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1  | INTRODUC TION

Advances in computational power over the last 20 years have al-
lowed sophisticated, individual-based models (IBMs) of infectious 
diseases to be developed and applied to important human and ani-
mal disease. These are particularly valuable in diseases with complex 
transmission through vector species or which have complex clinical 
aetiology. IBMs allow considerably more realism to be added to the 

simple compartment models (such as the Ross–Macdonald approach 
for vector-borne diseases or the more general susceptible–infected–
recovered models) which are usually the first analyses used to in-
vestigate disease epidemiology. The next challenge for these IBMs 
is to incorporate genetic selection into the disease epidemiology. 
Most pathogens readily evolve in response to human interventions. 
For example, drug resistance almost inevitably evolves in response 
to drug deployment, and mutations arise that change the antigenic 
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Abstract
Introduction: Control strategies for human infections are often investigated using in-
dividual-based models (IBMs) to quantify their impact in terms of mortality, morbidity 
and impact on transmission. Genetic selection can be incorporated into the IBMs to 
track the spread of mutations whose origin and spread are driven by the intervention 
and which subsequently undermine the control strategy; typical examples are muta-
tions which encode drug resistance or diagnosis- or vaccine-escape phenotypes.
Methods and results: We simulated the spread of malaria drug resistance using the 
IBM OpenMalaria to investigate how the finite sizes of IBMs require strategies to 
optimally incorporate genetic selection. We make four recommendations. Firstly, cal-
culate and report the selection coefficients, s, of the advantageous allele as the key 
genetic parameter. Secondly, use these values of “s” to calculate the wait time until 
a mutation successfully establishes itself in the pathogen population. Thirdly, iden-
tify the inherent limits of the IBM to robustly estimate small selection coefficients. 
Fourthly, optimize computational efficacy: when “s” is small, fewer replicates of larger 
IBMs may be more efficient than a larger number of replicates of smaller size.
Discussion: The OpenMalaria IBM of malaria was an exemplar and the same princi-
ples apply to IBMs of other diseases.
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profile of the molecules detected by molecular diagnosis, making the 
pathogens invisible to diagnosis. Incorporating this evolution into 
IBMs is not straightforward, and this manuscript discusses how it 
may best be achieved in terms of accurately quantifying the selec-
tion process in a computationally efficient manner.

Our personal expertise lies in malaria for which there are sev-
eral IBMs as recently, and comprehensively, reviewed by Smith 
et al. (2018). Several IBM models have been supported by the Bill 
and Melinda Gates Foundation to investigate interventions to con-
trol/eliminate malaria, and the consensus exercises co-ordinated by 
these groups have been influential in evaluating the potential im-
pact of intervention such as partially effective vaccines (e.g. Penny 
et al., 2016), mass drug administration programmes (e.g. Brady 
et al., 2017) and the impact of new diagnostic tools (e.g. Slater 
et al., 2015). These publications focused on the relatively short-term 
impact of interventions but historically malaria populations evolve 
and adapt to the challenges posed by such interventions. The ob-
vious examples are vaccine-based interventions driving vaccine-in-
sensitive variants (e.g. Genton et al., 2002; Neafsey et al., 2015; 
discussion in Plowe, 2015), drug-based interventions driving drug 
resistance (e.g. figure 3 of Blasco, Leroy, & Fidock, 2017) and deploy-
ment of rapid diagnostic tests (RDTs) driving mutations that prevent 
the infection being detected and diagnosed (such as hrp2-deletion 
mutants; Verma, Bharti, & Das, 2018; World Health Organization, 
2017). The basic dynamics of spread of such mutations can be ob-
tained from standard population genetics methodology (e.g. Curtis 
& Otoo, 1986; Dye & Williams, 1997; Hastings, 1997 and later). 
However, the simplicity of these methodologies means the anal-
yses must focus on malaria genetics and often largely ignore the 
epidemiological and clinical frameworks within which these selec-
tion processes operate. Consequently, there is increasing interest 
in incorporating genetic selection into the IBMs of malaria. The use 
of IBMs makes the selective background far more realistic and can 
incorporate factors such as heterogeneity in mosquito biting (e.g. 
Guelbéogo et al., 2018), the effectiveness of diagnosis (e.g. Slater 
et al., 2015), the effect of human acquired immunity (e.g. Crompton 
et al., 2014), the impact of superinfection, local patterns of clinical 
treatment (e.g. Nkumama, O'Meara, & Osier, 2017), among other 
factors. IBMs can also incorporate biological uncertainty by com-
paring results obtained by including/excluding the unknown effect, 
for example whether an infective inoculation consists of a sin-
gle genetic entity, or a range of genetically related pathogens (e.g. 
Nkhoma et al., 2012, 2020), the impact of immunity and of local 
genetic structure on diversity (e.g. Chapter 10 of Frank, 2002), the 
presence of fitness costs associated with the mutation (e.g. Melnyk, 
Wong, & Kassen, 2015) and so on. Finally, we assumed resistance 
is encoded by a single gene so we can ignore the effects of sexual 
recombination.

Population genetic theory has been developed and refined over 
the last 100 years and hence largely in the absence of computer in-
frastructure. Consequently, there is a large amount of basic theory 
that can be combined with large-scale IBMs of disease transmission 
to make selection more transparent, more computationally efficient 

and, importantly, to make the results and outputs comparable across 
simulation platforms. The aim of this paper was to describe how 
this may be achieved. The significant differences between the two 
approaches are that simple populations genetic theory usually as-
sumes infinite population sizes (so that random fluctuations in allele 
frequency are absent) whereas IBMs track finite population sizes. 
There are two related effects that occur in finite populations that 
affect how we bring genetic selection into IBMs and these need to 
be understood before we describe the integration of population ge-
netics into IBMs. Both effects arise because IBMs track numbers of 
each genotype of parasites (from which frequencies are extracted):

Stochastic fluctuation may result in “genetic extinction” when small 
numbers of one allele type are present. This effect emphasizes the 
difference between the expected change in the number of infec-
tions carrying the allele and the actual change. Suppose there 
are 10 infections carrying the advantageous allele (e.g. drug re-
sistance) in the IBM and the selection coefficient (see Section 
2.1) acting on the allele is 0.05, that is the allele frequency is 
expected to increase by 5% per malaria generation which is 
roughly in line with field estimates of the selection coefficient 
(see Recommendation #1 in Section 3). The expected number of 
resistant infections next generation is 10*1.05 = 10.5 but it is 
obviously impossible to leave exactly 10.5 infections: the num-
ber of resistant infections must come from a distribution, that is 
0,1,2,3,4,5, (i.e. fractions of infections are not possible) and vari-
ation in numbers of transmission is typically large. Importantly, 
there is a small, but finite, probability of leaving zero infections 
next generation; in the case “genetic extinction” has occurred, 
that is the allele has been lost from the populations. For a real 
example of this effect, see later discussion of Figure 5a). The risk 
of genetic extinction is greatest when there are small numbers of 
one type of allele. This is most notable for new mutations, which 
are by definition, present at a single copy when they first arise; 
in that case, even with a selective advantage of 5%, the mutation 
will be lost by chance between 90% and 99% of the time depend-
ing on the level of heterogeneity in transmission (see discussion 
in box 2 of Hastings, 2004). Hence, it is highly desirable to avoid 
low numbers of infections with any allelic type in the IBM as they 
may go genetically extinct purely by chance, even if that allele is 
advantageous over the longer term.
Genetic drift is similar to the stochastic change described above 
but occurs at higher numbers. The risk of random genetic ex-
tinction has largely passed when there are large numbers of 
the advantageous allele, but random fluctuations may obscure 
the underlying selection. Suppose there are 1,000 resistant 
infections with selective advantage of 5%, then on average 
there will be 1,000*1.05 = 1,050 next generation. But, the 
stochastic variation described above will still occur and cause 
chance variation around this expected number. This is termed 
genetic drift and introduces “noise” that causes variation in 
the spread of the advantageous allele. A critical point is that 
at low selection coefficients, the drift can completely obscure 
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the dynamics of spread: in effect the “signal” (selection pres-
sure favouring the alleles) is lost in the “noise” (genetic drift). 
Intuitively, and correctly, the effects of drift become more pro-
nounced at small population sizes, that is the smaller the num-
ber of infections tracked in the IBM, the larger the impact of 
drift. This is a well-known phenomenon in population genetics 
which, for our purposes, sets a limit on the sensitivity of the 
IBMs to track selection. That is, for any given size of IBM there 
comes a point when the selection coefficient becomes so small 
that it is obscured by drift and the IBM can no longer effec-
tively track the genetics. The impact of this effect is discussed 
in detail later in Section 2.3
A final key genetic concept is that of effective population size, 

Ne, and the “census” population size, N. The latter is simply the num-
ber of all malaria clones in the population (i.e. of all allelic types) 
which we will take as the number of infected humans present in 
the IBMs (ignoring, for convenience, the fact that some infections 
may be superinfections, i.e. consist of several genetically distinct P. 
falciparum clones). In other words, it is the number of infected hu-
mans in the simulation, not the total number of humans tracked, 
that predominantly determines the population genetic properties of 
the simulation. Population genetic theory used to investigate finite 
population sizes has been developed for idealized, paradigm popu-
lation that is assumed to have a constant census size N and whose 
members are assumed to have equal reproductive potential. Most 
real populations, including most infectious disease species, do not 
fit this paradigm, which led to the concept of an effective popula-
tion size which is the size of the paradigm population that would 
have equivalent properties of that of the census size N (see Kliman, 
Sheehy, & Schultz, 2008 for an introduction to N, Ne and its impact 
on genetic drift). Importantly, Ne in natural populations is invariably 
much smaller than N. Notably, there is considerable heterogeneity 
in the reproductive success of many infections depending on host 
factors such as the level of host immunity, the number of second-
ary contacts made by that person (if the disease is directly transmit-
ted) or how often that person is bitten (if the infection is indirectly 
transmitted by disease vectors such as ticks or mosquitoes). Ne also 
falls as pathogen populations “bottleneck” due to seasonal patterns 
of transmission (a common phenomenon associated with mosqui-
to-transmitted disease), and large-scale control programmes (such 
as bed net distribution programs to control malaria) may cause sig-
nificant reductions in pathogen census population sizes. These fac-
tors will substantially reduce Ne with important consequences for 
genetic drift which, as we show later in Figure 6, limits the sensitivity 
of IBMs to track selection of advantageous alleles with low selection 
coefficients. The important point is that the number of infections 
being tracked, N, may appear high, but Ne may be considerably lower 
which has a large impact on the IBMs' ability to quantify the spread 
of advantageous mutations.

The purpose of this manuscript was to describe how these ef-
fects of finite population sizes need to be clearly recognized when 
incorporating genetic selection into IBMs and describe and discuss 
how their impact may be mitigated.

2  | METHODS AND RESULTS

We use the individual-based malaria simulation package OpenMalaria 
(e.g. Smith, Killeen, et al., 2006; Smith, Maire, et al., 2006; Smith et al., 
2008; http://github.com/Swiss TPH/openm alari a/wiki) to simulate 
the spread of drug resistance. This is a highly sophisticated IBM of 
malaria transmission that incorporates factors such as the acquisition 
of human immunity against malaria infection, local treatment prac-
tices, the level of mosquito transmission and has been widely used 
to investigate many aspects of malaria transmission and control. The 
consequence of this sophistication is that it is highly computationally 
intensive, so makes an ideal test platform to develop computation-
ally efficient methods of incorporating genetic selection. Details of 
our assumptions and calibrations for the OpenMalaria simulations in 
this work are given in Supporting Information but, in summary, we 
run the simulation model for a warm-up period of 99 years, and then 
over an additional 10-year burn-in period before introducing the 
advantageous allele. OpenMalaria outputs the number of inocula-
tions of each allelic type every 5 days as a cumulative total over that 
period. We extract the proportion of inoculations carrying the ad-
vantageous allele from each 5-day time point to monitor the spread 
of the advantageous allele and it is these data that enter the regres-
sion to estimate the selection coefficient. The number of humans 
to be tracked in OpenMalaria is user-specified (we track 10,000 un-
less otherwise indicated), and we can vary the user-defined ento-
mological inoculation rate (EIR; the mean number of infective bites 
per adult human per year) to vary the prevalence of malaria infec-
tion; by default, we simulate a prevalence of 15% averaged over all 
ages based on diagnosis by microscopy (diagnosis in OpenMalaria is 
probabilistic with a 50% chance of a positive diagnosis when parasite 
density reaches 20 parasite/μL).

In these simulations, we assume the “advantageous allele” is 
one encoding drug resistance; the same principle applies to all ad-
vantageous alleles, but alleles encoding drug resistance allow us to 
easily alter their selective advantage simply by altering their level 
of resistance to the drug being deployed. In the following exam-
ples, the drug is assumed to be dihydroartemisinin + piperaquine 
(DHA + PPQ) which is a widely used front-line antimalarial drug 
(Annex 3B of World Health Organization (2019) noting this does not 
capture its widespread use through the private sector (e.g. Kioko 
et al., 2016), particularly in SE Asia where drug resistance has histor-
ically first emerged). We simulate different selection intensities driv-
ing the advantageous allele by varying the resistance level (IC50) to 
PPQ; increasing the IC50 value encoded by the advantageous allele 
increases the level of drug resistance and hence defines more highly 
advantageous mutations (Table 1). This strategy allows us to investi-
gate the range of selection coefficients that covers “typical” values 
for drug resistance selection which has been estimated at ~0.02 to 
~0.12 (see Recommendation #1 of Section 3). Results obtained for 
IC50 shifts of 1.1× and 1.4× IC50 fold are used as illustrative ex-
amples (except in part 2.3) as they represent selection coefficients 
of ~0.02 and ~0.06, respectively, using our default prevalence of 
15%. Values higher than this gave largely predictable, deterministic 

http://github.com/SwissTPH/openmalaria/wiki
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results, and IC50 shifts in between these values of 1.1× and 1.4× 
were found to behave in an intermediate fashion that therefore 
added little to the overall picture.

Boxplots were produced using the boxplot() function in the R 
base graphics package. The grey boxes show the interquartile range 
(IQR), that is contain the second and third quartiles of the data 
with the red horizontal line representing the median. Outliers are 
defined as observations lying outside of the range Q2-1.5*IQR to 
Q3 + 1.5*IQR where Q2 is the lower boundary of quartile 2 and Q3 
is upper boundary of quartile 3. The whiskers then denote the lower 
limit of quartile 1 and upper limit of quartile 4, excluding these outli-
ers which are represented by circles.

2.1 | Methods used to measure and report the 
dynamics of spread

Figure 1a shows the spread of an advantageous allele in a haploid 
organism. Most selection processes start from low frequency so 
most of the timescale taken to reach operationally significant fre-
quencies occurs at low frequencies. Tracking the entire selection 
period is both computationally intensive and will also suffer from 
stochastic fluctuations in low allele number as described above. 
Fortunately, bacteria and malaria are haploid (we know of no selec-
tion that occurs in malaria's brief diploid phase in mosquito oocysts) 
so dominance between the two alleles is not an issue and the spread 
can be linearized as shown on Figure 1b. This offers a methodologi-
cal alternative to measuring spread over a long duration at low fre-
quency: it suggests that, providing selection pressure does not alter 
as a consequence of allele frequency (an important assumption, see 
Recommendation #4 of Section 3) that spread can be measured over 

a short period of time in the region of 10–15 malaria generations or 
around 2–3 years (which is computationally convenient), quantified 
at relatively high frequencies (minimizing the impact of stochastic 
changes in allele frequency) and extrapolated to the whole selection 
process.

We argue that this extrapolation is best achieved by estimating 
the selection coefficient, usually denoted “s,” to quantify the rate of 
spread. This parameter describes the relative “fitness” of the mutant 
as 1 + s compared to the fitness of the wild type which has fitness 1.0 
and is conventionally reported in units of a single malaria generation 
(see below). Hence, at low frequencies, the mutant spreads at a rate s 
per generation (so if s = 0.05, then it increases by 5% per generation). 
Selection coefficient can be easily measured independently of allele 
frequency, as the slope of ln[p/(1 − p)] over time where p is the fre-
quency of the advantageous allele (Figure 1b). Computer simulations 
generally simulate chronological time, for instance 1-day timesteps, 
so we need to convert the slope of ln[p/(1 − p)] from chronological 
time to generations. In the current example, this requires an esti-
mate of the duration of a malaria generation. In previous work, we 

TA B L E  1   How increasing the drug resistance level of the 
advantageous allele increases its selection coefficient, s, and how 
the magnitude of s may vary according to infection epidemiology. 
Drug resistance level is defined as the fold increase in IC50 to the 
antimalarial drug piperaquine compared to the wild-type allele. 
Malaria treatment and epidemiology are as described as in the main 
text and the simulations track 100,000 humans. The left column 
reports selection coefficients obtained when malaria prevalence 
was 15%, while the right column reports selection coefficients 
obtained when prevalence was 1.5%; all estimates started from an 
advantageous allele frequency of 10%

Drug resistance 
level

Selection coefficient 
(±SE)
15% prevalence

Selection coefficient 
(±SE)
1.5% prevalence

×1.0125 0.002 ± 0.0005 0.0001 ± 0.002

×1.025 0.004 ± 0.0004 −0.0004 ± 0.002

×1.05 0.008 ± 0.0004 0.002 ± 0.002

×1.1 0.016 ± 0.0004 0.004 ± 0.002

×1.2 0.030 ± 0.0004 0.004 ± 0.002

×1.4 0.056 ± 0.0004 0.005 ± 0.002

×2.4 0.13 ± 0.0004 0.017 ± 0.001

F I G U R E  1   The spread of an advantageous allele in haploid 
organisms such as bacteria (Dykhuizen & Hartl, 1981) or malaria 
(Anderson & Roper, 2005); this example illustrates dynamics for 
a selective advantage of s = 0.07. Panel (a) shows spread on an 
arithmetic scale starting from a frequency of 0.0001. Much of the 
timescale occurs at frequencies that are essentially undetectable 
before becoming detectable in surveys of a reasonable size. Panel 
(b) shows the same data plotted as its logit, ln[p/(1 − p)], where 
p is the frequency of the advantageous allele and (1 − p) is the 
frequency of the wild-type allele
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have assumed five generations per year (Hastings & Donnelly, 2005) 
although other authors used different values, for example Anderson 
and Roper (2005) assumed six generations per year. Here, we will 
assume six generations per year meaning that each generation lasts 
365/6≈60 days so the slope of ln[p/(1 − p)] estimated on a timescale 
of days needs to be multiplied by 60 to obtain the selection coeffi-
cient. Finally, note that s can be negative if the allele is actively being 
removed from the population (e.g. by natural selection if the allele 
is no longer being selected and has a fitness cost) or if the allele 
frequency decreases due to chance fluctuations (genetic drift); the 
principles described above apply equally to this situation, that is its 
magnitude is measured as ln[p/(1 − p)] over time but it will have a 
negative value (see, e.g., figure 3 of Anderson & Roper, 2005).

The dynamics shown on Figure 1 are those predicted by el-
ementary population genetic theory, that is, constant selection 
pressure in an idealized population of infinite size. Individual-based 
simulations do not fit this paradigm as selection coefficients may 
vary over time, most plausibly as a function of allele frequency 
(see Recommendation #4 in Section 3), and IBMs, by definition, do 
not track infinitely large populations. Many models and IBMs have 
a “burn-in” period to allow infection epidemiology and thus popu-
lation immunity to stabilize in the presence of a force of infection 
(FOI) prior to introducing interventions or the advantageous allele 
and tracking its spread. This “burn-in” period forces researchers to 
make three key decisions when estimating selection coefficients 
after introduction of the advantageous allele, that is what should be 
the starting frequency of the advantageous allele when introduced 

into the IBM, when should measurement of ln[p(1 − p)] start and how 
long should measurement last? We illustrate the trade-offs inherent 
in making these decisions.

Each OpenMalaria simulation was run 100 times for each resis-
tance level with different random number seeds to check consis-
tency of estimates over “identical” runs. Selection coefficients were 
obtained by linear regression of ln[p/(1 − p)] as described above. 
We set frequency boundaries to avoid the regression tracking small 
numbers of alleles which would occur at high or low frequencies. 
The reasoning is that outside these boundaries, there may be a rel-
atively small number of alleles of one type and stochastic variation 
in their number may obscure the deterministic change in their fre-
quency, that is the effect of genetic drift as described above. The 
upper boundary was an advantageous allele frequency (AAF) >90% 
in all simulations. The lower boundary depended on initial AAF: it 
was AAF < 30% if initial AAF frequency was 50%, AAF < 1% if initial 
AAF was 10% and AAF < 0.1% if initial AAF was 5% or 1%; note 
that the latter two initial AAF values were only ever used to pro-
duce the data shown on Figure 2. The regression was terminated 
if the AAF fell outside these boundaries and regression only used 
data between the initial AAF frequency and the point at which AAF 
first fell outside the boundaries. These boundaries worked well for 
our simulations (>98% of simulations provided estimates of selection 
coefficients within these boundaries; see captions of Figures 2–4) 
but should be checked for the IBMs being used. We also exclude es-
timates of selection coefficient obtained from regressions based on 
fewer than five datapoints. Notably, this strategy can cause bias as 

F I G U R E  2   How starting advantageous allele frequency (AAF) affects estimation of selection coefficient, s. The boxplots each summarize 
98–100 estimates* of selection coefficients obtained by simulating 10,000 humans with malaria prevalence of 15% using a regression 
window that starts 60 days after introduction of the advantageous allele and lasts the next 720 days (assuming AAF stay within bounds, 
details in main text). Left column: the advantageous allele encodes a 1.1-fold increase in drug resistance (s≈0.02). Centre column: the 
advantageous allele encodes a 1.4-fold increase in drug resistance (s≈0.06). Right column: the advantageous allele encodes a 2.4-fold 
increase in drug resistance (s≈0.13). The dashed blue horizontal line indicates the expected (target) value of the selection coefficient. *A 
few estimates failed at high selection coefficients because allele frequency increased so rapidly that it exceeded the 90% frequency bound 
before the regression window could start



6  |     HASTINGS eT Al.

runs with strong selection coefficients may be ignored as they may 
exceed the upper boundary or have <5 datapoints in the regression 
before they exceed this boundary; hence, checks should be made 
to ensure that a significant proportion of simulations are not being 
removed for these reasons.

2.1.1 | Decision #1: What is the appropriate starting 
allele frequency in the simulation?

Most advantageous alleles start at very low frequencies, and most 
of the timescale of spread occurs at very low frequencies before 
its clinical impact becomes apparent (the period of complacency; 
Hastings, 2001) as shown on Figures 1a. Ideally, we would investi-
gate spread at low frequencies, but it is generally extremely difficult 

to track these very low frequencies in individual-based simulations 
because of the effect of stochastic variation described above. A bio-
logically reasonable starting frequency might be 10–5 meaning one in 
100,000 infections have the advantageous allele but this is obviously 
impossible if the simulation, for example, has only 10,000 infected 
individuals. Even if the simulation did track 100,000 infected individ-
uals, it would still be problematic to introduce an allele at a frequency 
of one in 100,000 as the single infection would exhibit considerable 
stochastic variation in its subsequent number of secondary, tertiary 
etc. infections for reasons described earlier, that is, for example, if 
s = 0.1 then the infection cannot leave exactly 1.1 offspring but 1.1 
will be an average of a distribution with 0,1,2,3,4… secondary infec-
tions. The key computational requirement is that small numbers of 
resistant infections need to be avoided. Thus, a decision needs to 
be made on starting frequency that ensures a reasonable number of 

F I G U R E  3   How choice of day (i.e. after introduction of the advantageous allele) used to start the regression window affects estimation 
of selection coefficients. The x-axis shows time postintroduction that the regression window started for values of 15, 30, 60, 120, 180, 240, 
360, 540, 720, 1,080, 1,800 days. The boxplots each summarize 98–100 estimates* of selection coefficients obtained by simulating 10,000 
humans with malaria prevalence of 15% using a regression window with duration of 720 days. Left column: the advantageous allele encodes 
a drug resistance increase of 1.1-fold. (s≈0.02). Central column: the advantageous allele encodes a drug resistance increase of 1.4-fold 
(s≈0.06). Right column: the advantageous allele encodes a drug resistance increase of 2.4-fold (s≈0.13). Top row is starting advantageous 
allele frequency (AAF) of 10%, and the lower row is starting AAF of 50%. Bottom right panel has two anomalous results: the penultimate 
column has larger variation because at AAF of 50% and s≈0.13; then, our boundary condition of AAF > 90% resistance is often exceeded 
during the 720-day regression window so regression is performed over much shorter periods; the last column is empty because all runs 
had exceeded the AAF > 90% boundary at the time the window started so no regressions could be performed. The dashed blue horizontal 
line indicates the expected (target) value of the selection coefficient. *A few estimates failed at high selection coefficients because allele 
frequency increased so rapidly that it exceeded the 90% frequency bound before the regression window could start
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each type of allele such that stochastic variations due to genetic drift 
are minimized (i.e. the dynamics are largely driven by deterministic 
processes rather than stochastic fluctuations).

The dynamics of Figure 1 assume constant selective advantage 
over time. This assumption may hold at very low frequencies where 
small changes in frequency, say from 10–6 or 10–5, do not signifi-
cantly affect malaria epidemiology. Once frequencies become larger, 
the epidemiology may begin to change because of the presence of 
the advantageous allele; for example, spread of a hrp2-deletion allele 
might allow malaria to resurge, treatment rates to fall and prevalence 
to increase. We show how selection coefficients may differ depend-
ing on epidemiology in Table 1 which shows the impact of a large, 
but illustrative, 10-fold reduction in malaria prevalence. The selec-
tion coefficient is almost 10 times higher when malaria prevalence 
is 15% than when prevalence is 1.5%. The most likely explanation is 
that with a higher transmission rate, people are being infected more 
regularly, and thus, more people are accessing treatment per unit 
time thus increasing the selection pressure for drug resistance (the 

percentage of people with detectable drug level is 35% in the 15% 
prevalence group falling to 8% in the 1.5% prevalence group). The 
proportion of people in the population with subtherapeutic drug 
levels is an important driver of resistance (see box 1 of Hastings 
& Watkins, 2006 and box 2 of Hastings, 2011 for discussions) so 
higher selection coefficients are generated when there are higher 
proportion of patients with detectable drug levels. A 10-fold change 
in prevalence is obviously a very large epidemiological change but 
serves to illustrate our point about the potential impact of changing 
epidemiology on estimates of selection coefficient.

There are therefore two conflicting considerations in choice 
of initial AAF. Ideally, it should be as low as possible to reflect the 
condition under which most selection occurs (Figure 1) but this is 
weighed against the benefits of higher frequencies in reducing 
stochastic noise in allele spread. We examined different values of 
starting frequencies as shown in Figure 2, and values of 10% and 
50% are also compared in Figures 3,4 and Figure S3. We decided 
on 50% as the default value to minimize stochastic change because 

F I G U R E  4   How duration of regression window affects estimation of selection coefficients. The x-axis gives duration of regression 
window and values of 120, 240, 360, 720, 1,080, 1,880 and 2,880 days were investigated. The boxplots each summarize 98–100 estimates* 
of selection coefficient obtained by simulating 10,000 humans with malaria prevalence of 15% using a regression window that starts 60 days 
after introduction of the advantageous allele; left column: the advantageous allele encodes a drug resistance increase of 1.1-fold (s≈0.018). 
Central column: the advantageous allele encodes a drug resistance increase of 1.4-fold (s≈0.058). Right column: the advantageous allele 
encodes a drug resistance increase of 2.4-fold (s≈0.13). Top row is starting advantageous allele frequency (AAF) of 10%, and the lower row 
is starting AAF of 50%. The dashed blue horizontal line indicates the expected (target) value of the selection coefficient. *A few estimates 
failed at high selection coefficients because allele frequency increased so rapidly that it exceeded the 90% frequency bound before the 
regression window could start
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Figure 2 shows it greatly reduces the variation in estimating selec-
tion coefficient. Also because, at least in our simulations, it did not 
appear to affect the epidemiological of infection (e.g. prevalence) 
and because our diagnostic plots (e.g. Figure S7) showed linearity 
of selection pressure. Note, however, that when values of s are suf-
ficiently high that they reliably dominate genetic drift (s > ~0.1 in 
our default simulations based on 10,000 humans with 15% malaria 
prevalence) then an initial frequency of 10% can be used; this allows 
regression to be measured before AAF exceeds the 90% threshold 
applied in our analyses. We discuss the implications of this choice 
of initial frequency later (i.e. Recommendation #4 in Section 3) and 

recommend that researchers explicitly discuss how their results 
obtained at high frequencies are likely to also apply to selection at 
much lower frequencies.

2.1.2 | Decision #2: How long after 
introduction of the advantageous allele should we 
start measuring the slope of ln[p/(1 − p)]?

Decision #1 means we have to introduce the advantageous allele 
at a relatively high frequency which will inevitably change disease 
epidemiology, so the second decision is how long after the intro-
duction of the advantageous allele should we start to measure “s”? 
The best policy would be to start measuring selection as soon as 
possible after its introduction to minimize the impact of any epide-
miological changes. Plausible start times could be immediately after 
introduction, after 20 days (to allow secondary infections to be ac-
quired by the mosquito, develop in the midgut, be inoculated and 
become patent in humans), 60 days (the estimated malaria genera-
tion, see above) and so on. We investigated this by varying the start 

F I G U R E  5   Validation of the theoretical approach for 
incorporating spontaneous mutations using OpenMalaria 
simulations; see Supporting Information for calibration. (a) An 
example from OpenMalaria simulations showing the random arrival 
and stochastic loss of resistance mutations. Note that the Y-axis 
is the number of resistance infections plus one. Many time points 
have zero infections but log(0) is mathematically undefined so a 
common strategy in these circumstances is to add 1 to all values. 
The baseline of zero resistant infections is therefore plotted as 
“1” in the figure. Most mutations only generate a single resistant 
infection (value of 2 on the scale) before being lost, notably the 
7 mutations that occurred between 16 and 19 years. This rapid 
loss is not inevitable and the mutation that occurred around 
3.5 years generated 12 infections at its peak before being lost, and 
the one at 20 years generated 18 at its maximum. The mutation 
at year 24.9 did survive stochastic loss and became established 
in the population. (b) Histogram showing observed times until 
establishment of a de novo mutations obtained from 280 runs of 
OpenMalaria calibrated as described in this Supporting Information. 
The solid blue line is the expected fit from Equation (6)
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F I G U R E  6   How the power of a simulation to detect small 
selection coefficients depends on its size. Four parameterizations 
were investigated: (a) The default simulation size, that is 10,000 
humans with a malaria prevalence of 15%; starting advantageous 
allele frequency (AAF) of 10%; (b) The default simulation size used 
in this work, that is 10,000 humans with a malaria prevalence of 
15%; starting AAF of 50%; (c) Simulation of 100,000 humans with 
a starting AAF of 50% and malaria prevalence of 1.5%, meaning 
malaria population size is nearly identical (there will be stochastic 
differences) to the second parameterization where population size 
is 10,000 but prevalence is 15%. (d) Simulation of 100,000 humans 
with a starting AAF of 50% and malaria prevalence of 15%, that is a 
10-fold increase in malaria population size compared to the default 
size of 10,000. Each parameterization was run 100 times and 
selection coefficient estimated by regressing over 720 days starting 
60 days after introduction of the advantageous allele. Note that the 
third parameterization (red line) is associated with lower selection 
coefficients (see Table 1) and consequently is only plotted at the 
extreme left of the x-axis
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time and quantifying its effect on estimated selection coefficients. 
Example results using the default duration of ln[p/(1 − p)] regression 
of 720 days are shown on Figure 3 but the results were fairly con-
sistent across other durations of regression (Figure S1). Start times 
>60 days do not appear to bias the median estimate of “s” nor does 
it make a big difference to the coefficient of variation around the 
estimates. We therefore selected a delay of 60 days, equivalent to a 
single malaria generation, to allow transmission to stabilize.

2.1.3 | Decision #3: How long should we regress the 
slope of ln[p/(1 − p)]?

The aim is to make the duration of regression sufficiently short that 
the epidemiology over that time period has not changed significantly 
due to the introduction of the advantageous allele, while ensuring 
that the duration is sufficiently long that accurate estimates of “s” 
can be obtained from the regression. We investigated this effect by 
altering the duration of regression and quantifying how it affects the 
estimation of selection coefficients, see Figure 4 and lower panel 
of Figure S2, assuming, as justified above, that the regression starts 
60 days after introduction of the advantageous allele. The duration 
does not appear to bias the mean or median estimate of “s” but did 
affect the variation in the estimates, the variation decreasing as du-
ration increased (Figure S2), presumably because more datapoints 
enter the regression. We chose 720 days as the duration of our re-
gression as it returns stable estimates of “s” with relatively small co-
efficients of variation (Figure 4). We confirm estimates of selection 
coefficient and IQR are robust over these combinations of staring 
time and duration of measurement in Figures S4 and S5.

Finally, we needed to confirm that spread of the advantageous 
allele had no significant impact on epidemiology (or, if it did, that 
it did not alter the magnitude of “s”) so that the value of “s” from 
our regression will be a valid approximation for that occurring during 
the critical period of spread from low initial frequencies. Figure S1 
shows that the estimated selection coefficient did not systematically 
change with time since introduction of the advantageous allele; fre-
quency will have increased over this time implying that estimates of 
selection coefficient were not affected by allele frequency.

2.1.4 | The impact of these decisions

There appear to be no objectively “correct” solutions to these three 
decisions, all of which incur trade-offs. It may be possible to tailor 
the decisions to specific circumstances. For example, if selection co-
efficients are known to be large, and it is computationally feasible 
for the simulation to track a large number of infections in a reason-
able time frame, then the advantageous allele may be introduced 
at a much lower starting frequency to minimize its epidemiological 
impact after its introduction. We wished to avoid using different 
methods in different circumstances and wanted to identify a robust 
method which we believe will be applicable over the wide ranges 

of parameter spaces explored by OpenMalaria; hence, we settled 
on the above methodology. We are not prescriptive on the meth-
odologies to be employed but herein describe what trade-offs we 
encountered and how we addressed them; importantly, these will 
almost inevitably occur when tracking genetic selection in IBMs of 
most infectious diseases. We used OpenMalaria as a case study in 
decision-making which people using other IBM for other alleles, may 
find useful.

In summary, the default method we use for estimating “s” in 
OpenMalaria is as follows. The advantageous allele is introduced 
at 50% frequency (with the caveat that if “s” is very high, starting 
frequency of 10% gives a longer duration of regression before fre-
quency exceeds our limits of 90% which may improve accuracy). The 
regression then starts 60 days after the introduction of the advanta-
geous allele (this one-generation time lag allows malaria transmission 
stages, gametocytes, to mature and reflect the preferential trans-
mission of the advantageous allele) and continues over 720 days 
(2 years) which assuming six generations per year (see below) is 12 
malaria generations. OpenMalaria outputs data every 5 days, so the 
full regression period of 720 days provides 144 datapoints for the 
regression. We then run repeated stochastic realizations to estimate 
a distribution of our estimates (Figures 2–4) or calculate means and 
coefficients of variation (Figures S1–S3) to confirm that we have rea-
sonably stable estimates of “s.”

2.2 | Incorporating mutations into the IBM

We argued that selection coefficients be measured when advanta-
geous alleles are present at high frequency (to minimize the impact 
of genetic drift) and used to extrapolate spread of the advantageous 
allele over the whole period of selection. This period of selection 
can start from any frequency, so a key question is what starting fre-
quency is most appropriate for this extrapolation. In some circum-
stances, we may be able to simply assume that advantageous alleles 
are already present at a given initial frequency, for example at a mu-
tation/selection equilibrium. In these circumstances, it is straight-
forward to use the estimate of “s” to track their subsequent spread 
from their initial, presumably very low, frequency. For example, if 
this initial low AAF is p(0), then the frequency after “t” generations, 
p(t), can be obtained by substitution as in the following equations. 
Figure 1b shows that

Or, equivalently,

Noting that if the odds of p(t) are “x,” that is p(t)/[(1 − p(t)] = x, 
then the allele frequency at “t” is given by p(t) = x/(1 + x)].

(1A)ln

[

p(t)

1−p(t)

]

= ln

[

p(0)

1−p(0)

]

+st.

(1B)p(t)

1−p(t)
=

p(0)

1−p(0)
e��.
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Or, alternatively, the time taken to reach a frequency of p(t) from 
p(0) can be obtained by substitution as

Similarly, the selection coefficient can be obtained from field 
data reporting frequencies at different times (a common form of 
data; see Recommendation #1 of Section 3) as

Alternately, the assumption may be that the advantageous al-
leles are not yet present in the malaria population, in which case 
their de novo input by mutation must be incorporated into the IBM. 
The problem then is to track the origin and spread of such muta-
tions while avoiding having very low numbers of the advantageous 
allele within the IBM. We suggest the following strategy to allow 
the input of de novo mutations into the IBM as a four-stage process.

1. Define “mutation rate,” μ, as a user-defined input into the sim-
ulation. We define this mutation rate per inoculum, μ, which in 
our malaria IBM is the probability that a single mosquito bite 
delivers an inoculum consisting solely of parasites containing 
the advantageous allele. This allows details of how mutations 
arise to be studied external to the IBM (see Recommendation 
#3 of Section 3). Importantly, quantifying the input of new 
mutations as μ simplifies the introduction of mutations into 
IBMs and reduces the stochastic element of their input and 
improves comparability between replicate runs.

2. Use the selection coefficient obtained above to calculate the 
probability that the mutation successfully survives chance ex-
tinction in the first few transmissions after its introduction. 
This is discussed in more detail elsewhere (Hastings, 2004) but 
the basic result is that if reproductive success follows a Poisson 
distribution, then the probability that the de novo mutation sur-
vives to become established in the population is approximately 
2s when s < ~0.1 (Charlesworth & Charlesworth, 2010; Crow & 
Kimura, 1970; Haldane, 1927). Reproductive success is generally 
not Poisson and is much more overdispersed; if we quantify this 
overdispersal by a negative binominal distribution, as is commonly 
used in infection transmission, then probability of establishment 
may be reduced substantially (table 1 of Hastings, 2004 and see 
Parsons, Lambert, Day, and Gandon, 2018 for a more sophisti-
cated discussion). We denote the probability of a novel mutation 
surviving chance extinction as Ψ and can estimate it as

based on table 1 of Hastings (2004) which shows this relationship holds 
for values of s from ~0.01 to ~0.1 and a negative binomial distribution 

of transmissions (a characteristic of most parasite infections) with a dis-
persal parameter of 0.1 (moderately overdispersed). Alternative esti-
mates of Ψ can be obtained by simulation under different assumptions 
of dispersal parameter (e.g., s/5 may be a better estimate of survival 
probability when transmission is highly overdispersed, e.g. k = 0.1 in 
table 1 of Hastings (2004), but this simple relationship serves its illus-
trative role here.

1. We can then calculate the expected number of new mutations 
entering the human population per (malaria) generation, θ, as

where λ is the number of successful transmissions in the IBM per mos-
quito generation. This depends on the FOI which is conventionally 
quantified as the number of successful (i.e. resulting in a new, viable 
infection) inoculations per human per time unit. If we set the time unit 
as being a malaria generation, then λ = FOI*N where N is the number 
of humans in the simulation. Note that FOI is typically much lower than 
the infective contact rate because many contacts do not produce a 
viable infection due to factors such as low inoculum size and acquired 
immunity in the human. In vector-borne disease, the contact rate is 
usually quantified as the EIR, that is the average number of infective 
bites per human per time period. In the specific case of malaria, Smith, 
Killeen, et al. (2006), and Smith, Maire, et al. (2006) established a re-
lationship between EIR and FOI which, since malaria EIR is commonly 
estimated in the field, enables IBMs of malaria to be calibrated against 
field data when attempting to incorporate mutational input; we used 
the method described in that paper.

Equation (4) enables us to calculate the distribution of “wait 
times” until a mutation successfully enters the population; this is an 
exponential decay, rather than a normal distribution, see Figure 5b, 
that is

Sampling from this distribution provides the time (in generations) 
until a mutation first successfully enters the malaria population 
tracked in the IBM.

1. Having obtained a wait time, we can then use “s” to calculate 
its subsequent spread until it reaches any given point, for 
example time to reach 5% frequency. Assume, for example, 
that the IBM is tracking a population of 1,500 infections (note 
it is number of infections, not number of humans), then the 
initial frequency p(0) of a de novo mutant is 1/1,500. The 
distribution of times for a de novo mutation to successfully 
enter the population and subsequently reach any given fre-
quency p(t) can be simply obtained by summing the wait time 
for its successful input into the population (sampled from 
Equation 6) and the time for its subsequent spread to p(t) 
(Equation 2). The implicit assumption in this calculation is that 

(2)
t=

ln
[

p(t)

1−p(t)

]

− ln
[

p(0)

1−p(0)

]

s
.

(3)
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ln
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p(t)

1−p(t)

]
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[

p(0)

1−p(0)

]

t
.

(4)Ψ= s,

(5)�=�Ψ�,

(6)f(t)=�e−�t.
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the rate of de novo mutations entering the population is small 
compared to the selective advantage (i.e. θ≪s), so that the 
spread of the first mutation dominates any later input of new 
mutations, meaning that we need only track the spread of the 
first mutation. If this is not the case, the calculation for spread 
can still be made but allowing recurrent, sporadic de novo 
mutations to enter the population using Equation (5).

We used OpenMalaria to validate the theoretical approach de-
scribed above (details in Supporting Information). Figure S6 demon-
strates the difficulty of incorporating the dynamics of a mutation 
with a de novo rate of 10–7 per infection per generation. An uncrit-
ical approach using small populations sizes to investigate very large 
populations would result in extremely large underestimates of mu-
tational input: the wait times are much longer in small populations, 
and this dominates their subsequent rate of spread within smaller 
population. Figure 5 shows results obtained from the IBM. Figure 5a 
shows that, as expected, a large proportion of advantageous de 
novo mutations are lost by stochastic fluctuations within a few gen-
erations of their arrival. Figure 5b shows how the wait times until 
successful establishment of a de novo mutation matches the distri-
bution predicted in Equation (6).

There are two clear advantages of this four-stage strategy of 
incorporating mutations. Firstly, it allows biological details of how 
mutations occur to be removed from within the IBM which allows 
better comparability between studies (see Section 3, recommenda-
tion #3). Secondly, it removes the temporal variation in wait times 
for mutational input from the IBM and places it in Equation 5. It is 
obviously easier and much faster to repeatedly sample from the dis-
tribution in Equation 5 than to repeatedly run replicates of the IBM 
to capture and quantify this stochastic variation in mutational input.

2.3 | Identify the power of the IBM to accurately 
estimate small selection coefficients

In Part 2.1, we deliberately focussed on selection of sufficient 
strength that selection was able to dominate genetic drift in our sim-
ulations, that is selective coefficients > 2% and a malaria population 
census size, N, of ~1,500 (i.e. 10,000 humans tracked with a malaria 
prevalence of 15%).

IBMs typically simulate humans. If disease prevalence is low in 
near-elimination scenarios, then, by definition, the pathogen pop-
ulation size may be small. Suppose a simulation of 10,000 humans 
with a pathogen prevalence of 1% gives a pathogen population size 
of 100. This may seem large but, as described earlier, it is effective 
population size, Ne, that is important rather than the observed or 
“census” population size, N. The reason this is so important is that Ne 
sets the sensitivity of the IBMs to detect selection acting on advan-
tageous alleles. As Ne becomes small, random frequency changes 
due to genetic drift become so large that they can obscure selection 
processes. There are various approximations for deciding whether 
selection or drift will be the dominant dynamics driving changes in 

allele frequency but, generally, drift dominates when s≪1/Ne and 
selection dominates when s≫1/Ne, and both play important roles 
when s and 1/Ne are around the same magnitude. Suppose selection 
coefficient is 0.02 which is moderately strong, that is a 2% increase 
per generation, this suggests it will only dominate drift when Ne≫ 
50.

The problem is that, except in very simple cases, there are no 
algebraic means of converting the “census” population size observed 
in IBMs, into the equivalent Ne. One option would be to track neutral 
(i.e. nonselected) genetic markers in the simulation and use the level 
of linkage disequilibrium to estimate Ne (e.g. Waples & Do, 2010). 
However, it is probably more informative to empirically estimate the 
limit of sensitivity of the IBM to detect small selection coefficients. 
We demonstrate this by further reducing the resistance level (IC50) 
of the advantageous alleles below that investigated in Part 2.1, that 
is fold increases in IC50 are less than 1.1 (Table 1). The dynamics 
of spread when selection coefficients are low is shown on Figure 6 
and shows the coefficient of variation around mean estimates of “s” 
(cf Figures 3 and 4 where selection is higher and dominates drift). 
Figure 6 has the following pattern:

The top line was obtained from the following simulation:

• 10,000 patients with malaria prevalence of 15% and starting mu-
tant frequency of 10%; N = 1,500

There are then two lines that are effectively superimposed, that 
is

• Increasing the starting AAF to 50%; this increases sensitivity 
compared to the top line, presumably by reducing stochastic vari-
ation in allele number.

• Increasing population size to 100,000 and decreasing malaria 
prevalence to 1.5%; this gives the same malaria census population 
size as 10,000 people with 15% prevalence (i.e. N = 1,500) so it 
is an excellent demonstration that it is the malaria population size 
being tracked not the human population size, that is the critical fac-
tor governing ability of the IBM to estimate selection coefficients.

Finally, there is a lower line obtained from the following simula-
tion as follows.

• 100,000 patients with malaria prevalence of 15% and starting 
mutant frequency of 50%. This has N = 15,000, that is a 10-fold 
greater malaria population size compared to the 100,000 popula-
tion with 1.5% prevalence. As expected, the ability of the IBM to 
accurately estimate selection coefficients is greatly increased.

As expected, the accuracy of estimation does increase as the 
number of infections tracked is increased, either by increasing the 
number of patients tracked and/or by increasing malaria prevalence 
(Figure 6). In the specific case of default simulations of 10,000 hu-
mans with 15% malaria prevalence (blue line of Figure 6), they are 
unable to accurately estimate values of “s” less than about 0.02 
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because the CV increases to the extent that a large number of rep-
licates would be required to get an accurate standard error around 
the estimated value of s. Increasing population size to 100,000 en-
ables estimates of s down to around 0.005 (green line of Figure 6). 
We base this limit on a CV < ~1 but this is arbitrary and illustrative 
and, in reality, the limit depends on how many replicates can be fea-
sibly run. A larger number of runs will reduce standard error around 
the estimates but, importantly, it may be more computationally effi-
cient to run fewer, large simulations, rather than a larger number of 
small simulations. Recall that standard error around the mean (SEM) 
is given by.

where σ is the standard deviation of estimates and n is sample size. 
If we take the central point plotted in Figure 6 (i.e. s = 0.0156; see 
Table 1) with 50% starting frequency and 15% prevalence, then a pop-
ulation size of 10,000 has a CV of 1.43 (Figure 6) resulting in σ = 0.022 
and a population size of 100,000 has a CV of 0.27 (Figure 6) resulting 
in σ = 0.0042. Assuming the computation time scales with the chosen 
population size (i.e. a run tracking 100,000 individual requires 10 times 
more run-time than a population of 10,000), then a smaller number 
of simulations tracking a larger population provides better accuracy. 
For example, 100 simulations of 10,000 individual give SEM of 0.0022, 
while 10 runs of 100,000 give a SEM of 0.0013. Similarly, 50 runs of 
10,000 give a SEM of 0.0032, while five runs of 1,000,000 give a SEM 
of 0.0018. It is therefore likely that running exploratory trial runs to 
establish the sensitivity of the IBM to detect values of s around the an-
ticipated value could lead to optimized IBM simulation strategies that 
can significantly reduce the standard errors associated with parameter 
estimates.

The main factor that reduces Ne below the census size is the dif-
ferences in reproductive success of different infections (in malaria, 
most plausibly due to some people being bitten more frequently 
than others, and acquired human immunity affecting an individual's 
infectivity and susceptibility). Figure 6 therefore demonstrates the 
general principle although the exact quantitative relationship be-
tween census population size and Ne will depend on the IBM and its 
calibration: adding factors that further increase this heterogeneity 
in reproductive success will further reduce Ne and hence the ability 
to detect low magnitudes of s. Consequently, the ability of IBMs to 
detect low values of s is not simply dependent on population size, 
but on their structure and calibration; this emphasizes the need to 
continually check sensitivity of IBMs before drawing conclusion of 
magnitude of selection coefficient.

3  | DISCUSSION

Individual-based models for complex disease such as malaria have 
an intrinsic trade-off: the more realistic and complex the biologi-
cal and clinical description of transmission and disease, the more 

computational power is required to simulate populations, and the 
smaller the number of patients/infections that can be tracked in 
a reasonable timeframe. This is not usually an issue for simulating 
the overall epidemiology (although stochastic loss of the pathogen 
population may occur at low prevalence), and IBMs of malaria have 
been successfully used to investigate a number of control measures 
as described in the Introduction. However, the finite sizes of IBM do 
affect their ability to incorporate genetic selection of advantageous 
alleles. In the specific case of malaria populations, such alleles evolve 
to counter control interventions such as those encoding drug resist-
ance, vaccine insensitivity and RDT escape mutations. Given the 
likely impact of these alleles, a strategy to incorporate such genetic 
processes into IBMs is urgently required, and to our knowledge, this 
is the first attempt to explicitly do so. We make four specific recom-
mendations that may help other researchers attempting to do this.

3.1 | Recommendation #1. Report selection 
coefficients and validate the values obtained from 
IBM against field data

We strongly recommend that IBMs be interrogated to report the 
selection coefficient, s, of the advantageous allele. This is a com-
mon scale which can be used to compare results from different IBMs 
and which can be used to calibrate/validate against field data which 
typically report selection coefficients acting on alleles (see drug 
resistance examples below). It is the central population genetic pa-
rameter quantifying the response to selection (e.g. Charlesworth & 
Charlesworth, 2010; Hartl & Clark, 2007) and is widely extracted and 
reported from clinical and/or field data. For example, selection for/
against antibiotic resistance is widely measured on this scale, see for 
example: Levin et al. (1997); Greenfield et al. (2018); box 3 of Melnyk 
et al., (2015); figures 2 and 3 of Gullberg et al. (2011)). Selection co-
efficients also affect other genetic process as was briefly described 
elsewhere (Nsanzabana et al., 2010), that is they determine rate of 
geographical migration rate, survival probability of new mutations 
(as described above), the genetic impact of selective sweeps and de-
termines the frequency of resistance prior to the introduction of a 
novel drug as a mutation/selection balance.

As an example of IBM validation using selection coefficients, 
we searched the literature for estimates of selection coefficients 
associated with alleles encoding malaria drug resistance in malaria 
and found these range from around 0.02 to 0.12 as in the follow-
ing examples (which we do not claim to be exhaustive). Anderson 
and Roper (2005) reported selection coefficients of 0.05 and 0.076 
for two dhfr alleles and ∼0.13 for a dhps allele. Anderson (2004) 
collated data suggesting values of s ranging from 0.03 to 0.11 for 
the same mutations. Estimates from SE Asia are s~=0.11 for dhfr 
(Nair et al., 2003) and s~0.08 for kelch13 (Anderson et al., 2016). 
Nwakanma et al. (2014) reported values of s as 0.15, 0.13, 0.11 and 
0.11 for crt, mdr, dhfr and dhps, respectively, over a 25-year period in 
Gambia; note that they assumed 2 generations per year so, for con-
sistency with the assumption of 6 generations per year, these values 

SEM=
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should be divided by three giving estimated in the range 0.03–0.05. 
Nsanzabana et al. (2010) reported values of s = 0.02–0.6 for 3 loci 
undergoing selection over a 12-year period in Papua New Guinea. 
Finally, Okell et al. (2018) investigated a range of positively and neg-
atively selected resistance alleles and found positive selection coef-
ficients ranging up to a median of 0.023 for the most selected allele 
(mdr1-184F under selection from the drug artemether–lumefantrine; 
note they assumed three malaria generations per year so should be 
divided by two to convert to our scale of six generations per year). 
The magnitude of selection coefficients depends on the type and 
amount of drug deployed and, arguably, the number of malaria gen-
erations per year (which depends on local transmission patterns) 
but, generally, IBMs producing values in this range are re-assuring, 
while those producing higher or lower values may require support-
ing clarification about why they produce results different from field 
observations.

Some authors report basic genetic outputs from the models, for 
example Watson et al. (2017) report the spread of hrp2 deletions 
from various starting frequencies in their Figure 1, while some au-
thors do not report the dynamics of mutational spread and simply 
report epidemiological/clinical impact (e.g. Nguyen et al., 2015). 
Simple description of genetic spread and/or clinical impact is in-
formative but we argue strongly that the dynamics should also 
be described by a selection coefficient as this allows a reader to 
easily predict spread from his/her own choice of initial frequency 
and is a common genetic scale on which to compare selection pro-
cesses. Selection coefficient can be extracted from previous work 
using our approach. For example, Watson et al. (2017) show the 
increase in frequency of hrp2 deletion over time in their Figure 1. 
The change in frequency between values of 0.25–0.75 appears lin-
ear for most of their plots (in line with our results, Figure 1a of this 
paper) and generally takes 5 years, equivalent to 30 malaria gener-
ations, to spread from 0.25 to 0.75. Substituting these values into 
our Equation (3; i.e. p(0) = 0.25, p(t) = 0.75, t = 30) gives a value of 
s = 0.07 which is highly consistent with “s” observed for drug re-
sistance, presumably because the underlying selective forces are 
similar, that is drug resistance mutations survives treatment, while 
hrp2 deletions simply avoid treatment. This example clearly shows 
how reporting “s” can effectively summarize a whole graph of data 
(i.e. figure 1 of Watson et al., 2017) while also allowing easy com-
parisons between studies.

We have reported selection coefficient in units per generation, 
even though OpenMalaria runs in five-day timesteps with over-
lapping generations. The per generation timescale is a population 
genetics convention but can be easily interconverted to units per 
day, or perhaps more convenient, per year (it only has to be in units 
per generation in this work for application of Equation 4). An annual 
timescale is robust (and hence should be reported) as it removes as-
sumptions about durations of generations that may differ between 
studies (e.g., Anderson, 2004 assumed six generations per year but 
Nwakanma et al. (2014) assumed two generations per year). There 
may also be subdecisions of timescale, for example selection coeffi-
cients acting on antibiotics may be reported on a scale of cell cycles, 

“generations” (which we take to mean transmissions between hosts), 
or annual basis. An annual rate may also be more appropriate if sea-
sonal variation in transmission causes fluctuations in selection coef-
ficient over the year. The annual rate of spread is, of course, the one 
most useful to policy makers aiming to mitigate its spread. We do, 
however, recommend that selection coefficients be reported even 
if their estimation is not the primary objective of the study For ex-
ample, Nguyen et al. (2015) reported how selection of malaria drug 
resistance affected clinical outcomes such as treatment failure rates. 
The clinical predictions are important (e.g., WHO mandate the re-
placement of first line antimalarial drugs if failure rates exceed 10%) 
but we believe if they did report underlying selection coefficients, it 
would support comparability between studies and also enable vali-
dation that their predicted dynamics are consistent with field esti-
mates describing selection for resistance.

3.2 | Recommendation #2. Use the magnitude of “s” 
to optimize the computational approach

Any IBM of finite size will inevitably have a lower limit below which 
“s” cannot be estimated with precision due to the presence of ge-
netic drift; see Figure 6. A first step would therefore be to empiri-
cally estimate its power and avoid trying to obtain estimates of “s” 
below this lower limit. This is particularly relevant where extensive 
explorations of parameter space are planned, as it may be inevitable 
that small values of “s” may be encountered and need to be avoided, 
or possibly discounted in subsequent analysis as being unreliable. In 
these circumstances, it is also beneficial to optimize the computa-
tional approach as detailed earlier, that is decide whether it is more 
computationally efficient to run a smaller number of replicates of 
larger IBMs or vice versa.

3.3 | Recommendation #3. Consider how best to 
incorporate mutations

If mutations are already present in the population before deploy-
ment, presumably in mutation/selection balance (e.g. for malaria see 
equation 2 of Hastings, 1997), they can be simply incorporated as 
starting frequency p(0) in Equations (2) and (3). However, if new de 
novo mutations are to be incorporated into the IBM, it is best to 
try and make details of how mutations arise external to the simula-
tion and summarize their input into the IBM as simple mutation rate 
per inoculum. In particular, use of Equation (5) to incorporate wait 
times for de novo mutation to enter the population is far more ef-
ficient than using repeat runs of the entire IBM to achieve the same 
purpose.

How mutations give rise to advantageous alleles may be rela-
tively noncontentious in some situations. For example, deletions in 
hrp2 or the mutations that result in altered antigenic profiles in vac-
cine-escape alleles presumably reflect relative well-characterized 
eukaryote deletion rates and codon mutation rate, respectively. In 
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the example of drug resistance mutations in malaria, this is extremely 
unclear. Hastings (2004) identified four possible sources of muta-
tions that may be selected by drug deployment: (a) mutations already 
present as a mutation/selection balance prior to drug deployment 
a; (b) mutations selected de novo from among malaria infection un-
dergoing drug treatment; (c) mutations selected de novo from new 
infections emerging from the liver and encountering drugs persisting 
from previous treatments; and (d) spontaneous mutations that occur 
in untreated humans or in the mosquito stages that are subsequently 
inoculated as resistant. The relative importance of each is unknown 
and may even vary between drugs (e.g. resistance to atovaquone can 
be observed being selected from among malaria infections at time of 
treatment in around 30% of treatments (Looareesuwan et al., 1996). 
Authors may differ in their underlying assumptions about how mu-
tations arise so this strategy removes such differences from the sim-
ulations. For example, if most mutations are assumed to arise from 
drug-treated infections (source (b)), then mutation rate, μ, would be 
a function of drug treatment rates and probability of mutation emer-
gence in treated infections; if most mutations are assumed to be 
spontaneous mutations (source (d)), the mutation rate would simply 
be the spontaneous rate in mosquitoes and untreated humans, and 
so on. The important point is that calculation of μ is done external 
to the simulations, then simply brought into the IBM through inclu-
sion in Equation (5). We therefore argue that the most transparent 
approach is to externalize assumptions about how resistance mu-
tations arise from the IBMs and use the latter simply to track their 
subsequent rate of spread and likely clinical impact.

3.4 | Recommendation #4. Explicitly discuss how 
selection coefficients measured in the IBM at a given 
starting frequency are relevant to spread at low 
frequencies

There is dilemma at the heart of bringing selection into IBMs: the 
desire to have low advantageous allele frequencies to reflect the epi-
demiological setting at which most selection occurs (Figure 1) and 
the desire to have large numbers of each type of allele to accurately 
estimate selection coefficients (Figure 2).

The most significant compromise we had to make in our simula-
tions was to assume a high frequency (10% or 50%) of the advanta-
geous allele when introduced into the IBM to ensure a sufficiently 
large number of each allelic type, that is advantageous and wild type. 
Table 1 shows that “s” may vary depending on the underlying epi-
demiology so the first check we made was to examine epidemiol-
ogy outputs from OpenMalaria to confirm that epidemiology was 
not changing rapidly as the advantageous allele (resistance in our 
case) spreads. The second check was to consider if selection co-
efficients may rely on allele frequency. For example, the spread of 
drug resistance may affect intrahost dynamics complicate and even 
stabilize the dynamics of spread (previously discussed in Hastings 
(2006). The dynamics of hrp2 deletions provide an excellent ex-
ample of how “s” may depend on frequency. Superinfection (i.e. 

simultaneous infection with two or more malaria clones) is common 
in areas of moderate-to-high transmission. Hrp2-deletion mutants 
co-infecting humans with wild type will be common at low frequen-
cies and will presumably have reduced selective advantage because 
the co-infecting wild type, hrp2-expressing parasite may present a 
signal sufficiently strong for diagnosis to occur. However, as dele-
tion frequency increases, so will the proportion of superinfections 
consisting solely of hrp2 deletions and this increases their selective 
advantage as they will escape diagnosis. In this case, we would argue 
that estimates of selection coefficients obtained at higher frequen-
cies hrp2 deletion are only valid if superinfection does not occur, that 
is there is only a single malaria clone in each host. The same phe-
nomenon occurs if the degree of superinfection changes as a result 
of seasonal fluctuations in malaria transmission intensity (e.g. figure 
3 of Watson et al., 2019). A suitable secondary check might be to as-
sume a variation in MOI and work out the probability that a hrp2 de-
letion is detected and then incorporate this probability of detection 
into the IBM as a second check. Finally, Figure 1b suggests a useful 
diagnostic: if a plot of ln[p/(1 − p)] obtained over the time course of 
the simulation is nonlinear, it is suggestive of frequency-dependent 
selective effects. Figure S7 shows typical diagnostic plots obtained 
from OpenMalaria; in this case, there is no evidence of nonlinearity 
occurring in our simulations.

4  | CONCLUSIONS

We emphasize that the purpose of this study is to demonstrate how 
selection can be optimally detected and quantified in IBMs of in-
fectious disease. In particular, we wished to avoid a distracting dis-
cussion of the nuances of exactly what factors drive malaria drug 
resistance and how they combine to determine the selection coef-
ficient. However, one factor characteristic of malaria transmission 
in many geographical locations is seasonal variation in its intensity, 
usually as a result of mosquito numbers and/or longevity increasing 
during a rainy season, possibly accompanied by a change in vector 
species composition (we also note that the same effect may occur 
for bacteria in temperate regions where winter crowding increases 
transmission). The primary impact of variation in intensity of trans-
mission will be temporal fluctuations in degree of malaria superin-
fection. This will alter selection pressure on some mutations, for 
example those encoding hrp-2 deletions (Watson et al., 2019). It 
will also change the level of recombination in the malaria population 
which would have an impact on simulations tracking two or more 
loci (but would have no effect of the single-locus dynamics tracked 
here). Seasonality may also have an indirect effect as drug use may 
increase during higher transmission periods increasing selection for 
resistance. If seasonality is found to have an impact, it may then 
be better to report selection coefficients separately for low- and 
high-transmission seasons or on an annual basis. Finally, note that 
seasonality reduces the effective population size making selection 
harder to detect against stochastic fluctuations in allele frequency. 
When tracking the fate of de novo mutations, it is straightforward 
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to use the same methodology based on selection coefficients (see 
discussion around Equation 4) simply noting that the expected num-
ber of resistant transmissions sampled from the negative binomial 
distribution in the current generation will change depending on the 
selection coefficient operating at that time in the annual transmis-
sion cycle (Hastings, 2004).

It is fortunate that malaria, and most bacterial and viral patho-
gens, are haploid, that is contain only a single copy of each gene. 
If diploids are considered (e.g. the diploid worms responsible for 
human diseases such as elephantiasis, river blindness etc) or insec-
ticide resistance in the vectors of diseases such as malaria, sleep-
ing sickness and tick-borne relapsing fever, the genetics becomes 
much more complicated. The dominance relationship between the 
wild type and advantageous allele needs to be considered, and this 
means that the spread of advantageous alleles will not be linear on a 
logit scale (i.e. Figure 1b).

The results presented here were obtained using one specific 
IBM, OpenMalaria, but the underlying principles are universal not 
just to malaria, but to bringing genetic selection into IBMs of other 
infections (see, e.g. Bershteyn et al.(2018) for a description of a 
more general, open-source IBM applicable to several important 
human diseases). The most implementation-dependent recom-
mendation is likely to be the specifics of how to measure selection 
coefficient, that is choice of starting frequency of the advanta-
geous allele, how long after introduction of the advantageous al-
lele to start regression and the optimal duration of the regression. 
This may vary both with the IBM's underlying structure and as-
sumptions and also with its calibrations, for example how rapidly 
transmission and epidemiology stabilize after introduction of the 
advantageous allele. We suggest researchers using IBMs to track 
genetic spread follow a similar suite of analysis to ourselves. Our 
recommendation that measurement be delayed for one malaria 
generation (60 days) and to continue over the subsequent 2 years 
(i.e. for 20–24 malaria generations) appears robust in our simula-
tions and seems intuitively sensible. The second approach, that 
of incorporating mutation externally to the simulations, should be 
widely transferrable across IBMs. The final methodology, to val-
idate the IBM's ability to accurately estimate the small selection 
coefficient by examining CV over replicates, is also likely to be uni-
versal across platforms; it will be highly informative to see how 
different platforms perform in this respect. What is clear is that it 
is highly advisable to carry out these types of checks when incor-
porating genetic selection into IBMs and to report them in the sub-
sequent publications. In particular, the recommendations we list 
above will apply to all IBM simulations that incorporate genetic se-
lection, irrespective of the disease. We do not imply that the same 
quantitative decisions will apply to all systems (e.g. our decision 
to track selection for 720 days starting 60 days after introduction 
of the advantageous allele) but we stress that such decisions will 
occur in simulation outputs of other IBM either implicitly or explic-
itly and that they be addressed and discussed. We have tried to 
provide an illustrative roadmap for making such decisions and look 
forward to future work in the topic.
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