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insights into the salivary 
N‑glycome of Lutzomyia 
longipalpis, vector of visceral 
leishmaniasis
Karina Mondragon‑Shem1,7, Katherine Wongtrakul‑Kish2,5,7, Radoslaw p. Kozak2, Shi Yan3,6, 
iain B. H. Wilson3, Katharina paschinger3, Matthew e. Rogers4, Daniel i. R. Spencer2 & 
Alvaro Acosta‑Serrano1*

During Leishmania transmission sand flies inoculate parasites and saliva into the skin of vertebrates. 
Saliva has anti-haemostatic and anti-inflammatory activities that evolved to facilitate bloodfeeding, 
but also modulate the host’s immune responses. Sand fly salivary proteins have been extensively 
studied, but the nature and biological roles of protein-linked glycans remain overlooked. Here, we 
characterised the profile of N‑glycans from the salivary glycoproteins of Lutzomyia longipalpis, vector 
of visceral leishmaniasis in the Americas. in silico predictions suggest half of Lu. longipalpis salivary 
proteins may be N-glycosylated. SDS-PAGE coupled to LC–MS analysis of sand fly saliva, before and 
after enzymatic deglycosylation, revealed several candidate glycoproteins. to determine the diversity 
of N-glycan structures in sand fly saliva, enzymatically released sugars were fluorescently tagged and 
analysed by HPLC, combined with highly sensitive LC–MS/MS, MALDI-TOF–MS, and exoglycosidase 
treatments. We found that the N‑glycan composition of Lu. longipalpis saliva mostly consists of 
oligomannose sugars, with  Man5GlcnAc2 being the most abundant, and a few hybrid-type species. 
Interestingly, some glycans appear modified with a group of 144 Da, whose identity has yet to be 
confirmed. Our work presents the first detailed structural analysis of sand fly salivary glycans.

Sand flies are small insects that can transmit bacteria and  viruses1,2, but are known mainly as vectors of leish-
maniasis, a disease that threatens 350 million people  worldwide3. When female sand flies feed, they inject a 
saliva comprised of molecules that facilitate the ingestion of blood, and modulate the host immune system 
and pathogen  transmission4–6. These effects have led researchers to explore the potential of insect salivary mol-
ecules as markers of biting  exposure5,7 (to determine risk of disease), or even as components of vaccines against 
 leishmaniasis8. Of the many types of molecules that make up saliva, most research has focused on the proteins; 
here, we have investigated the glycans that modify these proteins.

In most eukaryotic cells, the addition of glycans to proteins is a highly conserved and diverse post-trans-
lational modification. The most common types of protein-linked glycans are N-linked (attached to asparagine 
residues in the sequon Asn-X-Thr/Ser), and O-linked (attached to serine or threonine residues). Glycoconju-
gates display a wide range of biological roles, from organism development to immune system functions against 
 pathogens9. One study has addressed the types and roles of glycans in insects using the model fruit fly, Drosophila 
melanogaster. In this species, biological functions have been attributed to different glycan classes, such as mor-
phology and locomotion (N-linked glycans), or cell interaction and signalling (O-linked glycans)10.

open

1Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK. 2Ludger Ltd., Culham 
Science Centre, Oxfordshire OX14 3EB, UK. 3Department of Chemistry, University of Natural Resources and Life 
Sciences, 1190 Vienna, Austria. 4Department of Disease Control, London School of Hygiene and Tropical Medicine, 
London WC1E 7HT, UK. 5Present address: Australian Research Council Centre of Excellence for Nanoscale 
Biophotonics, Macquarie University, Sydney, Australia. 6Present address: Institute of Parasitology, Department 
of Pathobiology, University of Veterinary Medicine, A-1210 Vienna, Austria. 7These authors contributed equally: 
Karina Mondragon-Shem and Katherine Wongtrakul-Kish. *email: alvaro.acosta-serrano@lstmed.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-69753-x&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12903  | https://doi.org/10.1038/s41598-020-69753-x

www.nature.com/scientificreports/

Glycans may have special relevance in the saliva of medically important arthropods, because of the fundamen-
tal role this biological fluid plays during pathogen transmission. For instance, African trypanosomes, tick-borne 
pathogens, arboviruses and malaria are all harboured in the salivary glands of their respective vectors, and are 
co-transmitted with saliva through the bite. In contrast, Leishmania parasites are transmitted by regurgitation 
from the fly’s midgut, where infectious stages reside, and contact with saliva occurs in the host at the bite  site11. 
People living in leishmaniasis-endemic regions are constantly exposed to the saliva of uninfected sand flies, trig-
gering immune responses that may later influence parasite  infection12. The immunogenicity of salivary glycan 
structures and their interaction with specific immune cells could have different effects for each disease.

There are some reports describing the presence of salivary glycoproteins in sand flies through in silico and 
blotting  analyses13–19; however, to our knowledge no detailed structural studies have been published to date. 
Therefore, we set out to identify the salivary glycoproteins in the sand fly vector species Lutzomyia longipalpis, 
and structurally characterise their N-glycan conjugates. We further discuss their implications for insect blood-
feeding as well as vector-host interactions.

Results
Identification of Lutzomyia longipalpis salivary glycoproteins. To determine the degree of N-gly-
cosylation, an in silico analysis was carried out on 42 salivary proteins previously reported in Lu. longipalpis4,20 to 
predict protein N-glycosylation sites using the NetNGlyc server (https ://www.cbs.dtu.dk/servi ces/NetNG lyc/). 
This revealed 48% of the commonly known salivary proteins contain conventional N-glycosylation sites (Sup-
plementary Table S1). However, it is important to note this list only includes proteins available on the NCBI 
database as studies published to date have focused on major secreted proteins, and no deep sequencing has been 
carried out for salivary glands of this sand fly species.

To accompany the in silico dataset, we carried out our own analysis of the sand fly salivary proteins (Supple-
mentary Fig. S1). First, Lu. longipalpis salivary glands were dissected and individually pierced to release saliva. 
Subsequent Coomassie blue SDS-PAGE analysis showed several protein bands ranging from ~ 10 to 100 kDa 
(Fig. 1). To identify which proteins were glycosylated, samples were analysed before and after treatment with 
Peptide-N-Glycosidase F (PNGase F), which cleaves high-mannose, hybrid and complex N-linked glycans. 
Treatment with PNGase F resulted in molecular mass shifts and migration of several protein bands, consistent 
with the widespread removal of N-glycans from the salivary glycoproteins (Fig. 1). De-glycosylation was also 
confirmed by transferring proteins to PVDF membrane and blotting with Concanavalin A (ConA) lectin, which 
binds specifically to terminal mannose residues on  glycoproteins21 (Supplementary Fig. S2).

For LC–MS/MS based glycoprotein identification, the major deglycosylated protein bands (Supplementary 
Fig. S3) were excised from the gel and sent to the University of Dundee Fingerprints Proteomics Facility. From 
the resulting list of 191 identified proteins, we excluded those without recognizable glycosylation sequons (as 
determined by NetNGlyc), obtaining a final list of 43 potentially N-glycosylated protein candidates (Supple-
mentary Table S2). Fourteen of these potential glycoproteins were also identified in our initial in silico analysis 
(Supplementary Table S1), including LJM11, LJM111 and LJL143, which have been proposed as potential vaccine 
components against Leishmania  infection4. Using the InterProScan tool to identify conserved protein domains, 
family distributions (Supplementary Fig. S4) show five of the candidates belonging to the actin family, while oth-
ers like tubulin, 5′ nucleotidase, peptidase M17 and the major royal jelly protein (yellow protein) are represented 

Figure 1.  Enzymatic cleavage of Lu. longipalpis salivary glycoproteins with PNGase F. 10 µg of salivary proteins 
were incubated overnight with ( +) and without (-) PNGase F to cleave N-glycans. Samples were resolved 
on a 12% SDS-PAGE gel and Coomassie-stained. Egg albumin (OVA) was used as a positive control. MWM 
molecular weight marker. *PNGase F enzyme.

https://www.cbs.dtu.dk/services/NetNGlyc/
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by two proteins each. After Blast2GO analysis, the “molecular function breakdown” suggested that 44% of the 
candidate glycoproteins are involved in binding, including ’small molecule binding’ and ’carbohydrate derivative 
binding’ (Supplementary Fig. S4). We also used the DeepLoc server to predict protein subcellular localisation and 
solubility of the proteins identified in Table S2. The results suggest 85% of candidate glycoproteins are soluble, 
and 10 proteins are both extracellular and soluble (Supplementary Table S2).

Salivary glycoproteins from Lu. longipalpis are mainly modified with mannosylated N‑gly‑
cans. Next, we determined the N-glycome modifying the salivary proteins of Lu. longipalpis. The presence of 
mannosylated N-glycan structures on salivary glycoproteins was suggested by the results of a lectin blot using 
Concanavalin A, and to confirm these results, we next determined the N-glycome of salivary glycoproteins of 
Lu. longipalpis.

The oligosaccharides were released by PNGase F followed by derivatization with  procainamide22 which 
allowed fluorescence detection following hydrophilic interaction liquid chromatography (HILIC) and provided 
increased signal intensity in MS and MS/MS  analysis22. Overall, we identified 14 different structures (Table 1), 
elucidated from ten separate compositions due to the presence of isomeric glycans.

Most oligosaccharides are of the high mannose type (82% of the N-glycome), with the  Man5GlcNAc2-Proc 
glycan with m/z [727.81]2+, being the most abundant species (21.16 min; GU 6.00, Fig. 2). In addition, few 
hybrid-type species (with a retention time of 15.12–17.24 min) were detected, containing either an α1-6 core 
fucose residue linked to the reducing GlcNAc or not fucosylated, or a single terminal LacNAc motif (Fig. 2).

All major glycan structures were characterised using positive ion MS (Fig. 3A) and MS/MS fragmentation 
spectra. An example of structural elucidation using MS/MS fragmentation spectrum is shown for the major 
glycan species  Man5GlcNAc2-Proc, with m/z [727.82]2+ (Fig. 3B) while the remaining are mainly represented by 
hybrid-type glycans, either a trimannosyl modified with a Fuc residue on the chitobiose core, or paucimannosidic 
structures containing an unknown modification of 144 Da (see below).

Although PNGase F is highly effective in cleaving N-linked glycans, its activity is blocked by the presence of 
core fucose residues with an α1-3 linkage found in non-mammalian glycans. Therefore, we also treated our sam-
ples with PNGase A, which cleaves all glycans between the innermost GlcNAc and the asparagine independent 
of core  linkages23. No differences were observed in chromatograms yielded from both enzymes (Supplementary 
Fig. S5), indicating all core fucosylation is likely to be α1-6-linked.

MALDI-TOF–MS analysis reveals a series of sand fly salivary glycans with unidentified modifi‑
cations of 144 Da. A more detailed analysis of the saliva by MALDI-TOF MS of pyridylaminated glycans 
revealed not only the major oligomannosidic species, but also suggested the existence of a series of glycans 
containing an unidentified structure. This modification was mainly found in two isomeric glycans: one with an 
RP-HPLC retention time of 25.0 min and the other of 26.5 min (Supplementary Fig. S6). The two isomers have a 
m/z 1,295.50, which corresponds to a pyridylaminated  Man4GlcNAc2 glycan carrying a modification of 144 Da. 
This was confirmed by treatment with Jack bean α-mannosidase, which resulted in a loss of 2 and 3 hexoses 
(Fig. 4) for each isomer, respectively. Interestingly, this modification seems to be located in different positions in 
the two structures, and in both cases this modification was lost after treatment with 48% aqueous hydrofluoric 
acid (aq.HF) (Fig. 4, and Table 2).

Susceptibility to aq.HF is a hallmark of phosphoester, galactofuranose and some fucose modifications, but 
none of these are obviously compatible with a 144 Da modification. Based on this data, a re-assessment of the data 
with the procainamide-labelled glycans also revealed a total of four structures carrying this modification (Peak 4, 
5, 7 and 8, Table 1); however, due to the very low abundance of these glycans we were unable to determine their 
chemical nature. Additionally, the potential for anionic modifications of N-glycans was explored by both gly-
comic workflows, but limitations in spectral quality and sample amount prevented a definitive characterisation.

no O-linked glycans found in sand fly saliva. In silico predictions using the NetOGlyc 4.024 server sug-
gest that 85% our 191 identified salivary proteins have putative O-glycosylation sites (Supplementary Table S3). 
Sand fly saliva was subjected to reductive β-elimination to release O-glycans from the de-N-glycosylated pro-
teins. Separation using porous graphitized carbon chromatography coupled with negative ion mode ESI–MS did 
not detect any O-glycans in the sample (Supplementary Fig. S8), either due to their absence, low abundance or 
low mass.

Discussion
Sand fly saliva has important implications both for the insect and the vertebrate  host4. Lu. longipalpis salivary pro-
teins and their biological roles have been well  studied4,20; however, the sugars that modify these proteins have not 
been characterised in detail. Most work on sand fly salivary glycans comes from in silico  analyses13–15,17,18,25 and 
lectin blotting. They were first reported by Volf et al19, who used lectins to detect mannosylated N-type glycans. 
Mejia et al16 reported high mannose glycans in Lu. longipalpis saliva, with some potential hybrid-type structures 
(also based on lectin specificity). However, results from lectin-based methods should be interpreted with care as 
detection controls have not always been included in these studies, and results can be highly dependent on glycan 
abundance in samples and specific protocols. Our work is the first time that a mass spectrometry approach has 
been used to study the salivary N-linked glycans of Lu. longipalpis, providing detailed information about their 
structures and relative abundances. We found that sand fly salivary glycoproteins consist mainly of oligoman-
nose glycans (ranging from the core  Man3GlcNAc2 to  Man9GlcNAc2), with some hybrid-type (e.g. fucosylated) 
structures. Additionally, this is the first report of a 144 Da (unknown) modification present in some salivary 
glycans. Our results provide new insights into how these structures could be recognised by vertebrate host cells.
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In insects, protein glycosylation studies have been carried out primarily on the Drosophila melanogaster fly, 
demonstrating the presence of various carbohydrate  structures10,26,27. It is generally accepted that N-linked type 
glycoproteins in arthropods are mainly of the high-mannose or paucimannose type, and account for over 90% 
of glycan complexity in Drosophila10,28. One of the first indications of the capacity of insects to produce complex 
type N-glycans came from bee venom phospholipase A2, which contains the core α1,3-fucose (an IgE epitope 
allergenic to humans). Anionic and zwitterionic N-glycans with up to three antennae have more recently been 
found in a range of  insects29–32. Furthermore, Vandenborre et al.33 explored glycosylation differences comparing 

Table 1.  List of glycan structures present in Lu. longipalpis saliva. GU glucose units, Proc procainamide Green 
circles, mannose; blue squares, N-acetylglucosamine; red triangle, fucose; yellow circles, galactose. Relative 
abundance values are based on HILIC data (Fig. 2). 

Peak
No.

GU
Detected

[M+Proc+2H]2+
Detected

[M+Proc+H]1+
Theoretical

[M+Proc+H]1+ Composition
% Relative
Abundance

Proposed
Structure

1 3.69 – 1114.48 1114.51
(Hex)2(HexNAc)2

(Fucose)1

+ contaminant
10.31

2 4.21 – 1130.52 1130.51 (Hex)3(HexNAc)2

+ contaminant
11.35

3 4.60 638.79 1276.58 1276.57
(Hex)3(HexNAc)2

(Fucose)1
2.30

4 4.87 718.8 1436.58 1436.48 (Hex)4(HexNAc)2 0.41

5 4.95

718.8 – 1495.64 (Hex)4(HexNAc)2

0.53

748.79 1436.58 1436.48
(Hex)1(HexNAc)1

+ 
(Man)3(GlcNAc)2

6 5.02 646.79 1292.58 1292.56
(Hex)4(HexNAc)2

+ contaminant
8.21

7 5.15 718.8 – 1436.48 (Hex)4(HexNAc)2 3.87

8 5.88 819.31 – 1639.56

(HexNAc)1 + 144 
+ Hexose + 

(Man)3(GlcNAc)2

+ Proc

4.16

9 6.00

727.8 1454.59 1454.61
(Hex)2 + 

(Man)3(GlcNAc)2
41.43

646.79 1292.58 1292.56 (Hex)4(HexNAc)2

10 6.83 808.82 1616.64 1616.67 (Hex)3 + 
(Man)3(GlcNAc)2

9.84

11 7.44 727.23 – 1454.61
(Hex)2 + 

(Man)3(GlcNAc)2
0.38

12 7.72 889.83 – 1778.72
(Hex)4 + 

(Man)3(GlcNAc)2
2.77

13 8.58 970.85 – 1940.77
(Hex)5 + 

(Man)3(GlcNAc)2
2.83

14 9.31 1051.9 – 2102.82 (Hex)6 + 
(Man)3(GlcNAc)2

0.90
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several economically important insects, and found glycoproteins to be involved in a broad range of biological 
processes such as cellular adhesion, homeostasis, communication and stress response.

Some researchers have predicted the presence of mucins in the mouthparts of  bloodfeeders34,35, proposing 
their possible role as lubricants to facilitate bloodmeals. Even though O-linked glycans have been widely docu-
mented in invertebrates, we were unable to detect these sugars in sand fly saliva after reductive β-elimination. 
This was surprising given that our bioinformatic analysis (NetOGlyc server) predicted the presence of putative 
O-glycosylation sites. The presence of O-linked glycans in Lu. longipalpis saliva has been suggested through 
peanut agglutinin and Vicia villosa lectin  detection16; however, it is worth noting that the experiment does not 
include positive controls or binding inhibition by competitive sugars, so non-specific binding cannot be ruled 
out. Interestingly, Lu. longipalpis midgut mucin-like glycoprotein has been  described36 (with a suggested role 
in Leishmania attachment), showing the capacity of this species to produce O-linked glycans (at least in other 

Figure 2.  HILIC-LC separation of procainamide labelled N-glycans from Lu. longipalpis. Sand fly saliva 
contains mainly oligomannose-type N-linked glycans, with  Man5GlcNAc2 being the most abundant structure. 
Green circle, mannose; yellow circle, galactose; blue square, N-acetylglucosamine; red triangle, fucose; Proc 
procainamide.

Figure 3.  Mass spectrometry analysis of released N-glycans from Lu. longipalpis salivary glycoproteins. (A) 
Positive-ion mass spectrum profile (m/z 540–1,500) of total N-glycans. Ion signals are labelled accordingly. The 
most abundant glycan species  (Hex5HexNAc2–Proc) was also detected as an [M + H]2+ ion with a m/z of 727.82. 
See Table 1 for complete glycan assignment. Peaks labelled with an asterisk correspond to glucose homopolymer 
contaminants from HILIC. (B) Positive-ion MS/MS fragmentation spectrum for most abundant m/z [727.8]2+ 
corresponding to the composition  Hex5HexNAc2–Proc, proposed as a  Man5GlcNAc2. Green circle, mannose; 
Blue square, N-acetylglucosamine; Proc procainamide.
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tissues). A variety of O-linked glycans are reported for Drosophila37, with important functions such as body 
 development10,38. Furthermore, research shows that several Drosophila37 and  moth39 cell lines form mucin-type 
O-glycans. It is worth noting there is no consensus sequence for O-glycosylation as in N-linked glycosylation, 
and in silico predictions are unreliable. Interestingly, similar results have been found in Glossina (unpublished), 

Figure 4.  Analysis of sand fly N-glycans with an unknown residue. Two late-eluting RP-amide fractions (13 
and 14 GU) containing glycans of m/z 1,133, 1,295 and 1,457 (A, D) were analysed by MALDI-TOF MS and 
MS/MS before and after jack bean α-mannosidase (B, E) or hydrofluoric acid (C, F) treatments. The m/z 
1,295 glycan structures lost either two or three mannose residues after mannosidase treatment, ruling out that 
terminal α-mannose residues are substituted, but indicating a difference in the isomeric structure. In contrast, 
upon hydrofluoric acid treatment, incomplete loss of 144 Da was observed. Changes in mass upon mannosidase 
or HF treatment are indicated and non-glycan impurities annotated with an asterisk. The MS/MS for the 
original glycans and their digestion products are shown on the right; the differences in relative intensity of the 
m/z 665 and 827 fragments could explain the isomeric m/z 1,295 structures with the 144 Da moiety attached 
to different mannose residues (as shown in panels A and D); key fragments are annotated according to the 
Symbolic Nomenclature for Glycans, while loss of reducing terminal GlcNAc-PA is indicated by − 299 Da. PA 
2-aminopyridine, GU glucose units, green circle, mannose; blue square, N-acetylglucosamine.

Table 2.  Summary of treatments of the isomeric structures detected by MALDI-TOF MS (Fig. 4). JBMan Jack 
Bean α-mannosidase, GU glucose units, RT retention time, aq.HF aqueous hydrofluoric acid.

Treatment Isomers

(RT, min) 25.0 26.5

GU 13 14

No treatment m/z 1,295.5 m/z 1,295.5

JBMan (− 2 Hex) (− 3 Hex)

48% aq.HF alone m/z 1,151.4 (− 144 Da) m/z 1,151.4 (− 144 Da)

48% aq.HF + 1,3-specific JBMan m/z 989 (-162 (Hex)) No loss observed
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suggesting that these dipterans may not be able to O-glycosylate proteins in salivary tissues, or they are below 
the level of mass spectrometry detection.

A surprising finding in this work were the 144 Da structures modifying some of the salivary glycans (i.e. 
 Man4GlcNAc3, and two  Man4GlcNAc2 isomers). They were present in very low abundance (< 1%), were located 
on different mannose residues (as shown by jack bean α-mannosidase digestion), and appeared susceptible to 
aqueous HF. However, we have yet to confirm the identity and biological role of this modification. A literature 
search revealed that structures of a 144 Da mass have been found on glycans from other organisms, including 
bacteria, viruses and sea  algae40–42, but were not further addressed by the authors. One possibility is that these 
correspond to an anhydrosugar, like 3,6-anhydrogalactose (of 144 Da mass)43. Interestingly, work on mosquitoes 
has shown that these insects are able to produce anionic glycans with sulphate and/or glucuronic modifications 
that can be tissue  specific29,44. The glycans identified here carrying this rare 144 Da residue may be another 
example of such modifications and could play a role specific to their location in sand fly saliva.

Even though every effort was made during salivary gland dissections to obtain saliva with minimal tissue 
contamination, this cannot be completely avoided. Analysis with the DeepLoc server suggested that although 
most protein candidates are ‘soluble’, only some are predicted to be ‘extracellular’. Furthermore, some proteins 
without signal peptide can still be secreted through a non-classical or “unconventional” secretory  pathway47,48. 
An alternative way of saliva extraction would be to induce salivation by chemical means like  pilocarpine49–51; 
however, this carries its own logistical difficulties considering the amount of saliva needed to detect glycans in 
such low abundances (even with the highly sensitive techniques we have used here). Another limitation of this 
work is the low protein profile resolution provided by 1D gel electrophoresis, where we may have missed weaker 
bands during our selection of proteins for sequencing. Higher protein concentrations and analysis through 2D 
gel electrophoresis could help us address this issue; nevertheless, we believe our work includes the major proteins 
in Lu. longipalpis saliva, providing a good overview of glycan abundance and composition in this bloodfeeding 
insect.

The biological role of protein glycosylation in the saliva of sand flies (and other bloodfeeding arthropods) is 
uncertain. One possibility is that glycans affect salivary protein half-life in the blood once they enter vertebrate 
host. Another possibility is that these glycans influence other in vivo processes like the interactions between 
saliva and cell surface carbohydrate recognition domains. For instance, the mannose receptor and DC-SIGN 
are c-type lectins that recognize mannosylated structures (uncommon in vertebrate cells); they are present on 
macrophages and dendritic cells, playing a role in both innate and adaptive immune  systems52, making glycans 
highly relevant in parasitic infection processes. Additionally, the mannose-binding lectin activates the ‘lectin 
pathway’ of complement, and has an important role in protection against various  pathogens53. An example of 
this was reported in tick saliva, which contains a mannose-binding lectin inhibitor whose activity was shown 
to be glycosylation-dependent54.

This, in turn, could be of importance within the context of Leishmania infection as both macrophages and 
dendritic cells have been shown to have critical roles in the initial stages of infection and subsequent dissemina-
tion of the parasite inside the vertebrate  host55. In order for Leishmania to survive and multiply inside the host, it 
must be internalized by macrophages; however, promastigotes appear to avoid the MR receptor during invasion, 
as it promotes inflammation and can be detrimental to their  survival55. The saliva of Lu. longipalpis can prevent 
macrophages from presenting Leishmania antigens to T  cells56, but these effects are species-specific; in the case of 
other sand flies like Phlebotomus papatasi, saliva inhibits the activation of these  cells57. Work on a patient-isolated 
L. major strain that causes nonhealing lesions in C57BL/6 mice found that its uptake by dermal-macrophages 
is MR-mediated58. Even though the MR does not play a role in the healing strain, it is an indication that sand 
fly saliva may be involved in other parasite-macrophage interactions. Leishmania also interacts with DC-SIGN 
(particularly amastigotes and metacyclic promastigotes) and this varies depending on  species59. It remains to be 
seen whether mannosylated glycoproteins in saliva impair or facilitate these interactions and their outcomes.

Many sand fly salivary proteins are currently being explored as potential vaccine candidates against Leish-
mania, and knowing the nature of their post-translational modifications is relevant to their activity and efficacy. 
Several salivary proteins from Lu. longipalpis that are being researched as vaccine candidates (e.g. LJM11, LJM17 
and  LJL1434) have potential glycosylation sites (as indicated in the results of our in silico analysis). As recombi-
nant versions of these proteins are normally expressed in non-insect  cells60, care should be taken to ensure the 
glycoprotein’s profile and activity remains the same.

Finally, it is also worth considering the role salivary glycoproteins could play inside the sand flies themselves. 
Both male and female sand flies rely on plant sugars to survive, and Cavalcante et al. showed that Lu. longipalpis 
ingest saliva while sugar  feeding61. Lectins (which bind to glycans) represent a major part of a plant’s defence 
 system62, and can cause damage to an insect’s midgut when  ingested63. Salivary glycoconjugates may be poten-
tially recognized by these plant lectins, helping to decrease the damage they can cause. Moreover, the ingestion 
of saliva during the bloodmeal may impact parasite differentiation in the fly’s  gut64. Furthermore, sand fly-borne 
viruses use the host cell machinery for replication, which includes the insect glycosylation pathways, before it 
is transmitted to the vertebrate host. In this context, understanding the glycosylation of insect salivary glands is 
also relevant to understand their pathogenicity.

Methods
Glycoprotein predictions. The servers NetNGlyc 1.065 (https ://www.cbs.dtu.dk/servi ces/NetNG lyc/) and 
NetOGlyc 4.024,66 (https ://www.cbs.dtu.dk/servi ces/NetOG lyc/) were used to predict potential glycosylation 
sites by examination of the consensus sequences. The DeepLoc 1.067 server (https ://www.cbs.dtu.dk/servi ces/
DeepL oc/index .php) was used to predict location of proteins.

https://www.cbs.dtu.dk/services/NetNGlyc/
https://www.cbs.dtu.dk/services/NetOGlyc/
https://www.cbs.dtu.dk/services/DeepLoc/index.php
https://www.cbs.dtu.dk/services/DeepLoc/index.php
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Sand fly salivary gland dissection and extraction of saliva. Lutzomyia longipalpis sand flies were 
obtained from a colony at the London School of Hygiene and Tropical Medicine (UK), which originated in 
Jacobina (Bahia state), Brazil. Salivary glands were dissected from 5-day old, sugar-fed, uninfected females in 
sterile PBS (Sigma, St. Louis, US). To harvest saliva, pools of 10 salivary glands were placed on ice, pierced with a 
needle and then centrifuged at 3,000 rpm for 10 min at 4 °C. The supernatant (pure saliva) was stored at -80 °C. 
Between 0.5–1 µg of protein per sand fly was obtained from dissections.

SDS polyacrylamide gel electrophoresis and staining. Sand fly saliva (10 µg) was run on a 12.5% 
polyacrylamide gel, before and after deglycosylation with endoglycosidase PNGase F (New England Biolabs, 
Massachusetts, US). Gel was stained using InstantBlue Protein stain (Expedeon, California, US). Spectra Multi-
color Broad Range Protein Ladder (ThermoFisher, UK) was used as molecular weight marker.

Concanavalin A blots. Saliva samples, before and after treatment with PNGase F (New England Biolabs, 
US) were run on a 12.5% polyacrylamide gel under standard conditions, transferred onto a PVDF membrane 
(Fisher Scientific, UK), and blocked with 1% BSA (Sigma, St. Louis, US) in PBS-Tw 20 (Sigma, St. Louis, US) 
overnight at 4  °C. Membrane was incubated with 1 µg/ml biotinylated Concanavalin A (ConA) lectin (Vec-
tor Labs, Peterborough, UK) for 1 h at room temperature. After washing, the membrane was incubated with 
1:100,000 streptavidin-HRP (Vector Labs, Peterborough, UK). SuperSignal West Pico Chemiluminescent sub-
strate (ThermoFisher, Massachusetts, US) was used to detect the bands. Egg albumin (Sigma, St. Louis, US), a 
highly mannosylated N-linked  glycoprotein68, was used as positive control.

Mass spectrometry analysis. To identify the glycoproteins that were susceptible to PNGase F, bands of 
interest were sliced from the gel and sent to the Dundee University Fingerprints Proteomics Facility. Briefly, the 
excised bands were subjected to in-gel trypsination then alkylated with iodoacetamide. The resultant peptides 
were then analysed via liquid chromatography- tandem mass spectrometry (LC–MS/MS) in a Thermo LTQ 
XL Linear Trap instrument equipped with a nano-LC. Tandem MS data were searched against the Lu. longipal-
pis database downloaded from VectorBase (https ://www.vecto rbase .org/prote omes) using the Mascot (version 
2.3.02, Matrix Science, Liverpool) search engine. Search parameters were performed as described in  elsewhere69. 
For in-solution data, the false discovery rate was filtered at 1%, and individual ion scores ≥ 30 were considered to 
indicate identity or extensive homology (p < 0.05).

enzymatic release of N‑linked glycans. The N-glycans from sand fly saliva were released by in-gel 
deglycosylation using PNGase F as described by Royle et al.70. For deglycosylation using PNGase A, peptides 
were released from gel pieces by overnight incubation at 37 °C with trypsin in 25 mM ammonium bicarbonate. 
The supernatant was dried, re-suspended in water and heated at 100 °C for 10 min to deactivate the trypsin. 
Samples were dried by vacuum centrifugation and the tryptic peptide mixture was incubated with PNGase A 
in 100 mM citrate/phosphate buffer (pH 5.0) for 16 h at 37°C71. Samples were separated from protein and salts 
using LudgerClean Protein Binding Plate (Ludger Ltd., Oxfordshire, UK). All wells were flushed with extra water 
to ensure full recovery and then dried by vacuum centrifugation prior to fluorescent labelling.

Fluorescent labelling and purification of released N‑glycans. Released N-glycans were fluorescently 
labelled via reductive amination reaction with procainamide using a Ludger Procainamide Glycan Labelling Kit 
containing 2-picoline borane (Ludger Ltd.). The released glycans were incubated with labelling reagents for 1 h 
at 65 °C. The procainamide labelled glycans were cleaned up using LudgerClean S Cartridges (Ludger Ltd) and 
eluted with water (1 mL). Samples were evaporated under high vacuum and re-suspended in water prior to use.

ESI-LC–MS and ESI-LC–MS/MS analysis of procainamide-labelled N‑glycans. Procainamide 
labelled samples were analysed by ESI-LC–MS in positive ion mode. 25 µL of each sample were injected onto 
an ACQUITY UPLC BEH-Glycan 1.7 µm, 2.1 × 150 mm column at 40 °C on the Dionex Ultimate 3000 UHPLC 
attached to a Bruker Amazon Speed ETD (Bruker, UK). The running conditions used were: solvent A was 50 mM 
ammonium formate pH 4.4; solvent B was acetonitrile (acetonitrile 190 far UV/gradient quality; Romil #H049). 
Gradient conditions were: 0 to 53.5 min, 24% A (0.4 mL/min); 53.5 to 55.5 min, 24 to 49% A (0.4 mL/min); 55.5 
to 57.5 min, 49 to 60% A (0.4 to 0.25 mL/min); 57.5 to 59.5 min, 60% A (0.25 mL/min); 59.5 to 65.5 min, 60 to 
24% A (0.4 mL/min); 65.5 to 66.5 min, 24% A (0.25 to 0.4 mL/min); 66.5 to 70 min 24% A (0.4 mL/min). The 
Amazon Speed settings were the same as described  in72 except that precursor ions were released after 0.2 min 
and scanned in enhanced resolution within a mass range of 200–1,500 m/z (target mass, 900 m/z).

Release of O‑linked glycans. Saliva samples underwent reductive β-elimination to release O-glycans after 
PNGase F treatment. Briefly, samples were diluted in 0.05 M sodium hydroxide and 1.0 M sodium borohydride 
at a temperature of 45 °C with an incubation time of 14–16 h followed by solid-phase extraction of released 
O-glycans73. O-glycans were analysed using PGC-LC coupled to negative ion ESI–MS/MS74 alongside bovine 
fetuin O-glycans as a positive control.

MALDI-TOF analysis of aminopyridine-labelled glycans. Sand fly salivary glycans were released 
according to previous procedures and labelled with PA (aminopyridine) as described  elsewhere75, prior to RP-
HPLC and analysis by MALDI-TOF MS using a Bruker Daltonics Autoflex Speed instrument (Hykollari). Ali-
quots of samples were treated with Jack bean α-mannosidase (Sigma), α-1,3 mannosidase and 48% aqueous 

https://www.vectorbase.org/proteomes
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hydrofluoric acid (aq.HF); the latter under control conditions releases phospho(di)esters, phosphonate, α1,3-
fucose and galactofuranose groups. Dried glycan fractions were redissolved in 3 μL of aq.HF on ice (in the cold 
room) for 36 h prior to repeated evaporation. The digests were re-analysed using MALDI-TOF MS and MS/
MS. Spectra were annotated by comparison to previous data on insect N-glycomes in terms of monosaccharide 
composition (Fx Hy Nz), using retention time, manual interpretation, exoglycosidase treatment results and LIFT 
fragmentation analysis.
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