast, 

the levels of IFN-γ, IL-10 and active TGF-β in nasal aspirates were similar between children 

presenting with ILI and healthy controls (all p>0.05; Figure 2B-D). Collectively, these 

findings suggest that children presenting with ILI likely have ongoing URT inflammation. 

 

ILI patients exhibit higher likelihood of greater pneumococcal carriage densities than 

asymptomatic healthy controls 

Following observations that ILI patients were likely to have an inflamed URT 

mucosa, we determined whether this could impact pneumococcal carriage dynamics. 

Combining the pneumococcal carriage detection data from culture and lytA PCR on NP 

swabs the prevalence of carriage was higher in ILI patients than asymptomatic healthy 

controls (84.6 vs. 57.1%, p=0.037) (Figure 3A). There was a strong concordance between 

culture and lytA PCR (Sensitivity 0.9310, Specificity 0.7647) (Table 2). The difference in 

prevalence between the two groups is likely due to age differences 
46

, however the ages of 

carriage positives were similar in both groups (median, range; 2 (1-9) vs. 3 (1 -9), p=0.4476). 

There was also no difference in median bacterial density between ILI patients and 
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asymptomatic healthy controls (3.24 [2.23 – 3.50] vs 3.89 [3.06 – 4.37]; p=0.1115) (Figure 

3B). There was a strong correlation between pneumococcal density as measured by lytA PCR 

and culture (r=0.6800, p<0.0001) (Supplementary Figure 1). However, further analysis 

revealed that children with ILI were more likely to harbour bacterial densities of ≥10
4
 cfu/ml 

than asymptomatic healthy controls (RR, 4.2 [95% CI 2.396 – 7.919], p<0.0001) (Figure 3C). 

Taken together, these findings suggest that having an ILI is associated with increased 

propensity for high pneumococcal carriage density. 
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Discussion 

This study describes the relationship between having an influenza-like illness (ILI) in 

children and pneumococcal carriage. Pneumococcus is the leading cause of pneumonia and 

invasive bacterial infections in all ages, with the greatest incidence being in children under 

the age of 5 
47–49

. In this study, ILI patients had higher likelihood of greater pneumococcal 

carriage densities than asymptomatic healthy controls. This is consistent with studies that 

have shown that viral infection driven local inflammation in the nasal mucosa is associated 

with increased pneumococcal carriage load 
25–27,29,31

. In line with the role of IL-8 in 

maintaining an inflammatory microenvironment at the site of infection 
50

, having an ILI was 

associated with high levels of IL-8. Inflammation leads to increased adherence of 

pneumococci to the nasal mucosal surface 
33,51

, but also clearance of pneumococci from the 

URT 
52

. Recent work from the experimental human challenge model has demonstrated that 

prior nasal infection with live attenuated influenza virus (LAIV) induces inflammation and 

impairs innate immune function, leading to increased pneumococcal carriage densities 
29

.  It 

is therefore plausible that local inflammation in the URT during an ILI episode promotes a 

conducive environment for pneumococcal survival and replication. 

On the other hand, the high pneumococcal carriage density could be one of the 

aetiological factors for the development of an influenza-like illness. ILI in this study was 

defined by clinical presentation, following the WHO guidelines 
42

. It is well known that ILI 

may be caused by both viral and bacterial infections, of which S. pneumoniae is a potential 

aetiological agent 
40

. In our cohort, we observed a high propensity for respiratory viral 

organisms in the ILI patients compared to healthy controls. One of the common pathogens 

associated with ILI is influenza virus 
37,53

. The prevalence of influenza virus in the patients 

with ILI was 11.5%, and this is consistent with previous studies in Malawi that reported 

influenza prevalence between 8.3% to 13.7% among patients with severe acute respiratory 
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illness (SARI) and community cases of ILI 
54,55

. The ILI patients were more likely to have 

harbour more than four potentially pathogenic respiratory organisms per individual in their 

nasal aspirate compared to healthy controls. This highlights the complexity of identifying the 

underlying infective aetiology of ILI in children in high transmission and disease-burdened 

settings.  

Nevertheless, the lack of data on the definitive aetiological agents in our ILI patients 

constitutes a study limitation. It is clear from our study and others 
40,56,57

 that the majority of 

ILI cases likely not caused by influenza but by other viruses or bacteria. Defining the 

aetiology of ILI in children in high transmission and disease-burdened settings like Malawi 

should be a research priority, as it could help in development of potential interventions to 

curb transmission of potentially pathogenic respiratory organisms in the community. The 

other limitation of study is the imbalance in our two study groups in terms of age and gender, 

which potentially skewed our pneumococcal carriage prevalence data. However, 

pneumococcal carriage density was unlikely impacted by age in our study, since the median 

age of the carriage positive children was similar between the two groups. Furthermore, we 

found similar carriage rates among the PCV-13 age eligible children, but we were not able to 

serotype the pneumococcus in order to elucidate its impact on vaccine serotypes. 

Unexpectedly, we found relatively high prevalence of other pathogens, including 

notably Salmonella and pneumocystis jirovecii. For the bacterial genus Salmonella, we were 

not able to identify the organisms to species level in order to differentiate between pathogenic 

and commensal organisms. In Malawi, at least 10.3% of bloodstream infections have been 

reported to be caused by S. typhi 
58

. Whilst, Pneumocystis jirovecii is estimated between 6.8 –

51%, to be the causative agent of children presenting with acute lower respiratory infection in 

Africa 
59–62

.  
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  In conclusion, we have demonstrated that having an ILI is associated with increased 

propensity for high pneumococcal carriage density in children. These findings have potential 

implications in the development of interventions to curb pneumococcal disease and 

transmission, since high-density pneumococcal carriage is an important risk factor for 

pneumonia and transmission.  
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Figure 1: Prevalence of respiratory pathogens in nasal aspirates of ILI patients and 

healthy controls A multiplex real-time PCR was used to detect 33 respiratory pathogens in 

nasal aspirates of children with an influenza-like illness and healthy controls. A) Prevalence 

of detectable viral, bacterial and fungal pathogens in nasal aspirates. B) Prevalence of 

multiple pathogens in nasal aspirates of children with an influenza-like illness compared to 

healthy controls. Chi-square tests was used to compare the two groups. ILI= Influenza-like 

illness (cases) (n=26); HC= Healthy child (control) (n=21). 
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Figure 2: Cytokine levels in nasal aspirates of ILI patients and healthy controls. Levels 

of IL-8, FN-γ and IL-10 were measured by ELISA in nasal aspirates from ILI patients and 

healthy controls. Active TGF-β was also measured using a luciferase-reporting transformed 

mink lung epithelial cell assay. A) Concentration of IL-8 in nasal aspirates in healthy children 

and those with an ILI. B) Concentration of IFN-γ in nasal aspirates in healthy children and 

those with an ILI. C) Concentration of IL-10 in nasal aspirates in healthy children and those 

with an ILI. D) Concentration of active TGF-β in nasal aspirates in healthy children and those 

with an ILI. Data were analysed using Mann Whitney test. The bars represent median. ILI 

was defined as Influenza-like-illness according to WHO syndromic case-definitions. ILI= 

Influenza-like illness (cases) (n=26); HC= Healthy child (control) (n=21). 
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Figure 3: Point prevalence of Streptococcus pneumoniae nasopharyngeal carriage and 

density in ILI patients and healthy controls. Quantitative PCR targeting lytA gene and 

culture were used to determine pneumococcal carriage rates and carriage densities in nasal 

swabs. FTD multiplex PCR was used to detect 33 respiratory organisms in nasal aspirates. A) 

S. pneumoniae carriage prevalence among healthy controls and ILI children based on 

aggregation of culture and lytA PCR. Data were analysed using a Chi-square test. HC (n=21), 

ILI (n=26).  B) S. pneumoniae carriage densities between ILI patients and healthy controls. 

Data were analysed using Mann Whitney test. The bars represent median. HC (n=11), ILI 

(n=16) C). S. pneumoniae carriage densities [(medium/low carriage (<10
4
 copies) vs high 

carriage ≥10
4
)] between ILI patients and healthy controls. Data was analysed using a 

Fischer’s exact test. HC (n=11), ILI (n=16). ILI was defined as Influenza-like-illness 

                  



 24 

according to WHO syndromic case-definitions. ILI= Influenza-like illness (cases); HC= 

Healthy child (control) 
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TABLES 

Table 1. Demographic characteristics of study population in relation to ILI status. 

Variable All participants 
a
 

(n=47) 

Healthy controls 

(n = 21) 

ILI 
b 

(n = 26) 

p value
c 

Age, years, 

median (IQR) 

 

3 (2 – 6) 

 

5 (2 – 6) 

 

2 (1 – 4) 

 

0.078 

1–<5 31 10 (47.6) 21 (80.8) 0.029 

5–10 16 11 (52.4) 5 (19.2)  

Sex    0.245 

Female 29 (61.7) 15 (71.4) 14 (53.8)  

PCV-vaccinated
 d

    0.025 

Yes 33 (70.2) 11 (52.4) 22 (84.6)  

a
All participants were HIV negative. 

b 
ILI was defined as Influenza-like-illness according to WHO syndromic case-definitions.   

c 
Fishers Exact test of categorical data; t-test for continuous data. 

d
 PCV pneumococcal conjugate vaccine – all 3 routine scheduled doses  
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Table 2: Relationship between culture and LytA PCR 

 Culture 

Positive 

Culture 

Negative 

Total Diagnostic accuracy 

 

LytA Positive  

 

27 (93.1%) 

 

4 (23.5%) 

 

31 (67.4%) 

Sensitivity 

0.9310 (95% CI 0.7804 – 0.9877) 

Positive predictive value 

0.8710 (95% CI 0.7115 – 0.9487) 

 

LytA Negative  

 

2 (6.9%) 

 

13 (76.5%) 

 

15 (22.6%) 

Specificity 

0.7647 (95% CI 0.5274 – 0.9044) 

Negative predictive value 

0.8667 (95% CI 0.6212 – 0.9763) 

Total  29 (63.0%) 17 (37.0%) 46 (100%)  

 

 

                  


